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ARTICLE INFO ABSTRACT

Keywords: This paper shows that the prediction capability of wildfire progression can be improved by estimation of a
Wildfire single prevailing wind vector parametrized by a wind speed and a wind direction to drive a wildfire simulation
FARSITE created by FARSITE. Estimations of these wind vectors are achieved in this work by a gradient-free optimization
Uncertainty via a grid search that compares wildfire model simulations with measured wildfire perimeters, where noisy
Interpolation . . . . 116 .
Polygon observations are modeled as uncertainties on the locations of the vertices of the measured wildfire perimeters.

Two optimizations are established to acquire the optimal wind speed and wind direction. To formulate a
perimeter optimization, an uncertainty-weighted least-squares error is computed between the vertices of the
simulated and measured wildfire perimeter. The challenge in this approach is to match the number of vertices
on the simulated and measured wildfire perimeter via interpolation of perimeter points and their uncertainties.
For a surface area optimization, an uncertainty-weighted surface area error is introduced to capture the surface
of the union minus the intersection of the simulated and measured wildfire perimeter. The challenge in this
approach is to formulate a surface area error, weighted by the uncertainties on the locations of the vertices
of the measured wildfire perimeter. The optimization in this paper is based on an iterative refinement of a
grid of the wind vector and provides robustness to intermittent erroneous results produced by FARSITE, while
allowing parallel execution of wildfire model calculations. This paper is an extension of the work in Tan et al.,
(2021). Results on wind vector estimation are illustrated on two historical wildfire events: the 2019 Maria
Fire that burned south of the community of Santa Paula in the area of Somis, CA, and the 2019 Cave Fire that
started in the Santa Ynez Mountains of Santa Barbara County.

Surface area
Gradient-free optimization

1. Introduction wind speed and wind direction, which is explained in Section 3.2. The
numerical results are summarized in Section 5.

With the increased and inevitable occurrence of wildfires, more
accurate and responsive prediction of the wildfire propagation is impor-
tant for resource allocation in fire fighting efforts. The wildfire growth
modeling software FARSITE is widely used by the U.S Forest Service
to simulate the propagation of wildfires [1], and is characterized by

the ability to estimate the wildfire propagation under heterogeneous

The prediction of the growth of wildfires has received a considerable
amount of attention in the literature. Rothermel introduced the mathe-
matical model for predicting fire spread [3], and experiments have been
conducted to analyze the influence of fuel and weather on the spread of
wildfires [4]. Further steps in the study of the wildfire behavior were

conditions of terrain, fuels and weather. Crucial source of information
in the modeling of fire progression is a single wind vector characterized
by average wind speed and wind direction that determine the overall
direction and rate of spread of the wildfire. This paper is an extension
of the work in [2] by adding the ability to formulate an uncertainty-
weighted wildfire surface coverage error to estimate the wind vector of

e
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achieved by adjusting model prediction using real-time data via data
assimilation techniques [5-7]. Data assimilation by combining FARSITE
and an ensemble Kalman filter has been done in earlier work [8-11]
demonstrating an improvement in accuracy of wildfire prediction. The
availability of unmanned aerial vehicles to better monitor large-scale
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wildfire [12,13] has further enhanced the capabilities of data-driven
wildfire modeling.

As mentioned in [4], among the numerous factors that can affect the
spread of the wildfire, wind speed and wind direction play the critical
roles. Unfortunately, wind conditions are available only from sparsely
placed weather stations. Detailed studies are available on learning the
(non-linear) relationship between the properties of the fuel and the
wildfire progression [14-16], but often only limited information on
wind speed and wind direction can be used. This means that the quality
of the prediction is extremely dependent on the quality of an empirical
estimate of the wind conditions obtained from geometrically spaced
weather station. In reality, information of the actual wind conditions
at the boundary of the wildfire is unavailable due to limited number
of weather stations and the turbulent atmosphere caused by wildfire.
As a result, significant and compounding errors can occur in the pre-
diction of the wildfire propagation. A first step is to estimate the best
initial wind conditions before any data assimilation procedure. In this
situation, the error caused by an erroneous measurement of the wind
conditions can be reduced, and the accuracy of the prediction by data
assimilation techniques can be greatly improved.

A gradient-free optimization via a grid search is used in this work to
provide an estimate of the single wind vector of wind speed and wind
direction fed to FARSITE with the objective to improve the prediction
of wildfire progression. The gradient-free optimization via a iterative
grid search refines a grid of wind speed and wind direction to select
the best wind vector based on a loss function that compares wildfire
model simulations with noisy observations of the wildfire perimeters.
Since each grid point provides an independent wildfire simulation, the
computations can be executed in parallel and also provide robustness
to possible erroneous perimeter produced by FARSITE under certain
wind vector. To formulate the loss function, it is first shown that noisy
observations can be modeled as uncertainties on the locations of the
vertices of a measured wildfire perimeter. Secondly, it is shown that
an uncertainty-weighted error can be computed between the vertices
of a simulated and a measured wildfire perimeter.

