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A B S T R A C T

This paper shows that the prediction capability of wildfire progression can be improved by estimation of a

single prevailing wind vector parametrized by a wind speed and a wind direction to drive a wildfire simulation

created by FARSITE. Estimations of these wind vectors are achieved in this work by a gradient-free optimization

via a grid search that compares wildfire model simulations with measured wildfire perimeters, where noisy

observations are modeled as uncertainties on the locations of the vertices of the measured wildfire perimeters.

Two optimizations are established to acquire the optimal wind speed and wind direction. To formulate a

perimeter optimization, an uncertainty-weighted least-squares error is computed between the vertices of the

simulated and measured wildfire perimeter. The challenge in this approach is to match the number of vertices

on the simulated and measured wildfire perimeter via interpolation of perimeter points and their uncertainties.

For a surface area optimization, an uncertainty-weighted surface area error is introduced to capture the surface

of the union minus the intersection of the simulated and measured wildfire perimeter. The challenge in this

approach is to formulate a surface area error, weighted by the uncertainties on the locations of the vertices

of the measured wildfire perimeter. The optimization in this paper is based on an iterative refinement of a

grid of the wind vector and provides robustness to intermittent erroneous results produced by FARSITE, while

allowing parallel execution of wildfire model calculations. This paper is an extension of the work in Tan et al.,

(2021). Results on wind vector estimation are illustrated on two historical wildfire events: the 2019 Maria

Fire that burned south of the community of Santa Paula in the area of Somis, CA, and the 2019 Cave Fire that

started in the Santa Ynez Mountains of Santa Barbara County.

1. Introduction

With the increased and inevitable occurrence of wildfires, more

accurate and responsive prediction of the wildfire propagation is impor-

tant for resource allocation in fire fighting efforts. The wildfire growth

modeling software FARSITE is widely used by the U.S Forest Service

to simulate the propagation of wildfires [1], and is characterized by

the ability to estimate the wildfire propagation under heterogeneous

conditions of terrain, fuels and weather. Crucial source of information

in the modeling of fire progression is a single wind vector characterized

by average wind speed and wind direction that determine the overall

direction and rate of spread of the wildfire. This paper is an extension

of the work in [2] by adding the ability to formulate an uncertainty-

weighted wildfire surface coverage error to estimate the wind vector of
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wind speed and wind direction, which is explained in Section 3.2. The

numerical results are summarized in Section 5.

The prediction of the growth of wildfires has received a considerable

amount of attention in the literature. Rothermel introduced the mathe-

matical model for predicting fire spread [3], and experiments have been

conducted to analyze the influence of fuel and weather on the spread of

wildfires [4]. Further steps in the study of the wildfire behavior were

achieved by adjusting model prediction using real-time data via data

assimilation techniques [5–7]. Data assimilation by combining FARSITE

and an ensemble Kalman filter has been done in earlier work [8–11]

demonstrating an improvement in accuracy of wildfire prediction. The

availability of unmanned aerial vehicles to better monitor large-scale
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wildfire [12,13] has further enhanced the capabilities of data-driven

wildfire modeling.

As mentioned in [4], among the numerous factors that can affect the

spread of the wildfire, wind speed and wind direction play the critical

roles. Unfortunately, wind conditions are available only from sparsely

placed weather stations. Detailed studies are available on learning the

(non-linear) relationship between the properties of the fuel and the

wildfire progression [14–16], but often only limited information on

wind speed and wind direction can be used. This means that the quality

of the prediction is extremely dependent on the quality of an empirical

estimate of the wind conditions obtained from geometrically spaced

weather station. In reality, information of the actual wind conditions

at the boundary of the wildfire is unavailable due to limited number

of weather stations and the turbulent atmosphere caused by wildfire.

As a result, significant and compounding errors can occur in the pre-

diction of the wildfire propagation. A first step is to estimate the best

initial wind conditions before any data assimilation procedure. In this

situation, the error caused by an erroneous measurement of the wind

conditions can be reduced, and the accuracy of the prediction by data

assimilation techniques can be greatly improved.

A gradient-free optimization via a grid search is used in this work to

provide an estimate of the single wind vector of wind speed and wind

direction fed to FARSITE with the objective to improve the prediction

of wildfire progression. The gradient-free optimization via a iterative

grid search refines a grid of wind speed and wind direction to select

the best wind vector based on a loss function that compares wildfire

model simulations with noisy observations of the wildfire perimeters.

Since each grid point provides an independent wildfire simulation, the

computations can be executed in parallel and also provide robustness

to possible erroneous perimeter produced by FARSITE under certain

wind vector. To formulate the loss function, it is first shown that noisy

observations can be modeled as uncertainties on the locations of the

vertices of a measured wildfire perimeter. Secondly, it is shown that

an uncertainty-weighted error can be computed between the vertices

of a simulated and a measured wildfire perimeter.

In this paper two different uncertainty-weighted errors are for-

mulated for the estimation of the single wind vector: a perimeter

and surface area based. For the perimeter optimization, a skew com-

pensated and uncertainty weighted least-squares error is computed

between the vertices of a simulated and a measured wildfire perimeter.

To be able to compute this perimeter error, it is shown that a linear

interpolation of the perimeter is used to guarantee that the skew

compensated weighted least-squares error can always be computed.

Furthermore, compared to an ordinary weighted least-squares error, the

weighting in the skew compensated weighted least-squares computa-

tion is adjusted to account for unevenly distributed polygons to allow

an evenly distributed weighting of the complete wildfire perimeter.

The surface area optimization captures the wildfire surface area error

defined by the union minus the intersection of a simulated and a

measured wildfire perimeter. By using the fact that the surface area

of a closed polygon can be calculated as the signed sum of triangular

sub-polygons [17,18], it is shown how to compute an uncertainty-

weighted surface area error. The weighting is again determined by the

uncertainties on the vertices of the measured wildfire perimeter and

the computational process of the weighted surface area error is simple

and fast.

