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Abstract— Navigation and obstacle avoidance in aquatic en-
vironments for autonomous surface vehicles (ASVs) in high-
traffic maritime scenarios is still an open challenge, as the
Convention on the International Regulations for Preventing
Collisions at Sea (COLREGs) is not defined for multi-encounter
situations. Current state-of-the-art methods resolve single-to-
single encounters with sequential actions and assume that other
obstacles follow COLREGs. Our work proposes a novel real-
time non-myopic obstacle avoidance method, allowing an ASV
that has only partial knowledge of the surroundings within the
sensor radius to navigate in high-traffic maritime scenarios.
Specifically, we achieve a holistic view of the feasible ASV
action space able to avoid deadlock scenarios, by proposing (1) a
clustering method based on motion attributes of other obstacles,
(2) a geometric framework for identifying the feasible action
space, and (3) a multi-objective optimization to determine the
best action. Theoretical analysis and extensive realistic exper-
iments in simulation considering real-world traffic scenarios
demonstrate that our proposed real-time obstacle avoidance
method is able to achieve safer trajectories than other state-
of-the-art methods and that is robust to uncertainty present in
the current information available to the ASV.

I. INTRODUCTION

This paper addresses the problem of obstacle avoidance

and navigation of Autonomous Surface Vehicles (ASVs) in

highly-congested waters – see Fig. 1. Augmenting the auton-

omy of ASVs can enable and automate many high-impact

societal applications, including shipping and monitoring [1].

One of the current main challenges limiting the widespread

use of ASVs is navigation safety [2]. Differently from car

driving, waterways are not clearly marked. In addition, while

there are some traffic rules – Convention on the International

Regulations for Preventing Collisions at Sea (COLREGs)

[3] – governing how to handle single obstacle encounters,

COLREGs do not explicitly cover scenarios of multiple

obstacle encounters [4]. The unstructured environment and

lack of regulatory framework in aquatic scenarios create

a challenge especially in high-traffic waters, such as the

Ningbo and Shanghai waterways, Singapore and Malacca

Straits, and the Dover Straits where hundreds of vessels

navigate on a daily basis [5].

Current state-of-the-art methods for ASVs operate follow-

ing COLREGs on several single-to-single encounters with

sequential actions (e.g., [6], [7]) and reciprocal cooperative

actions by the obstacles (e.g., [8], [9]). These sequential and

myopic methods may produce conflicting actions in real-

world scenarios. For example, when the own controlled ASV
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Fig. 1. Collision avoidance behavior for controlled ASV, R, using state-of-
the art vs. proposed method under congested traffic with multiple obstacles
O: (a) a desired action (θ1, v1) complies with a left-to-left maneuver for the
head-on Ob, Oc, Od, while the bow-crossing maneuver conflicts with the
crossing Of , Og ; (θ2, v2) complies with a stern-crossing maneuver for the
crossing Of , Og , while the change of action conflicts with stand-on status
for overtaking Oe; (θ3, v3) partially complies with a left-to-left maneuver
for the head-on Ob, Oc except Od, while it leads to entering between the
obstacles. (b) (θ∗, v∗) achieves a safe and adaptive maneuver with only
one bow-crossing for Oa, while clusters (Ob, Oc, Od) and (Of , Og) are
identified based on similar motion attributes with respect to R such that R
will not pass areas (dotted lines) between obstacles in a cluster.

is obliged to turn to the right as a ‘give-way’ vehicle with

respect to head-on obstacle(s), but simultaneously keeping

the speed and heading as a ‘stand-on’ vehicle with respect

to overtaking obstacle(s). Moreover, other vessels might not

follow the rules and the same reciprocal collision avoidance

algorithm as the own controlled ASV.

To address the above mentioned limitations, this paper

proposes a novel motion attribute-based clustering and non-

myopic collision avoidance based on multi-objective opti-

mization for complex in-water obstacle scenario(s). The pro-

posed method identifies three near future motion attributes

of encountered obstacles with respect to the controlled

ASV – temporal (Time to the Closest Point of Approach

(TCPA)), spatial (Closest Point of Approach (CPA)), and

angular (relative bearing) similarity – and clusters group(s)

of obstacles based on the similarity. The clustering allows

an increased safety: the ASV can holistically consider the

obstacles, by prohibiting the entrance within the cluster.

From the predicted cluster(s), our method calculates an

evasive action by geometric analysis, which finds feasible

action space boundaries, and multi-objective optimization.