In this paper two different uncertainty-weighted errors are for-
mulated for the estimation of the single wind vector: a perimeter
and surface area based. For the perimeter optimization, a skew com-
pensated and uncertainty weighted least-squares error is computed
between the vertices of a simulated and a measured wildfire perimeter.
To be able to compute this perimeter error, it is shown that a linear
interpolation of the perimeter is used to guarantee that the skew
compensated weighted least-squares error can always be computed.
Furthermore, compared to an ordinary weighted least-squares error, the
weighting in the skew compensated weighted least-squares computa-
tion is adjusted to account for unevenly distributed polygons to allow
an evenly distributed weighting of the complete wildfire perimeter.
The surface area optimization captures the wildfire surface area error
defined by the union minus the intersection of a simulated and a
measured wildfire perimeter. By using the fact that the surface area
of a closed polygon can be calculated as the signed sum of triangular
sub-polygons [17,18], it is shown how to compute an uncertainty-
weighted surface area error. The weighting is again determined by the
uncertainties on the vertices of the measured wildfire perimeter and
the computational process of the weighted surface area error is simple
and fast.

The paper is organized as follows. Section 2 presents the model
of the polygon data along with the uncertainties on the vertices of
a wildfire perimeter. Following the uncertainty characterization, Sec-
tion 3 presents the computations of the skew compensated uncertainty-
weighted least-squares error and the uncertainty-weighted surface area
error. Section 4 outlines the parallel gradient-free optimization via a
grid search based on refining a grid of wind speed and wind direction to
estimate the optimal wind vector. Section 5 shows the numerical results
for the estimation of the wind vector for two use cases of wildfires in
California: the 2019 Maria Fire that burned south of the community
of Santa Paula and the 2019 Cave Fire that started in the Santa Ynez
Mountains of Santa Barbara County. Conclusions are summarized in
Section 6.
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2. Wildfire perimeter and uncertainty

A wildfire may cover multiple disjoint burned areas. For simplicity
of the analysis presented in this paper, the notion of wildfire progres-
sion is characterized by a wildfire perimeter that is considered to be
a single closed polygon. The analysis presented here can be applied
to each of the closed-polygons in case a wildfire does cover multiple
disjoint burned areas. The single closed polygon describing the wildfire
perimeter is an ordered sequence of N vertices and N piece-wise linear
line segments. The vertices of the approximated polygon are located by
the Eastern and Northern coordinate pairs (e(k), n(k)), k = 1,2, ..., N.

2.1. Uncertainty characterization

Measurements of the wildfire perimeters can be a combined data
collection effort. The resolution and spacing of the measured vertices
are determined by data from satellite imagery, aerial surveillance or
manually mapped observations [19]. Therefore, it is important to con-
sider a two-dimensional (2D) uncertainty for each vertex of the closed
polygon that describes the measured wildfire perimeter. The general
description of the 2D uncertainty on a vertex (e(k),n(k)) is a rotated
ellipse, where the semi-major axis a(k), semi-minor axis b(k), and the
rotation angle a(k) collectively reflect the variance in the horizontal
direction and vertical direction. Such detailed information may not
be available and therefore the uncertainty on a vertex (e(k),n(k)) is
expressed by a circle centered at this vertex with a radius r(k), where
the value of r(k) is proportional to the uncertainty of the vertex on the
polygon.

However, it is very likely that a measured perimeter comes with no
additional uncertainty characterization. In that case, the assumption
is made that the uncertainty on each vertex is proportional to the
(smallest) distance to the neighboring vertex on the polygon. The
reason for that is the vertices are more likely to have large uncertainties
for sporadic measurements with a large distance between the vertices.
Formally this uncertainty is described by

r(k)
1(k)

max(min(/(k), [(k = 1)), Fpin)
Vietk + 1) = e(k))? + (n(k + 1) — n(k))?

€9)

for k = 1,2,..., N, where r(k) is the assumed uncertainty, /(k) is the
distance between neighboring vertices (e(k+ 1), n(k+ 1)) and (e(k), n(k)),
and r,,, is a user-defined minimum value of uncertainty radius. The
value of r,;, is used to avoid the condition in which two adjacent
vertices are extremely close to each other, and can be determined by
the accuracy of measuring method used to acquire the polygon of the
wildfire perimeter. An illustration of the uncertainty assignment for a
measured wildfire perimeter is given in Fig. 1.