The paper is organized as follows. Section 2 presents the model

of the polygon data along with the uncertainties on the vertices of

a wildfire perimeter. Following the uncertainty characterization, Sec-

tion 3 presents the computations of the skew compensated uncertainty-

weighted least-squares error and the uncertainty-weighted surface area

error. Section 4 outlines the parallel gradient-free optimization via a

grid search based on refining a grid of wind speed and wind direction to

estimate the optimal wind vector. Section 5 shows the numerical results

for the estimation of the wind vector for two use cases of wildfires in

California: the 2019 Maria Fire that burned south of the community

of Santa Paula and the 2019 Cave Fire that started in the Santa Ynez

Mountains of Santa Barbara County. Conclusions are summarized in

Section 6.

2. Wildfire perimeter and uncertainty

A wildfire may cover multiple disjoint burned areas. For simplicity

of the analysis presented in this paper, the notion of wildfire progres-

sion is characterized by a wildfire perimeter that is considered to be

a single closed polygon. The analysis presented here can be applied

to each of the closed-polygons in case a wildfire does cover multiple

disjoint burned areas. The single closed polygon describing the wildfire

perimeter is an ordered sequence of 𝑁 vertices and 𝑁 piece-wise linear

line segments. The vertices of the approximated polygon are located by

the Eastern and Northern coordinate pairs (𝑒(𝑘), 𝑛(𝑘)), 𝑘 = 1, 2,… , 𝑁 .

2.1. Uncertainty characterization

Measurements of the wildfire perimeters can be a combined data

collection effort. The resolution and spacing of the measured vertices

are determined by data from satellite imagery, aerial surveillance or

manually mapped observations [19]. Therefore, it is important to con-

sider a two-dimensional (2D) uncertainty for each vertex of the closed

polygon that describes the measured wildfire perimeter. The general

description of the 2D uncertainty on a vertex (𝑒(𝑘), 𝑛(𝑘)) is a rotated
ellipse, where the semi-major axis 𝑎(𝑘), semi-minor axis 𝑏(𝑘), and the
rotation angle 𝛼(𝑘) collectively reflect the variance in the horizontal
direction and vertical direction. Such detailed information may not

be available and therefore the uncertainty on a vertex (𝑒(𝑘), 𝑛(𝑘)) is
expressed by a circle centered at this vertex with a radius 𝑟(𝑘), where
the value of 𝑟(𝑘) is proportional to the uncertainty of the vertex on the
polygon.

However, it is very likely that a measured perimeter comes with no

additional uncertainty characterization. In that case, the assumption

is made that the uncertainty on each vertex is proportional to the

(smallest) distance to the neighboring vertex on the polygon. The

reason for that is the vertices are more likely to have large uncertainties

for sporadic measurements with a large distance between the vertices.

Formally this uncertainty is described by

𝑟(𝑘) = max(min(𝑙(𝑘), 𝑙(𝑘 − 1)), 𝑟𝑚𝑖𝑛)
𝑙(𝑘) =

√
(𝑒(𝑘 + 1) − 𝑒(𝑘))2 + (𝑛(𝑘 + 1) − 𝑛(𝑘))2

(1)

for 𝑘 = 1, 2,… , 𝑁 , where 𝑟(𝑘) is the assumed uncertainty, 𝑙(𝑘) is the
distance between neighboring vertices (𝑒(𝑘+1), 𝑛(𝑘+1)) and (𝑒(𝑘), 𝑛(𝑘)),
and 𝑟𝑚𝑖𝑛 is a user-defined minimum value of uncertainty radius. The

value of 𝑟𝑚𝑖𝑛 is used to avoid the condition in which two adjacent

vertices are extremely close to each other, and can be determined by

the accuracy of measuring method used to acquire the polygon of the

wildfire perimeter. An illustration of the uncertainty assignment for a

measured wildfire perimeter is given in Fig. 1.

2.2. Perimeter interpolation

With the spread of a wildfire, the corresponding closed polygon

describing the measured wildfire perimeter commonly becomes larger

and the number 𝑁𝑚 of vertices of the measured closed polygon (𝑒𝑚(𝑘𝑚),
𝑛𝑚(𝑘𝑚)), 𝑘𝑚 = 1, 2,…𝑁𝑚 increases accordingly. Similarly, the number

of vertices 𝑁𝑠 on a simulated wildfire perimeter (𝑒𝑠(𝑘𝑠), 𝑛𝑠(𝑘𝑠)), 𝑘𝑠 =
1, 2,…𝑁𝑠 obtained with fire modeling software such as FARSITE will

also increase, but in general 𝑁𝑚 ≠ 𝑁𝑠. The resolution of the simulated

vertices is determined by the fire modeling software FARSITE and

typically in the order of 30 m. Next to difference in number of vertices,

the ordering of the vertices (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚)), 𝑘𝑚 = 1, 2,…𝑁𝑚 of the

measured fire perimeter and (𝑒𝑠(𝑘𝑠), 𝑛𝑠(𝑘𝑠)), 𝑘𝑠 = 1, 2,…𝑁𝑠 are not the

same and a direct comparison between a pair of vertices (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚))
and (𝑒𝑠(𝑘𝑠), 𝑛𝑠(𝑘𝑠)) would lead to erroneous results.

A direct comparison of a measured vertex (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚)) and a

simulated vertex (𝑒𝑠(𝑘𝑠), 𝑛𝑠(𝑘𝑠)) is especially important if a (weighted)
least-squares error based on vertices needs to be formulated. To an-

ticipate the notion of an uncertainty weighted least-squares error, it
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Fig. 1. Assignment of uncertainty radii 𝑟(𝑘) (red circles) on a measured wildfire

perimeter with vertices (𝑒(𝑘), 𝑛(𝑘)) (blue stars) and the resulting closed polygon (blue
lines).

is shown how to perform an interpolation on the wildfire perimeter

to create 𝑁𝑚 = 𝑁𝑠 and therefore an equal number of 𝑁𝑚 and 𝑁𝑠

of vertices on the measured and the simulated closed polygon. The

solution to this problem is to first interpolate one of the fire perimeters

to the same or higher number 𝑁 = max(𝑁𝑚,𝑁𝑠) of vertices of the other
fire perimeter. Subsequently, when comparing pairs (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚))
and (𝑒𝑠(𝑘𝑠), 𝑛𝑠(𝑘𝑠)), the starting vertex at 𝑘𝑚 = 1 or 𝑘𝑠 = 1 of one of
the fire perimeters will be re-ordered to obtain the smallest weighted

least-squares error between the polygons.

