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Abstract—Timely prediction of debris flow probabilities in
areas impacted by wildfires is crucial to mitigate public exposure
to this hazard during post-fire rainstorms. This paper presents
a machine learning approach to amend an existing dataset of
post-fire debris flow events with additional features reflecting
existing vegetation type and geology, and train traditional and
deep learning methods on a randomly selected subset of the data.
The developed methods achieve AUC (area under the receiver
operational characteristic curve) values of 0.93 (random forest)
and 0.92 (neural network) on the test set, representing a signifi-
cant improvement over a logistic regression model currently used
(AUC 0.79). The paper also overviews a distributed, Kubernetes-
based big data processing pipeline to efficiently retrieve features
in areas impacted by new fires, and deploy the methods for real-
time prediction of debris flow hazards.

Index Terms—machine learning, parallel big data processing,
debris flow, wildfire

I. INTRODUCTION

Climate change and the expansion of settlements into

wildfire-prone areas have resulted in droughts and heatwaves,

increasing the severity of wildfires and their impact on human

life, properties and ecosystems. The destruction of vegetation

during such severe wildland fires can lead to debris flows in

steep terrain if extreme rainfall occurs within a couple of years

of the fire. Climate models predict a significant increase in the

number of extreme fire weather events followed by extreme

rainfall events by the turn of the century [1]. In order to

enable decision makers, emergency managers and the public to

properly prepare and respond to this kind of cascading hazard,

it is imperative to develop reliable models for the prediction

of post-fire debris flow likelihood.

One such model was developed by Staley et al. [2] based on

terrain, burn severity and precipitation variables collected from

This work was supported in part by NSF awards CNS-1730158, ACI-
1540112, ACI-1541349, OAC-1826967, OAC-2112167, CNS-2120019, the
University of California Office of the President, and UCSD CalIT2/QI for
PRP.

the Transverse and Peninsular ranges in Southern California.

The Staley et al. [2] model (referenced as ST16 through

the remainder of this text) is currently being used by the

U.S. Geological Survey (USGS) for emergency assessment of

post-fire debris-flow hazards [3]. The ST16 model correctly

predicted a high debris flow likelihood (65% for a peak 15

minute intensity of 24 mm/h) in the Montecito area (Southern

California) after the 2017 Thomas Fire and before the arrival

of a winter storm [4]. On January 9, 2018, heavy rainfalls on

the burn area above Montecito triggered several debris flows,

which resulted in the loss of 408 structures and 23 lives.

However, application of the ST16 model to slopes in the

Klamath Mountains (northern California) overestimated debris

flow likelihoods following the 2018 Carr and Delta Fires [5],

likely due to differences in vegetation, rainfall, and underlying

hydrogeomorphic processes between the Klamath Mountains

and the Transverse and Peninsular ranges where the data used

to train the ST16 model were collected.

In this work, we explore the use of different machine

learning (ML) techniques to more accurately predict post-

wildfire debris flow likelihoods throughout the U.S. We expand

an existing debris flow dataset with new features with the

aim of capturing differences between debris flow sites from

different regions. These features are extracted from large high-

resolution elevations, fuel and geological raster and vector data

for hundreds of sites. A distributed big data ingestion pipeline

is developed, which efficiently computes these features from

past and new wildfire-affected areas for rapid emergency

assessment of debris-flow likelihood.

Section II discusses the ST16 dataset and debris flow like-

lihood model. Section II also analyzes the additional features

we added to the dataset. Section III presents the distributed big

data processing pipeline developed for the extraction of new

features. The performance of different ML models is presented

in Section IV. Finally, Section VI shows how predictions from

the presented preferred debris flow likelihood model compare
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Abbreviation Unit Description Importance (rank)

Rainstorm intensity features:
i15∗ mm/h Peak 15-minute storm intensity 0.21 (1)

accum§ mm Total storm accumulation 0.16 (2)

duration§ h Total storm duration 0.10 (4)