2.2. Perimeter interpolation

With the spread of a wildfire, the corresponding closed polygon
describing the measured wildfire perimeter commonly becomes larger
and the number N,, of vertices of the measured closed polygon (e,,(k,,).
ny(k,)), k,, = 1,2,... N, increases accordingly. Similarly, the number
of vertices N, on a simulated wildfire perimeter (e,(k,),n,(k,)), k, =
1,2,... N, obtained with fire modeling software such as FARSITE will
also increase, but in general N,, # N,. The resolution of the simulated
vertices is determined by the fire modeling software FARSITE and
typically in the order of 30 m. Next to difference in number of vertices,
the ordering of the vertices (e, (k,,), n,(k,)), k,, = 1,2,...N,, of the
measured fire perimeter and (e (k,), ny(k,)), k;, = 1,2, ... N, are not the
same and a direct comparison between a pair of vertices (e,,(k,,). n,,(k,,))
and (e,(k,), ny(k,)) would lead to erroneous results.

A direct comparison of a measured vertex (e,,(k,,),n,(k,)) and a
simulated vertex (e,(k,), n,(k,)) is especially important if a (weighted)
least-squares error based on vertices needs to be formulated. To an-
ticipate the notion of an uncertainty weighted least-squares error, it
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Fig. 1. Assignment of uncertainty radii r(k) (red circles) on a measured wildfire
perimeter with vertices (e(k),n(k)) (blue stars) and the resulting closed polygon (blue
lines).

is shown how to perform an interpolation on the wildfire perimeter
to create N,, = N, and therefore an equal number of N,, and N,
of vertices on the measured and the simulated closed polygon. The
solution to this problem is to first interpolate one of the fire perimeters
to the same or higher number N = max(N,,, N;) of vertices of the other
fire perimeter. Subsequently, when comparing pairs (e,,(k,,). n,,(k,,))
and (e,(k,),n,(k,)), the starting vertex at k,, = 1 or k, = 1 of one of
the fire perimeters will be re-ordered to obtain the smallest weighted
least-squares error between the polygons.

For simplicity of notation, k is used to represent both k, and k,,
after the interpolation because the simulated fire perimeter and the
measured fire perimeter have the same number of vertices. In this
paper, interpolation of the fire perimeter is done with standard 2D
linear interpolation, where interpolated vertices are introduced on the
straight lines connecting the original vertices of the closed polygon, and
the procedure of linear interpolation is summarized in Algorithm 1.

Algorithm 1 Linear interpolation of wildfire polygon

Input: vertices of the original approximated polygon
Output: Newly constructed vertices of the interpolated polygon
1: Calculate the length of each side of the polygon.
2: Calculate the cumulative side length from the starting point.
3: Find locations with equally distributed length along the side of
polygon from the starting point.
4: Construct new polygon vertices

Similarly, uncertainties of the original vertices can also be inter-
polated with respect to the cumulative side length from the starting
point. Due to the fact that the interpolation is related to the distance
from the starting point, it is easy to verify that interpolation from
different starting points will lead to different results. This will be
considered in the subsequent section when the weighted least squares
are calculated. Linear interpolation may lead to a tiny change of the
shape of the original wildfire polygon that is negligible compared to
the huge burned area of the wildfire polygon. Therefore, the change of
the wildfire polygon caused by the linear interpolation is not considered
in this paper.
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3. Wildfire error quantification
3.1. Weighted least-squares error

With the interpolated (and properly ordered) closed polygons of the
simulated fire perimeter (e (k), n,(k)), and the measured fire perimeter
(e,,(k), n,(k)) with an uncertainty r(k) on each vertex k =1,2,...,N, a
weighted least-squares error

N
< ; W [ (e4(K) = €, 00)* + (m, () =, (0)?] . wlh) = % @
can be used to define the distance between the fire perimeters. The
interpolated weighting w(k) = 1/r(k) ensures measurements with a
large uncertainty r(k) are weighted less in the error characterization.
However, even with uncertainty radii defined by (1) with a minimum
value r,,;,, the weighted least-squares error in (2) will be skewed and
emphasizes parts of the closed-loop polygon where vertices are closely
clustered and have only small distances with respect to each other, as
also illustrated in Fig. 1. The reasons are clear:

— Small uncertainty radii r(k) due to (1) will result in a large
weighting w(k) = 1/r(k) on the regions of the polygon where
vertices are closely clustered.

— More vertices in areas of the polygon where vertices are clustered
further accentuates the weighting on these regions of the polygon.