For simplicity of notation, 𝑘 is used to represent both 𝑘𝑠 and 𝑘𝑚

after the interpolation because the simulated fire perimeter and the

measured fire perimeter have the same number of vertices. In this

paper, interpolation of the fire perimeter is done with standard 2D

linear interpolation, where interpolated vertices are introduced on the

straight lines connecting the original vertices of the closed polygon, and

the procedure of linear interpolation is summarized in Algorithm 1.

Algorithm 1 Linear interpolation of wildfire polygon

Input: vertices of the original approximated polygon
Output: Newly constructed vertices of the interpolated polygon

1: Calculate the length of each side of the polygon.

2: Calculate the cumulative side length from the starting point.

3: Find locations with equally distributed length along the side of

polygon from the starting point.

4: Construct new polygon vertices

Similarly, uncertainties of the original vertices can also be inter-

polated with respect to the cumulative side length from the starting

point. Due to the fact that the interpolation is related to the distance

from the starting point, it is easy to verify that interpolation from

different starting points will lead to different results. This will be

considered in the subsequent section when the weighted least squares

are calculated. Linear interpolation may lead to a tiny change of the

shape of the original wildfire polygon that is negligible compared to

the huge burned area of the wildfire polygon. Therefore, the change of

the wildfire polygon caused by the linear interpolation is not considered

in this paper.

3. Wildfire error quantification

3.1. Weighted least-squares error

With the interpolated (and properly ordered) closed polygons of the

simulated fire perimeter (𝑒𝑠(𝑘), 𝑛𝑠(𝑘)), and the measured fire perimeter
(𝑒𝑚(𝑘), 𝑛𝑚(𝑘)) with an uncertainty 𝑟(𝑘) on each vertex 𝑘 = 1, 2,… , 𝑁 , a

weighted least-squares error

1
𝑁

𝑁∑
𝑘=1

𝑤(𝑘)2
[(
𝑒𝑠(𝑘) − 𝑒𝑚(𝑘)

)2 + (
𝑛𝑠(𝑘) − 𝑛𝑚(𝑘)

)2]
, 𝑤(𝑘) = 1

𝑟(𝑘)
(2)

can be used to define the distance between the fire perimeters. The

interpolated weighting 𝑤(𝑘) = 1∕𝑟(𝑘) ensures measurements with a

large uncertainty 𝑟(𝑘) are weighted less in the error characterization.
However, even with uncertainty radii defined by (1) with a minimum

value 𝑟𝑚𝑖𝑛, the weighted least-squares error in (2) will be skewed and

emphasizes parts of the closed-loop polygon where vertices are closely

clustered and have only small distances with respect to each other, as

also illustrated in Fig. 1. The reasons are clear:

– Small uncertainty radii 𝑟(𝑘) due to (1) will result in a large

weighting 𝑤(𝑘) = 1∕𝑟(𝑘) on the regions of the polygon where

vertices are closely clustered.

– More vertices in areas of the polygon where vertices are clustered

further accentuates the weighting on these regions of the polygon.

To solve the problem of the skewed emphasis of the weighted

least-squares error, the weighting 𝑤(𝑘𝑚) for each vertex of the original
measured fire perimeter before the interpolation is skew compensated

via

𝑤̃𝑝(𝑘𝑚) = 𝑤(𝑘𝑚)𝑤𝑐 (𝑘𝑚)𝑤𝑢(𝑘𝑚), 𝑤(𝑘𝑚) =
1

𝑟(𝑘𝑚)
(3)

where 𝑤𝑐 (𝑘𝑚) is a concentration weighting for each vertex used to

account for clustering of vertices on the closed polygon, and 𝑤𝑢(𝑘𝑚)
is a user-defined weighting for each vertex, used to actually emphasize

certain vertices on the closed polygon. The weighting 𝑤𝑐 (𝑘𝑚) is defined
as

𝑤𝑐 (𝑘𝑚) =
1

𝑚(𝑘𝑚)
(4)

where 𝑚(𝑘𝑚) is the number of successive vertices around the 𝑘𝑚-th

vertex with a small adjacent distance 𝑙(𝑘𝑚) that is defined by the

relative distance condition

𝑙(𝑘𝑚)
𝑙𝑚𝑒𝑎𝑛

< 0.2, 𝑙𝑚𝑒𝑎𝑛 =
1
𝑁𝑚

𝑁𝑚∑
𝑘𝑚=1

𝑙(𝑘𝑚)

where 𝑙(𝑘𝑚) was defined in (1). The weighting 𝑤𝑢(𝑘𝑚) is defined to be 0
for the barrier points, defined as the vertices where the fire perimeter

has not changed, and 1 for the other vertices.
An illustration of the skew compensation is show in Fig. 2. On

account of the fact that barrier points will not move with the spread of

the wildfire, a zero value weighting is assigned to each barrier point.

Hence, the weighting radii of barrier points are infinitely large, and not

included in Fig. 2.

