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Abstract

The challenge of sustainably producing goods and services for healthy living on a

healthy planet requires simultaneous consideration of economic, societal, and

environmental dimensions in manufacturing. Enabling technology for data driven

manufacturing paradigms like Smart Manufacturing (a.k.a. Industry 4.0) serve as

the technological backbone from which sustainable approaches to manufacturing

can be implemented. Unfortunately, these technologies are typically asso-

ciated with broader and deeper factory automation that is often too expen-

sive and complex for the small and medium sized manufacturers (SMMs)

that comprise the majority of manufacturing business in the USA and for

whom their most valuable asset are the people whose jobs automation

while replace. This paper describes an edge intelligent platform to inte-

grate internet-of-things technologies with computing hardware, software,

computational workflows for machine learning, and data ingestion,

enabling SMMs to transition into smart manufacturing paradigms by

leveraging the intelligence of their people. The platform leverages con-

sumer grade electronics and sensors (affordable and portable), customized

software with open source software packages (accessible), and existing

communication network infrastructures (scalable). The software systems

are implemented via Kubernetes orchestration of Docker containerization

to ensure scalability and programmability. The platform is adaptive via

computational workflow engines that produce information from data by

processing with low-cost edge computing devices while efficiently

accessing resources of cloud servers as needed. The proposed edge platform

connects workers to technological resources that provide computational

intelligence (i.e., silicon-based sensing and computation for data collection

and contextualization) to enable decision making at the edge of advanced

manufacturing.
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1 | INTRODUCTION

Artificial intelligence (AI), edge intelligence, and other simi-
lar terms of art typically associated with Smart Manufactur-
ing are commonly understood to imply a high degree of
autonomous information technology (IT) functionality
with respect to data acquisition, information production
(i.e., contextualization), encode/decode for transmission/
acquisition and activation with respect to engaging opera-
tion technologies (OT) (e.g., motors, conveyors, and ovens).
While the emerging IT synergies between sensing, comput-
ing and transmission have made information theoretic[1]

Smart Manufacturing paradigms connecting IT and OT
increasingly more common, it remains the case that human
workflows are central to the operations of most manufactu-
ring which is largely comprised of SMMs whose most valu-
able asset are their people. For these SMMs, capital costs,
complications of deploying advanced methods and issues of
legacy manufacturing systems have precluded broad imple-
mentation of Smart Manufacturing. In this paper we
describe methods and technologies that have been specifi-
cally developed to connect the intelligence of smart
manufacturing (i.e., sensors acquiring data and computing
for contextualization via artificial intelligence) with the
intelligence of people (five senses for data acquisition and
computing for contextualization via biological intelligence)
in order to address these challenges.

The Smart Connected Worker Edge Platform (SCW-EP)
for Smart Manufacturing addresses these challenges through
Affordable, Scalable, Accessible, and Portable (ASAP)
methods combining low-cost hardware with scalable hard-
ware/software system architectures that utilize causal
inference to couple human workflows to manufacturing
equipment operational states and enables real time adapta-
tion. In this paper, we describe the system architecture
through which this vision is implemented. Core functional-
ity of the ASAP approach for connecting the intelligence of
workers to machine/edge intelligence coupling IT and OT
in Smart Manufacturing paradigms includes intelligent
(AI enabled) multi-agent models for non-intrusive workflow
monitoring which is deployed for real-time machine state
monitoring and fault detection. The ASAP approaches
described in this paper support the edge intelligence
(machine and human) needed for capturing data for infor-
mation production (conceptualization) via real-time human
machine interaction monitoring and deployment of scien-
tific workflows to produce affordable AI (i.e., machine learn-
ing) for advanced manufacturing.

In Section 2, System Architecture (SA), System Require-
ments Specification (SRS) and the SRS methodology are
described. The SA is comprised of a software stack and
hardware specifications that enable SCW's access to
advanced simulation and data acquisition at the edge of
advanced manufacturing at reasonable costs. In addition, a
methodology for extending the existing architecture to other
use cases is presented. Section 3 presents the development
of a multi-agent modeling approach to non-intrusive
human workflow monitoring. This subsystem provides
information (contextualized data) to inform human cen-
tered methods for establishing causal relations between the
actions of people and the physical assets of a manufacturing
plan. In Section 4, methods for establishing the state config-
uration of manufacturing systems are presented. This infor-
mation provides the intelligence about machine operations
needed to establish the causal relationships between human
actions and the physical assets of the manufacturing plan.
In Section 5, we describe how the elements that acquire
data are connected to produce the correlated human-
machine information needed for intelligent decision mak-
ing at the edge of advanced manufacturing. These human-
machine interactions are monitored and contextualized via
AI to establish correlations in real time. Section 6 describes
the methodologies through which the complexity of devel-
oping these event driven AI algorithms is managed via sci-
entific workflow engines.

