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Abstract—Timely prediction of debris flow probabilities in
areas impacted by wildfires is crucial to mitigate public exposure
to this hazard during post-fire rainstorms. This paper presents
a machine learning approach to amend an existing dataset of
post-fire debris flow events with additional features reflecting
existing vegetation type and geology, and train traditional and
deep learning methods on a randomly selected subset of the data.
The developed methods achieve AUC (area under the receiver
operational characteristic curve) values of 0.93 (random forest)
and 0.92 (neural network) on the test set, representing a signifi-
cant improvement over a logistic regression model currently used
(AUC 0.79). The paper also overviews a distributed, Kubernetes-
based big data processing pipeline to efficiently retrieve features
in areas impacted by new fires, and deploy the methods for real-
time prediction of debris flow hazards.

Index Terms—machine learning, parallel big data processing,
debris flow, wildfire

I. INTRODUCTION

Climate change and the expansion of settlements into
wildfire-prone areas have resulted in droughts and heatwaves,
increasing the severity of wildfires and their impact on human
life, properties and ecosystems. The destruction of vegetation
during such severe wildland fires can lead to debris flows in
steep terrain if extreme rainfall occurs within a couple of years
of the fire. Climate models predict a significant increase in the
number of extreme fire weather events followed by extreme
rainfall events by the turn of the century [1]. In order to
enable decision makers, emergency managers and the public to
properly prepare and respond to this kind of cascading hazard,
it is imperative to develop reliable models for the prediction
of post-fire debris flow likelihood.

One such model was developed by Staley et al. [2] based on
terrain, burn severity and precipitation variables collected from
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the Transverse and Peninsular ranges in Southern California.
The Staley et al. [2] model (referenced as ST16 through
the remainder of this text) is currently being used by the
U.S. Geological Survey (USGS) for emergency assessment of
post-fire debris-flow hazards [3]. The ST16 model correctly
predicted a high debris flow likelihood (65% for a peak 15
minute intensity of 24 mm/h) in the Montecito area (Southern
California) after the 2017 Thomas Fire and before the arrival
of a winter storm [4]. On January 9, 2018, heavy rainfalls on
the burn area above Montecito triggered several debris flows,
which resulted in the loss of 408 structures and 23 lives.

However, application of the ST16 model to slopes in the
Klamath Mountains (northern California) overestimated debris
flow likelihoods following the 2018 Carr and Delta Fires [5],
likely due to differences in vegetation, rainfall, and underlying
hydrogeomorphic processes between the Klamath Mountains
and the Transverse and Peninsular ranges where the data used
to train the ST16 model were collected.

In this work, we explore the use of different machine
learning (ML) techniques to more accurately predict post-
wildfire debris flow likelihoods throughout the U.S. We expand
an existing debris flow dataset with new features with the
aim of capturing differences between debris flow sites from
different regions. These features are extracted from large high-
resolution elevations, fuel and geological raster and vector data
for hundreds of sites. A distributed big data ingestion pipeline
is developed, which efficiently computes these features from
past and new wildfire-affected areas for rapid emergency
assessment of debris-flow likelihood.

Section II discusses the ST16 dataset and debris flow like-
lihood model. Section II also analyzes the additional features
we added to the dataset. Section III presents the distributed big
data processing pipeline developed for the extraction of new
features. The performance of different ML models is presented
in Section IV. Finally, Section VI shows how predictions from
the presented preferred debris flow likelihood model compare
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Abbreviation Unit  Description

Importance (rank)

Rainstorm intensity features:

i15* mm/h  Peak 15-minute storm intensity 0.21 (1)
accum? mm Total storm accumulation 0.16 (2)
duration$ h Total storm duration 0.10 (4)
Base site features:

PropHM23* Proportion of basin w/ slope > 23° and dNBR > 440 0.10 (5)
Area km? Area of watershed (basin, catchment) 0.07 (7)
KF* Soil erodibility factor Ky, (from STATGO database)[6] 0.07 (8)
dNBR1000* Differential normalized burn ratio, divided by 1000 0.06 (9)
Additional site features:

FFL* t/ac Mean fine fuel load in basin 0.11 (3)
SuscFract Proportion of basin covered by debris-flow susceptible vegetation classes 0.08 (6)
SedUn™t Proportion of basin underlain by sedimentary rocks or unconsolidated deposits ~ 0.03 (10)
Label:

response™ 0: no debris flow, 1: debris flow

TABLE I: Model features and label used for debris flow prediction in this study. *Features/label used in ST16 model and
provided by ST16 dataset, $features provided by ST16 dataset but not used in ST16 model, *features added in this study. The
features relative importance (and rank) apply to a random forest classifier trained with the additional features.

against the ST16 model.

II. ST16 DEBRIS FLOW DATA AND LIKELIHOOD MODEL

The ST16 dataset contains 1,243 complete records from 716
debris flow sites distributed throughout the Intermountain West
of the Western United States and Southern California. The
empirical data combines geospatial features of the basin (also
called watershed or catchment; used interchangeably in this
paper), which is defined as the region from which precipitation
draining into the debris flow site is collected. These features
(Table I) reflect basin steepness (PropHM23), burn severity
(dnbr1000) and soil properties (KF). The data also reflect
features of the rainstorm during which the event (debris flow
or no debris flow) was recorded, such as peak intensity in a 15
minute interval (i15), storm duration and total accumulation.

The ST16 model predicts the likelihood of a debris flow Fys
using a logistic regression from the multiplicative combination
of four of these features:

Py = S(—3.63+0.41 - PropHM23 - i15+

0.67 - ANBR1000 - i15 + 0.7 - KF -i15), (1)

where S(z) = 1/14e* is the sigmoid function. These engi-
neered features were chosen by ST16 to force zero debris
flow likelihood probability in the absence of rainfall.
Although the ST16 dataset contains data from 7 different
states (NM, CA, UT, CO, MT, AZ, and ID), the model
was trained only using Southern California data, with data
from remaining regions used for testing. This train-test split
was chosen by ST16 because the Southern California data
were considered to be of the highest quality and consistency,
as they originated from a single agency (the USGS); while
the remaining data were collected by different sources and
agencies. ST16 also found the best performance using this
train-test split. However, the Southern California data span a
more limited range of rainfall intensities (Fig. 1(a)) than the
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remaining sites (Fig. 1(b)) and show generally a lower rainfall
intensity threshold than the remaining sites. This discrepancy
might partially explain the overestimation of debris flow
likelihoods in Northern California by Staley et al.’s model.
ST16 measured the model’s performance using the threat
score (a.k.a., Jaccard index in binary classification), which
is the ratio between true positives (TP) and the sum of true
positives, false positives (FP) and false negatives (FN):

T TP
" FN+FP+ TP

This measure is preferable over the accuracy due to the biased
composition of the dataset, which contains 334 debris flow
events and 1,216 non debris flow events. ST16 reported a threat
score of 0.42 on the training (Southern California) and 0.39
on the testing (remaining regions) sites.

2

DEFINITION OF ADDITIONAL FEATURES

We explore the use of new basin features in order to capture
differences in debris flow response between different regions.
These features target the vegetation covering the watershed
and the geology of the underlying rock.