Finally, to also address the re-ordering of the vertices of the closed

polygon, consider the short-hand notation based on complex numbers

𝑥(𝑘) = 𝑒𝑠(𝑘) + 𝑗 ⋅ 𝑛𝑠(𝑘), 𝑘 = 1, 2,… , 𝑁

𝑦(𝑘, 𝑞) = 𝑒𝑚(𝑘) + 𝑗 ⋅ 𝑛𝑚(𝑘), 𝑘 = 𝑞, 𝑞 + 1,… , 𝑁, 1,… , 𝑞 − 1 (5)

where 𝑥(𝑘) ∈ C for 𝑘 = 1, 2,… , 𝑁 represents the 2D coordinates of

vertices of a closed polygon of a simulated fire perimeter starting at

index 𝑘 = 1, and 𝑦(𝑘, 𝑞) ∈ C represents the 2D coordinates of vertices

of a closed polygon of a measured (and possibly interpolated) fire

perimeter, but reordered to start at index 𝑞. The ability to adjust the
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Fig. 2. Weighting radii 1∕𝑤̃𝑝(𝑘𝑚) (red circles) for skew compensated least-squares

compensation on the vertices (blue stars) and barrier points (black line) of a closed

polygon of a measured fire perimeter.

starting point 𝑘 = 𝑞 of the closed polygon now allows for the definition

of the skew compensated weighted least-squares error

𝑠1 = min
𝑞

1
𝑁

𝑁∑
𝑘=1

𝑤̃𝑝(𝑘)2 |𝑦(𝑘, 𝑞) − 𝑥(𝑘)|2 (6)

where 𝑤̃𝑝(𝑘) is the interpolated 𝑤̃𝑝(𝑘𝑚) defined in (3). The starting point
𝑘 = 𝑞 is used to remove the dependency of cyclical ordering of complex

points describing the closed polygon.

3.2. Weighted surface area error

Surface Area of a Closed Polygon
Consider a 2D polygon of a measured fire perimeter given by the 𝑁

coordinates of the 2D vertices[
𝑒(𝑘)
𝑛(𝑘)

]
, 𝑘 = 0, 1, 2,… , 𝑁 − 1

ordered by the index 𝑘. For the simplicity of the following derivation

in this section, 𝑘 starts from 0 instead of 1, and for an index 𝑘 = 𝑁 , it

is obtained that[
𝑒(𝑁)
𝑛(𝑁)

]
=
[
𝑒(0)
𝑛(0)

]
(7)

formally making the 2D polygon a closed polygon. For such a closed

polygon, the total surface area 𝑆 can be computed by taking a signed

sum of the surface area of triangular sub-polygons as follows. Consider

a triangular 2D sub-polygon that consists of 3 vertices[
0
0

]
,

[
𝑒(𝑘)
𝑛(𝑘)

]
and

[
𝑒(𝑘 + 1)
𝑛(𝑘 + 1)

]
, 𝑘 = 0, 1, 2,… , 𝑁 − 1 (8)

which will have a surface area that can be computed by

1
2

|||||
[
𝑒(𝑘)
𝑛(𝑘)

]
×
[
𝑒(𝑘 + 1)
𝑛(𝑘 + 1)

]||||| , 𝑘 = 0, 1, 2,… , 𝑁 − 1 (9)

where again the property of a closed polygon in (7) is used in case

𝑘 = 𝑁 − 1. In (9), the symbol × denotes the cross product and | ⋅ |
denotes the length of a (cross product) vector. For the 2D vertices, the

computation simplifies to

1
2
|𝑒(𝑘)𝑛(𝑘 + 1) − 𝑛(𝑘)𝑒(𝑘 + 1)| , 𝑘 = 0, 1, 2,… , 𝑁 − 1

by writing out the cross product in terms of the (𝑒(𝑘), 𝑛(𝑘)) and (𝑒(𝑘 +
1), 𝑛(𝑘+1)) coordinates. Let 𝑇 (𝑘) = 𝑒(𝑘)𝑛(𝑘+1)−𝑛(𝑘)𝑒(𝑘+1). According to
the shoelace formula, or surveyor’s area formula [18], if the polygon is

counterclockwise oriented, which means the direction from (𝑒(𝑘), 𝑛(𝑘))
to (𝑒(𝑘 + 1), 𝑛(𝑘 + 1)) is counterclockwise, then 𝑇 (𝑘) is positive when
the origin point (0, 0) is on the left side of the edge (facing towards
(𝑒(𝑘 + 1), 𝑛(𝑘 + 1)) from (𝑒(𝑘), 𝑛(𝑘))). Correspondingly, 𝑇 (𝑘) is negative
when the origin point is on the right side of the edge. Therefore, when

the 2D closed polygon is oriented counterclockwise, the area of the

polygon 𝑆 can be expressed by the signed sum of the surface area of

triangular sub-polygons as follows:

𝑆 =
𝑁−1∑
𝑘=0

1
2
(𝑒(𝑘)𝑛(𝑘 + 1) − 𝑛(𝑘)𝑒(𝑘 + 1)) . (10)

Expectation and Variance
Now let the subsequent vertices at index 𝑘 and 𝑘 + 1 not be given

by a single 2D point, but given by a normal probability distribution[
𝑒(𝑘)
𝑛̄(𝑘)

]
∼ 

([
𝑒(𝑘)
𝑛(𝑘)

]
, 𝑃 (𝑘)

)
and[

𝑒(𝑘 + 1)
𝑛̄(𝑘 + 1)

]
∼ 

([
𝑒(𝑘 + 1)
𝑛(𝑘 + 1)

]
, 𝑃 (𝑘 + 1)

)
(11)

where 𝑃 (𝑘) > 0 and 𝑃 (𝑘 + 1) > 0 denote the covariance matrix of the
vertices. The covariance matrix is used to model the (joint) probability

between the 𝑒(𝑘)- and 𝑛(𝑘)-coordinates of each vertex. Assume that

different vertices are independent with each other and 𝑒(𝑘) and 𝑛̄(𝑘)
are uncorrelated (the uncertainty on a vertex is expressed by a circle

around each vertex), then

𝑃 (𝑘) =
[
𝜎2
𝑒
(𝑘) 0
0 𝜎2

𝑛
(𝑘)

]
𝑃 (𝑘 + 1) =

[
𝜎2
𝑒
(𝑘 + 1) 0
0 𝜎2

𝑛
(𝑘 + 1)

]
(12)

where 𝜎𝑒(𝑘) and 𝜎𝑛(𝑘) are the standard deviations of 𝑒(𝑘) and 𝑛̄(𝑘)
respectively. Inspired by [20], the expectation and the variance of

𝑒(𝑘)𝑛̄(𝑘 + 1) − 𝑛̄(𝑘)𝑒(𝑘 + 1) for each triangular sub-polygon can be

calculated based on 𝑇 (𝑘) as

𝐄 [𝑒(𝑘)𝑛̄(𝑘 + 1) − 𝑛̄(𝑘)𝑒(𝑘 + 1)] = 𝐄 [𝑒(𝑘)]𝐄 [𝑛̄(𝑘 + 1)] − 𝐄 [𝑛̄(𝑘)]𝐄 [𝑒(𝑘 + 1)]
= 𝑒(𝑘)𝑛(𝑘 + 1) − 𝑛(𝑘)𝑒(𝑘 + 1).