To solve the problem of the skewed emphasis of the weighted
least-squares error, the weighting w(k,,) for each vertex of the original
measured fire perimeter before the interpolation is skew compensated
via

1

Wy (ky,) = wik,w.(k,)w,(k,), r(Tm)

w(k,,) = 3
where w,(k,) is a concentration weighting for each vertex used to
account for clustering of vertices on the closed polygon, and w,(k,,)
is a user-defined weighting for each vertex, used to actually emphasize
certain vertices on the closed polygon. The weighting w,(k,,) is defined

as
1

m(k,,)

where m(k,,) is the number of successive vertices around the k,,-th

vertex with a small adjacent distance /(k,) that is defined by the
relative distance condition

N,
I(k,,) 1
T2 <02, Dpegn = 5= Y ik,)

mean m =1

w, (k) = 4

where I(k,,) was defined in (1). The weighting w,(k,,) is defined to be 0
for the barrier points, defined as the vertices where the fire perimeter
has not changed, and 1 for the other vertices.

An illustration of the skew compensation is show in Fig. 2. On
account of the fact that barrier points will not move with the spread of
the wildfire, a zero value weighting is assigned to each barrier point.
Hence, the weighting radii of barrier points are infinitely large, and not
included in Fig. 2.

Finally, to also address the re-ordering of the vertices of the closed
polygon, consider the short-hand notation based on complex numbers

x(k) e;(k)+j - ny(k),
ykoa) = ey(k)+j-nyk),

where x(k) € C for k = 1,2,..., N represents the 2D coordinates of
vertices of a closed polygon of a simulated fire perimeter starting at
index k = 1, and y(k,q) € C represents the 2D coordinates of vertices
of a closed polygon of a measured (and possibly interpolated) fire
perimeter, but reordered to start at index ¢. The ability to adjust the

k=12,...,N

5
k=q,q+1,...,N,1,...,q—1 ®)
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Fig. 2. Weighting radii 1/w,(k,) (red circles) for skew compensated least-squares
compensation on the vertices (blue stars) and barrier points (black line) of a closed
polygon of a measured fire perimeter.

starting point k = q of the closed polygon now allows for the definition
of the skew compensated weighted least-squares error

N
51 = min ; @, (K)? | y(k. q) = x(k)|* ®

where 0 (k) is the interpolated (k) defined in (3). The starting point
k = q is used to remove the dependency of cyclical ordering of complex
points describing the closed polygon.

3.2. Weighted surface area error

Surface Area of a Closed Polygon
Consider a 2D polygon of a measured fire perimeter given by the N
coordinates of the 2D vertices

[e(k)

=0,1,2,...,N =1
n(k)’k 0,1,2,...,

ordered by the index k. For the simplicity of the following derivation
in this section, k starts from 0 instead of 1, and for an index k = N, it
is obtained that

[e(N )| _ [6(0)

n(N)| ~ |n0) @

formally making the 2D polygon a closed polygon. For such a closed
polygon, the total surface area .S can be computed by taking a signed
sum of the surface area of triangular sub-polygons as follows. Consider
a triangular 2D sub-polygon that consists of 3 vertices

0 e(k) e(k+1) _ _
[O]’ [n(k) and [n(k+1)]’ k=0,1,2,....,N -1 (8)
which will have a surface area that can be computed by
1|[e)] etk +1) 3 B
5 [n(k)]x e+ || k=0,1,2,...,N -1 9

where again the property of a closed polygon in (7) is used in case
k = N — 1. In (9), the symbol x denotes the cross product and | - |
denotes the length of a (cross product) vector. For the 2D vertices, the
computation simplifies to

% le(on(k + 1) — n(k)e(k + )|, k=0,1,2,...,N —1
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by writing out the cross product in terms of the (e(k),n(k)) and (e(k +
1), n(k+1)) coordinates. Let T'(k) = e(k)n(k+1)—n(k)e(k+1). According to
the shoelace formula, or surveyor’s area formula [18], if the polygon is
counterclockwise oriented, which means the direction from (e(k), n(k))
to (e(k + 1),n(k + 1)) is counterclockwise, then T'(k) is positive when
the origin point (0,0) is on the left side of the edge (facing towards
(e(k + 1), n(k + 1)) from (e(k),n(k))). Correspondingly, T'(k) is negative
when the origin point is on the right side of the edge. Therefore, when
the 2D closed polygon is oriented counterclockwise, the area of the
polygon S can be expressed by the signed sum of the surface area of
triangular sub-polygons as follows:

N-1

1

§= 3 = (e(nk + 1) — n(k)e(k + 1)). (10)

=2

Expectation and Variance
Now let the subsequent vertices at index k and k + 1 not be given
by a single 2D point, but given by a normal probability distribution

&) e(k)

[r‘:(k) NN([n(k)] ,P(k)) and

etk +1) e(k+1)