A. Fraction of Susceptible Vegetation Types

The type of vegetation affects parameters such as soil reten-
tion, burn intensity and therefore post-fire debris flow poten-
tial. For example, burnt grasslands are typically characterized
by high dNBR1000 (Table I) despite low burn severity while
burnt forests with largely intact canopies but significant surface
fuel consumption may exhibit a low dNBR1000 despite high
burn severity [e.g. 7]. In order to allow ML methods to learn
these dependencies, we added a feature reflecting vegetation
type to the data. We represent basic vegetation type using the
40 Scott and Burgan Fire Behavior Fuel Model (FBFM40)
category [8], which is provided on a 30 meter raster by
LANDFIRE [9, 10]. Figure 2(a) compares non debris-flow and
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Fig. 1: Location of no debris flow and debris flow observations in feature space. Peak 15 minute rainfall intensity il5
vs. steepness PropHM23 for (a) Southern CA sites; (b) Remaining sites; (¢) 115 vs. fraction of susceptible vegetation types
(SuscFrac) for all sites; and (d) 115 vs. fine fuel load derived from FBFM40 model for all sites.

debris-flow occurrences in the dataset by dominant FBFM40
fuel model category.

Events in grasslands (GR) categories and grasslands and
shrubs (GS) categories make up most of the observations
(Figure 2a), but debris flows are more common in grasslands
and shrubs (30%) than in grasslands (13%). To limit the
total number of features in the ML model, we combined the
vegetation categories GS, SH (shrubs), TL (timber litter) and
TU (timber understory) from the FBFM40 fuel model into a
new feature, called the fraction of susceptible vegetation types
(SuscFrac, Table I). Watersheds with a higher SuscFrac value
appear to exhibit debris flows more often than watersheds with
a low fraction (Figure 1(c)).

1683

B. Fine Fuel Load

The FBFM40 fuel model subdivides each fuel type into
different subcategories with different fuel characteristics, spec-
ified as fine fuel load (FFL) per unit area, surface area volume,
packing ratio and extinction moisture content. For example,
grasslands range from sparse grasses in category GR1 with a
FFL of 0.4 t/ac (tons per acre) to dense, tall grasses in category
GRO with a FFL of 10 t/ac. We found that the mean FFL within
the watershed provides the greatest performance improvement
(compared to the other fuel metrics in FBFM40) in the ML
models and added it as a new feature (Table I). Higher mean
FFLs tend to be associated with more frequent debris flow
occurrences (Figure 1(d)). This observation could be related
to the higher burn severity caused by the added fuel, which
leads to more debris and further reduces the soil’s capability
to infiltrate precipitation.
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Fig. 2: Contribution of no-debris flow and debris flow events by (a) FBFM40 fuel category and (b) Rock category. GR =
grassland, GS = grassland-shrubs, SH = shrubs, TL = timber-litter, TU = timber-understory. I = igneous, M = metamorphic,

S = sedimentary, U = unconsolidated.

C. Fraction of Sedimentary and Unconsolidated Rocks

Debris flow likelihood also depends on the type of under-
lying rock. We queried the digital version of the geological
map of each state [11] to calculate the fraction of each rock
class (igneous, metamorphic, sedimentary and unconsolidated)
in the watershed. In the ST16 dataset, watersheds dominated
by igneous and metamorphic rocks are subject to debris flows
more frequently than watersheds dominated by sedimentary
rocks and unconsolidated deposits (Figure 2(b)). We defined
the fraction of covered by sedimentary rock and unconsoli-
dated deposits as a new feature (SedUn, Table I).

III. DEBRIS FLOW BIG DATA PROCESSING PIPELINE

Operational debris flow forecasting essentially represents a
big data application, as it depends on features derived from
a large volume and variety of data, as well as features that
may change quickly during emergencies (velocity). The USGS
digital elevation model (DEM) used for watershed calculation,
for example (described below), contains several Tb of data
(although only a small fraction of that data covers an individual
watershed). Feature extraction also processes data of multiple
types. Geological maps, for instance, are provided as struc-
tured data in shapefile format, while fuel models or DEMs are
stored in raster format representing unstructured content. The
data originate from different agencies and projects (e.g., USGS
for DEM or geological maps, U.S. Department of Agriculture,
Forest Service for fuel model). The final debris flow training
set with the additional features represents a compilation of
data collected from a wide range of different sensor types,
including

« aerial or satellite IR images for the calculation of burn

ratios (ANBR1000) and definition of fire perimeters,

o satellite visible spectrum images (Landsat) for the fuel

(LandFire) and soil models (KF),

o satellite Lidar data for the DEM,

 rain gauges for precipitation monitoring [ST16],

o video cameras for debris flow monitoring [12], and

« field observations for geologic maps or debris flow re-
sponse.