Results and discussion of these development efforts are
presented in Section 7. Application of information produc-
tion associated with human-machine interactions in 3D
printing with extensions to Augmented Reality are presented
as well as implementation of the multi-agent methods for
correlation of human workflows, energy consumption and
anomaly detection. The methods for adaptive information
production with AI algorithms are described with respect to
creating reduced order models of electromagnetic fields asso-
ciated with WiFi signals that are essential to transmission/
acquisition of encoded/decoded information between the
edge and the cloud. In-process information production via
application of scientific workflows for AI algorithm genera-
tion are presented with respect to laser processing tech-
niques typically associated with surface roughness from
laser refraction (i.e., speckle) images. Conclusion and
the opportunities for future work are briefly discussed
in Section 8. The SCW-EP is focused on the essential
role that people can play in the production and use of
information at the edge of advanced manufacturing.
Future research directions will continue to exploit
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emerging technologies that enable broader implementa-
tion of ML to augment the native intelligence of people
in advanced manufacturing contexts.

2 | SYSTEM ARCHITECTURE AND
SYSTEM REQUIREMENTS
SPECIFICATION

2.1 | Objectives of smart connected
worker edge platform and architecture
design

The proposed edge intelligent platform is designed to inte-
grate IoT technologies with computing hardware, software,
computational workflows, and data acquisition. The goal of
the platform is to optimize manufacturing workflows for
increasing energy productivity as well as other important
sustainability dimensions such as operational safety and
cybersecurity.

The system architecture design of the platform begins
with generation of the SRS that provides requirements
for developing a system or platform. An important fea-
ture of the SRS is the Functional Requirements, which
define the functions of the system. The requirements are
concerned with the identification of system behavior[2]

with respect to inputs and outputs.
The requirements are derived from a process that

includes: (1) development of a comprehensive list of use
cases and actors, (2) production of system reference

diagrams, and (3) specification of functional require-
ments definitions.[3]

Details of these steps as applied to the Smart Connected
Worker platform are provided in the following sections.

2.2 | Use cases and actors of SRS

To create a list of functional requirements for SCW sys-
tems, the proposed system is analyzed to identify all use
cases and the associated actors involved in the
manufacturing workflow and processes. Use cases are the
description of actions or steps explaining the interactions
between a person (operator, or supervisor) and machine
(component, module, subsystem, or system). An actor is
a role played by a person, or machine. Sources include
the use cases and associated actors of participating orga-
nizations, Aerospace Corporation, CSU Northridge, Gen-
eral Mills, Honeywell, and UC Irvine. Not all use cases
are included in the functional requirements as some of
them are unique due to the type of their industries. A set
of use cases in common among the major use cases is
identified to create a list of functional requirements. A
selection of use cases and associated actors are listed in
Table 1 to illustrate the process.

From this example shown in Table 1, the actors are
Operator/Worker, Control Panel of Machines, Camera,
Video Processing Module (A), Edge Intelligence Unit,
AC Power Meter (Smart Meter), User Terminal/Head-
set, Sensor, Data Services (A), and Data Services (B).

TABLE 1 Use cases and actors (selected)

ID Use cases Actor sending data Actor receiving data

1 Power on machines Operator/worker Control panel of machine

2 Camera reading Camera Video Processing
Module (A); Edge intelligence unit

3 Energy meter reading AC power meter (smart
meter)

Edge intelligence unit

4 On-site status monitoring Edge intelligence unit User terminal/headset

5 Notification of machine stoppage Camera; sensor Operator; control system; edge intelligence unit
(fault detection)

6 Identification of anomalous machine
behavior

Camera; sensor Operator; control system; edge intelligence unit
(CAAH)

7 Energy disaggregation Camera; AC power meter Edge intelligence unit (energy disaggregation)

8 Worker action recognition Camera; AC power meter Edge intelligence unit (WARM)

9 Process control of surface roughness of
metals

Camera; sensor Edge intelligence unit (Laser)

10 Analysis of operator Utilization Video processing module (A) Data services (A)

11 Neural network training Edge intelligence unit Data services (B)
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2.3 | System reference diagram