Base site features:
PropHM23∗ - Proportion of basin w/ slope > 23◦ and dNBR > 440 0.10 (5)

Area§ km2 Area of watershed (basin, catchment) 0.07 (7)
KF∗ - Soil erodibility factor Kfact (from STATGO database)[6] 0.07 (8)
dNBR1000∗ - Differential normalized burn ratio, divided by 1000 0.06 (9)

Additional site features:
FFL+ t/ac Mean fine fuel load in basin 0.11 (3)
SuscFrac+ - Proportion of basin covered by debris-flow susceptible vegetation classes 0.08 (6)
SedUn+ - Proportion of basin underlain by sedimentary rocks or unconsolidated deposits 0.03 (10)

Label:
response∗ - 0: no debris flow, 1: debris flow

TABLE I: Model features and label used for debris flow prediction in this study. ∗Features/label used in ST16 model and

provided by ST16 dataset, §features provided by ST16 dataset but not used in ST16 model, +features added in this study. The

features relative importance (and rank) apply to a random forest classifier trained with the additional features.

against the ST16 model.

II. ST16 DEBRIS FLOW DATA AND LIKELIHOOD MODEL

The ST16 dataset contains 1,243 complete records from 716

debris flow sites distributed throughout the Intermountain West

of the Western United States and Southern California. The

empirical data combines geospatial features of the basin (also

called watershed or catchment; used interchangeably in this

paper), which is defined as the region from which precipitation

draining into the debris flow site is collected. These features

(Table I) reflect basin steepness (PropHM23), burn severity

(dnbr1000) and soil properties (KF). The data also reflect

features of the rainstorm during which the event (debris flow

or no debris flow) was recorded, such as peak intensity in a 15

minute interval (i15), storm duration and total accumulation.

The ST16 model predicts the likelihood of a debris flow Pdf

using a logistic regression from the multiplicative combination

of four of these features:

Pdf = S
(− 3.63 + 0.41 · PropHM23 · i15+

0.67 · dNBR1000 · i15 + 0.7 · KF · i15
)
, (1)

where S(x) = 1/1+ex is the sigmoid function. These engi-

neered features were chosen by ST16 to force zero debris

flow likelihood probability in the absence of rainfall.

Although the ST16 dataset contains data from 7 different

states (NM, CA, UT, CO, MT, AZ, and ID), the model

was trained only using Southern California data, with data

from remaining regions used for testing. This train-test split

was chosen by ST16 because the Southern California data

were considered to be of the highest quality and consistency,

as they originated from a single agency (the USGS); while

the remaining data were collected by different sources and

agencies. ST16 also found the best performance using this

train-test split. However, the Southern California data span a

more limited range of rainfall intensities (Fig. 1(a)) than the

remaining sites (Fig. 1(b)) and show generally a lower rainfall

intensity threshold than the remaining sites. This discrepancy

might partially explain the overestimation of debris flow

likelihoods in Northern California by Staley et al.’s model.

ST16 measured the model’s performance using the threat

score (a.k.a., Jaccard index in binary classification), which

is the ratio between true positives (TP) and the sum of true

positives, false positives (FP) and false negatives (FN):

T =
TP

FN + FP + TP
(2)

This measure is preferable over the accuracy due to the biased

composition of the dataset, which contains 334 debris flow

events and 1,216 non debris flow events. ST16 reported a threat

score of 0.42 on the training (Southern California) and 0.39

on the testing (remaining regions) sites.

DEFINITION OF ADDITIONAL FEATURES

We explore the use of new basin features in order to capture

differences in debris flow response between different regions.

These features target the vegetation covering the watershed

and the geology of the underlying rock.