The objective function considers change(s) of velocity, head-

ing, and expected safety level. Note clusters are updated or

added, if a motion attribute of obstacle(s) with respect to

the controlled ASV changes or new obstacles are sensed

within the range. After calibrating parameters of a simulated

ASV from field experiments with a real ASV, we validate

the proposed approach with extensive simulations under

realistic diverse traffic scenarios. We vary the number of









towards a confined space between obstacles. Note that there

exists a case where Equation (4) returns Oi = Oj : (a) only

one obstacle exists in a cluster, i.e., ||Ck|| = 1; or (b)

an action boundary formed by Oi encompasses any other

combinations of action boundaries in Ck where ||Ck|| ≥ 2.

As a result, the proposed algorithm can derive the aggre-

gated action boundary from individual clusters in interest at

that time
⋃

k[θl(Ck), θr(Ck)]. Given a possible action space

A, the aggregated boundary becomes no-go-zone A′ where

A′ ⊆ A. An action a ∈ A − A′ prevents a controlled ASV

from colliding with any Oi ∈ Ck as well as entering a con-

fined space between obstacles. Formally, this can be derived

by extending Proposition 1: if a /∈
⋃

k[θl(Ck), θr(Ck)] leads

to a collision with an obstacle in a certain Cp, this contradicts

that a can avoid a collision with any obstacles in Cp, because

a /∈
⋃

k[θl(Ck), θr(Ck)] means a /∈ [θl(Cp), θr(Cp)] =
[θl(Oq), θr(Or)] where Oq, Or is determinant obstacle in Cp.

D. Multi-Objective Optimization for Obstacle Avoidance

We define a multi-objective optimization to find the best

action in the action space A of a controlled ASV. The action

space A is a discrete grid space determined by a combination

of heading and speed θ, v. We use [0, 360) with 1° increment

for θ and ratio [0, 1] of the max target speed with 0.25
increment for v. Possible actions are evaluated from the

feasible action space A−A′. Such actions are evaluated as

a weighted sum of four objectives (a) heading change from

a waypoint; (b) heading change from a local target heading;

(c) speed change; and (d) safety level:

J(θ, v) = wff(θ) + wf2f2(θ) + wgg(v) + whh(θ, v) (5)

where (θ, v) is an action a ∈ A −A′ to be evaluated; f(·),
f2(·) are a heading change cost for required heading towards

a destination or local target heading while avoiding obstacles,

respectively; g(·) is a speed change cost; h(·, ·), is a safety

level cost; and wf , wf2 , wg , wh are related weights.

More specifically, f cost function represents ‘how much

an evaluated heading will be offset from a direction towards

a waypoint and can be calculated as follows:

f(θ) =
|θwp − θ|

∆max(θ)
(6)

where θwp is a true bearing towards the current waypoint, and

∆max(θ) is the possible maximum heading change in A for

prediction. f cost can determine the extent of how strictly the

ASV follows a path towards the current waypoint. f2 cost

function represents ‘how much an evaluated heading will

be offset from a local target heading’ and calculated in the

same way as f except θtgt instead of θwp where θtgt is the

current target heading while avoiding obstacles. To overcome

limitations of the trivial hysteresis method [7] as noted in

[15] and prevent an ASV from chattering, we introduced

f2 cost. Intuitively, f2 has a conflicting role against f , but

stabilize the motion such that the robot maintains a passage

direction (e.g., left to left) unless an imminent risk arises

(e.g., newly detected obstacle(s) blocks the passage). g cost

function represents ‘how much an evaluated speed is offset

from a target speed’ and can be calculated as follows:

g(v) =
|vtarget − v|

∆max(v)
(7)

where vtarget is a target speed to the waypoint, and ∆max(v)
is the possible maximum speed change in A from the current

speed. g cost can determine the extent of how strictly the

ASV keeps its speed compared to the target speed. Last, h
cost function represents ‘how much safety level is expected

when the ASV passes an obstacle’ and can be calculated as:

h(θ, v) =











1 if (τθ,v ≤ τ̌),

0 else if (τθ,v ≥ τ̂),
|τ̂−τθ,v|

τ̂−τ̌
else

(8)

where τ is a safety level metric (DCPA in this study), τ̂ , τ̌
are the upper, lower bound of the safety level, τθ,v is a DCPA

value when a specific action (θ, v) is taken. h cost determines

the safety extent of collision avoidance by ensuring a safe

distance from the obstacle. Note that the h cost is normalized

based on the upper and lower bound of the safety level as

done in other work [11].

Finally, after combining individual costs and weights de-

fined in a feasible action space, the optimized action θ∗, v∗

within the feasible action space A−A′ is :

(θ∗, v∗) = argmin
θ,v∈A−A′

J(θ, v) (9)

In general, the weight parameters can be set to account for

different traffic situation and end-user goal. How to set all

the parameters is discussed in Section IV-A. Note that an

optimal action may differ depending on a combination of

the weights, although, fixing the weights, the best action is

found on Pareto optimal front [32] while ensuring collision

avoidance as discussed in Section III-C.

