


develop near the shore and not in the deeper parts of the lake.

Furthermore, the quantities of interest do not change rapidly

across the surface of the lake. Therefore, the traditional

grid sampling pattern (also termed boustrophedon, lawn-

mower, or seed-spreader algorithms) is prohibitively slow

and does not contribute additional information. In contrary,

sampling based approaches assume prior knowledge about

the environment, based on which they aim to maximize

information gain.

This paper presents a novel approach for systematic cov-

ering of an aquatic environment, based on utilizing the

skeleton [12] (also called medial axis [13] or Generalized

Voronoi Graph [14]) of the target area to guide the ASV’s

trajectory.The skeleton —that is, the set points in free

space that are equidistant to multiple distinct points on

the obstacle boundary— provides a well established one

dimensional retraction of a two dimensional shape [15] used

for shape segmentation and object recognition. Consequently,

the skeleton traverses through the entire shape and generates

a first order representation. In order to spread the coverage

trajectory as wide as possible, the medial axis (skeleton)

between the original skeleton and the boundaries of free

space is used. The resulting trajectory passes through free

space, ensuring that the areas closer to shore are visited more.

The main motivation of the proposed approach is the

observation that phenomena of interest more often than not

occur near shore and in particular start inside small coves

which are protected from strong winds and currents. In ad-

dition, from a navigation perspective, near-shore operations

are increasingly challenging in contrast to operations away

from the shores. In other words, in the middle of the lake,

there is minimal variation of the water quality values, and

a simple lawnmower pattern can be applied. Experimental

results from Lake Murray, SC, USA validate our approach,

while the algorithm has been used to extract large trajectories

of the major lakes in South Carolina to test the scalability

of the approach.

II. RELATED WORK

The area coverage path planning problem has been ex-

tensively studied in robotics [16], [17]. Depending on the

goal or constraints of the coverage operation, different vari-

ations have been presented such as coverage under limited

resources, complete coverage, information driven coverage

or sampling based coverage.

a) Complete Coverage: One of the widely used ap-

proaches of Complete Coverage is based on the boustrophe-

don area decomposition approach, which splits the area of

interest into obstacle-free cells and then moves the robot in

a lawnmower motion pattern to cover each cell [18]. Several

works use this type of motion as the method of choice in

solving the coverage problems as a main strategy [19] or

as a prior strategy to improve coverage quality [20]. Other

approaches were also used for decomposing areas, such as

Morse [21] or grid-based [22], [23] decomposition.

Polynomial time algorithms were proposed for solving

single robot coverage using a boustrophedon decomposition

based approach [24], [25]. In contrast to the original algo-

rithm, in these approaches, the problem is represented as a

Chinese postman problem (CPP), which ensures an efficient

coverage order of cells.

When considering the coverage problem for robots with

turning constraints, the presented methods that use the bous-

trophedon coverage pattern may not be the most efficient

— that is, they will either spend excess time on covering

areas out of the region of interest or fail to perform com-

plete coverage on turns because of the rotation constraints.

The Dubins vehicle is a common robot model in coverage

problems, and Savla et al. [26] consider a control-theoretic

solution. Lewis et al. [9] proposed an algorithm for a single

robot with Dubins constraints utilizing a TSP formulation.

The problem of reducing traversal time by the motion con-

straints was also addressed by Huang [27] and Yao [28]. In

these works, motion constraints are used in the environmental

decomposition with the objective of reducing the amount of

rotation required by the robot. Similarly, to minimize the

number of turns with multiple robots, Vandermeulen et al.

introduced a rank partitioning heuristic that used a multiple

travelling salesman (m-TSP) formulation [29].

b) Information-driven Coverage: In many applications,

performing complete coverage is infeasible. On the other

hand, when prior information is available about the area, and

the aim is to maximize the utilization of that prior knowl-

edge, then information driven or sampling based methods are

applied [30], [31]. Using this approach, Manjanna et al. [32]

were able to create a map of a coral reef area with half the

distance travelled and power used than a lawnmower-style

complete coverage algorithm would have required. Roznere

et al. [3] presented preliminary work on utilizing an ASV for

HCB monitoring utilizing pre-programmed and information

driven trajectories.

c) Skeleton, Medial Axis, center of maximal disks,

Generalized Voronoi Graphs: all these terms define the

same concept [33], [34] with small variations: the locus of

points equidistant from some boundary. The linear skeleton

approach [12] operates on a polygon by retracting each

edge inwards uniformly, also termed the brushfire transform,

until the retracted edges meet. The center of maximal disks

describes the same concept, where a maximal disk is a circle

inscribed in a shape which is not properly contained in

another inscribed circle. The set of all the maximal disk

centers defines the same representation. Finally, the most

common term, medial axis [13], is the set of all points inside

the area of interest with more than one closest point to the

boundary of the area.

Generalized Voronoi Graphs (GVGs) were introduced by

Choset and Burdick [14] and have been used to guide

exploration of indoor spaces, navigating without exact local-

ization [35], and reducing localization error [36]–[38]. GVGs

focus on the control laws to guide a robot to stay equidistant

from two or more obstacles while navigating in open space.





distance to the path is twice the distance from the proposed

approach, and the ASV traverses the same path twice.