A. Fraction of Susceptible Vegetation Types

The type of vegetation affects parameters such as soil reten-

tion, burn intensity and therefore post-fire debris flow poten-

tial. For example, burnt grasslands are typically characterized

by high dNBR1000 (Table I) despite low burn severity while

burnt forests with largely intact canopies but significant surface

fuel consumption may exhibit a low dNBR1000 despite high

burn severity [e.g. 7]. In order to allow ML methods to learn

these dependencies, we added a feature reflecting vegetation

type to the data. We represent basic vegetation type using the

40 Scott and Burgan Fire Behavior Fuel Model (FBFM40)

category [8], which is provided on a 30 meter raster by

LANDFIRE [9, 10]. Figure 2(a) compares non debris-flow and
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Fig. 1: Location of no debris flow and debris flow observations in feature space. Peak 15 minute rainfall intensity i15

vs. steepness PropHM23 for (a) Southern CA sites; (b) Remaining sites; (c) i15 vs. fraction of susceptible vegetation types

(SuscFrac) for all sites; and (d) i15 vs. fine fuel load derived from FBFM40 model for all sites.

debris-flow occurrences in the dataset by dominant FBFM40

fuel model category.

Events in grasslands (GR) categories and grasslands and

shrubs (GS) categories make up most of the observations

(Figure 2a), but debris flows are more common in grasslands

and shrubs (30%) than in grasslands (13%). To limit the

total number of features in the ML model, we combined the

vegetation categories GS, SH (shrubs), TL (timber litter) and

TU (timber understory) from the FBFM40 fuel model into a

new feature, called the fraction of susceptible vegetation types

(SuscFrac, Table I). Watersheds with a higher SuscFrac value

appear to exhibit debris flows more often than watersheds with

a low fraction (Figure 1(c)).

B. Fine Fuel Load

The FBFM40 fuel model subdivides each fuel type into

different subcategories with different fuel characteristics, spec-

ified as fine fuel load (FFL) per unit area, surface area volume,

packing ratio and extinction moisture content. For example,

grasslands range from sparse grasses in category GR1 with a

FFL of 0.4 t/ac (tons per acre) to dense, tall grasses in category

GR9 with a FFL of 10 t/ac. We found that the mean FFL within

the watershed provides the greatest performance improvement

(compared to the other fuel metrics in FBFM40) in the ML

models and added it as a new feature (Table I). Higher mean

FFLs tend to be associated with more frequent debris flow

occurrences (Figure 1(d)). This observation could be related

to the higher burn severity caused by the added fuel, which

leads to more debris and further reduces the soil’s capability

to infiltrate precipitation.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 14,2023 at 23:23:23 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2: Contribution of no-debris flow and debris flow events by (a) FBFM40 fuel category and (b) Rock category. GR =

grassland, GS = grassland-shrubs, SH = shrubs, TL = timber-litter, TU = timber-understory. I = igneous, M = metamorphic,

S = sedimentary, U = unconsolidated.

C. Fraction of Sedimentary and Unconsolidated Rocks

Debris flow likelihood also depends on the type of under-

lying rock. We queried the digital version of the geological

map of each state [11] to calculate the fraction of each rock

class (igneous, metamorphic, sedimentary and unconsolidated)

in the watershed. In the ST16 dataset, watersheds dominated

by igneous and metamorphic rocks are subject to debris flows

more frequently than watersheds dominated by sedimentary

rocks and unconsolidated deposits (Figure 2(b)). We defined

the fraction of covered by sedimentary rock and unconsoli-

dated deposits as a new feature (SedUn, Table I).

III. DEBRIS FLOW BIG DATA PROCESSING PIPELINE

Operational debris flow forecasting essentially represents a

big data application, as it depends on features derived from

a large volume and variety of data, as well as features that

may change quickly during emergencies (velocity). The USGS

digital elevation model (DEM) used for watershed calculation,

for example (described below), contains several Tb of data

(although only a small fraction of that data covers an individual

watershed). Feature extraction also processes data of multiple

types. Geological maps, for instance, are provided as struc-

tured data in shapefile format, while fuel models or DEMs are

stored in raster format representing unstructured content. The

data originate from different agencies and projects (e.g., USGS

for DEM or geological maps, U.S. Department of Agriculture,

Forest Service for fuel model). The final debris flow training

set with the additional features represents a compilation of

data collected from a wide range of different sensor types,

including

• aerial or satellite IR images for the calculation of burn

ratios (dNBR1000) and definition of fire perimeters,

• satellite visible spectrum images (Landsat) for the fuel

(LandFire) and soil models (KF),

• satellite Lidar data for the DEM,

• rain gauges for precipitation monitoring [ST16],

• video cameras for debris flow monitoring [12], and

• field observations for geologic maps or debris flow re-

sponse.

