
Devils in Your Apps: Vulnerabilities and User
Privacy Exposure in Mobile Notification Systems

Jiadong Lou∗, Xiaohan Zhang†, Yihe Zhang∗, Xinghua Li†, Xu Yuan∗, and Ning Zhang‡
∗University of Louisiana at Lafayette, Lafayette, Louisiana, USA

†Xidian University, Xi’an, China
‡Washington University in St. Louis, St. Louis, Missouri, USA

AbstractÐWitnessing the blooming adoption of push notifica-
tions on mobile devices, this new message delivery paradigm has
become pervasive in diverse applications. Accompanying with its
broad adoption, the potential security risks and privacy exposure
issues raise public concerns regarding its great social impacts.
This paper conducts the first attempt to exploit the mobile
notification ecosystem. By dissecting its structural elements and
implementation process, a comprehensive vulnerability analysis
is conducted towards the complete flow of mobile notification
from platform enrollment to messaging. Meanwhile, for privacy
exposure, we first examine the implementation of privacy policy
compliance by proposing a three-level inspection approach to
guide our analysis. Then, our top-down methods from documen-
tation analysis, application network traffic study, to static analysis
expose the illicit data collection behaviors in released applications.
In addition, we uncover the potential privacy inference resulted
from the notification monitoring. To support our analysis, we
conduct empirical studies on 12 most popular notification plat-
forms and perform static analysis over 30,000+ applications.
We discover: 1) six platforms either provide ambiguous KEY
naming rules or offer vulnerable messaging APIs; 2) privacy
policy compliance implementations are either stagnated at the
documentation stages (8 of 12 platforms) or never implemented
in apps, resulting in billions of users suffering from privacy
exposure; and 3) some apps can stealthily monitor notification
messages delivering to other apps, potentially incurring user
privacy inference risks. Our study raises the urgent demand for
better regulations of mobile notification deployment.

Index TermsÐmobile notification, vulnerability analysis, pri-
vacy exposure.

I. INTRODUCTION

Mobile notification pushing pervasively exists, enabling

app providers to send advertisements or other messages of

interest to users. By delivering messages on devices’ screens,

the notification progressively becomes an effective way to

quickly and deliberately propagate information to target users.

A survey from Bussiness of Apps [41] has reported that over

50 billion mobile notifications have been sent to 900 million

users during H1 2018, and each US user received 46 push

notifications on average per day in 2019. Given such a mega-

scale market, any misuse of the system by an adversary, either

to spread misinformation and disinformation or to massively

collect private user data without explicit permission from the

users, is concerning. To ease the development of personalized

mobile notifications, more than 50% (out of 30,000+ analyzed

so far) of the apps are leveraging the mobile notification

For correspondence, please contact Prof. Xu Yuan (xu.yuan@louisiana.edu).

service in their interactions with customers. We analyze open-

sourced notification services and discover that the mobile

notification fulfills the message delivery and data collection

by calling the third-party libraries (i.e., Android SDK) while

messaging APIs are provided by the separate platforms to push

the notifications. With such handfuls of platform services built

into massive amounts of apps, it is of critical importance to

understand the potential security and privacy issues.

So far, the security of mobile applications has received

significant attention in the past several years and various

techniques were developed to analyze security properties [20],

[15], [55], [32], [16]. In addition, the detection of vulnera-

bilities and privacy leakage toward third-party libraries has

also attracted research community’s attentions [36], [35], [21],

[38], [40], [43], [57], [45], [46], [19], [24], [11], [29], [47].

Regarding mobile messaging services, many studies [34],

[8], [39], [56], [31] have been conducted to detect the mis-

use/vulnerabilities of old Google Firebase Cloud Messaging

system. Furthermore, a detection tool, i.e., Seminal, was de-

signed [17] to extract the semantic information of source codes

to evaluate the integration of notification SDKs. However,

a systematic security/privacy analysis toward the emerging

mobile notifications ecosystem remains unexplored yet.

In this paper, we conduct the first systematic security

and privacy exploration of the Android mobile notification

services provided by popular emerging platforms. Through

empirical study, we dissect the system designs of the mobile

notification ecosystem into four stages, i.e., platform enroll-

ment and key distribution, notification SDK configuration,

device tracking, and notification pushing through APIs. Ac-

cording to these stages, we identify four critical processes,

i.e., notification KEY configuration, application authentication,

messaging API, and message verification. Then, following

these processes, we analyze the potential vulnerabilities and

viable attacks to exhibit real-world threats.

We further analyze the privacy exposure issues of mobile

notification services. Our explorations are carried out from

two aspects, i.e., the data collection behavior in the notifica-

tion SDK and the user privacy inference through notification

monitoring. Regarding the former one, which ubiquitously

exists without users’ awareness, we first analyze the privacy

policies and their compliance. In particular, we divide the

privacy policy implementation into three levels and provide

the related APIs inspection methods, including calling time

checking and user grant parameter tracking, to examine the

compliance. Then, to reveal the data collection in apps, we

start from the documentation analysis for identifying the data

collection APIs, and then conduct a testing app network traffic

study for exploiting different types of user data collection.

After that, we conduct the taint analysis to extract sensitive

data flow in released apps while proposing two new sensitive

data sources i.e., user in-app event and Android geofencing

event. Beyond the code-level inspections on notification SDKs,

we also discover a new side-channel attack for privacy infer-

ence through notification monitoring, which is blamed on the

sharing access to the notification bar of the Android system.

That is, a malicious app with notification listening permission

can stealthily monitor mobile notification messages delivered

to other apps, so as to infer the user’s private information.

We conduct large-scale empirical studies on the 12 most

popular notification platforms and collect 30,000+ apps in mar-

kets. NotiLeak, an automatic analytical tool is also developed

to conduct the static analysis among these apps. Our results

indicate that three platforms provide ambiguous guidance of

KEY names, which indeed results in mistaken KEY storage

in 174 released apps. Besides, Pushbot platform is detected

to provide the vulnerable messaging API, leading to potential

risks of malicious notification tampering. Umeng and Mobpush

platforms with billions of app installations apply the insecure

HTTP protocol and adopt weak MD5 for verification, suffering

from insider attacks and their vulnerabilities are demonstrated

by our case study. For privacy concerns, we expose the

shocking fact that privacy policy compliance implementations

are either stagnated at the documentation stage (8 of 12

platforms) or never implemented in apps (less than 4% apps).

Moreover, 6705 apps (more than 41%), including some in-

fluential applications with more than millions of installations,

have stealthily collected users’ data, such as location, user in-

app behaviors, among others. Finally, our inspection results

exhibit that mobile notification monitoring behaviors exist in

245 apps and a case study is provided to validate that an

app can stealthily monitor all mobile notifications delivered to

other apps. Thus, these detected apps can potentially be used

for inferring users’ other private information. All these results

unveil the severe security and privacy issues accompanying

the blooming adoption of mobile notification services and they

should raise wider and closer attention to help improve and

regulate notification services. The contributions and signifi-

cance of this work are summarized as follows:

• We are the first to dissect the structural elements and im-

plementation process of the emerging mobile notification

ecosystem, which pave the way for future research along

this direction. We conduct the comprehensive analysis

to explore their potential security and privacy issues.

• We disclosed three vulnerabilities and potential attack

schemes related to their protocol designs and implemen-

tations in the notification enrollment and delivery stages.

• We proposed a three-level inspection method to examine

the privacy policy and their compliance, and a top-down

approach to reveal data collection behaviors in apps, for

comprehensively exposing the potential privacy issues

involved in mobile notifications apps.

• A large-scale empirical study over 12 notification plat-

forms and 30,000+ applications in the market is con-

ducted. The security issues on these platforms and the

privacy exposure behaviors on involved apps are reported,

revealing the potential risks to massive users.

According to our comprehensive and systematic exploration,

we have the following novel and critical findings.

• First, we reveal the neglected fact that the mobile notifica-

tion pushing is implemented by the third-party platforms

rather than the app developers themselves, which results

in serious security and privacy concerns.

• Second, users are prone to have the wrong perception

that their data are used by apps but neglect the privacy

exposure that the notification platform can collect the

users’ data. Unfortunately, the practical privacy policy

compliance of these notification platforms is quite subpar,

and users are rarely informed of and aware of such data

collection practices.

• Third, regarding the most concerned location informa-

tion exposure, we discovered a new side channel, i.e.,

geofencing-triggered notification, which can be adopted

to track a user’s location even if the location permission

is not granted to apps.

• Fourth, the Android system’s notification permission

mechanism has an unexpected flaw: different apps will

share the notification bar, enabling a malicious app to

acquire the listening permission and masquerade as a

normal app to secretly monitor other apps’ notification

messages. Such a privacy breach can lead to the inference

of users’ sensitive data.

The remainder of this paper is organized as follows. In

Section II, we dissect the mobile notification ecosystem to

reveal the flow of its messaging and configuration protocols.