IV. RESULTS AND EVALUATION

We conducted extensive simulation tests for validation: (1)

Monte Carlo simulations on a 2D simulator including noises

– Stage [33] – to optimize the parameters and quantitatively

demonstrate the performance of the proposed algorithm com-

pared to state-of-the-art methods; (2) realistic 3D simulations

on Gazebo [34] which included plugins for disturbances in

addition to 2D simulations on actual historical data of a

collision accident in congested traffic by testing generality

on different robotic platforms with varying size and speed.

A. Calibration Test

We performed the Monte Carlo simulations considering

our custom-made ASV, Catabot with length 2.5m, beam

1.4m, sensible range 100m, the max linear, angular speed

2.5m/s, 45 °/s found by performing a real experiment

shown in [27]. By finding the motion characteristics such as

tactical diameter and advance, we chose st = 10 sec, sd =
15m, sa = 15°. For example, ASV is not allowed to enter

between two obstacles forming a cluster whose bearing offset







tested the proposed method based on historical AIS records

of the collision at high-traffic Sagami Nada Bay (34°31′ N,

139°05′ E), Japan on 2017 [37]. Note that the controlled ship

with length 153.9m, linear, angular speed 10m/s, 20 °/s
according to the accident report was assumed to have a

sensible range of 12 nautical miles (NM). While a principal

cause of the accident was late, improper action with respect

to ship a, our approach proactively adjusted the course with

respect to ship b first such that own ship could pass multiple

obstacles (ship a, c as a cluster) with safe distance off.

V. CONCLUSION AND FUTURE STEPS

Our proposed collision avoidance method in high ma-

rine traffic scenarios can achieve safer trajectories than

other state-of-the-art methods by using motion attribute-

based clustering, geometric framework for the feasible action

space, and multi-objective optimization based on a holistic

view of obstacles detected by range sensors. While the

update frequency from obstacle’s broadcasting message can

affect the behaviors leading to near miss, we optimized the

proposed algorithm by considering uncertainty of motions

monitored by sensors in real-world scenarios.

We will integrate our proposed method with real multi-

sensor fusion modules and on a real ASV. We plan to

explicitly consider kinematic and dynamic properties of the

controlled ASV to better cope with uncertainty of external

disturbances. As a long-term goal, we will explore a high-

level global planning such that the proposed collision avoid-

ance from local perspective can be integrated towards full

marine autonomy.

ACKNOWLEDGEMENT

We would like to thank Donki Kim and Haesang Jeong

for help with historical data analysis of marine traffic. This

work is supported in part by the Burke Research Initiation

Award and NSF CNS-1919647, 2144624, OIA1923004.

REFERENCES

[1] F. Ferreira, J. Alves, C. Leporati, A. Bertolini, and E. Bargelli,
“Current regulatory issues in the usage of autonomous surface
vehicles,” in Proc. OCEANS, 2018.

[2] A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, and T. I. Fossen,
“Path planning and collision avoidance for autonomous surface
vehicles i: A review,” J. Mar. Sci. Technol., 2021.

[3] International Maritime Organization, Convention on the international

regulations for preventing collisions at sea, 1972 (COLREGs), 1972.
[4] K. Woerner, M. R. Benjamin, M. Novitzky, and J. J. Leonard,

“Quantifying protocol evaluation for autonomous collision avoid-
ance,” Auton. Robot., vol. 43, no. 4, Apr. 2019.

[5] U. Nations, Review of Maritime Transport 2021. United Nations
Conference on Trade and Development, 2022.

[6] H. Lyu and Y. Yin, “Colregs-constrained real-time path planning
for autonomous ships using modified artificial potential fields,” J.

Navigation, vol. 72, no. 3, 2019.
[7] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger,

“Safe maritime autonomous navigation with colregs, using velocity
obstacles,” IEEE J. Ocean. Eng., vol. 39, no. 1, 2014.

[8] D. K. Kufoalor, E. F. Brekke, and T. A. Johansen, “Proactive collision
avoidance for asvs using a dynamic reciprocal velocity obstacles
method,” in Proc. IROS, 2018.

[9] Y. Cho, J. Han, and J. Kim, “Efficient COLREG-Compliant Collision
Avoidance in Multi-Ship Encounter Situations,” IEEE Trans. Intell.

Transp. Syst., Oct. 2020.

[10] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments:
A survey,” Robotica, vol. 33, no. 3, 2015.