(13)

The variance of 𝑒(𝑘)𝑛̄(𝑘 + 1) − 𝑛̄(𝑘)𝑒(𝑘 + 1) is

𝐕𝐚𝐫 [𝑒(𝑘)𝑛̄(𝑘 + 1) − 𝑛̄(𝑘)𝑒(𝑘 + 1)]

=𝐄
[
(𝑒(𝑘)𝑛̄(𝑘 + 1) − 𝑛̄(𝑘)𝑒(𝑘 + 1) − 𝐄 [𝑒(𝑘)𝑛̄(𝑘 + 1) − 𝑛̄(𝑘)𝑒(𝑘 + 1)])2

]
=𝐄

[
𝑒(𝑘)2𝑛̄(𝑘 + 1)2

]
+ 𝐄

[
𝑛̄(𝑘)2𝑒(𝑘 + 1)2

]
+𝐄

[
𝑒(𝑘)2𝑛(𝑘 + 1)2

]
+ 𝐄

[
𝑛(𝑘)2𝑒(𝑘 + 1)2

]
−2𝐄 [𝑒(𝑘)𝑛̄(𝑘 + 1)𝑛̄(𝑘)𝑒(𝑘 + 1)] − 2𝐄 [𝑒(𝑘)𝑛̄(𝑘 + 1)𝑒(𝑘)𝑛(𝑘 + 1)]

+2𝐄 [𝑒(𝑘)𝑛̄(𝑘 + 1)𝑛(𝑘)𝑒(𝑘 + 1)] + 2𝐄 [𝑛̄(𝑘)𝑒(𝑘 + 1)𝑒(𝑘)𝑛(𝑘 + 1)]

−2𝐄 [𝑛̄(𝑘)𝑒(𝑘 + 1)𝑛(𝑘)𝑒(𝑘 + 1)] − 2𝐄 [𝑒(𝑘)𝑛(𝑘 + 1)𝑛(𝑘)𝑒(𝑘 + 1)]

=𝐄
[
𝑒(𝑘)2𝑛̄(𝑘 + 1)2

]
+ 𝐄

[
𝑛̄(𝑘)2𝑒(𝑘 + 1)2

]
− 𝑒(𝑘)2𝑛(𝑘 + 1)2 − 𝑛(𝑘)2𝑒(𝑘 + 1)2

=
(
𝑒(𝑘)2 + 𝜎2

𝑒
(𝑘)

) (
𝑛(𝑘 + 1)2 + 𝜎2

𝑛
(𝑘 + 1)

)
+
(
𝑛(𝑘)2 + 𝜎2

𝑛
(𝑘)

) (
𝑒(𝑘 + 1)2 + 𝜎2

𝑒
(𝑘 + 1)

)
−𝑒(𝑘)2𝑛(𝑘 + 1)2 − 𝑛(𝑘)2𝑒(𝑘 + 1)2.

(14)

The expectation and variance of the surface area of the whole closed

polygon can then be calculated as

𝐄(𝑆) = 1
2

𝑁−1∑
𝑘=0

(𝑒(𝑘)𝑛(𝑘 + 1) − 𝑛(𝑘)𝑒(𝑘 + 1)) (15)
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𝐕𝐚𝐫(𝑆) =
𝑁−1∑
𝑘=0

[(
𝑒(𝑘)2 + 𝜎2

𝑒
(𝑘)

) (
𝑛(𝑘 + 1)2 + 𝜎2

𝑛
(𝑘 + 1)

)
+
(
𝑛(𝑘)2 + 𝜎2

𝑛
(𝑘)

) (
𝑒(𝑘 + 1)2 + 𝜎2

𝑒
(𝑘 + 1)

)
−𝑒(𝑘)2𝑛(𝑘 + 1)2 − 𝑛(𝑘)2𝑒(𝑘 + 1)2

] (16)

For further simplifying the calculation [17], Eq. (15) can be trans-

formed as follows. By defining 𝑒(𝑁 + 1) = 𝑒(1) and 𝑛(𝑁 + 1) = 𝑛(1), it
can be observed that

𝐄(𝑆) = 1
2

𝑁−1∑
𝑖=0

[𝑒(𝑘)𝑛(𝑘 + 1) − 𝑛(𝑘)𝑒(𝑘 + 1)]

= 1
2

𝑁−1∑
𝑖=0

𝑒(𝑘)𝑛(𝑘 + 1) − 1
2

𝑁−1∑
𝑖=0

𝑒(𝑘 + 1)𝑛(𝑘)

= 1
2

𝑁∑
𝑖=1

𝑒(𝑘)𝑛(𝑘 + 1) − 1
2

𝑁∑
𝑖=1

𝑒(𝑘)𝑛(𝑘 − 1)

= 1
2

𝑁∑
𝑖=1

𝑒(𝑘) (𝑛(𝑘 + 1) − 𝑛(𝑘 − 1))

(17)

For the third equality in (17), 𝑒(0)𝑛(1) = 𝑒(𝑁)𝑛(𝑁 + 1) is applied in the
first sum and index shifting is used in the second sum.