In Section III, we conduct the security analysis of notification

protocol design and implementation. Section IV illustrates

the privacy exposure of mobile notification and the privacy

inference issues for notification monitoring. In Section V, we

conduct the large-scale empirical studies to investigate the

existing notification platforms and released apps. Section VI

outlines the related work, Section VII discuss the limitations,

and Section VIII concludes this paper.

II. MOBILE PUSH NOTIFICATION ECOSYSTEM

Intuitively, users may misconceive that the received no-

tifications are directly sent by application servers, however,

notifications in fact come from third-party agents who serve

for providing the notification delivery services. Such agents

are called the third-party Notification Platforms in this paper,

which provides the notification SDKs to be carried into

applications for implementing the functionality of creating

channels between a user device and a notification platform,

enabling the platform to distribute notification messages to

11

22

App Server

Message
Messaging

API

Transit

Platform

Host

Platform
1

2

Transit

SDK

KEY App ID

KEY App ID11

22

Fig. 1. The dual-platform structure.

target devices. This section dissects the system design of

mobile notification systems for gaining a clear understanding

of their ecosystem. After investigating the 12 most popular

mobile notification platforms, the common structure of this

ecosystem is to be introduced, its main design components are

to be illustrated, and its delivery flows for notification pushing

are to be presented, which will serve as the basis to analyze

the security vulnerabilities and privacy issues, to be exposed

in Sections III and IV, respectively.

A. System Structure

Through extensive empirical studies on the 12 notifica-

tion platforms, we have identified the typical structure of

notification platforms. We call it the dual-platform structure,

which includes both a host notification platform and a transit

notification platform, tightly integrated as shown in Fig. 1. The

former one is responsible for processing the notification tasks

from different app servers and transporting the notification

to the latter one. The latter one is responsible for notifica-

tion delivery to the user devices, which is a system-level

notification provider for providing a stable communication

channel. The advantage of such a decoupling design is to

help lift the notification delivery rate. Note that, the system-

level notification platforms can design the transit notification

platform by themselves (e.g., FCM from Google).

B. Mobile Notification Mechanism

Through analyzing user documents and application demos

from various notification platforms, and personally carrying

out the app development, we conclude the procedure of devel-

oping an app with mobile notification function into four stages:

1) enrollment and key distribution; 2) SDK configuration;

3) device identification; and 4) notification pushing through

messaging API. Details of four stages are elaborated below.

1) Platform Enrollment and KEY Distribution: The enroll-

ment process starts from the platform enrollment. Developing

mobile apps with the mobile notification service shall take

into account two important issues: 1) the platform needs to

know who makes the notification API calls and 2) who is

the destined application for notification messages that are sent

to the messaging API. Hence, two important parameters are

offered by notification platforms, i.e., the messaging API key

and the AppId, in regard to the two issues. The former one is

used for the authentication purpose, which is uniformly called

as KEY in the rest of this paper. When an application server

calls the messaging API for sending a notification, this KEY

will be used for examining its identity. The AppId serves as

the app identification and should be hard-coded in application

source codes, to enable notification messages to be delivered

to the corresponding target application on a device.

In practice, the enrollment process includes two steps. First,

the app developer registers his applications on the transit

notification platform to obtain a pair of KEY and AppId.

Second, the developer registers the app on the host notification

platform and fills in the KEY and AppId derived from the

transit platform. After validation, a new pair of KEY and

AppId will be generated and assigned to the developer at the

account console. Then, the new KEY and AppId pair will be

adopted by the app server to send the notification task and the

host platform will use the original KEY and AppId to let the

transit platform deliver the message.

2) Notification SDK Configuration: Next, the developer

imports the notification SDKs to the developed app. Mean-

while, AppId is appended in the AndroidManifest.xml

file or in the notification initialization function. For ex-

ample, in the application with OneSignal SDK, we set

the AppId in the initial function named as: ªOneSig-

nal.setAppId(ONESIGNAL APP ID)º. Both host and transit

notification SDKs are imported accompanying their AppIds.
3) Device Tracking: AppId can only identify the applica-

tion but unable to pinpoint the target user device. Hence, two

methods are suggested by notification platforms. The first one

is to track a device by the DeviceId, which is generated by the

SDK to mark the device installing the application. Developers

need to call the DeviceId generator at the initialization function

of the main activity. When the app is running, the DeviceId

will be generated and transmitted to both the notification

platform and the application server. The second method comes

from the user tag. That is, devices can be marked with

different tags (e.g., male/female, user interest, etc.), set up by

developers. Developers can call the tag generator at any code

position while defining a tag value. When the tag generator’s

code section is triggered by a user’s action, the tag will be

generated and transmitted to the notification platform and

application server. Notably, these DeviceId and user tags are

generated for supporting normal messaging behaviors. So, the

behaviors of uploading their parameters are not considered as

the sensitive /privacy data exposure.

4) Notification Pushing through APIs: With the three afore-

mentioned steps, an app with the notifications function is

developed. Then, the application server can adopt the no-

tification messaging API provided by the platform to send

messages or collect user data. Here, we only present the

normal procedure of notification pushing but leave the analysis

of stealthy data collection behaviors and privacy issues in

Section IV. According to our empirical study towards popular

notification platforms, the messaging APIs are all in the form

of RESTful API, where an application server only needs to

deliver the authentication information, i.e., KEY and AppId,

as well as message payloads to the specified URL address.

The notification message is in the JSON format, including the

target devices information indicated by the DeviceId, user

Security Analysis
Stealthy Data

Collection

Notification

Verification

App

Authentication

Key

Configuration

Exposure

Findings

Detection

Methods

Privacy Policy

Compliance

Notification

Monitoring

12 Platforms

Inspections 30000+ Apps Detections
Attack cases

Empirical Study

Exploration Scope

Analysis Proposal

Privacy

Inference

Notification

Permission

Privacy

Inference

Notification

Permission

Security Analysis
Stealthy Data

Collection

Notification

Verification

App

Authentication

Key

Configuration

Exposure

Findings

Detection

Methods

Privacy Policy

Compliance

Notification

Monitoring

12 Platforms

Inspections 30000+ Apps Detections
Attack cases

Empirical Study

Exploration Scope

Analysis Proposal

Privacy

Inference

Notification

Permission

Fig. 2. The overview of our security and privacy area explorations.

tags group, and other control options. Taking OneSignal plat-

form as an example, the notification message payload should

be pushed to ªhttps://oneSignal.com/api/v1/notificationsº, then

the platform will make use of the channel established upon the

SDK carried in the device for delivering notifications.

In practice, the messages will be first sent via the messaging

API to the host platform. After re-organizing these messages

to meet a certain format, the host platform calls the messaging

API for sending them to the transit platform, who will then

deliver messages to the user device, as shown in Fig. 1.

C. Sketch of Our Analysis

After dissecting the mobile notification ecosystem, we will

conduct a comprehensive analysis for potential security and

privacy issues in Sections III and IV, respectively. Since the

transit platforms in the dual-platform structure are the system-

level platform, such as FCM from Google, which is considered

as a trustful service provider, its security and privacy issues

are not in the scope of this paper. We only focus on the

host platforms in the dual-platform structure. As shown in

Fig. 2, our analysis can be summarized as follows. For the

security analysis, we target three key procedures, i.e., KEY

configuration, application authentication, and notification ver-

ification, while providing the corresponding attack schemes.

For privacy exposure, stealthy data collection behaviors are

firstly explored from the privacy policy compliance analysis,

data collection detection, to our findings of privacy exposure.

Then, we discuss the potential privacy inference problem

through notification monitoring.

III. SECURITY ANALYSIS

The notification platforms possess strong delivery abilities

and can quickly spread messages to a tremendous amount of

mobile devices, incurring potential risks by providing channels

for malicious entities to publicly propagate messages to the

society. Any potential security issue may lead to the severe

social impacts and consequences, if an attacker (e.g., terrorist

or rumor spreader) hijacks the notification channels. To this

end, this section conducts the security analysis to illustrate the

vulnerability concealed in such mobile notification services.

A. Security Analysis of KEY Configuration

Our security analysis starts from the KEY configuration,

which is used for authentication purpose in the messaging

API. Ideally, this KEY should be well-stored at the server end

only. But, per our empirical studies, we capture the clue with

respect to the mistakes frequently made by app developers in

this step. Notably, in Section II-B1, we have differentiated

two important parameters as KEY and AppId. However,

some platforms just define both parameters as the KEY with

different prefixes. For example, in Kumulos, AppId is defined

as ªAPI KEYº while the KEY is defined as ªSECRET KEYº,

which can easily cause confusion in the practical development,

resulting in both of them being hard-coded into apps.

Detection Methods. To detect the misconfiguration of KEY,

we can conduct the inspection towards KEY and AppId

naming rules in the developer guidance. Also, we will examine

the KEY misuse in the released apps. We extract the potential

strings that match the format and length of KEY or AppId

in the SDK configuration position of app reverse-engineered

source codes. To avoid ethical issues and impacts to apps’

notification services, we design a special verification method

to check whether the extracted strings are KEY or not.

Specifically, we observe that the notification platform offers

the messaging API to deliver notification to the individual

device by providing the DeviceId, and returns different error

codes corresponding to device unfound or incorrect KEY.