By exercising the definitions of use cases and associated
actors, a reference diagram for the SCW edge platform was
developed and is illustrated in Figure 1. The figure shows
the system reference diagram of the SCW edge platform
with actors highlighted in blue and green (e.g., Worker,
Machine, Edge Intelligence Unit, and subsystems), which
illustrate data flows between edge and cloud as an example.
On-site subsystems are the Manufacturing Facility, Sensor,
and Meter Subsystems (which reside on factory premises at
the edge), whereas the off-site subsystems are Data Services
(A)/(B) Subsystems and Remote User Unit in the cloud
(which can be accessed remotely through a wide area net-
work [WAN].) The Manufacturing Facility subsystem
includes Worker and Machine actors, with cameras and
sensors integrated into the Sensor subsystems to augment
the intelligence of workers. The Meter subsystem includes
Smart Meters (AC power meters). The data acquired from
the sensors and meters are fed into an Edge Intelligence
Unit in which data is processed to provide information for

monitoring workflows and data streams to improve
manufacturing sustainability (e.g., increasing energy pro-
ductivity.) The Video Processing Module (A) with Data Ser-
vices (A) is an example of manufacturing operation
management systems. An instance of Data Service (B) is a
cloud-computing machine on remote servers.

2.4 | Defining functional requirements

It is important to have a clear system architecture to
understand data flow between actors and subsystems.
Based on the use cases and actors identified along with
the system reference diagram, the functional require-
ments most germane to Smart Manufacturing are defined
as follows:

• Operator shall be able to power on machines by utiliz-
ing Control Panel;

• Control Panel shall receive a power-on command from
Operator;

FIGURE 1 System reference diagram.
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• Camera shall read the status of Operator and
Machine and send it to Video Processing Unit (A)
and Sensor Data Processing Module in Edge Intelli-
gence Unit;

• Video processing unit (A) and Edge Intelligence Unit
shall receive vision data from Camera;

• AC power meter (smart meter) shall read voltage and
current usage of machines at Manufacturing Facility
subsystem and send the data to Edge Intelligence Unit;

• Edge intelligence unit shall receive meter readings
from AC Power Meter;

• Edge intelligence unit shall read cameras and sensors
and send the data to user terminal/headset for on-site
status monitoring;

• User terminal/headset shall display on-site status
received from Edge intelligence unit;

• Camera or sensor shall read the status of machine and
send it to operator, control system, or Edge intelligence
unit;

• Operator, control system, or Edge intelligence unit
shall receive the data from camera or/and sensor for
notifying machine stoppage and identifying anomalous
machine behavior;

• Camera and AC power meter shall read the status of
machine and send it to Edge intelligence unit;

• Edge intelligence unit shall receive the data from cam-
era and AC power meter for energy disaggregation and
recognizing worker's action;

• Edge intelligence unit shall receive the data from cam-
era and sensor for the process control of surface rough-
ness of metals;

• Data services (A) shall receive data from video
processing module (A) through WAN for analyzing
worker utilization; and

• Edge intelligence unit shall read camera and sensor;
and send the data to data services (B) through WAN
for training neural networks (NNs).

In the later sections below, we utilize the reference
diagram and functional requirements to design each
building blocks' architecture and scientific workflows.

The SCW platform is designed to integrate IoT tech-
nologies with customized computing hardware and
software. Edge Intelligence Unit and Data Services
(B) in the reference diagram is the core blocks that have
been developed and customized to achieve this integra-
tion. The software of the two blocks consists of the soft-
ware that we developed, open-source software packages
including Linux distribution, Kepler scientific workflow
system, and Docker container orchestration. The com-
puting hardware of the Edge Intelligence Unit and Sen-
sor subsystem includes consumer grade electronics and
sensors.

3 | NON-INTRUSIVE WORKFLOW
MONITORING: MULTI-AGENT
MODELING

Several methods have been proposed to monitor the
material flow, process status, workers' location, or
machines' status, including using Radio Frequency Iden-
tification (RFID), Wireless Sensor Networks (WSN), and
directly reading Programmable Logic Controller (PLC)
data. These approaches require significant sensor instal-
lation, comprehensive wireless communication infra-
structure and professional IT personnel, which is a
challenge for SMMs. It is especially difficult to design a
unified interface for accessing PLC data due to the variety
of machines in different manufacturing sectors or legacy
machines lacking modern interfaces. In addition, current
supervisory control and data acquisition (SCADA) sys-
tems are capable of terminating ongoing process when
detecting anomalies but lose the external information
associated with the anomalies source. For example, a
conveyor can be stopped due to accumulation of waste
materials, but SCADA cannot capture the root cause of
the accumulation. Therefore, an anomaly replay system
that captures information from outside the control sys-
tem boundary, outside-in information, is needed to assist
the identification of the cause of anomalies at the edge.