As precipitation intensity forecasts evolve during post-fire
storm situations, debris flow likelihood estimates also need to
be updated to these frequently changing features.

A distributed data processing pipeline was developed to
rapidly provide features for training and deploying the ML
models described below (Figure 3). Feature extraction opera-
tions for different watersheds were distributed on the Nautilus
Kubernetes cluster of the Pacific Research Platform (PRP)
[13, 14] using Dask [15, 16] bags for Python. The Helm
package manager for Kubernetes [17] was used to install Dask
on Nautilus. Watersheds pertaining to each debris flow location
were computed using the PySheds [18] library and a DEM
from the USGS 3DEP program provided in 1/3 arc second
resolution [19]. Raster data, such as the DEM and fuel model
[9] were processed using the Xarray library [20, 21] with
the rioxarray extension [22]. Vector data such as watershed
polygons and the digital representation of the geological map
[11] were processed using Geopandas dataframes [23]. Key
operations carried out by the data processing pipeline include
(Fig. 3):

o For each watershed area:

— Retrieve DEM for site surroundings

— Extract watershed polygon for site

— Retrieve fuel model raster for region

— Re-project DEM to match fuel model reference sys-
tem and resolution

— Perform spatial join between watershed area and fuel
model
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Fig. 3: Simplified schematic of data processing pipeline for computation of basins and extraction of additional site features.

DF = debris flow.

Aggregate fuel parameters (SuscFrac, FFL) for wa-
tershed

Retrieve geological map for site’s state

Carry out spatial join between watershed and geo-
logical map

Aggregate by geological classification to compute
SedUn.

o Collect features from each watershed
o Join with debris flow event data and write to disk.

The feature extraction pipeline uses a data parallel program-
ming model. Only site metadata (including location) is defined
on the scheduler node and distributed to the worker nodes, with
each worker running in a separate pod. Variables with large
memory footprints, such as the DEM, the fuel model and the
geological map, are stored in each worker’s local memory.
A persistent volume claim (PVC) on the Kubernetes cluster is
mounted by all pods and used to stage geological maps, which
are downloaded only once for each required state. The Landfire
fuel model was converted to a cloud-optimized GeoTiff (COG)
format to reduce memory usage and also staged on the PVC.
The DEM data is already provided in COG format, and the
relevant area is directly retrieved by each worker from the
USGS servers using HTTP range requests and the rioxarray
interface [22]. The data extraction and feature aggregation for
the site’s watershed is carried out individually on each worker
node (Fig. 3), and only the condensed site features (Table
I) and the watershed polygon are collected by the scheduler
and stored to disk. Using 10 pods on Nautilus, the feature
extraction completes in ~9 minutes for the 716 debris flow
sites in the ST16 dataset. However, debris flow prediction
during active, large scale wildfires may be required for several
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thousand potential watersheds, which would necessitate the
use of more pods.

IV. ML MODELS AND PERFORMANCE

We evaluated the performance of different ML models by
splitting the dataset into training and testing sites.

A. Train-Test Split

As we want the model to generalize well to sites outside of
Southern California, sites were randomly assigned as training
or testing sites regardless of their location. Because more than
one observation was made at most debris flow sites, the split
between training and testing data was done by site identifier,
rather than by observation. This avoids splitting observations
made at the same site between the training and testing set, and
tests the realistic situation of predicting debris flows at sites not
used for training. The training set contains 982 observations
collected at 522 (80%) sites, while the test set contains 261
observations collected at 131 (20%) sites.