Hence, we call these messaging APIs with the extracted strings

as KEY and the null string as the DeviceId. As such, we never

deliver notification messages to users but still can receive error

codes. By checking them, we can verify whether the extracted

string is KEY. Our results will be presented in Section V-C1.

Potential Attack. An attacker can steal the KEY wrongly

stored in the application code, and acts as an application server

to push his malicious messages to the victim’s devices. He can

massively crawl the released apps from the application store

to search for the potential KEY. These KEYs can be found

in the specified field, such as the ªAndroidManifest.xmlº file

and notification initial call functions, while the KEYs strings

are of the fixed format. Thus, they can be easily identified by

an attacker. Once the KEY is located, the attacker can call

the corresponding notification API and broadcast malicious

messages to all user devices installing the app.

B. Security Analysis of Application Authentication

As we have discussed in Section II-B3, the notification

platform relies on the AppId to identify the application, so

an application server can send his KEY and the corresponding

AppId to the messaging API for requesting to send notification

messages. However, if the notification platform lacks the

additional authentication mechanism to validate the application

server’s identity, any attacker once obtaining the key can send

messages to the target app. That is, an attacker can hijack

application channels to act as an application server to deliver

his notification messages to more user devices.

Detection Methods. To conduct the application authentica-

tion examination, we register two applications on the same

notification platform and obtain the KEY and AppId for each

application. When calling the messaging API with the KEY

for the first app and the AppId for the second app, we examine

whether the second app can receive the notification message.

If yes, we can claim that this notification platform lacks the

secure application authentication.

Attack Scheme. The AppId has to be hard-coded in the

released application to construct the network channel. Hence,

an attacker can reverse-engineer the application files to search

for the AppId. Besides, the attacker can also get the employed

notification platform by identifying the keywords of notifi-

cation SDK carried in the app. After that, the attacker can

register an account on this platform and create his application

on the corresponding platform to gain a legitimate identity for

the KEY. When calling the notification messaging APIs, the

attacker can append his KEY and the AppId obtained in the

victim application and then deliver his message to the users

of victim application by hijacking its channel.

C. Security Analysis of Message Generation and Verification

We next analyze the message generation and verification,

aiming to raise the serious concern for mobile notification

protocol design. Based on our observation, some notification

platforms have realized the security risk of HTTP-based API

and then designed MD5 signature-based methods in the mes-

sage generation process, to promote the authentication and

message examination. However, MD5 has been demonstrated

to be a weak method in [22], [54], [30], [14], regarding which

the chosen-prefix collision attacks were proposed in [51], [50],

[53], [52], enabling an attacker to change the prefix of input

but still generate the same MD5 output.

Realizing the security issues that lurk in the message

generation and verification process with the MD5 signature,

we propose an insider attack. Notably, in the insider threat

model, an internal attacker cannot directly send the malicious

notifications with API KEY since the application servers can

discover and block them. That is, he cannot access the KEY

but is only responsible for the design of and distributing the

notification contents. However, he can still bypass the veri-

fication mechanism to distribute the malicious message. We

expose such an insider threat because the mobile notification

possesses wide social impacts, if succeeded, an attacker can

quickly broadcast malicious messages to the great public.

Before presenting our attack, we will first illustrate the

process of MD5-based message authentication in some mo-

bile notification systems. In which, the application server

is required to calculate an MD5 signature for the notifi-

cation payloads in the HTTP request combined with his

KEY such as: MD5{Payloads||KEY }, where || repre-

sents the string concatenation. When calling the messaging

API, this signature is appended in the URL as follows:

http://msg.xxxx.com/api/send?signature. After receiving the

network packet, the notification platform will calculate the

signature in the same format. Notably, based on the AppId in

the received payloads, the platform can recognize the applica-

tion and choose the corresponding KEY. If the two signatures

collide, this notification message passes the authentication.

Detection Methods. We can inspect the message content ver-

ification mechanism, especially the MD5-based examination,

adopted by these messaging APIs.

Attack Scheme. Here, an insider attacker aims to maliciously

distribute notification without being detected by the notifica-

tion platform. She can first generate two pieces of notification

messages, one is a normal message (e.g., a general weather

forecast) and the other is a malicious content (e.g., a designed

rumor). The approach proposed in [52] can be employed to

create the MD5 collision by generating two different suffixes

corresponding to the two notification messages. To eliminate

the JSON parse mistake, we can place the generated data

blocks into the optional field. Furthermore, for MD5, if String1

and String2 collide, then appending the same string before or

after String1 and String2 would also collide. Hence, the two

different notification messages can result in the same MD5

signature when appending the KEY. Note that, the notification

payloads are delivered through JSON format and some charac-

ters, such as ª {} []º, are keywords, so the generated suffixes

that contain these characters can cause the parsing problem. In

the practical experiment, we will calculate multiple collision

cases to avoid this situation. The insider attacker will send nor-

mal notification messages to the application server for MD5-

based signature authentication. After that, he substitutes the

payload with the prepared malicious rumor before delivering

the signed packet to messaging API. This malicious message

can pass the authentication at the notification platform for

delivering. A case study to demonstrate the feasibility of such

an attacker is exploited in Section V-C4.

IV. PRIVACY EXPOSURE ANALYSIS

We next turn our attention to the privacy leakage issues

resulting from mobile notification services. Per our empirical

study, we discover an unexpected circumstance: users’ private

data are stealthily collected and displayed on the account con-

sole of the notification platform. Such a discovery motivates

us to examine user data exposure issues from notification

SDKs mounted in apps. Besides, we also find that an app can

access the messages shown on the notification bar sent from

other apps. Such shared access to the notification bar on the

Android system may incur an unexpected privacy inference

risk. As such, this section focuses on two aspects, i.e., the

data collection behaviors of notification SDKs and the privacy

inference from mobile notification monitoring.

A. Stealthy Data Collection

The first privacy issue comes from the user data collection,

whereas users’ private or sensitive data are uploaded to notifi-

cation platforms rather than to the application server without

users’ awareness. We detail our threat model and then expose

the privacy issues regarding data collection behaviors.

1) Threat Model for Mobile Notification: We first clarify

our user data exposure threat model, which is defined as:

User and device’s data accessed by or created in the host

applications are uploaded through notification SDK to the

notification platform, without users’ agreement or awareness.

The notification SDK mounted in an app is invisible to

users when the host app is installed on the device and applied

for required permissions. The permission control mechanism

will treat it as a part of the app to inherit its permission.

Once a user installs such an app and grants permissions to

it, he misunderstands that his data will be utilized by the app

server rather than being uploaded to the third-party notification

platform. As such, we treat such sensitive data uploading to

the notification platforms as privacy exposure and the data

transmission to the app server as normal behavior.

2) Privacy Policy Analysis: We have realized the condition

that the privacy policies of notification SDKs may state that

notification servers will collect the data, so we first conduct

the privacy policy compliance analysis to explore whether the

app users are correctly informed and know that their data is

collected by notification servers. Three questions guide our

analysis: 1) whether mobile notification platforms provide the

privacy policy to the public claiming their data collection

behaviors? 2) whether they offer mechanisms for checking the

user agreement? and 3) whether the user is informed?

Different countries/regions have proposed strict regulations

to guide data collection behaviors [3], [5], [6]. Hence, mobile

notification providers have noticed the potential privacy dis-

pute derived from the data collection and provided privacy

policies for compliance. These privacy policies should be

displayed to users and seek for granting permission when

an app is installed or operated for the first time. However,

such important processes are usually missing. To uncover

the privacy policy issues, we design three levels of detection

guidelines for various practical compliance implementations.

1 Privacy Policy-only. Some notification platforms provide

a privacy policy containing announcements of data collec-

tion behaviors and asking for developers to display them

to users for granting agreement. However, no enforcement

is put to developers and no mechanism is provided

to verify users’ acknowledgments. As a result, such a

privacy policy is more like a disclaimer, failing to bring

users’ particular attention to the privacy exposure risks.

2 User Confirmation Required. Beyond providing the pri-

vacy policy, some platforms require feedback from

the app when a user confirms to understand the

data collection behavior. For example, Mobpush plat-

form asks the developer to add a confirmation

function ªsubmitPolicyGrantResult(boolean isGranted,

com.mob.OperationCallback callback)º before initializ-

ing notification services. Only if the ªisGrantedº param-

eter is true, the SDK can provide the notification-related

service and enable the data collection. However, this

can be forged by a developer by setting the respective

parameter to be true regardless of users’ behaviors.

3 Privacy Policy Display. Some notification platforms also

require the carrying app to display the privacy policy to

users for authorization. For example, the Umeng Platform

demands the developer to add a function ªUMConfig-

ure.preInit()º before initializing the notification service,

to let the privacy policy display on apps and require

users’ agreement. However, the use of these functions is

not enforced, resulting in the service still being provided

even if such a function is not called in the code.

Pessimistically, if a user accepts the privacy policy and

terms of use in default without carefully checking them,

his private data can be stealthily collected. With the three

aforementioned guidelines, we present our detection solutions.