To overcome these issues, a non-intrusive industrial
workflow monitoring system has been developed for
operation at the edge to provide real-time machine and
worker states without the need for accessing PLCs. The
scalable software architecture can be extended to accom-
modate a flexible number of machines and workers as
needed. Anomaly identification is achieved by leveraging
a worker's intelligence to monitor the workflow and iden-
tify anomalous events from the feedback of existing con-
trol systems in combination with their knowledge and
experience.

Several outside-in sensors at the edge are selected to
capture data regarding manufacturing processes. For this
application, outside-in sensors are sensors that capture
information from outside of normal control system
(e.g., PLCs) architecture in order to independently cap-
ture worker-machine interactions as well as system emis-
sions (e.g., vibration associated acoustics, or motor
electromagnetic signals). Advanced machine learning
(ML) methods are applied to perceive the status of
workers and machines. In addition, the high-level soft-
ware architecture is modeled with multi-agent systems,
where each self-contained software agent can provide
autonomy to achieve certain tasks and multiple software
agents interact to achieve more complex functions to pro-
vide scalable and easily deployable solutions. To capture
workers' feedback, we designed a connected worker
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technology that virtually connects workers through their
body gestures to avoid any physically connected wearable
devices. This virtual connection can directly transmit
simple messages from workers while not interrupting
workers' normal operation.

Conventional manufacturing workflow and process
monitoring has been widely investigated, and with perva-
sive IoT devices the real-time data collection of industrial
workflows have become possible. In 2009, Lu et al.
implemented a Wireless Sensor Network with torque
transducer and tachometer as a sensor node to analyze
motor energy signature in a non-invasive way.[4] In 2012,
Hou et al. applied various sensors with different sensing
modalities (current transducer, vibration sensors and
accelerometers) as WSN nodes to monitor conditions of
motor and other tools.[5] In 2014, Hu et al. investigated
the use of RFID to monitor the operator's location and
product's location along an assembly line and with this
information the state of production can be inferred with-
out the equipment's state detection.[6] In 2020, Qian et al.
utilized RFID tags and Near-Field Communication
(NFC) to capture the arrivals of assemblies, tools, and
operators to do workflow and process optimization.[7]

Beyond including external sensing technologies, several
studies attempted to directly read PLC data through stan-
dard protocol to capture machines' status. In 2010,
Vijayaraghavan et al. proposed to read PLC data

through MTconnect (ANSI/MTC1.4-2018) protocol and
to use a single meter to monitor a single machine's
energy usage profile which is then correlated with the
machine events from PLC data.[8] In 2017, Wu et al.
investigated a SMM case by using more than 50 sensor
nodes including accelerometers, current transducer,
and PLC data to monitor pump status (on/off ) and do
prognosis.[9]

This section presents technical details of the software
system modeling including data acquisition, data proces-
sing, and components for actionable intelligence genera-
tion. The software system model is scalable for edge
computing platform.

Our approach utilizes the Prometheus methodo-
logy[10] illustrated in Figure 2 that describes the model-
ing of the entire software system with six agents
with specific proactive and reactive functionalities.
The system includes an Orchestrator Agent, two ML
agents, a Correlation Agent, and two Manufacturing
Application Agents, along with their interactions
through predefined message formats or databases. The
system is adaptable to a variety of scenarios that could
include ML agents and process specific manufacturing
agents. Agent modeling provides easily scalable solu-
tions to monitor various numbers of workers and
machines by duplicating these agents while changing
certain parameters.

FIGURE 2 An overview of the software agent model with the actions of each agent and the interactions between agents through

defined messages.
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3.1 | Software agent model

The Orchestrator Agent serves as the adhesive for han-
dling data streaming, data transmission, data persistence,
and agent notification. It can process outside-in sensor
data streaming and inside-out internal metadata gener-
ated through the processing pipelines and notify
corresponding agents depending on the data type. Specifi-
cally, the Orchestrator Agent monitors the available
streaming sensor data, transduces them into proper for-
mats based on the needs of ML agents, and transmits
them to the ML agents. Simultaneously, the raw sensor
data is stored into a database or local file system
depending on the data type. In addition, the orchestrator
listens to the ML agent and following the Correlation
Agent for the metadata messaging, forwards the meta-
data message to alert the Manufacturing Application
Agent and stores them into a database. In addition, avail-
able prior knowledge regarding the manufacturing pro-
cesses, such as Standard Operating Procedure (SOP) and
work schedule, is captured by the orchestrator to be
transmitted to other agents. The Orchestrator Agent brid-
ges the physical environments, the backend data
processing, and the frontend applications to provide nec-
essary message passing and isolated software environ-
ments to reduce interference, enhance programmability
and ensure scalability (e.g., agents can reside in an iso-
lated environment, such as a Docker container, and can
be upgraded only considering the defined message for-
mats without the need to interrupt other agents.)