As precipitation intensity forecasts evolve during post-fire

storm situations, debris flow likelihood estimates also need to

be updated to these frequently changing features.

A distributed data processing pipeline was developed to

rapidly provide features for training and deploying the ML

models described below (Figure 3). Feature extraction opera-

tions for different watersheds were distributed on the Nautilus

Kubernetes cluster of the Pacific Research Platform (PRP)

[13, 14] using Dask [15, 16] bags for Python. The Helm

package manager for Kubernetes [17] was used to install Dask

on Nautilus. Watersheds pertaining to each debris flow location

were computed using the PySheds [18] library and a DEM

from the USGS 3DEP program provided in 1/3 arc second

resolution [19]. Raster data, such as the DEM and fuel model

[9] were processed using the Xarray library [20, 21] with

the rioxarray extension [22]. Vector data such as watershed

polygons and the digital representation of the geological map

[11] were processed using Geopandas dataframes [23]. Key

operations carried out by the data processing pipeline include

(Fig. 3):

• For each watershed area:

– Retrieve DEM for site surroundings

– Extract watershed polygon for site

– Retrieve fuel model raster for region

– Re-project DEM to match fuel model reference sys-

tem and resolution

– Perform spatial join between watershed area and fuel

model

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 14,2023 at 23:23:23 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3: Simplified schematic of data processing pipeline for computation of basins and extraction of additional site features.

DF = debris flow.

– Aggregate fuel parameters (SuscFrac, FFL) for wa-

tershed

– Retrieve geological map for site’s state

– Carry out spatial join between watershed and geo-

logical map

– Aggregate by geological classification to compute

SedUn.

• Collect features from each watershed

• Join with debris flow event data and write to disk.

The feature extraction pipeline uses a data parallel program-

ming model. Only site metadata (including location) is defined

on the scheduler node and distributed to the worker nodes, with

each worker running in a separate pod. Variables with large

memory footprints, such as the DEM, the fuel model and the

geological map, are stored in each worker’s local memory.

A persistent volume claim (PVC) on the Kubernetes cluster is

mounted by all pods and used to stage geological maps, which

are downloaded only once for each required state. The Landfire

fuel model was converted to a cloud-optimized GeoTiff (COG)

format to reduce memory usage and also staged on the PVC.

The DEM data is already provided in COG format, and the

relevant area is directly retrieved by each worker from the

USGS servers using HTTP range requests and the rioxarray

interface [22]. The data extraction and feature aggregation for

the site’s watershed is carried out individually on each worker

node (Fig. 3), and only the condensed site features (Table

I) and the watershed polygon are collected by the scheduler

and stored to disk. Using 10 pods on Nautilus, the feature

extraction completes in ∼9 minutes for the 716 debris flow

sites in the ST16 dataset. However, debris flow prediction

during active, large scale wildfires may be required for several

thousand potential watersheds, which would necessitate the

use of more pods.

IV. ML MODELS AND PERFORMANCE

We evaluated the performance of different ML models by

splitting the dataset into training and testing sites.

A. Train-Test Split

As we want the model to generalize well to sites outside of

Southern California, sites were randomly assigned as training

or testing sites regardless of their location. Because more than

one observation was made at most debris flow sites, the split

between training and testing data was done by site identifier,

rather than by observation. This avoids splitting observations

made at the same site between the training and testing set, and

tests the realistic situation of predicting debris flows at sites not

used for training. The training set contains 982 observations

collected at 522 (80%) sites, while the test set contains 261

observations collected at 131 (20%) sites.