[ﬁ(k+1) NN([n(k+1)] ’P(k+1)> an

where P(k) > 0 and P(k + 1) > 0 denote the covariance matrix of the
vertices. The covariance matrix is used to model the (joint) probability
between the e(k)- and n(k)-coordinates of each vertex. Assume that
different vertices are independent with each other and é(k) and 7i(k)
are uncorrelated (the uncertainty on a vertex is expressed by a circle
around each vertex), then

o2(k)

0 o2(k+1) 0
0 o2(k)

0 o2(k+1) 12

P(k)=[ P(k+1):[

where o,(k) and o,(k) are the standard deviations of e(k) and n(k)
respectively. Inspired by [20], the expectation and the variance of
e(k)i(k + 1) — i(k)e(k + 1) for each triangular sub-polygon can be
calculated based on T(k) as
E[e(k)alk + 1) — a(k)e(k + 1)] = E [e(k)] E [a(k + 1)] — E[a(k)] E [e(k + 1)]
= e(ln(k + 1) — n(k)e(k + 1).
(13)

The variance of é(k)i(k + 1) — ii(k)é(k + 1) is

Var [e(k)iik + 1) — i(k)e(k + 1)]
=E [(@(kyi(k + 1) — i(k)e(k + 1) — E [e(k)a(k + 1) — a(k)e(k + 1)])?]
=E [e(k)?ii(k + 1)*] + E [a(k)*&(k + 1)?]
+E [e(k)?n(k + 1] + E [n(k)?e(k + 1)*]
—2E [e(k)ii(k + D(k)e(k + 1)] — 2E [e(k)ii(k + De(k)n(k + 1)]
+2E [e(k)ii(k + Dn(k)e(k + D] + 2E [A(k)e(k + De(k)n(k + 1)]
—2E [fi(k)é(k + Dn(ke(k + 1)] = 2E [e(k)n(k + Dn(ke(k + 1)]
=E [e(k)?ii(k + 1)*] + E [a(k)*e(k + 1)*] — e(k)*n(k + 1)* — n(k)*e(k + 1)
= (e(k)* + 62(k)) (n(k + D* + o2(k + 1))
+ (n(k)* + 62(k)) (e(k + D* + 62(k + 1))
—e(k)?n(k + 1) = n(k)*e(k + 1).
14

The expectation and variance of the surface area of the whole closed
polygon can then be calculated as
N-1

=1 _
E(S) = Z{) (e(kyn(k + 1) — n(k)e(k + 1)) 15)
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N-1
Var($) = ) [(e(k)* +62(k)) (n(k + 1)* + o2 (k + 1))
k=0 (16)

+ (n(k)* + 62(k)) (e(k + D* + o2(k + 1))
—e(k)*n(k + 1)* = n(k)*e(k + 1)’]

For further simplifying the calculation [17], Eq. (15) can be trans-
formed as follows. By defining e(N + 1) = e(1) and n(N + 1) = n(1), it
can be observed that

N-1
E(S) = % Y leoontk + 1) = n(k)e(k + 1]
i=0

N-1 1 N-1
ek +1) = 5 Y ek + Dn(k)

i=0
1 N

ek +1) = 5 Y etkntk — 1)

1 i=1

0=

i

Il
=}

a7

M=

1
2

i

=

1
=3 Y e(k) (nk + 1) = n(k — 1)
i=1
For the third equality in (17), e(0)n(1) = e(N)n(N + 1) is applied in the
first sum and index shifting is used in the second sum.

Weighted Surface Area Error

With the simulated fire perimeter (e,(k;), n,(k,)), k, =0,1,..., N;—1,
and the measured fire perimeter (e, (k,,),n,(k,)) with an uncertainty
mentioned in Section 2.1 on each vertex k,, =0,1,...,N,, — 1. A set of
new closed polygons with vertices (e, (ky),ng(ky)), kg =0,1,... .M, — 1
can be obtained by finding the union minus the intersection of the
simulated fire polygon and the measured fire polygon. Assume that the
number of the newly created polygons is L, and the numbers of vertices
included in each polygon are M,, with d = 1,2, ..., L. The weighted
surface area Sy of the closed polygon with vertices (e, (k,),ny(kz)),

ky=0,1,...,M, — 1 can be expressed by
E(S))
w ( d)lf (18)
Var(S,)1-7

where y and 1 —y are the weightings added on the expected value and
the variance of the surface area respectively, and E(S,) and Var(S,) can
be calculated by (16) and (17) respectively. With the assumption that
the uncertainty on a vertex is a circle around the vertex and there are
only uncertainties on the measured fire perimeter, it can be achieved
that

0, if (ey(ky), ng(kyg)) # (e, (k) my(Ky)),
1/w(k,,), if (ey(ky), ng(kyg)) = (e, (k). my (k)
Wy (k) = wik,)w, (k)

o,(ky) =0,(ky) = {

19)

where o,(k,), 6,(k;) are the standard deviations defined in (12), and
w(k,,), w.(k,) are established in (3) with no interpolation. Based
on (18), the weighted error of the whole surface area of the union
minus the intersection of the simulated fire perimeter and the measured
fire perimeter can be defined as