The ML Agent 1 processes sensor data with advanced
NNs to identify workers actions. It first needs to retrieve
the raw sensor data from the orchestrator, preprocess
raw data to remove improper samples or noise, run clas-
sification leveraging computational efficiency of ML, and
create metadata based on the classification results. Next,
the agent notifies the Correlation Agent and the Orches-
trator Agent by sending the metadata to them. The ML
Agent 2 carries out the same functions but focuses on dif-
ferent types of data or the same type of data but from dif-
ferent sensors. In some cases, there can be more ML
agents processing data of different aspects of a
manufacturing process as long as the data are causally
correlated.

The Correlation Agent leverages well-established cau-
sality knowledge to correlate the detection results from
ML agents. The causality knowledge can be simply under-
stood as cause and effect relationships, where causes hap-
pen earlier than effects. By knowing the effect and the
time interval (known as response time) between causes
and effects, the cause can be inferred and vice versa. In
manufacturing scenarios, especially for legacy machines
without automation control, one of the causal relationships

between workers and machines is that the worker inter-
actions towards machines will cause the machine to
change states, guided by the machine manual and SOP.
In the simple case of one cause and one effect, the two
ML agents capture information from the cause and effect
side respectively. The Correlation Agent retrieves the
metadata from the two ML agents, aligns them to the
causal event timelines based on their own timestamps
indicating the data capture time of physical worlds and
the response time, and conducts cross confirmation of
the two metadata. The function of alignment persists
metadata if its counterpart is not ready. There are two
cases: in the case of using cause to confirm effect, the
decision needs to be made after waiting for certain
response time to receive metadata from effect side; in the
case of using effect to confirm cause, when the metadata
from effect side is received, the decision is made by
tracing back the metadata from the cause side saved in
the buffer. After the alignment, the cross confirmation is
made by using the prior knowledge of well-established
casualties to enhance the fidelity and reliability of the
detection results. New metadata is generated based on
the confirmation and is sent to the orchestrator to notify
the manufacturing applications.

3.2 | Manufacturing application agents

The Manufacturing Application Agents provide interfaces
and actionable intelligence to workers or supervisors
based on the metadata and knowledge database. Gener-
ally speaking, they are less computationally intensive
compared to the ML agents and provide only high-level
abstraction of acquired sensor data. One instance of the
application agent is the non-intrusive workflow monitor-
ing application. The agent can extract the real-time
machine and worker states from the metadata and com-
pare them to the work schedule(s) (e.g., multiple
manufacturing workflows) saved in the knowledge data-
base. This comparison can simply provide yes or no
answers in response to the user query or can provide
actual status of each machine and worker. In addition,
users can query for historical workflow status and associ-
ated information such as energy consumption by interac-
tive queries. This is achieved by accessing not only the
metadata database but also the raw data database with
computations of relational variables. Moreover, the user
can opt to display the raw data or some intermediate meta-
data during the processing pipelines on the interface.

A second instance of the Manufacturing Application
Agent is an anomaly detection function leveraging human
cognition and intelligence. Workers can perceive and
identify abnormal events during the manufacturing
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workflow execution based on accumulated experience and
knowledge. When a worker observes an anomaly, the
worker can execute a predefined gesture towards a camera
sensor to trigger the system to collect and store the past
data within a certain period from sensors, PLCs, or SCADA
if available. According to user queries, the collected data,
such as video snapshots, can be replayed one or multiple
times at the user interface to help workers or supervisors
analyze the causes. The collected data can subsequently be
analyzed by unsupervised ML to uncover common features
of repetitive abnormal events which possibly indicates the
cause of the anomaly.

Privacy concerns in workplace environments are
extremely important. The proposed system addresses these
concerns by obscuring biometric identification as needed
and by abstracting human features (e.g., skeletal represen-
tations) prior to storage for ML training purposes.