B. Addition of Random Noise to Rainstorm Features

Precipitation observations in the dataset were collected from
rain gages up to 4 km away from the watersheds [ST16],
and only 123 unique precipitation values are present in the
dataset. The assumption that the data are independent and
identically distributed may thus not hold for this dataset. We
found that random forests in particular tend to overfit to small-
scale dependencies of debris flow likelihoods on precipitation
data during training. Nearby watersheds sharing the exact same
il5 value may exhibit a similar debris flow response, and the
ML algorithm effectively learns to assign a debris flow site to
a group of similar sites based on the unique i15 record. We
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Fig. 4: Receiver operating characteristics (ROC) curves obtained on the test sites for (a¢) Random forest, (b) Support vector
classifier, (c¢) K-nearest neighbors, and (d) neural network. ROCs are shown using features from ST16 dataset and using three
additional features (SuscFrac, FFL and SedUn). The ROC curve of the ST16 model is shown as baseline.

therefore added random noise to the precipitation features (il5,
duration, total accumulation) before the test-train split (Fig. 1).
The amplitude of the noise was defined to range between -10%
and 10% of the recorded value.

C. Performance Evaluation

We trained different ML methods on the training set, and
recorded the threat score and area under the receiver oper-
ating characteristics (ROC) curve during training and testing
(Table II). Performance was evaluated using the base features
(Table I) and using the base and additional features (SuscFrac,
FFL, and SedUn) with the same train-test split.

Traditional ML models including logistic regression, naive
Bayes, support vector classifiers (SVC), K-nearest neighbors
(KNN) and random forests were implemented using the Scikit-
learn package [24]. Hyperparameters such as the regularization
in the SVC and the maximum tree depth in the random forest
were calibrated to optimize threat scores on the test set. For the

Method base features w/ addt’] features
training testing training testing

ST16 0.39 (0.80)  0.37 (0.79)

Logistic regr. 0.35 (0.83) 0.32 (0.86) | 0.35(0.84) 0.36 (0.87)
Naive Bayes 0.24 (0.79)  0.27 (0.82) | 0.27 (0.79)  0.31 (0.84)
NYe 0.70 (0.97) 0.36 (0.81) | 0.75 (0.98) 0.42 (0.88)
KNN 0.59 (0.94) 0.41 (0.87) | 0.61 (0.95) 0.50 (0.91)
Random Forest | 0.97 (1.00)  0.45 (0.91) | 1.00 (1.00)  0.53 (0.93)
Neural Network | 0.59 (0.93)  0.37 (0.88) | 0.75 (0.98)  0.54 (0.92)

TABLE II: Training and test threat scores (and area under the
curve) of different ML methods using base features and with
additional features SuscFrac, FFL and SedUn. SVC = support
vector classifier, KNN = K-Nearest Neighbors.

SVC, KNN and the neural network, features were standardized
by removing the mean and scaling to unit variance.

The neural network (NN) was implemented in Python using
the Keras [25] interface to the Tensorflow [26] backend. We
used a fully connected architecture, with an input node for
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Fig. 5: Debris flow probability as function of i15 (mm/h) and PropHM23 predicted using (a) ST16, (b) logistic regression,
(c) KNN, (d) SVC, (e) random forest, and (f) neural network. Other features were set to constant values except for the total

storm accumulation. See text for more explanations.

each feature, several hidden layers and a single output layer.
Drop-out regularization was applied to reduce overfitting to
the training data. The number of hidden layers, layer size and
drop out probabilities were established by trial and error to
optimize performance. A design with 7 hidden layers and up
to 92 nodes per layer was used for the NN with the base
features. The NN trained with the additional features uses 11
hidden layers with up to 392 nodes per layer. Hidden layer
weights were initialized using the Xavier (Glorot) method to
minimize problems with vanishing or exploding gradients [27].
Drop-out probabilities were calibrated to values between 0.2
and 0.3. The activation functions alternate between tanh and
rectified linear units in the hidden layers [28, 29]; the output
layer uses a sigmoid function to predict the probability of a
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debris flow.