Phase 1: Documents Analysis. We first conduct the documen-

tation analysis on the privacy policies provided by notification

platforms and classify them based on the aforementioned three

aspects, i.e., data collection claims, user confirmation callback

APIs, and policy display APIs. Considering only 12 most

popular notification platforms, this documentation analysis is

conducted manually by searching the API keyword matching.

Phase 2: Source Code Static Analysis. Regarding the plat-

forms that provide APIs for privacy compliance, we design

a 3-step detection approach to conduct the static analysis on

released apps. We first check the existence of privacy policy

APIs and then compare the calling time of these APIs and

notification initial functions. Finally, for the user confirmation

callback APIs, we track the uploaded parameter by checking

if it is hard-coded with a true value.

• Step 1 ± Policy APIs Searching. We search the cor-

responding policy-related APIs, such as ªUMConfig-

ure.preInit()º, in source codes to filter out the applications

that do not inject the demand APIs.

Step 2 ± Calling Time Checking. According to the de-

velopment guidance, these APIs should be called before

initializing notification services, so we next locate the

initial function of notification services. After that, we gen-

erate the calling graph of apps and conduct topological

sorting for comparing the calling order of policy APIs

and notification services APIs. If the latter one is in front

of the former one, the app will be reported.

• Step 3 ± Confirmation Parameter Tracking. For the

user confirmation callback APIs, we use taint analysis

to track the uploaded parameters. For example, when

checking the API of ªsubmitPolicyGrantResult(boolean

isGranted)º, we track the definition and assignment flow

of ªisGrantedº, which should be assigned based on the

user input. If the confirmation parameter is hard-coded

as the true value, the app will be reported.

Notably, our efforts undertaken on the privacy policy anal-

ysis and the compliance implementation detection go beyond

the previous studies on third-party SDKs exploration, which

only target the common and sensitive system-level APIs. Our

inspection of privacy policy-related APIs, including the calling

time and important parameter tracking, can promote the third-

party SDK analysis to a more practical level by taking into

account real-world applications.

3) Discovering Data Collection Behaviors: While Sec-

tion IV-A2 focuses on the privacy policy compliance, this

section will further explore if the stealthy data collection

behaviors indeed exist in notification SDKs. Our analysis in-

cludes three steps, depicted as follows. Notably, we contribute

two new sensitive data sources, i.e., the developer-defined user

in-app action and geofencing event, in the taint analysis.

Phase 1: Documentation Analysis. We manually conduct the

analysis in this step. We focus on the notification SDK APIs

uploading user data, such as location, network connection

parameters, in-app actions, among others. These APIs will be

further leveraged to guide the taint analysis design.

Phase 2: Application Network Traffic Study. Next, we

develop the testing apps for network traffic analysis. We

follow the developer documents to integrate the notification

SDKs into our testing apps and initialize all functions. When

installing them on our smartphones, we capture the network

packets during the app installation and running. If necessary,

we also decrypt the TLS-protected context with a security cer-

tificate. Then, we examine packet payloads to check whether

our privacy data are carried. The privacy data we found in the

captured network packet will serve as the evidence for guiding

the static code analysis in the next phase. According to our

empirical study, the notification platform displays all data that

it collects from the user’s device on the user console. We log

into the account and switch to the console, for checking the

device installation state and examining if user’s data are indeed

uploaded to the notification platform.

Phase 3: Taint Analysis among Released Apps. Finally, we

conduct the taint analysis to examine if mobile notification

SDKs will upload sensitive data from the user device to the

notification platforms. Our key idea is to identify data flows

that originate from sensitive sources (e.g., location calls) and

end up in the suspect sinks (e.g., notification SDK uploading

APIs). Note that, only the data flow pointing to the notification

SDK uploading APIs will be considered as the sensitive data

flow. Once the sensitive data flow appears, private data upload-

ing through the notification SDK is identified. We develop a

detection framework based on the FlowDroid [10] to charac-

terize apps’ behaviors, but make the customized design to suit

the mobile notification-specific source and sink. In particular,

two new sources (i.e., the user in-app event definitions and the

Android geofencing events) are proposed, which have never

been considered in existing third-party libraries analyses.

Step 1 ± Sensitive Source Configuration. Based on the An-

droid APIs presented in SUSI [44], we select the Android

system call that covers the majority of sensitive data in-

cluding locations, sensors data, etc. Besides, for the user

in-app actions, their sources should be the definition of

the functions. We locate this type of source according

to the event definition function in notification SDK, such

as Airship SDK event definition function: ªActionRunRe-

quest.createRequest().setValue(actionValue).run();º Consider-

ing that the location information can be uploaded through the

geofencing event, we add this event call as the source, e.g.,

ªgeofencingEvent = GeofencingEvent.fromIntent(intent)º. The

details of user in-app actions and genfencing functionalities

will be presented in Section IV-A4.

Step 2 ± Uploading Sink Configuration. To improve the

efficiency and avoid false positive, we only target two types

of sensitive sinks, i.e., notification SDK data collection APIs

and Android network transmission functions. In addition, we

also consider the scenario that once the mobile notification

service is initialized in the host app, its SDK will automatically

trigger data uploading functions. For example, the app moving

from the foreground to the backend can trigger app usage

time tracking. So, we also mark all network transmission calls

in the notification SDK, including HTTP and TCP socket

connections, as the sinks. The existence of sensitive data

flow pointing to a network transmission call that stays in the

notification SDK will indicate a data uploading behavior.
4) Data Collection Findings: We next unveil some repre-

sentative data uploading behaviors. Note that the data collec-

tion behaviors exhibited here are discovered and verified in

the empirical study with our proposed detection schemes. We

bring these findings upfront to help readers better comprehend

the risk of privacy exposure. According to our exploration

among various mobile notification providers and the released

apps, the collected data can be categorized as follows.
Basic Device Information. We observe collecting such in-

formation is a common phenomenon in mobile notification

SDKs. In most platforms, device model, os version, network

connection state, and other device information are all automat-

ically uploaded when an app is initialized, leading to potential

privacy exposure. Such information is used by the platform

to conduct the application installation statistic analysis, device

tracking, and notification channel connection maintenance, but

they can be leveraged to infer users’ privacy information.
User In-app Actions. Some sensitive data collection behavior

comes from the user in-app action tracking, including the

app usage time, user clicks actions, purchasing, among others.

Action tracking can be achieved by three methods. First, the

general action tracking, such as app use time or interface

jumping, is automatically collected when the corresponding

event is triggered. Second, developers can call event tracking

APIs at specific action time points. For example, developers

can call the function ªLeanplum.trackGooglePlayPurchase()º

in their in-app payment code section, to upload user’s pur-

chasing behaviors in Google Play. Third, some SDKs provide

APIs for developers to define special actions. For example,

ªKumulos.Current.TrackEvent(EventName)º allows the app to

track actions with the developer-defined event name.
Location Trace. Location is the most sensitive information

that is related to user’s routine. Unsurprisingly, mobile no-

tification SDKs are eager to collect them. Users grant the

app location permissions to allow it to fulfill the normal

functionalities, however, the notification SDK will collect the

location data to the notification platform, thereby causing

privacy exposure. Through our analysis, we summarize three

types of location collection, as follows.

1. Network State Location. Mobile notification SDKs can

track the location through IP or MAC address at the

coarse-level even users disable the location permission.

2. GPS-based Location. Location information can be up-

loaded by directly sending the geographic coordinates.

Once the host app applies the location permissions, the

notification SDK can access the geographic information

and upload them through the APIs. Most notification

SDKs possess the location uploading APIs, such as in

Kumulos: ªKumulos.SendLocationUpdate()º.

3. Geofencing. The notification SDK makes use of the

geofencing supported by Android to accomplish location-

aware message delivery. To create Android geofencing,

developers need to configure the latitude and longitude

as the circle center, and set the radius to define a circular

area. When the device enters or exits the area, the

geofencing service can automatically generate Android

events. This kind of location-aware event can be uti-

lized by the notification platform to perform location-

based notification messaging. That is, the developer first

configures the Android geofencing area in apps and

sets the same area at the notification console with the

corresponding message that needs to be delivered to the

device. Then, the developer calls the geofencing event

collection APIs supported by notification SDKs. Once

a user enters or exits this area, the Android geofencing

event will be uploaded to the notification platform and

triggers the message delivery. Although the geographic

coordinates are not uploaded, the location information

that a user arrives at an area can still be collected by

mobile notification platforms.

B. Notification Monitoring

We next explore the notification monitoring behaviors,

which may be leveraged to infer users’ other private informa-

tion. Since notification messages may carry sensitive contents

or special events reminders, by monitoring and capturing them

through malicious apps, an attacker can infer users’ sensitive

information, leading to serious privacy exposure. Note that,

such monitoring is not the behavior of notification SDKs or

the apps that push this notification message. It is executed

by the malicious app that is developed by an attacker, which

pretends to perform normal behaviors while stealthy sniffing

the notifications from other apps. This threat raises a new side-

channel attack method for inferring user privacy.