4 | REAL-TIME MACHINE STATE
MONITORING AND FAULT
DETECTION

Real-time fault detection and analysis to prevent device
malfunction are indispensable elements of smart manufac-
turing systems. Typically, conventional devices lack the
mechanism and functionality to report malfunctions to
operators which is challenging because automatic feedback
requires sophisticated coordination and data transmission
between devices of different communication protocols.
Overcoming these challenges requires that operators contin-
uously monitor, detect, and report machine malfunctions
manually, resulting in a waste of human labor. In compari-
son, the constantly evolving ML algorithms provide the
alternative solution of detecting machine states and faults
automatically without human intervention. With the SCW-
PA, training of ML models normally performed on expen-
sive cloud servers (at significant expense) can be done on
lower cost edge platforms which can reduce the cost of
computing. To address this, we propose an affordable and
easily deployable edge-computing platform that utilizes ML
algorithms (i.e., computer vision ML models) for the real-
time identification of machine states and the detection of
possible fault scenarios.

We used the YOLO[11] object detection ML model to
locate the positions of the machine's (a 3D printer) major
component. By passing the coordinates through a filter-
ing algorithm, the most likely machine state is predicted,
while possible fault scenarios are identified by examining
the range of the components' locations. YOLO is a fully
open-sourced ML model that supports Linux develop-
ment environments and is therefore affordable and
adaptable to other use cases. YOLO's well-developed API

allows the user to train and test their customized ML
models without significantly changing the model struc-
ture or hyperparameters and is therefore programmable.
As long as the labeling and bounding box drawing is cor-
rect, the proposed platform can be easily applied to
machines of all kinds and therefore, it is scalable.

Existing computer vision (specifically, object detec-
tion) ML models consist of two dominant types of archi-
tecture: the regional-based convolutional neural network
(R-CNN)[12] and the Single Shot Detector.[13] The R-CNN
combines selective search with traditional convolutional
neural network (CNN) models to detect and segment
objects of various sizes and features. The single-shot
detector replaces regional proposals with predefined
bounding boxes, thus speeding up the inference process
but sacrificing accuracy. Since real-time monitoring is the
goal of the proposed system, inference speed is prioritized
over the accuracy, and the Single Shot Detector object
detection model (i.e., YOLO) is adopted.

Object detection ML in particular has been broadly
used for constructing smart manufacturing systems. Zhou
et al.[14] proposed a hybrid deep NN model to identify the
status of physical manufacturing environments and
enable synchronization to virtual representations in real-
time. To support the real-time analysis of manufacturing
systems' multimedia inputs, Lasek[15] developed a real-
time simulation framework that discussed the impacts of
applying ML methods for the detection, analysis, and
simulation of manufacturing components. We intend to
further explore the potentials of object detection models
by focusing on the real-time identification of machine
states and fault scenarios. The primary components of
the SCW platform for Real-Time Machine State Monitor-
ing and Fault Detection are Preprocessing, Model Train-
ing, Detection/Analysis and Implementation as described
below.

4.1 | Components for Real-Time
machine state monitoring and fault
detection

4.1.1 | Preprocessing

Before utilizing the ML model, image data needs to be
collected from real-world working scenarios for training.
Specifically, the image collection should center around
the machine of interest and record as much detail of the
machine components as possible. After collecting the
images, the images are manually labeled with bounding
boxes around major components and assigned correspon-
ding labels. For our purposes, this approach is relatively
laborious. It is important to note that it only requires one
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round of this labeling process before being fully functional
and represents an opportunity for further developing
methods through which this can be done automatically.

4.1.2 | Model training

The input to the YOLO model consists of the following
elements: the digital image focused on the machine of
interest captured by a camera, the ground truth bounding
boxes, and the ground truth class labels assigned to each
bounding box. Each bounding box is defined by its center
horizontal and vertical coordinates and its width and
height. The input image is then resized to 416� 416
pixels for standardization and is split into 19� 19 grid
cells, each of which contains three predefined anchor-
bounding boxes. Subsequently, the anchor boxes and the
one-hot encoded class labels are passed into the deep
CNN structure of YOLO V3, through which the feature
maps are obtained. The bounding box closest to the gro-
und truth is filtered out using Intersection over Union
(IoU) during training. The final output of the YOLO model
consists of the following elements: the processed test
image with predicted bounding boxes, the corresponding
predicted class labels, the confidence scores, and the coor-
dinates of the bounding boxes.

4.1.3 | Detection and analysis

With the output from the YOLO model indicating the
coordinates of each major component of the machine, a
filtering algorithm is implemented to obtain the machine's
status: the algorithm checks the coordinates of each com-
ponent according to a predefined set of boundary regions.
When the algorithm detects that a combination of
machine components' regions meets the specific criteria
for machine state transition, it will automatically filter out
the most likely machine state and output the result. Simi-
larly, if the algorithm detects that a machine component's
coordinates exceed the region of normality, it will identify
the scenario as faulty and record it.