L L

E(S,)

5y = z S;" = —_—
= = Var(s,)1-n

(20)

With the definition of ,(k,,) in (19), y is recommended to be chosen
as a value less than or equal to 0.1. Smaller weighting is put on the
variance to avoid the erroneous results. For example, if the vertices
with extremely large uncertainties are assigned to all the polygons
created by the union minus the intersection of the simulated fire
polygon and measured fire polygon, then the weighted surface area
error is close to zero, and the corresponding simulated fire polygon will
be chosen as the optimal simulation that makes no sense. In this paper,
y is picked as 0.1.
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4. Wind condition estimation with FARSITE
4.1. Forward simulations

In this study, FARSITE is used for the forward simulation of the
simulated fire perimeter x(k) as a function of the single wind vector
u. FARSITE can be considered as a non-linear mapping p(-) for fire
progression, simplified to

x(k) = p(p(k), u. 0, Ar) (21)

where the input p(k) € C"» is a closed polygon of N, vertices rep-
resenting the initial fire perimeter. The simulated output x(k) € C%x,
defined earlier in (5), is a closed polygon with k = 1,2,..., N, vertices
representing the simulated fire perimeter obtained after a time step
of Ar. The additional inputs u represents a single wind vector, and
0 denotes a parameter representing fuel content, fuel moisture and
topography, all assumed to be constant over the time step of 4;.

Unknown wind conditions influence the interpolated and re-ordered
vertices of the measured fire perimeter represented by the closed
polygon y(k,q) defined in (5). The two-dimensional wind vector u in
terms of wind speed and wind direction will also influence the vertices
of the simulated fire perimeter represented by the closed polygon x(k)
and the weighted surface area S{‘;’ in (18). Along with the definition of
the weighting ,(k,,) in (3), w,(k,,) in (19), and y in (18), it is expected
that a minimization of s, in (6), and s, in (20) as a function of u will
provide the best wind vector to minimize the distance between x(k)
and y(k), and the surface area of the subtraction between the union
and the intersection of the simulated and the measured fire polygon,
respectively.

4.2. Wind speed and wind direction optimization

The formal problem of finding an estimate of the single wind vector
on the basis of a wildfire measurement y(k) using skew compensated
weighted least-squares error can be stated as the optimization

N
min sy (), 5, (u) = min % ; @, (k) |y(k. ) = x(K)|* 22)

x(k) = p(p(k), u, 0, Ar)

where (k) is the interpolated w,(k,,) defined in (3) and y(k,q) is
defined in (5). Similarly, with weighted surface area error, the formal
problem can be stated as the optimization

L
min s,(u), s,(u) =

lin sy (), 55(w) ;
where y is defined in (18), and Var(S,) and E(S,) are defined in (16)
and (17). Due to the non-linearity and non-convex mapping of p(-), a
non-linear and iterative optimization is required, typically using the
sensitivity or the gradient.

For FARSITE that is responsible for the mapping in (21), the sensi-
tivity or gradient % p(p(k),u, 6, Ar) is unknown. Numerical evaluation
of the gradient is computationally expensive and moreover, FARSITE
is known to produce occasional erroneous results at some wind vectors
due to numerical problems in interpolation and reconstruction of the
main fire perimeter (as will be shown later). These reasons motivate
the use of a gradient-free optimization via a grid search and the 2
dimensional size of u motivates a simple 2D gridding procedure over
which s,(u) in (22) and s,(u) in (23) are evaluated. The 2D grid of
u can be updated and refined iteratively to improve the accuracy of
the final optimized solution for u. The pseudo-code for the iterative
optimization of s,(u) and s,(u) are summarized in Algorithm 2. If the
skew compensated weighted least-squares error is chosen, let s(u; ;) =

E(S,)

VoG (23)
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Fig. 3. Evaluation of skew compensated weighted least-squares error s,(u; ;) and weighted surface area error s,(u; ;) between the simulated and measured fire perimeter at one
particular time stamp of the Maria Fire using a 2D grid for the single wind vector ; ;. The optimal single wind vector with the lowest value of s;(; ;) and s,(4;;) are indicated

with a red dot.

51 ;) if the skew compensated weighted surface area error is chosen,
let s(u; ;) = sp(u; ).

Algorithm 2 Optimizing algorithm

Input: 0, p(k), y(k,,), Ar, minimum wind condition perturbation 1 and
stopping criterion ¢.
Output: Optimized u € R>¥!

1: Create »n? points of a symmetric 2D grid u; ; over a desired range
i=1,2,...,nand j = 1,2,...,n around an initial estimate u, of the
wind vector.