1) Android Notification Permission Flaw: The Android

permission mechanism protects notification contents with the

ªBIND NOTIFICATION LISTENER SERVICEº. Apps typ-

ically require applying for this permission and waiting for

the user granting. If a user grants this permission to the

app, the notification listener function in the app can listen

to the respective notification events and obtain the notification

messages shown on the notification bar. However, the design

flaw of this mechanism is that the notification bar is not

isolated app by app, thus any app with this permission can

access all messages in this bar. In other words, notification

listeners in different apps can access all messages on the

notification bar even if the messages are from other apps.

Such shared access to the notification bar can cause the

risk of side-channel attacks which allow a malicious app to

monitor the notification messages for user privacy inference.

In practice, the malicious app can pretend to be a normal

one and perform its normal behavior, such as listening to

the notification for automatically receiving verification codes.

This can induce the user to grant the corresponding permission

for monitoring notifications. But, it can stealthily monitor the

sensitive message from other apps for privacy inference.

2) Potential Privacy Inference through Notification: We

further discuss the possibility of privacy inference, if notifi-

cation messages are monitored by apps.

1. Financial Status Monitoring. Mobile financial apps,

such as PayPal, Alipay, Amex, etc., often deliver some

notifications containing a user’s financial information,

such as ªreceived money transfer xxx$º. By monitoring

such financial mobile notifications, a malicious app can

acquire a user’s rough financial status description.

2. Location Tracking. As discussed in Section IV-A4, apps

can perform location-based notification delivery with An-

droid geofencing. Such location-aware notification mes-

sages can be used by other apps for location tracking.

3. User Portrait. Plenty of apps are supported by recom-

mendation systems to learn users’ interests and then pro-

vide personalized notifications to direct users to click on

their apps. Intuitively, the set of user mobile notification

messages can be used to learn the user Portrait.

Hence, the mobile notification messages contain plentiful in-

formation to be utilized by attackers for inferring user privacy

with inference methods proposed in [38], [48], [28], [59], [33].

We will provide the statistic data for released apps requiring

the notification listening permissions in Section V-D4.

V. EMPIRICAL STUDY

We conduct extensive empirical studies from different per-

spectives, i.e., documents analysis, apps collection and anal-

ysis, case studies, etc., to examine the mobile notification

systems, aiming to expose the potential security and privacy

issues that have been presented in Sections III and IV. Our goal

is twofold. First, we reveal vulnerabilities lurking in mobile

notification services. Second, we expose the privacy issues

from notification SDKs and released apps in the market. Some

case studies are also conducted.

A. Notification Platforms and Apps Collection

We collect mobile notification platforms primarily via In-

ternet crawling with keywords, such as ªMobile Notificationº,

ªMobile Pushingº, ªCloud Messagingº, and many other re-

lated descriptions. In addition, we parse blogs and statistic

news with the topics of mobile notifications, such as [42],

to refine and enlarge platform collections. In total, 12 most

popular mobile notification platforms are identified, covering

the majority of mobile notification markets in Europe, North-

America, and Asian areas. We collect all versions of notifica-

tion SDKs, user documents, and application demos of these

platforms for analysis. For the released apps, we collect the

top-100 apps in each category in app stores, such as Google

Play, CoolApk, and APKpure, etc, obtaining a total of 31049

apps. Our crawling starts from December 2019 to February

2020 and from August 2021 to September 2021.

We conduct a large-scale analysis of our collected 31049

apps and find that over half of the Internet-required apps, i.e.,

TABLE I
THE LIST OF COLLECTED 15 NOTIFICATION PLATFORMS

Notification Platforms Homepage Website

Airship https://www.airship.com/
Getui https://www.getui.com/
Jpush https://www.jiguang.cn/

Kumulos https://www.kumulos.com/
Leanplum https://www.leanplum.com/
Mobpush https://www.mob.com/
OneSignal https://onesignal.com/
Pushbot https://pushbots.com/
Pusher https://pusher.com/

Pushwoosh https://www.pushwoosh.com/
Taplytics https://taplytics.com/
Umeng https://www.umeng.com/

TABLE II
INSTALLATION STATISTICS OF COLLECTED APPS CORRESPONDING TO 12

MOBILE NOTIFICATION PLATFORMS

Notification Platforms App Amounts Installation Amounts

Airship 1705 291,000,000+
Getui 2279 510,000,000+
Jpush 1564 520,000,000+
Kumulos 1417 427,000,000+
Leanplum 471 680,000,000+
Mobpush 1985 1,170,000,000+
OneSignal 1687 870,000,000+
Pushbot 231 1,100,000+
Pusher 126 2,500,000+
Pushwoosh 307 150,000,000+
Taplytics 482 70,000,000+
Umeng 4015 920,000,000+

16269 of 31049, have adopted third-party notification SDKs to

fulfill their notification services, having billions of installation

amounts. The names of notification platforms, app amounts,

and the installation amounts are summarized in Table II.

B. Static Analysis in Collected Apps

We develop an automatic analytical tool, NotiLeak, to auto-

matically analyze the apps for exposing security and privacy

issues. The workflow of NotiLeak is detailed below:

Phase 1: Notification SDK Identification: NotiLeak de-

compiles the collected Android application APK files into

the analyzable intermediate code and generates the usable

code resources. It integrates the classical app analysis tool

Apktool [7] to extract resource files from the APK file.

NotiLeak adopts a three-step identification framework to fulfill

the time efficiency requirement of our large-scale analysis.

Details are shown as follows:

Step 1: Permission-based Filtering. This step aims

to filter the required permissions for receiving the

notification messages. Two types of permissions are

considered, i.e., ªandroid.permission.INTERNETº and

ªOP POST NOTIFICATIONº, one serves for the

network connection and the other helps enable the

notification function, respectively. The permission

ªandroid.permission.INTERNETº can be directly

checked from the AndroidManifest.xml file while the

ªOP POST NOTIFICATIONº is dynamically configured at

the application runtime, demanding our searching of resources

code. Only the applications that enable both permissions will

be analyzed.

Step 2: SDK Identifier Matching. This step aims at the fast

notification SDK identifier matching. Since the number of

notification platform SDKs studied in this paper is deter-

mined, it is feasible to obtain certain keywords and static

features in the notification library SDK. These SDK identifiers

are the combination of provider’s names and the important

initialization calls. As such, we create a list of identifiers

based on platform SDK collections to support fast matching.

After this step, NotiLeak could find out most of the desirable

applications, while the applications that cannot match any

identifier will be sent to step 3.

Step 3: Structure-based Identification. In practice, app de-

velopers conventionally use obfuscation tools (e.g., Pro-

Guard [27], DexProtector[2], and DexGuard [1]) to prevent

reverse engineering. There are currently two common ob-

fuscation strategies, namely deadcode removal and identi-

fier renaming. The deadcode removal is to remove unused

functions in the SDK which are prone to expose the SDK

packages characteristics. The identifier renaming strategy may

obfuscate package/class/method/variable names to meaning-

less characters. However, the hierarchical structure of the

classes, inherent Android system APIs, class inheritance rela-

tionship, and vital function call graph remains invariant under

two kinds of obfuscation strategies. NotiLeak adopts such

architectural characteristics to detect the SDK. According to

collected SDKs, NotiLeak builds their architectural signatures

and conducts a fine-grained searching among the applications

to detect the apps that contain obfuscated SDKs. In practice,

we have conducted a small scale of testing on 36 apps

developed by ourselves (i.e., 3 apps for each platform with

different obfuscation methods) to demonstrate that NotiLeak

can recognize all notification SDKs.

Phase 2: KEY Misuses Analysis: The NotiLeak conducts the

KEY misuses analysis based on the methods we have provided

in Section III-A. Recall that, it will extract the suspect strings

in the app source codes and automatically send the crafted

message to the notification messaging APIs. By examining

the returned error code, it can identify the misuse of KEY.

Phase 3: Privacy Policy Analysis: The NotiLeak performs

privacy policy analysis based on the source code analysis

methods we have provided in Section IV-A2. All analysis

results corresponding to each app will be recorded for further

statistic analysis.

Phase 4: Data Collection Analysis: Following the taint analy-

sis methods we have provided in Section IV-A3, NotiLeak will

extract the sensitive data flow in apps. These data flows will

be classified into different types, such as user in-app actions

and location traces, recorded for statistic analysis.

Phase 5: Notification Monitoring Analysis: In the end,

Notileak conducts notification monitoring inspections by fil-

tering out the apps that apply for the notification listening

permission. All the detected apps will be marked as the suspect

app for further analysis.