Weighted Surface Area Error
With the simulated fire perimeter (𝑒𝑠(𝑘𝑠), 𝑛𝑠(𝑘𝑠)), 𝑘𝑠 = 0, 1,… , 𝑁𝑠−1,

and the measured fire perimeter (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚)) with an uncertainty
mentioned in Section 2.1 on each vertex 𝑘𝑚 = 0, 1,… , 𝑁𝑚 − 1. A set of
new closed polygons with vertices (𝑒𝑑 (𝑘𝑑 ), 𝑛𝑑 (𝑘𝑑 )), 𝑘𝑑 = 0, 1,… ,𝑀𝑑 − 1
can be obtained by finding the union minus the intersection of the

simulated fire polygon and the measured fire polygon. Assume that the

number of the newly created polygons is 𝐿, and the numbers of vertices

included in each polygon are 𝑀𝑑 , with 𝑑 = 1, 2,… , 𝐿. The weighted

surface area 𝑆𝑤
𝑑
of the closed polygon with vertices (𝑒𝑑 (𝑘𝑑 ), 𝑛𝑑 (𝑘𝑑 )),

𝑘𝑑 = 0, 1,… ,𝑀𝑑 − 1 can be expressed by

𝑆𝑤
𝑑
=

𝐄(𝑆𝑑 )𝛾

𝐕𝐚𝐫(𝑆𝑑 )(1−𝛾)
(18)

where 𝛾 and 1 − 𝛾 are the weightings added on the expected value and

the variance of the surface area respectively, and 𝐄(𝑆𝑑 ) and 𝐕𝐚𝐫(𝑆𝑑 ) can
be calculated by (16) and (17) respectively. With the assumption that

the uncertainty on a vertex is a circle around the vertex and there are

only uncertainties on the measured fire perimeter, it can be achieved

that

𝜎𝑒(𝑘𝑑 ) = 𝜎𝑛(𝑘𝑑 ) =

{
0, if (𝑒𝑑 (𝑘𝑑 ), 𝑛𝑑 (𝑘𝑑 )) ≠ (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚)),
1∕𝑤̃𝑠(𝑘𝑚), if (𝑒𝑑 (𝑘𝑑 ), 𝑛𝑑 (𝑘𝑑 )) = (𝑒𝑚(𝑘𝑚), 𝑛𝑚(𝑘𝑚)),

𝑤̃𝑠(𝑘𝑚) = 𝑤(𝑘𝑚)𝑤𝑐 (𝑘𝑚)

(19)

where 𝜎𝑒(𝑘𝑑 ), 𝜎𝑛(𝑘𝑑 ) are the standard deviations defined in (12), and
𝑤(𝑘𝑚), 𝑤𝑐 (𝑘𝑚) are established in (3) with no interpolation. Based

on (18), the weighted error of the whole surface area of the union

minus the intersection of the simulated fire perimeter and the measured

fire perimeter can be defined as

𝑠2 =
𝐿∑

𝑑=1
𝑆𝑤
𝑑
=

𝐿∑
𝑑=1

𝐄(𝑆𝑑 )𝛾

𝐕𝐚𝐫(𝑆𝑑 )(1−𝛾)
. (20)

With the definition of 𝑤̃𝑠(𝑘𝑚) in (19), 𝛾 is recommended to be chosen
as a value less than or equal to 0.1. Smaller weighting is put on the

variance to avoid the erroneous results. For example, if the vertices

with extremely large uncertainties are assigned to all the polygons

created by the union minus the intersection of the simulated fire

polygon and measured fire polygon, then the weighted surface area

error is close to zero, and the corresponding simulated fire polygon will

be chosen as the optimal simulation that makes no sense. In this paper,

𝛾 is picked as 0.1.

4. Wind condition estimation with FARSITE

4.1. Forward simulations

In this study, FARSITE is used for the forward simulation of the

simulated fire perimeter 𝑥(𝑘) as a function of the single wind vector
𝑢. FARSITE can be considered as a non-linear mapping 𝜌(⋅) for fire
progression, simplified to

𝑥(𝑘) = 𝜌(𝑝(𝑘), 𝑢, 𝜃, 𝛥𝑇 ) (21)

where the input 𝑝(𝑘) ∈ C
𝑁𝑝 is a closed polygon of 𝑁𝑝 vertices rep-

resenting the initial fire perimeter. The simulated output 𝑥(𝑘) ∈ C𝑁𝑥 ,

defined earlier in (5), is a closed polygon with 𝑘 = 1, 2,… , 𝑁𝑥 vertices

representing the simulated fire perimeter obtained after a time step

of 𝛥𝑇 . The additional inputs 𝑢 represents a single wind vector, and

𝜃 denotes a parameter representing fuel content, fuel moisture and

topography, all assumed to be constant over the time step of 𝛥𝑇 .

Unknown wind conditions influence the interpolated and re-ordered

vertices of the measured fire perimeter represented by the closed

polygon 𝑦(𝑘, 𝑞) defined in (5). The two-dimensional wind vector 𝑢 in

terms of wind speed and wind direction will also influence the vertices

of the simulated fire perimeter represented by the closed polygon 𝑥(𝑘)
and the weighted surface area 𝑆𝑤

𝑑
in (18). Along with the definition of

the weighting 𝑤̃𝑝(𝑘𝑚) in (3), 𝑤̃𝑠(𝑘𝑚) in (19), and 𝛾 in (18), it is expected

that a minimization of 𝑠1 in (6), and 𝑠2 in (20) as a function of 𝑢 will

provide the best wind vector to minimize the distance between 𝑥(𝑘)
and 𝑦(𝑘), and the surface area of the subtraction between the union
and the intersection of the simulated and the measured fire polygon,

respectively.