2: Parallel simulation in FARSITE with p(k), u
x; ;(k) for each grid point.

3: Compute the n?> weighted error s(u; ;) over the grid i = 1,2,...,n
and j =1,2,....n, or

4: Find the smallest value 7,/ = min;; s(u; ;) to select the optimized
wind vector u; ;

5: Set uy = uz; and stop when [s(uy + A) — s(uy)| < € or go back to step
1 to refine grid around u,.

;j» 0 and Ap to obtain

The skew compensated weighted least-squares error and weighted
surface area error are used to determine the difference between the
simulated polygon and the measured polygon of wildfire. Simulations
can be performed in parallel to speed up the process of finding the
optimal wind vector with the above mentioned algorithm.

5. Numerical results
5.1. Maria fire

The Maria Fire ignited in the evening hours of Thursday, October
31, 2019 and consumed well over 4,000 acres (16 km?) within its
first several hours of burning. The optimization of the single wind
vector is performed for this fire at four different time stamps where
measurements of the fire perimeter were available. The objective of the
optimization is to improve the fire simulations of the fire perimeters
with FARSITE in comparison with the observations obtained at four
time stamps.

First we illustrate the results of the gradient-free optimization via a
grid search summarized in Algorithm 2 in Fig. 3. The numerical evalu-
ation of the skew compensated weighted least-squares error s, (u; ;) and
weighted surface area error s,(u; ;) over a 2D grid u; ; with wind speed
from 0 to 45 mph and wind direction from —180 degrees to 175 degrees
in Fig. 3 clearly shows the non-differential behavior of s;(x) and s,(u),

x108 erroneous result
‘ ‘

1.5055

1.505 -

1.5045 -
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1.5025 -
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Fig. 4. Simulations of the predicted fire perimeter x(k) with wind speed = 21 mph,
wind direction = 34 deg (red), wind speed = 21 mph, wind direction = 35 deg (green),
and wind speed = 21 mph, wind direction = 36 deg (cyan), on the basis of the initial
fire perimeter p(k) (black).

motivating the use of a gradient-free optimization via a grid search.
Sporadic large values of s(u, ;) for certain wind vector u; ; are explained
by erroneous results due to numerical problems in interpolation and
reconstruction of the main fire perimeter by FARSITE, as illustrated in
Fig. 4. The simulation results show very similar fire perimeters for two
wind vectors that are pretty close to an erroneous result.

Based on gradient-free optimization via a grid search summarized
in Algorithm 2, the optimization can correct wildfire simulations when
the initial guesses of the wind vectors are not accurate. Correction
of the wildfire simulations with two expressions of error for the four
different time stamps where measurements of the Maria Fire perimeter
were available are summarized in Fig. 5. For each time stamp, the
simulated fire perimeter (green lines) based on an initial estimate u,
of the wind vector obtained from a weather station can be improved
(yellow lines) by the optimization of the wind vector via Algorithm 2.
It can be observed that the optimized wind vectors provide simulations
(yellow lines) that are closer to the measurements (red lines).
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Fig. 5. Comparison of the measured and FARSITE simulated fire perimeters for initial u, and optimized u wind vector via Algorithm 2 using skew compensated weighted
least-squares error s,(u) and weighted surface area error s,(u) respectively for the Maria Fire at four different time stamps. Initial ignition (blue); Simulation with initial guess u,
(green); Simulation with optimized wind vector u (yellow); Measurement at next time stamp (red).



L. Tan et al.

x10°
1.543 FT T T T T T T T T T
1542 1
1541 1 V//\
|
1.54 W

1.539

15381 (
/)
A
1537} ~ 1 |
1536 ‘J 1

2,147 -2.146 2145 -2.144 -2.143 -2.142 2141 -214 -2.139 -2.138
x108

Journal of Computational Science 61 (2022) 101633

x
1543 F 1 i i
1.542 F

1.541 -

o
=
T

northern [m]
P
W
©
T

1.538 -

1.587

1.536

-2.147 -2.146 -2.145 -2.144 -2.143 -2.142 -2.141 -2.14 -2.139 -2.138
eastern [m] %10

(a) Initial fire perimeter (blue); Measurements at the first time stamp (red)
and the second time stamp (cyan) after the initial ignition. Simulations with

optimized single wind vector (yellow).

x10°
1.543

1.542
1.541 -
1.54 |

1.539 -

northern [m]

1.538 |

1.587 |

1.536 [

. . . . . . . . .
-2.148 -2.147 -2.146 -2.145 -2.144 -2.143 -2.142 -2.141 -2.14 -2.139 -2.138
eastern [m] %108

6
1544710

1.543
1.542
1.541 -

1.54 |

northern [m]

1.539

1.538

1.537

1.536

. . . . .
-2.148 -2.146 -2.144 -2.142 -2.14 -2.138
eastern [m] %108

(b) Weighting radii 1/w,(k) (red circles, left) and 1/ws(k) (red circles, right)

on the vertices of the measured Cave Fire at 03:48 a.m. (blue stars).