B. Addition of Random Noise to Rainstorm Features

Precipitation observations in the dataset were collected from

rain gages up to 4 km away from the watersheds [ST16],

and only 123 unique precipitation values are present in the

dataset. The assumption that the data are independent and

identically distributed may thus not hold for this dataset. We

found that random forests in particular tend to overfit to small-

scale dependencies of debris flow likelihoods on precipitation

data during training. Nearby watersheds sharing the exact same

i15 value may exhibit a similar debris flow response, and the

ML algorithm effectively learns to assign a debris flow site to

a group of similar sites based on the unique i15 record. We
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Fig. 4: Receiver operating characteristics (ROC) curves obtained on the test sites for (a) Random forest, (b) Support vector

classifier, (c) K-nearest neighbors, and (d) neural network. ROCs are shown using features from ST16 dataset and using three

additional features (SuscFrac, FFL and SedUn). The ROC curve of the ST16 model is shown as baseline.

therefore added random noise to the precipitation features (i15,

duration, total accumulation) before the test-train split (Fig. 1).

The amplitude of the noise was defined to range between -10%

and 10% of the recorded value.

C. Performance Evaluation

We trained different ML methods on the training set, and

recorded the threat score and area under the receiver oper-

ating characteristics (ROC) curve during training and testing

(Table II). Performance was evaluated using the base features

(Table I) and using the base and additional features (SuscFrac,

FFL, and SedUn) with the same train-test split.

Traditional ML models including logistic regression, naive

Bayes, support vector classifiers (SVC), K-nearest neighbors

(KNN) and random forests were implemented using the Scikit-

learn package [24]. Hyperparameters such as the regularization

in the SVC and the maximum tree depth in the random forest

were calibrated to optimize threat scores on the test set. For the

Method base features w/ addt’l features
training testing training testing

ST16 0.39 (0.80) 0.37 (0.79)
Logistic regr. 0.35 (0.83) 0.32 (0.86) 0.35 (0.84) 0.36 (0.87)
Naive Bayes 0.24 (0.79) 0.27 (0.82) 0.27 (0.79) 0.31 (0.84)
SVC 0.70 (0.97) 0.36 (0.81) 0.75 (0.98) 0.42 (0.88)
KNN 0.59 (0.94) 0.41 (0.87) 0.61 (0.95) 0.50 (0.91)
Random Forest 0.97 (1.00) 0.45 (0.91) 1.00 (1.00) 0.53 (0.93)
Neural Network 0.59 (0.93) 0.37 (0.88) 0.75 (0.98) 0.54 (0.92)

TABLE II: Training and test threat scores (and area under the

curve) of different ML methods using base features and with

additional features SuscFrac, FFL and SedUn. SVC = support

vector classifier, KNN = K-Nearest Neighbors.

SVC, KNN and the neural network, features were standardized

by removing the mean and scaling to unit variance.

The neural network (NN) was implemented in Python using

the Keras [25] interface to the Tensorflow [26] backend. We

used a fully connected architecture, with an input node for
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Fig. 5: Debris flow probability as function of i15 (mm/h) and PropHM23 predicted using (a) ST16, (b) logistic regression,

(c) KNN, (d) SVC, (e) random forest, and (f ) neural network. Other features were set to constant values except for the total

storm accumulation. See text for more explanations.

each feature, several hidden layers and a single output layer.

Drop-out regularization was applied to reduce overfitting to

the training data. The number of hidden layers, layer size and

drop out probabilities were established by trial and error to

optimize performance. A design with 7 hidden layers and up

to 92 nodes per layer was used for the NN with the base

features. The NN trained with the additional features uses 11

hidden layers with up to 392 nodes per layer. Hidden layer

weights were initialized using the Xavier (Glorot) method to

minimize problems with vanishing or exploding gradients [27].