4.2. Wind speed and wind direction optimization

The formal problem of finding an estimate of the single wind vector

on the basis of a wildfire measurement 𝑦(𝑘) using skew compensated

weighted least-squares error can be stated as the optimization

min
𝑢

𝑠1(𝑢), 𝑠1(𝑢) = min
𝑞

1
𝑁

𝑁∑
𝑘=1

𝑤̃𝑝(𝑘)2|𝑦(𝑘, 𝑞) − 𝑥(𝑘)|2
𝑥(𝑘) = 𝜌(𝑝(𝑘), 𝑢, 𝜃, 𝛥𝑇 )

(22)

where 𝑤̃𝑝(𝑘) is the interpolated 𝑤̃𝑝(𝑘𝑚) defined in (3) and 𝑦(𝑘, 𝑞) is
defined in (5). Similarly, with weighted surface area error, the formal

problem can be stated as the optimization

min
𝑢

𝑠2(𝑢), 𝑠2(𝑢) =
𝐿∑

𝑑=1

𝐄(𝑆𝑑 )𝛾

𝐕𝐚𝐫(𝑆𝑑 )(1−𝛾)
. (23)

where 𝛾 is defined in (18), and 𝐕𝐚𝐫(𝑆𝑑 ) and 𝐄(𝑆𝑑 ) are defined in (16)
and (17). Due to the non-linearity and non-convex mapping of 𝜌(⋅), a
non-linear and iterative optimization is required, typically using the

sensitivity or the gradient.

For FARSITE that is responsible for the mapping in (21), the sensi-

tivity or gradient 𝜕

𝜕𝑢
𝜌(𝑝(𝑘), 𝑢, 𝜃, 𝛥𝑇 ) is unknown. Numerical evaluation

of the gradient is computationally expensive and moreover, FARSITE

is known to produce occasional erroneous results at some wind vectors

due to numerical problems in interpolation and reconstruction of the

main fire perimeter (as will be shown later). These reasons motivate

the use of a gradient-free optimization via a grid search and the 2

dimensional size of 𝑢 motivates a simple 2D gridding procedure over

which 𝑠1(𝑢) in (22) and 𝑠2(𝑢) in (23) are evaluated. The 2D grid of

𝑢 can be updated and refined iteratively to improve the accuracy of

the final optimized solution for 𝑢. The pseudo-code for the iterative

optimization of 𝑠1(𝑢) and 𝑠2(𝑢) are summarized in Algorithm 2. If the

skew compensated weighted least-squares error is chosen, let 𝑠(𝑢𝑖,𝑗 ) =
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Fig. 3. Evaluation of skew compensated weighted least-squares error 𝑠1(𝑢𝑖,𝑗 ) and weighted surface area error 𝑠2(𝑢𝑖,𝑗 ) between the simulated and measured fire perimeter at one

particular time stamp of the Maria Fire using a 2D grid for the single wind vector 𝑢𝑖,𝑗 . The optimal single wind vector with the lowest value of 𝑠1(𝑢𝑖,𝑗 ) and 𝑠2(𝑢𝑖,𝑗 ) are indicated
with a red dot.

𝑠1(𝑢𝑖,𝑗 ); if the skew compensated weighted surface area error is chosen,

let 𝑠(𝑢𝑖,𝑗 ) = 𝑠2(𝑢𝑖,𝑗 ).

Algorithm 2 Optimizing algorithm

Input: 𝜃, 𝑝(𝑘), 𝑦(𝑘𝑚), 𝛥𝑇 , minimum wind condition perturbation 𝜆 and

stopping criterion 𝜀.

Output: Optimized 𝑢 ∈ R2×1

1: Create 𝑛2 points of a symmetric 2D grid 𝑢𝑖,𝑗 over a desired range

𝑖 = 1, 2,… , 𝑛 and 𝑗 = 1, 2,… , 𝑛 around an initial estimate 𝑢0 of the

wind vector.

2: Parallel simulation in FARSITE with 𝑝(𝑘), 𝑢𝑖,𝑗 , 𝜃 and 𝛥𝑇 to obtain

𝑥𝑖,𝑗 (𝑘) for each grid point.
3: Compute the 𝑛2 weighted error 𝑠(𝑢𝑖,𝑗 ) over the grid 𝑖 = 1, 2,… , 𝑛

and 𝑗 = 1, 2,… , 𝑛, or

4: Find the smallest value 𝑖, 𝑗 = min𝑖,𝑗 𝑠(𝑢𝑖,𝑗 ) to select the optimized
wind vector 𝑢𝑖,𝑗

5: Set 𝑢0 = 𝑢𝑖,𝑗 and stop when |𝑠(𝑢0 + 𝜆) − 𝑠(𝑢0)| ≤ 𝜀 or go back to step

1 to refine grid around 𝑢0.

The skew compensated weighted least-squares error and weighted

surface area error are used to determine the difference between the

simulated polygon and the measured polygon of wildfire. Simulations

can be performed in parallel to speed up the process of finding the

optimal wind vector with the above mentioned algorithm.

5. Numerical results

5.1. Maria fire

The Maria Fire ignited in the evening hours of Thursday, October

31, 2019 and consumed well over 4,000 acres (16 km2) within its

first several hours of burning. The optimization of the single wind

vector is performed for this fire at four different time stamps where

measurements of the fire perimeter were available. The objective of the

optimization is to improve the fire simulations of the fire perimeters

with FARSITE in comparison with the observations obtained at four

time stamps.

First we illustrate the results of the gradient-free optimization via a

grid search summarized in Algorithm 2 in Fig. 3. The numerical evalu-

ation of the skew compensated weighted least-squares error 𝑠1(𝑢𝑖,𝑗 ) and
weighted surface area error 𝑠2(𝑢𝑖,𝑗 ) over a 2D grid 𝑢𝑖,𝑗 with wind speed

from 0 to 45 mph and wind direction from −180 degrees to 175 degrees
in Fig. 3 clearly shows the non-differential behavior of 𝑠1(𝑢) and 𝑠2(𝑢),

Fig. 4. Simulations of the predicted fire perimeter 𝑥(𝑘) with wind speed = 21 mph,

wind direction = 34 deg (red), wind speed = 21 mph, wind direction = 35 deg (green),

and wind speed = 21 mph, wind direction = 36 deg (cyan), on the basis of the initial

fire perimeter 𝑝(𝑘) (black).

motivating the use of a gradient-free optimization via a grid search.