Figure 2(f) presents the planned GPS waypoints plotted on

top of the satellite image (red) and the resulting GPS trace

from the actual deployment in that environment (yellow).

There are small deviations where waves pushed the ASV

off-course, and it corrected on the way to the next waypoint.

The starting and ending points were planned to start outside

a no-wake zone with heavy boat traffic, and for safety, the

start and end of the experiment were under manual operation.

The resulting path is heavily biased towards the boundaries

of the environment as expected. An obvious comparison

will be to a shore following algorithm. However, such an

approach has two drawbacks: a fixed distance to shore fails

to accommodate for the varying width of the coves, as such

sampling inside the coves would not be uniform. In addition,

in more open areas, the proposed algorithm uniformly divides

the free space to travel equidistant from the obstacles and the

original skeleton.

IV. EXPERIMENTAL RESULTS

A. Experimental Platform

The vehicle utilized is the Jetyak [1], an ASV developed

at the University of South Carolina; see Fig. 1 for the ASV

operating at Lake Murray, SC, USA. The ASV is based

on a modified Mokai Es-Kape2 boat. The stock vessel uses

an internal combustion engine and reaches speeds up to

22.5 km/h, with a deployment time of over eight hours.

The ES-Kape’s factory pulse width modulated controlled

servo system allows seamless integration with a Pixhawk3

flight control system and on-board control through a com-

panion Intel UP computer serving to host Robot Operat-

ing System (ROS) [40]4. The Autonomous Surface Vehicle

(ASV) [1] has been equipped with a YSI EXO2 multipa-

rameter sonde [41] to collect water quality samples near

the surface (at 0.5m depth) utilizing the proposed sampling

trajectory. In addition, bathymetry data are collected, and the

water quality data are augmented with the depth information

along the trajectory of collection.

B. A spatio-temporal analysis of the target sensors

There are two factors influencing the proposed coverage

pattern: the spatial variation of the measured quantity and

the temporal sensitivity of the sensor. From the EXO2 sonde

manual [42] the factory reported response time values T635

for the sensors attached, ranging between one and five

seconds. It is worth noting that data are collected every

two seconds (0.5Hz), which is the fastest rate of the Sonde.

Dissolved oxygen has the slowest response time with less

than five seconds and then pH with less than three seconds.

However, as the variables of interest change slowly, we were

able to maintain speeds of 6.4Km/h with no adverse effects.

2http://www.mokai.com/mokai-es-kape/
3https://docs.px4.io/en/flight_controller/mro_

pixhawk.html
4http://wiki.ros.org/
5T63 is the time it takes the sensor to reach 63% of the actual value.

C. Target Environment

The proposed system is expected to be deployed in differ-

ent water bodies wherever harmful blooms occur. In South

Carolina, we have selected two lakes: Lake Murray and Lake

Wateree. Lake Murray spans more than 200 km
2, and has a

shore length in excess of 700 km, with a length of 66 km

and with a maximum depth of 57m. Lake Wateree covers

an area of 49 km
2, with a shore length of 291 km and a

maximum depth of 19.5m. Both are man-made impound-

ment lakes used for municipal water supply and recreation.

They are subject to extensive nutrient loading and experience

reoccurring poorly resolved HCBs that are dominated by

the toxin producing cyanobacteria Microcystis aeruginosa in

Lake Murray and the benthic cyanobacterium Lyngbya wollei

in Lake Wateree [43], [44].

D. Coverage comparison with complete coverage

In this comparison, the length of the trajectory from

the proposed approach was used as a guideline to choose

the footprint of the boustrophedon decomposition based

(BCD) algorithm in order to get approximate similar length

trajectories. Figure 3(a) presents a BCD path with a relative

small footprint. In order to ensure a safe trajectory the target

environment is heavily dilated. Figure 3(b) presents the BCD

path with a large footprint. Even with a large footprint, the

BCD algorithm resulted in a longer trajectory. The two paths,

as presented in Fig. 3 (b,c), were utilized to extract statistics

on the quality of coverage.

The two paths were used for comparing the proximity

of all free space to the coverage path. Figure 4 shows a

heat map where blue indicates close proximity traversing

through green, yellow, and finally red for the maximum

distance. It is worth noting that for the areas close to

shore, especially inside all the coves of the environment,

the proposed algorithm results in close proximity coverage.

In addition, the proposed algorithm resulted in shortened

maximum distances compared to the BCD. Quantitative,

Table I presents a comparison of the mean and max distance

in meters of the coverage proximity of the two approaches.

The preliminary results show a clear advantage over

the boustrophedon decomposition based (BCD) method

(Fig. 3(b)) when monitoring a surface with many inlets.

When the sensor footprint is large, the BCD-based approach

sometimes fails to generate non-overlapping and evenly

spaced out passes. Also, since the BCD algorithm has to

choose one single coverage direction, it lacks the same ability

as the skeleton-based approach to have coverage trajectories

spread out in different directions throughout the area of

interest, thus providing better access to the inlets of the

TABLE I: Comparison of the two motion strategies in terms of
proximity of coverage. All values are in meters.

Strategy Dist. Mean max

Boustrophedon [8] 23,174 75.88 603.09

Skeleton based 17,783 79.12 321.36
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