Drop-out probabilities were calibrated to values between 0.2

and 0.3. The activation functions alternate between tanh and

rectified linear units in the hidden layers [28, 29]; the output

layer uses a sigmoid function to predict the probability of a

debris flow.

The ST16 model achieves a threat score of 0.37 on the test

set (Table II), slightly lower than the value of 0.39 reported by

the creators on the observations outside of Southern California.

Without the additional features, the threat scores of the SVC

and the NN are on par with ST16, while the logistic regression

and Naive Bayes classifier score lower at 0.32 and 0.27,

respectively. The random forest achieves 0.45. The additional

features improve threat scores for all the tested ML methods,

with the KNN, random forest and NN scoring higher than 0.50

(Table II).

All the tested ML methods achieve AUCs (area under

the receiver operational characteristic curve) above 0.80 even

without additional parameters, while ST16 achieves 0.79 (Fig-
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ure 4, Table II). With the additional features, we recorded an

AUC of 0.92 with the NN and an AUC of 0.93 with the random

forest.

These improvements are significant for operational debris

flow forecasting, where the true positive rate is to be maxi-

mized and the false positive rate (FPR) is to be minimized, as

frequent false alarms may desensitize stakeholders to alerts of

a real threat. Catching 80% of debris flows would result in an

FPR of 8% using a random forest trained with the additional

features, but 15% using the random forest trained on just base

features (Figure 4(a)). Using the neural network, FPRs would

be 13% and 22%; respectively (Figure 4(d)). With the original

ST16 model, setting the threshold for a true positive rate to

80% would incur an FPR of 38% (Fig. 4).

The computational resources required by the additional

features during training and testing are not relevant. The

traditional machine learning models (e.g., SVC, random forest)

take less than one second for training. Due to the larger

number of hidden layers, the NN with the additional features

takes longer (∼3 minutes) to train than the NN without those

features (<1 minute); however, predicting the debris flow

likelihood for the Carr fire sites took less than a second for

all models and all features.

V. INTERPRETATION OF ML RESULTS

To explore the variability of the predicted debris flow likeli-

hoods with changing features, we calculated probabilities from

each classifier through the feature space spawned by the most

important rainfall feature, i15 (Table I), and the most important

non-precipitation base feature, PropHM23 (Figure 5). The total

storm accumulation was set to 0.4×i15 following the general

trend in the data. The remaining features were set to constant

values, with the storm duration set to 12 hours, the watershed

area to 1 km2, dnbr1000 = 0.41, kf = 0.25, SedUn = 0,

SuscFrac = 0.98 and FFL = 2.0; these values are close to

the median values of the watersheds analyzed in Section VI.

The ST16 (Figure 5(a)) model predicts a debris flow proba-

bility of Pdf = 1 for about two thirds of the feature space,

which does not fully reflect the observations especially at

sites outside Southern California (Figure 1(b)). The logistic

regression (Figure 5(b)) predicts a more gradual increase in

Pdf, but gives Pdf > 0 for zero precipitation, a problem already

noted by ST16. The remaining shallow and deep ML methods

(Figure 5(c-f)) return Pdf ≈ 0 for i15 ≈ 0. Predictions by

the K-nearest neighbors (Figure 5(c)) do not monotonically

increase with increasing precipitation. Although this behavior

reflects patterns in the underlying data, such predictions can

be potentially problematic in real-world scenarios. The ran-

dom forest does also not strictly exhibit increasing Pdf with

increasing i15, but this effect is strongly attenuated due to the

randomization inherent to this method. The Pdf distribution of

the NN resembles the distribution from the logistic regression,

but predicts a more complex dependency on the two varied

features. The distribution of Pf as a function of i15 and

PropHM23 obtained by the SVC (Figure 5(d)) seems at odds

with the distribution suggested by the other methods. For these

© Mapbox © OpenStreetMap
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(a) ST16
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(b) Random forest
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(c) Neural network

Fig. 6: Debris flow likelihoods in Shasta County following

the 2018 Carr Fire during an assumed rainstorm with i15 =

24 mm/h, duration = 12 h and a total accumulation of 20 mm.