C. Security Inspection Results

With the resources including user documents, application

demos, and our testing apps, from 12 notification platforms,

we examine their mobile notification services following our

proposed security analysis in Section III. Six notification plat-

forms are discovered to have vulnerable notification services,

impacting around billions of users with security risks. We have

informed these platforms about our findings for the purpose

of ethical disclosure. Detailed results are illustrated as below.
1) KEY and AppId Misuse: We examine the KEY and

APPId names as well as their storage guideline among these

12 platforms. Three platforms, i.e., Airship, Taplytics, and

Kumulos, are found to name both parameters as KEY with

different prefixes, prone to lead confusion to developers. Then,

we conduct the KEY inspection among released apps in order

to detect the mistaken KEY storage. Our results indicate that

app developers store the KEY for messaging API in 174 apps

with more than 500,000+ installations. We verify our findings

by using our approach proposed in Section III-A, where the

messaging API returns the error code ªdevice not foundº rather

than ªKEY incorrectº. Note that, the attacker with these keys

can send the mal-notifications to real users. Among 174 apps,

88 apps adopt the Kumulos, 63 apps adopt the Airship, and

23 apps adopt the Taplytics. This observation demonstrates

that the similar names between KEY and APPId, can cause

serious security issues. We have contacted the three platforms

and suggested them to distinguish the two names.
2) Application Authentication Inspection: We inspect the

application authentication mechanism of all platforms. For

ethical considerations, we perform our proposed attack (i.e.,

Section III-B) on two applications developed by ourselves

corresponding to each platform. Our results exhibit that all

12 notification platforms are free from this security issue.

3) Notification Messaging API Analysis: To discover the

insecure notification messaging APIs, our analysis follows two

criteria: 1) whether the RESTful API is protected by HTTPS?

and 2) whether a strong authentication is adopted?

We discover that three platforms adopt insecure messaging

APIs with HTTP. That is, Pushbot and Mobpush only provide

the HTTP URL while Umeng provides both HTTP and HTTPS

URLs for better compatibility. In particular, the Pushbot plat-

form, which is employed by 231 apps with 1,100,000+ instal-

lations, only adopts the basic HTTP authentication method,

resulting in the unprotected plaintext transmission of KEY.

There is also no notification message verification mechanism

to check the integrity of payloads. Consequently, an attacker

can perform the man-in-the-middle attack to steal the KEY or

tamper the notification messages.

Umeng and Mobpush provide the HTTP URL messaging

API and then employ MD5-based message verification to

protect the notification from tampering. But, their methods

cannot prevent the insider threat as proposed in Section III-C,

whereas an attacker can modify the notification payloads

without changing the MD5 signature. Notably, the Mobpush

is employed by 1985 apps, which can cause severe security

risks to its involved billions of installations.

Air
sh
ip
Ge
tui

Jp
us
h

Ku
mu
los

Le
an
plu
m

Mo
bp
us
h

On
es
ign
al

Pu
sh
bo
t

Pu
sh
er

Pu
sh
wo
os
h

Ta
ply
tic
s

Um
en
g

User Confirmation
Requird

Privacy Policy Only

Privacy Policy
Display

The notification platform
provides data deletion API

The Privacy policy compliance
level of notification platform

Fig. 3. Privacy policy compliance levels among 12 notification platforms.

4) Insider Attack Case Study: We conduct a case study to

perform the insider attack towards Umeng messaging API, val-

idating that the MD5 collision-based insider attack is practical

in real-world notification systems. For ethical considerations,

we only conduct the attack on the app that was developed

by ourselves. That is, we develop a testing app that carries

the Umeng notification SDK. Then, we generate a notification

message with the weather forecast as the target and design an

adversary notification message with the advertising content.

The open resource MD5 collision attack on Github [49] is

employed to calculate the chosen-prefix MD5 collision blocks,

for the weather forecast and advertisement contents. The calcu-

lation was processed on a computer with CPU: Intel i7-8700k,

GPU: NVIDIA GeForce GTX1080 Ti, and RAM: 64G, where

the GPU acceleration was employed. It takes 4 days to find

a collision with the two prefixes while the generated collision

blocks do not include the JSON keywords. We put collision

blocks in the optional field, i.e., ªextra:º, and the collided MD5

value is ª9b4af15c5b932858f26cb22f3420a86cº. We start to

push the notification message with weather forecast payloads

to the messaging API. Then, the insider attacker replaces

the payloads with colliding advertising payloads and delivers

them to the messaging API. The testing user device receives

the pushed notification with the modified content. The two

collision files in this attack are exhibited in [4] with the file

names of ªprefix.txt.collº and ªprefix2.txt.collº.

D. Privacy Exposure Analysis

Next, we focus on privacy exposure for apps carrying

notification SDKs and aim to answer the following questions:

1) whether users are informed about the privacy policy of no-

tification services? 2) whether these notification SDKs upload

users’ data to their platforms? and 3) how much user data is

leaked to the notification platforms? Our explorations of sen-

sitive data exposure shall raise important concerns regarding

privacy protection and mobile notification supervision.

1) Privacy Policies Study: We first analyze the privacy

policy compliance levels and their implementations, aiming

to expose whether the notification platforms comply with

data collection regulations and whether users are informed in

practical development.

According to our document analysis, the privacy policy

compliance levels among these 12 mobile platforms are shown

in Fig. 3. We can observe that 8 of 12 platforms only provide

the privacy policy on their websites, claiming that their SDKs

will collect user data. Among these 8 platforms, Airship and

Leanplum provide the data deletion APIs to app developers for

TABLE III
STATISTICS OF APIS RELATED TO PRIVACY POLICIES IMPLEMENTATION

Platforms App Amounts Percentage

Mobpush 114 5.74%
OneSignal 121 7.17%
Pushwoosh 54 17.59%

Umeng 26 0.65%

Total 318 3.98%

erasing the user data collected by their SDKs. On the other

hand, only 1/3 of platforms provide the privacy policy APIs,

where 2 platforms, i.e., OneSignal and Mobpush, provide APIs

for acquiring user agreement parameters, and 2 platforms, i.e.,

Pushwoosh and Umeng, design UIs and APIs for displaying

their privacy policy to users.

We inspect the released apps that are employing the four

platforms (OneSignal, Mobpush, Pushwoosh, and Umeng) and

verify if their respective APIs are indeed implemented in the

development. The results are listed in Table III. Surprisingly,

we discover that less than 4% of apps are actually calling the

privacy policy-related APIs before initializing mobile notifi-

cation services. Some developers hard-code user confirmation

parameters, with 10 apps (7 apps with OneSignal and 3 apps

with MobPush) having this issue. This observation is quite

astonishing as only 1/3 platforms provide the APIs, so their

practical development is even worse. As such, we conclude

that it is a common case: users are never aware of the stealthy

data collection from notification platforms.

2) Stealthy Data Collection: To exploit the stealthy data

uploading behaviors, we employ the testing apps as we have

mentioned in Section IV-A3 to analyze such behaviors when

the apps are running on the testing smartphone (Samsung

Galaxy S9+). We use Wireshark to capture the network packets

from this device and check the account console of notification

platforms to examine user data. The statistical results are

shown in Table IV, with details depicted as follows.

Six platforms collect user in-app behaviors. We find that

6 notification SDKs (i.e., Airship, Jpush, Kumulos, Leanplum,

OneSignal, and Pushwoosh) upload the user in-app behaviors,

such as the app running time, user click events, and others,

as shown in Table IV. Besides, Leanplum SDK can collect

the users’ Google Play purchasing behaviors. Such a data

collection behavior is quite similar to that of the analytical

SDK. We further discover that the other two notification

platforms, i.e., Getui and Umeng, separate the analytical SDK

and notification SDKs, so that the user in-app behavior will

not be collected in the notification SDK.

Nine platforms collect location information. Nine notifica-

tion SDKs (i.e., Airship, Getui, Jpush, Kumulos, Leanplum,

Mobpush, OneSignal, Taplytics, and Umeng) are found to

upload location information, including IP, geographic coor-

dinates, and geofencing events. Once the location sharing

functions are called in the application such as ªOneSig-

nal.setLocationShared()º, the device location information will

be shared to the respective notification platform. Although

such functions facilitate the application development, the

location information will be shared without users’ consent,

representing a fatal sensitive information leakage. Considering

that massive amounts of applications could access notification

services from the same platform, such data exposure issues

could explain why users always receive over-precise location-

based notifications in some applications even they never grant

the corresponding permissions.

3) Released Apps Inspections: We further analyze the col-

lected 16269 applications with notification services for de-

tecting privacy exposure issues. We conduct the taint analysis

as proposed in Section IV-A3 to automatically scan the apps

and generate the sensitive data flows. Our analytical results

reveal that 6705 apps (over 41%) upload the sensitive user data

(i.e., in-app behavior and location) to notification platforms.

Their detailed distributions are shown in Table IV. Such results

indicate that the user data exposure issues, especially location

data uploading (detected in 5567 apps), are the common

phenomenon. In addition, user in-app information collection

is also found in 1138 apps, including page jumping, app

using time, purchase actions, and other actions, which possess

billions of installations.

To highlight the severity of user data exposure, we list

some apps with large installation amounts. For instance,

one app (employing Taplytics platform) called ªMonster Job

Searchº has 5,000,000+ installations, which is a job searching

application that requires location information to support its

social community. Our taint analysis detects a data flow from

the system location APIs to the Taplytics location uploading

function, i.e.,ªoptInTrackingº, indicating that the notification

SDK shares the user location with Taplytics. Moreover, a local

shopping app (employing Getui) having 500,000+ installations

is also discovered to upload app installation lists, and a weather

forecast app (employing Umeng) having 10,000+ installations

is found to share the smartphone sensor data.