4.1.4 | Implementation

In order to fully exploit the functionality of the proposed
model, users need to collect their machine specific set of
training images that capture unique features of target
machines and major elements with high quality and min-
imal occlusion during relevant machine states. Subse-
quently, the user utilizes open-source labeling tools (such
as Microsoft VoTT[16]) to create the ground truth

bounding boxes and labels for the target machine's major
components. The resulting dataset can be fed into a pre-
installed YOLO model for training, and the criterion for
machine state transitions can be set in the filtering algo-
rithm. Note that in order to train the model using edge
computing, the user can store the data and model
required for training on a cloud platform (e.g., Google
Colab or Nautilus GPU clusters) and utilize GPU
resources at the edge to train the model. Finally, the user
can insert the ML model's trained weights into the
corresponding directory of the SCW edge computing
devices to enable the functionality. If new datasets of the
same target machine are created and made available, the
user may retrieve the previously trained model weights,
and perform additional training to update and refine the
parameters.

5 | REAL-TIME HUMAN–
MACHINE INTERACTION
MONITORING

For smart manufacturing systems, monitoring human-
machine interaction provides critical information with
regard to sustainable operations. For example, under-
standing the relationship between human workflows and
machine states enables analysis of energy consumption
that would typically require individual metering of
manufacturing equipment. By capturing human machine
interaction (i.e., human workflows) and coupling it with
edge computing, energy disaggregation (i.e., identifying
individual machine energy profiles from aggregated
metering) becomes an affordable method for reducing
energy usage and increasing energy productivity of indi-
vidual machines at SMMs.

The SCW platform leverages the computing power of
ML models embedded on edge computing devices to
replace the human labor that is conventionally required
for the real-time monitoring and documentation of
human-machine interactions. Monitoring the inter-
actions is essential for performing energy disaggregation
for the optimization of energy usage of manufacturing
machines.

For real-time human–machine interaction we utilize
the advanced CRAFT[17] text detection model to identify
the output of machines by recognizing the displayed texts
on the interactive panels and a novel color identification
algorithm on the button regions to monitor and identify
the input of operators. Text detection and recognition, a
crucial part of Computer Vision, has already been exten-
sively explored by researchers. There have also been
efforts in extending text recognition models to user-
friendly real-world applications. For example, Naiemi
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et al.[18] proposed a pipeline framework that unified text
detection and recognition that could be used to create
vision assistance systems. Beyond recognizing English
language letters, Wang et al.[19] overcame the difficulty
imposed by the complicated nature of Chinese characters
and used deep-coupled alignments to improve detection
accuracy. Finger detection is also a popular topic for both
Computer Vision and real-world applications. Karam
et al.[20] adopted depth sensors to detect finger clicks
accurately without being restricted by fingers' motions or
relative positions. Caputo et al.[21] created a novel and
comprehensive benchmark for evaluating finger detec-
tion models related to gesture detection and recognition.
However, little work has focused on the potential applica-
tion of finger detection and recognition to empower
manufacturing systems. Therefore, our proposed work
intends to exploit the powers of finger detection in a novel
way to improve human-machine interaction monitoring.

The primary components of the SCW platform for
Real-Time Human-Machine Interaction Monitoring and
Fault Detection are Text Detection/recognition and Fin-
ger Position Identification as described Section 5.1.

5.1 | Components for real-time human–
machine interaction monitoring and fault
detection

5.1.1 | Text detection and recognition

In order to monitor the human-machine interaction, we
choose the visual perspective of the operator as illustrated
in Figure 3. Videos and images are captured from a cam-
era positioned on the head of the operator.

During a valid process of human-machine interaction,
we mainly focus on the interactive panels. The first step

would be to locate the text regions of interest. We used
OpenCV's detecting contours to identify all text display
regions on the input image and then applied a K Means
clustering algorithm on the area of the text display regions
to filter out the regions of interest. Subsequently, the
CRAFT text detection and recognition algorithm was
applied to the selected regions, and the corresponding text
outputs were collected. This novel way of first filtering out
the text regions instead of performing text recognition glob-
ally on the entire image effectively reduces the effect of
background noise on the text detection model and allow
the more flexible recognition and output of selected text
regions. Finally, the identified texts were collected, each
assigned a corresponding text display region ID label.