The ST16 model achieves a threat score of 0.37 on the test
set (Table II), slightly lower than the value of 0.39 reported by
the creators on the observations outside of Southern California.
Without the additional features, the threat scores of the SVC
and the NN are on par with ST16, while the logistic regression
and Naive Bayes classifier score lower at 0.32 and 0.27,
respectively. The random forest achieves 0.45. The additional
features improve threat scores for all the tested ML methods,
with the KNN, random forest and NN scoring higher than 0.50
(Table II).

All the tested ML methods achieve AUCs (area under
the receiver operational characteristic curve) above 0.80 even
without additional parameters, while ST16 achieves 0.79 (Fig-
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ure 4, Table II). With the additional features, we recorded an
AUC of 0.92 with the NN and an AUC of 0.93 with the random
forest.

These improvements are significant for operational debris
flow forecasting, where the true positive rate is to be maxi-
mized and the false positive rate (FPR) is to be minimized, as
frequent false alarms may desensitize stakeholders to alerts of
a real threat. Catching 80% of debris flows would result in an
FPR of 8% using a random forest trained with the additional
features, but 15% using the random forest trained on just base
features (Figure 4(a)). Using the neural network, FPRs would
be 13% and 22%; respectively (Figure 4(d)). With the original
ST16 model, setting the threshold for a true positive rate to
80% would incur an FPR of 38% (Fig. 4).

The computational resources required by the additional
features during training and testing are not relevant. The
traditional machine learning models (e.g., SVC, random forest)
take less than one second for training. Due to the larger
number of hidden layers, the NN with the additional features
takes longer (~3 minutes) to train than the NN without those
features (<1 minute); however, predicting the debris flow
likelihood for the Carr fire sites took less than a second for
all models and all features.

V. INTERPRETATION OF ML RESULTS

To explore the variability of the predicted debris flow likeli-
hoods with changing features, we calculated probabilities from
each classifier through the feature space spawned by the most
important rainfall feature, 115 (Table I), and the most important
non-precipitation base feature, PropHM23 (Figure 5). The total
storm accumulation was set to 0.4xil5 following the general
trend in the data. The remaining features were set to constant
values, with the storm duration set to 12 hours, the watershed
area to 1 km2, dnbr1000 = 0.41, kf = 0.25, SedUn = 0,
SuscFrac = 0.98 and FFL = 2.0; these values are close to
the median values of the watersheds analyzed in Section VI.

The ST16 (Figure 5(a)) model predicts a debris flow proba-
bility of Py = 1 for about two thirds of the feature space,
which does not fully reflect the observations especially at
sites outside Southern California (Figure 1(b)). The logistic
regression (Figure 5(b)) predicts a more gradual increase in
Py, but gives Py > 0 for zero precipitation, a problem already
noted by ST16. The remaining shallow and deep ML methods
(Figure 5(c-f)) return Py ~ 0 for i15 ~ 0. Predictions by
the K-nearest neighbors (Figure 5(c)) do not monotonically
increase with increasing precipitation. Although this behavior
reflects patterns in the underlying data, such predictions can
be potentially problematic in real-world scenarios. The ran-
dom forest does also not strictly exhibit increasing Py with
increasing 115, but this effect is strongly attenuated due to the
randomization inherent to this method. The Py distribution of
the NN resembles the distribution from the logistic regression,
but predicts a more complex dependency on the two varied
features. The distribution of Py as a function of il5 and
PropHM?23 obtained by the SVC (Figure 5(d)) seems at odds
with the distribution suggested by the other methods. For these
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Fig. 6: Debris flow likelihoods in Shasta County following
the 2018 Carr Fire during an assumed rainstorm with 115 =
24 mm/h, duration = 12 h and a total accumulation of 20 mm.
Green colors show the watersheds surrounding the three creeks
monitored by East et al. [30].
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reasons, we selected the random forest and neural network as
our preferred methods for operational predictions of post-fire
debris-flow likelihood.