4) Notification Monitoring Study: Since the inference ac-

tions after acquiring notification messages occur on the server

side, it is difficult to track them. So, our analysis will focus

only on exhibiting the statistical results of released apps that

apply for notification listening permission and raise attention

to such a new side-channel attack. According to our analysis

of collected apps, 245 apps with 1,420,000+ installations

enable the listening permissions to capture the notification

messages. They can monitor and collect the notifications to

infer user privacy information. We further conduct a case

study to exhibit notification monitoring behaviors. We de-

velop a testing app that carries Kumulos notification SDK

and let it pretend to be a normal weather app while ap-

plying for ªBIND NOTIFICATION LISTENER SERVICEº

permission. However, this app is coded to record the mes-

sage displayed in the notification bar. We install it on our

smartphone, which also installs Alipay, DoorDash, and Twitter,

to simulate the real scenario. After receiving a money trans-

fer into the account in Alipay, our testing app succeeds in

capturing the Alipay notification ªxxx transfers 10 yuan to

your accountº. Also, the nearby restaurant recommendation

notifications from DoorDash, which can help to infer the

location, and the notification of interested friends from Twitter,

which can be further trained for user portrait inference, are all

TABLE IV
THE DATA UPLOADING BEHAVIOR IN 12 NOTIFICATION PLATFORMS AND APP AMOUNTS

Notification Platforms User in-app Actions App Amounts Location Information App Amounts

Airship App usage time, User click event, Developer-defined action 217 IP address, GPS 561
Getui None 0 IP address, GPS, Geofencing 1022
Jpush App usage time, User click event, Developer-defined action 229 IP address, GPS, Geofencing 627
Kumulos Developer-defined action 151 IP address, GPS, Geofencing 287
Leanplum Developer-defined action,Google Play purchase 68 IP address 65
Mobpush None 0 IP address, GPS 627
OneSignal App usage time, User click event, Developer-defined action 402 IP address, GPS, Geofencing 874
Pushbot None 0 None 0
Pusher None 0 None 0
Pushwoosh Developer-defined action 29 None 0
Taplytics None 42 IP address, GPS, 69
Umeng None 0 IP address, GPS, Geofencing 1435

captured. We hope that our results can raise public attention

to privacy inference issues from mobile notification messages.

VI. RELATED WORK

Our work is related to the security vulnerability and privacy

exposure regarding the messaging APIs, the notification SDKs,

the mobile notification service.We briefly discuss the existing

works and differentiate our work with them.

To discover vulnerabilities of network protocols and web

APIs, different automatic tools have been proposed. For exam-

ple, [15], [32], [16], [20] have developed Polyglot, AutoFor-

mat, Dispatcher, and Discoverer, respectively to automatically

dissect the web protocols. Regarding web API-based apps,

Waptec [13] and NoTamper [12] were proposed to identify

parameter tampering vulnerabilities while [37] proposed a

solution to detect the mobile app-to-web API communication

inconsistency. Recently, [60] proposed LeakScope to identify

the data leakage vulnerabilities on cloud APIs and [26] an-

alyzed the authentication and authorization flaws of user ac-

count access in web APIs. On the other hand, the security and

privacy analysis of third-party SDKs have also been widely

studied. In [45], [46], [19], [23], authors explored the personal

identification information leakage through third-party SDKs

while [24], [11], [29], [47] studied the privacy exposure caused

by the Android permission inheritance mechanism.Targeting

widely-adopted SDKs, in [36], [35], authors examined what

information is collected by the analytics library in the Android

apps. In [21], [38], [40], [43], [57], authors explored the data

collection issues of in-app advertising and payment SDK.

Different from them, we target the mobile notification service

via analyzing both the API and the notification SDK.

Regarding mobile messaging services, some efforts have

been done in unveiling the vulnerabilities and privacy issues.

In [34], authors developed a tool for identifying aggressive

notifications received at the device. Besides, [8], [39] detected

the malicious apps with the misuse of Google Firebase Cloud

Messaging, while [56] discussed phishing and spamming at-

tacks by abusing notification services on smartphones. In [17],

a detection tool Seminal was designed to extract semantic in-

formation from source code. In [31], authors analyzed Google

older GCM messaging system, revealing the vulnerabilities

of stealing or wiping sensitive messages and of installing or

uninstalling apps on a user’s device.

VII. LIMITATIONS AND FUTURE WORK

This section discusses our limitations and the future work.

First, this paper provides the first comprehensive and sys-

tematic study toward mobile notification services in the An-

droid ecosystem. However, the corresponding study of the iOS

ecosystem remains open. Per our preliminary investigation,

the Apple corporation provides its own notification platform

and APIs for the applications to push mobile notifications,

which is quite different from the Android system where the

notification services employ third-party platforms. Hence, the

corresponding security and privacy analysis toward mobile

notification services in the iOS system calls for new analytical

approaches, which are deferred to our future work.
Second, we have developed a tool NotiLeak for auto-

mated analysis, including KEY misuse, privacy policy, data

collection, and notification monitoring analysis, which can

help us significantly speed up the inspections on massive

amounts of apps in the Android market. Considering many

strong techniques have been proposed, our NotiLeak can be

further improved to integrate them, to make our NotiLeak

more effective and efficient. For instance, some techniques

proposed [9], [58], [25] for tracking the data flow can be in-

tegrated into NotiLeak with the customized design to improve

our privacy policy compliance analysis. On the other hand,

our current documentation analysis relies on manual checking,

which is cumbersome and ineffective. In the future, we plan to

employ the existing techniques [18] or develop new tools, to

be integrated into our NotiLieak, for enabling the automated

documentation analysis.
Third, our notification monitoring analysis has exhibited

that an attacker can acquire permission to monitor other apps’

notification messages displayed in the notification bar, which

can potentially incur the privacy inference risk as discussed in

Section IV-B2. But, how to infer a user’s private information

based on these messages remains unexplored, which is not the

goal of our current work. Hence, in our future work, we plan to

develop inference attack solutions based on these notification

messages, which can further exhibit the severe consequences

of privacy risks incurred from mobile notification services.

VIII. CONCLUSION

In this paper, we have conducted the first comprehensive

analysis toward the mobile notification ecosystem. We ana-

lyzed the employment of third-party notification platforms and

detected three vulnerabilities derived from the misconfigura-

tion of KEY, weak application authentication, and weak mes-

sage verification mechanism. Regarding the privacy leakage

issues, we analyzed the privacy policy compliance implemen-

tation and proposed a top-down scheme to explore the sensitive

data collection from both notification platform and application

perspectives. Our empirical studies on 12 popular notification

platforms discovered several insecure mobile notification de-

signs and uncovered that the privacy policy compliance is

under the subpar implementation. In addition, over 50% of

30,000+ applications are exposed to stealthily collect user data,

impacting billions of users. We hope our efforts will not only

inspire the in-depth research toward exploring the security and

privacy issues in mobile notification ecosystem, but also raise

public attention to regulate the design and implementation of

mobile notifications.

ACKNOWLEDGMENT

This work was supported in part by NSF under Grants

1763620, 1948374, 2019511, and 2146447. Any opinion and

findings expressed in the paper are those of the authors and

do not necessarily reflect the view of funding agency.

REFERENCES

[1] Dexguard android obfuscator. https://www.guardsquare.com/dexguard.
[2] Dexprotector android obfuscator. https://dexprotector.com.
[3] General data protection regulations. https://gdpr-info.eu/.
[4] Md5 collision materials. https://www.dropbox.com/sh/gviy9s1xenbl3fk/

AABZLVCAqIZH81e KlRbgmFta?dl=0.
[5] The personal data protection bill. https://prsindia.org/billtrack/

the-personal-data-protection-bill-2019.
[6] Provisions on the scope of necessary personal information for common

types of mobile internet applications. http://www.cac.gov.cn/2021-03/
22/c 1617990997054277.htm.

[7] Apktool. http://ibotpeaches.github.io/Apktool/, 2016.
[8] Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, and

Giorgio Giacinto. Detecting misuse of google cloud messaging in
android badware. In Proceedings of the Workshop on Security and

Privacy in Smartphones and Mobile Devices, pages 103±112, 2016.
[9] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin

Whitaker, William Enck, Bradley Reaves, Kapil Singh, and Tao Xie.
Policylint: Investigating internal privacy policy contradictions on google
play. In USENIX Security Symposium, pages 585±602, 2019.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259±269, 2014.