Fig. 6. Simulation and measurements of the Cave Fire with measurement errors in the first measured fire perimeter after the initial fire perimeter. Optimization and weighted
radii for skew compensated weighted least-squares error (left), and weighted surface area error (right).

5.2. Cave fire

Although the accuracy of the simulation is improved by using the
optimized single wind vector, there are still some parts of the opti-
mized simulation that are somewhat far from the measurement. One
reason may be the measurement accuracy, as the combination of aerial
surveillance and manually mapped observations is likely to introduce
measurement errors. It can also be observed that as the fire perimeter
becomes large enough, using only one prevailing wind direction is
inadequate for the precise prediction of the wildfire propagation as
wind flow is shaped by topography and atmospheric interaction.

The measurement data available for the Cave Fire included here
can better demonstrate the two issues of measurement errors and the
assumption of a single wind vector. The 2019 Cave Fire started on
November 25 and burned more than 3100 acres before being contained.
As shown in Fig. 6(a), the top part of the first measurement (after
the initial ignition) can be assumed to be wrongly characterized when
compared to the second measurement. To be able to account for such
errors on the measurement, the weighting (k) defined in (3) on
the vertices in the top part of the first measurement are adjusted to
be zero for the skew compensated weighted least-squares error. The
effect of the weighting radii is illustrated in the image on the left in
Fig. 6(b). Due to the fact that the measurements in the top part of
the first measurement are weighted with 0 for the skew compensated

weighted least-squares error, the corresponding weighting radii are
approaching infinity that is not included in the figure. However, the
remaining points of the measurement are still allowed to be used for the
optimization of the wind vector at this time stamp. For the weighted
surface area, on account of the limitation that multiple uncertainties
of the vertices will finally act only on one weighted surface area,
the infinitely large weighting radii should not be used in case they
makes weighted surface area errors of all polygons in the union minus
intersection of the simulated fire polygon and measured fire polygon
zero. Therefore, the weighting radii of the top part of the measurement
are adjusted to be the same as the largest weighting radius in the other

parts of the measurement to reflect the large uncertainty in the top part.

When the Cave Fire grows to a large dimension, as illustrated in
Fig. 7, it becomes difficult to match the measured fire perimeter with
a simulated fire perimeter via single prevailing wind direction. The
gradient-free optimization of Algorithm 2 does a better job covering
the east side of the fire, but the west side of the fire cannot be
accurately covered with a single wind vector due to the topography
and atmospheric wind shear effects acting on the fire. This illustrated
the limitations of optimizing only a single wind vector.
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Fig. 7. Comparison of the measurement and FARSITE simulation when the Cave Fire reaches a large dimension. Initial ignition at 05:15 a.m. (blue); Simulation with initial guess
of wind vector (green); Simulation with optimized wind vector (yellow); Measurement of fire perimeter (red).

6. Conclusions

This paper shows how fire perimeter measurement can be used
to improve the accuracy of a wildfire perimeter simulation, by using
the measurement to estimate and correct the prevailing wind speed
and wind direction for the simulation. The estimation is based on two
carefully defined uncertainty weighted errors. The first error charac-
terization is a skew compensated uncertainty weighted least-squares
error that provides a direct comparison of the vertices of a simulated
and a measured (noisy) wildfire perimeter. The second error charac-
terization is formulated as a skew compensated uncertainty weighted
surface area of the union minus the intersection of a simulated and a
measured (noisy) wildfire perimeter. The uncertainty based weighting
can account for vertex accuracy and be adjusted for a skewed weighting
caused by unequally distributed vertices on the closed polygon of
the fire perimeter. In both cases, the (skew compensated) uncertainty
radii are used to compute an uncertainty weighted error. A gradient-
free optimization via a grid search that uses (refined) grid of the
two-dimensional wind vector and exploits parallel computations with
FARSITE fire modeling has been done to compute the optimal wind
vector. Numerical results on actual wildfire perimeter data obtained
from two recent destructive fires in California confirm the improve-
ment of the accuracy of the wildfire perimeter simulations. The skew
compensated weighted least-squares error is adept at flexibility of
applying complicated uncertainties on vertices, and skew compensated
weighted surface area error has an advantage in the simplification of
the computational complexity and the reduction of the computational
time. Limitations of the proposed methods are due to the optimization
of a single wind vector — an assumption that may not hold when a
wild fire covers a large area with varying topographical features.
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