VI. DEBRIS FLOW LIKELIHOOD POST 2018 CARR FIRE

The training and test sets were merged into a single dataset,
and used to re-train the different ML models with the hyper-
parameters selected during testing.

We then calculated debris flow likelihoods following the
2018 Carr Fire in the Whiskeytown Lake (Shasta County) area
to illustrate the sensitivity of the predictions to the ML method.
East et al. [30] monitored sediment transport from three basins
draining into Whiskeytown Lake during the first two years
following the fire and observed no post-fire debris flows.
However, multiple rainstorms with peak 15 minute intensities
above 24 mm/h were observed by rainbow gauges installed
within the basins, which would have brought the debris flow
likelihoods according to Staley et al.’s model above 60% in
almost all of the basins surrounding the three monitored creeks
(Figure 6a).

We retrieved watershed extents and base site features (Ta-
ble I) from the USGS emergency debris flow assessment
website [3]. Additional features (Table I) were calculated using
a slightly modified version of the workflow developed for the
preparation of training and testing data (Section III).

For the storm features, we assumed a peak 15m precipitation
intensity of 24 mm/h, a storm duration of 24 hours and total
accumulation of 20 mm. Figure 6 shows the debris flow
likelihoods predicted by the different ML methods.

The random forest predicts Py < 60% in all basins except
a small one within Brandy Creek (Figure 6b), with most
watersheds having Py between 20 and 40%. The debris flow
likelihoods predicted by the neural network (Fig. 6c) are
between those from the random forest and the ST16. Both
the random forest and the NN predict lower likelihoods than
ST16, in particular in the less steep areas downstream from the
lake. These results are generally consistent with observations
of the Py within the feature space (Fig. 5), and confirm that
the ST16 model tends to overpredict debris flow likelihoods
[5]. However, the large number of basins with elevated Py
(> 40%) would make it unlikely that no post-fire debris flows
were triggered within two years [30], in particular considering
that some rain gauges recorded il5 values well above 24
mm/h.

VII. INTERACTIVE MAPS OF DEBRIS FLOW LIKELIHOOD

The distributed feature extraction pipeline allows for real-
time prediction of debris flow likelihoods in fire affected re-
gions. We are currently developing an interactive web applica-
tion that displays color-coded maps of debris flow likelihoods
for changing assumptions (Figure 7). Users are able to explore
the sensitivity of Py to storm (precipitation and duration)
parameters and the choice of ML method. Future versions
will couple the interactive map with live weather forecasts,
thereby giving stakeholders the opportunity to react to rapidly
evolving storm situations in fire-ravaged regions.
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Fig. 7: Example of interactive web application, showing map
of post-fire debris flow likelihood following the 2017 Thomas
Fire.

VIII. CONCLUSIONS

We have developed a distributed big data ingestion pipeline
for the extraction of additional basin features in a published
dataset of post-fire debris flow events. The additional features
include the fraction of susceptible vegetation type in the basin
(SuscFrac), the mean fine fraction of the fuels covering the
basin (FFL), and the fraction of sedimentary and unconsoli-
dated rocks underlying the basin (SedUN). Adding these extra
features significantly improves the threat score and area under
the ROC curve using both traditional ML methods and a
fully connected NN. A random forest and NN with 11 hidden
layers are our preferred models for debris flow prediction. Both
methods predict significantly lower debris-flow likelihoods in
basins surrounding Whiskeytown Lake following the 2018
Carr Fire, bringing the predictions closer to observations. An
interactive web application is under development which will
allow decision makers to consider these alternative debris-flow
likelihood models when assessing the dangers posed by large
precipitation events over fire-affected basins.
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