[11] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security

(CCS), pages 356±367, 2016.
[12] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz,

and VN Venkatakrishnan. Notamper: automatic blackbox detection of
parameter tampering opportunities in web applications. In Proceedings

of the ACM conference on Computer and communications security

(CCS), pages 607±618, 2010.
[13] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and VN Venkatakr-

ishnan. Waptec: whitebox analysis of web applications for parameter
tampering exploit construction. In Proceedings of the ACM conference

on Computer and communications security (CCS), pages 575±586, 2011.
[14] John Black, Martin Cochran, and Trevor Highland. A study of the md5

attacks: Insights and improvements. In Proceedings of International

Workshop on Fast Software Encryption, pages 262±277. Springer, 2006.
[15] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn

Song. Dispatcher: Enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the ACM conference on

Computer and communications security (CCS), pages 621±634, 2009.
[16] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot:

Automatic extraction of protocol message format using dynamic binary
analysis. In Proceedings of the ACM conference on Computer and

communications security (CCS), pages 317±329, 2007.

[17] Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui
Han. Perplexed messengers from the cloud: Automated security analysis
of push-messaging integrations. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security (CCS), pages
1260±1272, 2015.

[18] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai
Chen, and Wei Zou. Devils in the guidance: Predicting logic vulnerabil-
ities in payment syndication services through automated documentation
analysis. In USENIX security symposium, pages 747±764, 2019.

[19] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessan-
dro Puccetti, Ali Zand, Christopher Kruegel, and Giovanni Vigna.
Obfuscation-resilient privacy leak detection for mobile apps through
differential analysis. In Proceedings of the Network and Distributed

System Security Symposium (NDSS), 2017.

[20] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer:
Automatic protocol reverse engineering from network traces. In Pro-

ceedings of USENIX Security Symposium, pages 1±14, 2007.

[21] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A
Gunter. Free for all! assessing user data exposure to advertising libraries
on android. In Proceedings of Annual Network and Distributed System

Security symposium (NDSS), 2016.

[22] Bert Den Boer and Antoon Bosselaers. Collisions for the compression
function of md5. In Workshop on the Theory and Application of of

Cryptographic Techniques, pages 293±304. Springer, 1993.

[23] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael
Backes. Keep me updated: An empirical study of third-party library
updatability on android. In Proceedings of the ACM SIGSAC Conference

on Computer and Communications Security (CCS), pages 2187±2200,
2017.

[24] Michalis Diamantaris, Elias P Papadopoulos, Evangelos P Markatos,
Sotiris Ioannidis, and Jason Polakis. Reaper: Real-time app analysis for
augmenting the android permission system. In Proceedings of the ACM

Conference on Data and Application Security and Privacy (CODASPY),
pages 37±48, 2019.

[25] Zikan Dong, Liu Wang, Hao Xie, Guoai Xu, and Haoyu Wang. Privacy
analysis of period tracking mobile apps in the post-roe v. wade era.
In 37th IEEE/ACM International Conference on Automated Software

Engineering, pages 1±6, 2022.

[26] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The cookie
hunter: Automated black-box auditing for web authentication and au-
thorization flaws. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security (CCS), pages 1953±1970, 2020.

[27] Google. Proguard. http://developer.android.com/tools/help/proguard.
html, 2014.

[28] Payas Gupta, Swapna Gottipati, Jing Jiang, and Debin Gao. Your
love is public now: Questioning the use of personal information in
authentication. In Proceedings of the ACM SIGSAC symposium on

computer and communications security (ASIA CCS), pages 49±60, 2013.

[29] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. The art of
app compartmentalization: Compiler-based library privilege separation
on stock android. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security (CCS), pages 1037±1049, 2017.

[30] Arjen K Lenstra, Xiaoyun Wang, and BMM de Weger. Colliding x. 509
certificates. https://eprint.iacr.org/2005/067, 2005.

[31] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad
Naveed, XiaoFeng Wang, and Xinhui Han. Mayhem in the push
clouds: Understanding and mitigating security hazards in mobile push-
messaging services. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security (CCS), pages 978±989, 2014.

[32] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Auto-
matic protocol format reverse engineering through context-aware mon-
itored execution. In Proceedings of Annual Network and Distributed

System Security Symposium (NDSS), pages 1±15. Citeseer, 2008.

[33] Jack Lindamood, Raymond Heatherly, Murat Kantarcioglu, and Bhavani
Thuraisingham. Inferring private information using social network data.
In Proceedings of the international conference on World Wide Web

(WWW), pages 1145±1146, 2009.

[34] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai
Xu. Dapanda: Detecting aggressive push notifications in android apps.
In Proceedings of IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 66±78. IEEE, 2019.

[35] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang.
Privacy risk analysis and mitigation of analytics libraries in the an-

droid ecosystem. IEEE Transactions on Mobile Computing (TMC),
19(5):1184±1199, 2019.

[36] Xing Liu, Sencun Zhu, Wei Wang, and Jiqiang Liu. Alde: Privacy risk
analysis of analytics libraries in the android ecosystem. In International

Conference on Security and Privacy in Communication Systems (CCS),
pages 655±672, 2016.

[37] Abner Mendoza and Guofei Gu. Mobile application web api reconnais-
sance: Web-to-mobile inconsistencies & vulnerabilities. In Proceedings

of Symposium on Security and Privacy (S&P), pages 756±769. IEEE,
2018.

[38] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and Wenke Lee.
The price of free: Privacy leakage in personalized mobile in-apps ads. In
Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2016.

[39] Mohamed Abdalla Mokar, Sallam Osman Fageeri, and Saif Eldin Fattoh.
Using firebase cloud messaging to control mobile applications. In Pro-

ceedings of International Conference on Computer, Control, Electrical,

and Electronics Engineering (ICCCEEE), pages 1±5. IEEE, 2019.

[40] Suman Nath. Madscope: Characterizing mobile in-app targeted ads. In
Proceedings of the Annual International Conference on Mobile Systems,

Applications, and Services (MobiSys), pages 59±73, 2015.

[41] Business of Apps. Push notifications statistics (2019).
https://www.businessofapps.com/marketplace/push-notifications/
research/push-notifications-statistics.

[42] Business of Apps. Top push notifications services (2020). https://www.
businessofapps.com/marketplace/push-notifications/, 2020.

[43] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner.
Addroid: Privilege separation for applications and advertisers in android.
In Proceedings of the ACM Symposium on Information, Computer and

Communications Security (ASIACCS), pages 71±72, 2012.

[44] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks.
In Proceedings of Network and Distributed System Security Symposium

(NDSS), 2014.

[45] Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin Rao, David
Choffnes, and Narseo Vallina-Rodriguez. A longitudinal study of pii
leaks across android app versions. In Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2018.

[46] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and
David Choffnes. Recon: Revealing and controlling pii leaks in mobile
network traffic. In Proceedings of the Annual International Conference

on Mobile Systems, Applications, and Services (MobiSys), pages 361±
374, 2016.

[47] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo
Kim. Flexdroid: Enforcing in-app privilege separation in android. In
Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2016.

[48] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads
know about mobile users. In Proceedings of Annual Network and

Distributed System Security symposium (NDSS). Citeseer, 2016.

[49] Marc Stevens. Md5 and sha-1 cryptanalytic toolbox. https://github.com/
cr-marcstevens/hashclash.

[50] Marc Stevens. On collisions for md5. https://www.win.tue.nl/hashclash/,
2007.

[51] Marc Stevens, Arjen Lenstra, and Benne De Weger. Chosen-prefix
collisions for md5 and colliding x. 509 certificates for different identities.
In Proceedings of Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 1±22. Springer, 2007.

[52] Marc Stevens, Arjen K Lenstra, and Benne De Weger. Chosen-prefix
collisions for md5 and applications. International Journal of Applied

Cryptography, 2:322±359, 2012.

[53] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra,
David Molnar, Dag Arne Osvik, and Benne De Weger. Short chosen-
prefix collisions for md5 and the creation of a rogue ca certificate. In
Proceedings of Annual International Cryptology Conference, pages 55±
69. Springer, 2009.

[54] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. In Annual international conference on the theory and

applications of cryptographic techniques, pages 19±35, 2005.

[55] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace.
Reformat: Automatic reverse engineering of encrypted messages. In
Proceedings of European Symposium on Research in Computer Security,
pages 200±215, 2009.

[56] Zhi Xu and Sencun Zhu. Abusing notification services on smartphones
for phishing and spamming. In USENIX Workshop on Offensive

Technologies (WOOT), 2012.
[57] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang,

Yueheng Zhang, and Dawu Gu. Show me the money! finding flawed
implementations of third-party in-app payment in android apps. In
Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2017.
[58] Le Yu, Xiapu Luo, Jiachi Chen, Hao Zhou, Tao Zhang, Henry Chang,

and Hareton KN Leung. Ppchecker: Towards accessing the trustworthi-
ness of android apps’ privacy policies. IEEE Transactions on Software

Engineering, 47(2):221±242, 2018.
[59] Elena Zheleva and Lise Getoor. To join or not to join: the illusion of

privacy in social networks with mixed public and private user profiles. In
Proceedings of the international conference on World Wide Web (WWW),
pages 531±540, 2009.

[60] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your data
leak? uncovering the data leakage in cloud from mobile apps. In 2019

IEEE Symposium on Security and Privacy (S&P), pages 1296±1310.
IEEE, 2019.