[11] M. R. Benjamin, “Capturing velocity function plateaus for efficient
marine vehicle collision avoidance calculations,” in Proc. OCEANS,
2018.

[12] Y. Xue, D. Clelland, B. S. Lee, and D. Han, “Automatic simulation
of ship navigation,” Ocean Eng., vol. 38, no. 17, 2011.

[13] P. Chen, Y. Huang, J. Mou, and P. van Gelder, “Ship collision
candidate detection method: A velocity obstacle approach,” Ocean

Eng., vol. 170, 2018.
[14] N. Wang, Y. Gao, Z. Zheng, H. Zhao, and J. Yin, “A hybrid path-

planning scheme for an unmanned surface vehicle,” in Proc. ICIST,
2018.

[15] I. B. Hagen, D. K. Kufoalor, E. F. Brekke, and T. A. Johansen,
“Mpc-based collision avoidance strategy for existing marine vessel
guidance systems,” Proc. ICRA, Sep. 2018.

[16] A. Lazarowska, “Ship’s trajectory planning for collision avoidance at
sea based on ant colony optimisation,” J. Navigation, vol. 68, 2015.

[17] L. Zhao and M.-I. Roh, “Colregs-compliant multiship collision avoid-
ance based on deep reinforcement learning,” Ocean Eng., vol. 191,
2019.

[18] Y. He, Z. Li, J. Mou, W. Hu, L. Li, and B. Wang, “Collision-
avoidance path planning for multi-ship COLREGs,” Transportation

Safety and Environment, vol. 3, no. 2, Apr. 2021.
[19] Y. Tao, K. Wei, J. Chen, D. Qi, Z. Jin, and H. Wang, “Collision

avoidance path planning in multi - ship encounter situations,” J. Mar.

Sci. Technol., 2021.
[20] “A review on improving the autonomy of unmanned surface vehicles

through intelligent collision avoidance manoeuvres,” Annual Reviews

in Control, vol. 36, no. 2, Dec. 2012.
[21] A. Vagale, R. T. Bye, R. Oucheikh, O. L. Osen, and T. I. Fossen,

“Path planning and collision avoidance for autonomous surface
vehicles II: a comparative study of algorithms,” J. Mar. Sci. Technol.,
2021.

[22] D. Kim, K. Hirayama, and T. Okimoto, “Distributed stochastic search
algorithm for multi-ship encounter situations,” J. Navigation, vol. 70,
2017.

[23] X.-Y. Zhou, J.-J. Huang, F.-W. Wang, Z.-L. Wu, and Z.-J. Liu, “A
study of the application barriers to the use of autonomous ships posed
by the good seamanship requirement of colregs,” J. Navigation,
vol. 73, no. 3, 2020.

[24] A. T. Simon Gault Steven Hazelwood, Marsden on collisions at sea,
13th ed. London: Sweet & Maxwell, 2003.

[25] R. Zhen, M. Riveiro, and Y. Jin, “A novel analytic framework of
real-time multi-vessel collision risk assessment for maritime traffic
surveillance,” Ocean Eng., vol. 145, no. September, 2017.

[26] P. Chen, M. Li, and J. Mou, “A velocity obstacle-based real-time
regional ship collision risk analysis method,” Journal of Marine

Science and Engineering, vol. 9, no. 4, 2021.
[27] M. Jeong and A. Quattrini Li, “Risk vector-based near miss obstacle

avoidance for autonomous surface vehicles,” in Proc. IROS, 2020.
[28] “Autonomous ship collision avoidance navigation concepts, tech-

nologies and techniques,” J. Navigation, vol. 61, no. 1, 2008.
[29] International Maritime Organization, International convention for the

safety of life at sea, 1974 (SOLAS), 1972.
[30] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity

obstacles for real-time multi-agent navigation,” in Proc. ICRA, 2008.
[31] J. K. Robson and O. O. Qj, “Overview of collision detection in the

ukcs,” in AEA Technology for Health and Safety Executive, 2006.
[32] N. Basilico and F. Amigoni, “Exploration strategies based on multi-

criteria decision making for searching environments in rescue oper-
ations,” Autonomous Robots, vol. 31, no. 4, Sep. 2011.

[33] R. T. Vaughan, “Massively multi-robot simulation in stage,” Swarm

Intelligence, vol. 2, 2008.
[34] N. Koenig and A. Howard, “Design and use paradigms for gazebo,

an open-source multi-robot simulator,” in Proc. IROS, vol. 3, 2004.
[35] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach

to collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, Mar.
1997.

[36] M. Paravisi, D. H. Santos, V. Jorge, G. Heck, L. M. Gonçalves,
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