Green colors show the watersheds surrounding the three creeks

monitored by East et al. [30].
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reasons, we selected the random forest and neural network as

our preferred methods for operational predictions of post-fire

debris-flow likelihood.

VI. DEBRIS FLOW LIKELIHOOD POST 2018 CARR FIRE

The training and test sets were merged into a single dataset,

and used to re-train the different ML models with the hyper-

parameters selected during testing.

We then calculated debris flow likelihoods following the

2018 Carr Fire in the Whiskeytown Lake (Shasta County) area

to illustrate the sensitivity of the predictions to the ML method.

East et al. [30] monitored sediment transport from three basins

draining into Whiskeytown Lake during the first two years

following the fire and observed no post-fire debris flows.

However, multiple rainstorms with peak 15 minute intensities

above 24 mm/h were observed by rainbow gauges installed

within the basins, which would have brought the debris flow

likelihoods according to Staley et al.’s model above 60% in

almost all of the basins surrounding the three monitored creeks

(Figure 6a).

We retrieved watershed extents and base site features (Ta-

ble I) from the USGS emergency debris flow assessment

website [3]. Additional features (Table I) were calculated using

a slightly modified version of the workflow developed for the

preparation of training and testing data (Section III).

For the storm features, we assumed a peak 15m precipitation

intensity of 24 mm/h, a storm duration of 24 hours and total

accumulation of 20 mm. Figure 6 shows the debris flow

likelihoods predicted by the different ML methods.

The random forest predicts Pdf < 60% in all basins except

a small one within Brandy Creek (Figure 6b), with most

watersheds having Pdf between 20 and 40%. The debris flow

likelihoods predicted by the neural network (Fig. 6c) are

between those from the random forest and the ST16. Both

the random forest and the NN predict lower likelihoods than

ST16, in particular in the less steep areas downstream from the

lake. These results are generally consistent with observations

of the Pdf within the feature space (Fig. 5), and confirm that

the ST16 model tends to overpredict debris flow likelihoods

[5]. However, the large number of basins with elevated Pdf

(> 40%) would make it unlikely that no post-fire debris flows

were triggered within two years [30], in particular considering

that some rain gauges recorded i15 values well above 24

mm/h.

VII. INTERACTIVE MAPS OF DEBRIS FLOW LIKELIHOOD

The distributed feature extraction pipeline allows for real-

time prediction of debris flow likelihoods in fire affected re-

gions. We are currently developing an interactive web applica-

tion that displays color-coded maps of debris flow likelihoods

for changing assumptions (Figure 7). Users are able to explore

the sensitivity of Pdf to storm (precipitation and duration)

parameters and the choice of ML method. Future versions

will couple the interactive map with live weather forecasts,

thereby giving stakeholders the opportunity to react to rapidly

evolving storm situations in fire-ravaged regions.

Fig. 7: Example of interactive web application, showing map

of post-fire debris flow likelihood following the 2017 Thomas

Fire.

VIII. CONCLUSIONS

We have developed a distributed big data ingestion pipeline

for the extraction of additional basin features in a published

dataset of post-fire debris flow events. The additional features

include the fraction of susceptible vegetation type in the basin

(SuscFrac), the mean fine fraction of the fuels covering the

basin (FFL), and the fraction of sedimentary and unconsoli-

dated rocks underlying the basin (SedUN). Adding these extra

features significantly improves the threat score and area under

the ROC curve using both traditional ML methods and a

fully connected NN. A random forest and NN with 11 hidden

layers are our preferred models for debris flow prediction. Both

methods predict significantly lower debris-flow likelihoods in

basins surrounding Whiskeytown Lake following the 2018

Carr Fire, bringing the predictions closer to observations. An

interactive web application is under development which will

allow decision makers to consider these alternative debris-flow

likelihood models when assessing the dangers posed by large

precipitation events over fire-affected basins.
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