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Abstract— In this paper, we present a system for measuring
water quality, with a focus on detecting and predicting Harmful
Cyanobacterial Blooms (HCBs). The proposed approach in-
cludes stationary multi-sensor stations, Autonomous Surface
Vehicles (ASVs) collecting water quality data, and manual
deployments of vertical water sampling together with vertical
water quality sensor data collection, in order to monitor the
health of the lake and the progress of different types of
algal blooms. Traditional water monitoring is performed by
manual sampling, which is limited both in the spatial and the
temporal domain. The proposed method will expand the range
of measurements while reducing the cost. Human sampling is
still included in order to provide a base of comparison and
ground truth for the automated measurements. In addition, the
collected data, over multiple years, will be analyzed to infer
correlations between the different measured parameters and
the presence of blooms. A detailed description of the proposed
system is presented together with data collected during our first
sampling season.

I. INTRODUCTION

This paper proposes a multi-modal monitoring system for

monitoring Harmful Algal Blooms (HABs) in surface fresh

waters, such as lakes and reservoirs – see Fig. 1. Habs occur

in fresh, salt, and brackish waters, that is, in lakes, marine,

and estuarine environments. They are the result of many dif-

ferent organisms, such as toxic and noxious phytoplankton,

macroalgae and benthic algae, and cyanobacteria. In fresh

water environments, such as lakes, are mainly caused by

benthic algae and cyanobacteria, thus often called Harmfull

Cyanobacteria Blooms (HCBs). Since 2010 there have been

more than 500 reports in USA of harmful blooms1.

Since the seventies [1] scientists are trying to monitor,

understand and predict algal blooms, a topic that has stayed

an active area of research. Remote sensing [2] from satellite

images was utilized to observed lakes, albeit in low resolu-

tion. The environmental drivers that initiate, maintain, and

influence the growth and spread of HCBs are still not fully

understood, which impedes their predictability and manage-

ment. Traditional science relies on manual sampling of the

water in distinct locations. This process is labor intensive,

time consuming, often exposes scientists to unsafe conditions
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Fig. 1: Autonomous Surface Vehicle collecting bathymetric and
water quality data around a permanent sensing station.

(contact with toxic algae), and is limited both spatially and

temporarily. However, manual sampling/data-collection is the

standard approach and provides an excellent starting point

and a base of comparison. Within the robotics community,

work that could be applicable for this task includes al-

gorithms for coverage of a known environment [3]–[5] or

adaptive sampling [6], [7]. Such approaches are still largely

underused in practice; their focus is on minimizing the task

cost (e.g., traveled distance) rather than evaluating the system

as a whole for high-quality data collection.

In this paper, as part of a larger effort in the US East

Coast [8], [9], the proposed approach utilizes the traditional

data collection methods, augmented with autonomous op-

erations. In particular, we have identified two man-made

impoundment lakes of significant size in South Carolina that

exhibit algal growth. In both lakes, municipal and state actors

have been collecting water quality data for years. We built

upon this work by introducing a complete water sampling

system. Central in the proposed approach is an Autonomous

Surface Vehicle (ASV) [10] equipped with a YSI EXO2

multi-sensor sonde for collecting water quality data near the

lake surface over large areas. In addition to the ASV opera-

tions, two buoys are placed in each lake, collecting dissolved

oxygen and temperature data at different depths at high

frequency (every 10 minutes) all year round. Finally, during

the growth session (April to October) manual water sampling

with a Niskin bottle together with vertical deployments of a

second multi-sensor sonde are performed in distinct locations

every two weeks. We evaluate a boustrophedon and a spiral

coverage patterns. The main contribution of this paper is in

providing guidelines on reliable and efficient collection of

data that can be used then for training predictive models and
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