Sporadic large values of 𝑠(𝑢𝑖,𝑗 ) for certain wind vector 𝑢𝑖,𝑗 are explained
by erroneous results due to numerical problems in interpolation and

reconstruction of the main fire perimeter by FARSITE, as illustrated in

Fig. 4. The simulation results show very similar fire perimeters for two

wind vectors that are pretty close to an erroneous result.

Based on gradient-free optimization via a grid search summarized

in Algorithm 2, the optimization can correct wildfire simulations when

the initial guesses of the wind vectors are not accurate. Correction

of the wildfire simulations with two expressions of error for the four

different time stamps where measurements of the Maria Fire perimeter

were available are summarized in Fig. 5. For each time stamp, the

simulated fire perimeter (green lines) based on an initial estimate 𝑢0
of the wind vector obtained from a weather station can be improved

(yellow lines) by the optimization of the wind vector via Algorithm 2.

It can be observed that the optimized wind vectors provide simulations

(yellow lines) that are closer to the measurements (red lines).
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Fig. 5. Comparison of the measured and FARSITE simulated fire perimeters for initial 𝑢0 and optimized 𝑢 wind vector via Algorithm 2 using skew compensated weighted

least-squares error 𝑠1(𝑢) and weighted surface area error 𝑠2(𝑢) respectively for the Maria Fire at four different time stamps. Initial ignition (blue); Simulation with initial guess 𝑢0
(green); Simulation with optimized wind vector 𝑢 (yellow); Measurement at next time stamp (red).
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Fig. 6. Simulation and measurements of the Cave Fire with measurement errors in the first measured fire perimeter after the initial fire perimeter. Optimization and weighted

radii for skew compensated weighted least-squares error (left), and weighted surface area error (right).

5.2. Cave fire

Although the accuracy of the simulation is improved by using the

optimized single wind vector, there are still some parts of the opti-

mized simulation that are somewhat far from the measurement. One

reason may be the measurement accuracy, as the combination of aerial

surveillance and manually mapped observations is likely to introduce

measurement errors. It can also be observed that as the fire perimeter

becomes large enough, using only one prevailing wind direction is

inadequate for the precise prediction of the wildfire propagation as

wind flow is shaped by topography and atmospheric interaction.

The measurement data available for the Cave Fire included here

can better demonstrate the two issues of measurement errors and the

assumption of a single wind vector. The 2019 Cave Fire started on

November 25 and burned more than 3100 acres before being contained.

As shown in Fig. 6(a), the top part of the first measurement (after

the initial ignition) can be assumed to be wrongly characterized when

compared to the second measurement. To be able to account for such

errors on the measurement, the weighting 𝑤̃𝑝(𝑘𝑚) defined in (3) on

the vertices in the top part of the first measurement are adjusted to

be zero for the skew compensated weighted least-squares error. The

effect of the weighting radii is illustrated in the image on the left in

Fig. 6(b). Due to the fact that the measurements in the top part of

the first measurement are weighted with 0 for the skew compensated

weighted least-squares error, the corresponding weighting radii are

approaching infinity that is not included in the figure. However, the

remaining points of the measurement are still allowed to be used for the

optimization of the wind vector at this time stamp. For the weighted

surface area, on account of the limitation that multiple uncertainties

of the vertices will finally act only on one weighted surface area,

the infinitely large weighting radii should not be used in case they

makes weighted surface area errors of all polygons in the union minus

intersection of the simulated fire polygon and measured fire polygon

zero. Therefore, the weighting radii of the top part of the measurement

are adjusted to be the same as the largest weighting radius in the other

parts of the measurement to reflect the large uncertainty in the top part.

When the Cave Fire grows to a large dimension, as illustrated in

Fig. 7, it becomes difficult to match the measured fire perimeter with

a simulated fire perimeter via single prevailing wind direction. The

gradient-free optimization of Algorithm 2 does a better job covering

the east side of the fire, but the west side of the fire cannot be

accurately covered with a single wind vector due to the topography

and atmospheric wind shear effects acting on the fire. This illustrated

the limitations of optimizing only a single wind vector.
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Fig. 7. Comparison of the measurement and FARSITE simulation when the Cave Fire reaches a large dimension. Initial ignition at 05:15 a.m. (blue); Simulation with initial guess
of wind vector (green); Simulation with optimized wind vector (yellow); Measurement of fire perimeter (red).

6. Conclusions

This paper shows how fire perimeter measurement can be used

to improve the accuracy of a wildfire perimeter simulation, by using

the measurement to estimate and correct the prevailing wind speed

and wind direction for the simulation. The estimation is based on two

carefully defined uncertainty weighted errors. The first error charac-

terization is a skew compensated uncertainty weighted least-squares

error that provides a direct comparison of the vertices of a simulated

and a measured (noisy) wildfire perimeter. The second error charac-

terization is formulated as a skew compensated uncertainty weighted

surface area of the union minus the intersection of a simulated and a

measured (noisy) wildfire perimeter. The uncertainty based weighting

can account for vertex accuracy and be adjusted for a skewed weighting

caused by unequally distributed vertices on the closed polygon of

the fire perimeter. In both cases, the (skew compensated) uncertainty

radii are used to compute an uncertainty weighted error. A gradient-

free optimization via a grid search that uses (refined) grid of the

two-dimensional wind vector and exploits parallel computations with

FARSITE fire modeling has been done to compute the optimal wind

vector. Numerical results on actual wildfire perimeter data obtained

from two recent destructive fires in California confirm the improve-

ment of the accuracy of the wildfire perimeter simulations. The skew

compensated weighted least-squares error is adept at flexibility of

applying complicated uncertainties on vertices, and skew compensated

weighted surface area error has an advantage in the simplification of

the computational complexity and the reduction of the computational

time. Limitations of the proposed methods are due to the optimization

of a single wind vector — an assumption that may not hold when a

wild fire covers a large area with varying topographical features.
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