5.1.2 | Finger position identification

With the text regions located using OpenCV, we move on
to locate the corresponding press button regions. By care-
fully observing the relative positions of the press buttons
regarding the text display regions, coordinate-transfor-
mation matrices can be calculated and applied to derive
the location of the press buttons on the interactive panel.
Subsequently, we analyze the color changes in the press
button regions. Since the color of the buttons demonstrate
changes when covered by a human finger, we leveraged
OpenCV's functionality of extracting RGB color values
from selected regions to monitor press button region RGB
values changes. Through this novel way of detecting color
changes instead of applying an entire cumbersome finger
detection model, we significantly reduce the size and com-
plexity of the proposed framework and allow for easier dis-
tribution and scalability.

When the panels are malfunctioning, protocol-based
methods could be an alternative solution. We experimented

FIGURE 3 Text detection and recognition of 3D printer control panel.
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with MTConnect (ANSI/MTC1.4-2018) and Tera Term ter-
minal emulators, both of which are industry-level protocols
that enable the inter-communication of devices.

6 | AFFORDABLE AI FOR
ADVANCED MANUFACTURING
THROUGH SCIENTIFIC
WORKFLOWS

The manufacturing sector is at the cusp of a grand trans-
formation where AI and IoT are likely to seamlessly inte-
grate and assist humans to boost precision of actions,
improve the pace of diagnostic root-cause analysis, and
reduce variance of manufactured output while improving
operational safety manifolds.[22]

During the last decade, most AI driven industry bene-
fits have been harnessed by large-scale organizations.
Small and medium scale industries are particularly facing
challenges in adapting AI for their operational benefit.
This gap is rapidly increasing due to budget limitations,
cost of retraining workforce, and high capital demands of
compute resources necessary to deploy and operate AI
techniques locally in a manufacturing environment. AI
in manufacturing can lead to a more productive, cost-
effective, and safer work environment. It can boost opera-
tional efficiency by reducing cost-per-unit produced and
lower demand pressures on raw resources consumed by
manufacturing industries.[23]

Scientific Workflows are directed acyclic graphs (like
flowcharts) that enable integration of different software
codes in a modular manner which can be scaled on
demand using the in-built compute and data parallelism.
These containerized workflows act as automated tools
that can be rapidly deployed and can be executed on a
variety of hardware devices making them suitable for
edge computing platforms. Scientific Workflows can act
as an abstraction layer to hide complex data and AI tech-
nologies in the backend. This makes adoption of AI tech-
nology easy to use by workers without need of technical
expertise. The Kepler scientific workflow system[24,25] is
open source software making it affordable for SMMs.
Kepler scientific workflows are designed in a modular
manner to increase adaptability and reuse of cutting edge
Deep Learning applications to eventually deliver action-
able intelligence on the manufacturing floor.

6.1 | Objectives of scientific workflows

The goal is to build an affordable AI system for small and
medium scale industries, so operational teams across the
globe can leverage enhanced intelligence of AI-in-the-

loop manufacturing. The design goal is to create an AI
powered edge-computing framework that is maintain-
able, upgradable, intuitive to use, energy efficient and
can adapt to diverse manufacturing environments.

For SMMs, we designed a workflow-driven advanced
manufacturing architecture to provide affordable, scal-
able, accessible, and portable platforms. We demonstrate
the implementation of the proposed framework with
Kepler workflows that train AI models on high perfor-
mance computing (HPC) in the Cloud and provide intel-
ligence for improved decision making at the edge.

6.2 | Multi-layered scientific workflows
architecture

The architecture is driven by scientific workflows to bring
AI to the edge devices in a manner that is maintainable,
upgradable, and efficient in data requirements for
decision-making. At the core of the architecture is the
Kepler scientific workflow system, which serves to encap-
sulate and integrate AI tools in a simple, intuitive, and
easy to use interface layer. Kepler scientific workflows
are designed in a modular manner to increase adaptabil-
ity and reuse of cutting edge deep learning applications
to deliver actionable intelligence on the manufacturing
floor.

Figure 4. describes the modular multi-layered archi-
tecture that includes: (1) A core-computing layer that
delivers the necessary hardware capabilities at scale and
(2) a front-end layer that sits at the manufacturing site.
The data ingestion module provides multi format data
processing capability. The next layer provides data wran-
gling tools for resampling, cleaning, and parametrization
of the input signals. The third module enables loss opti-
mization of the ML model based on the tuning method
chosen such as stochastic gradient descent, adaptive
learning rate optimization, and so forth. Once the fine-
tuning of the ML model reaches stabilization, the model
can be deployed to the edge devices. A search index is
maintained and updated for fast information retrieval.
The architecture is robust to changes in hardware due to
containerized code deployment.[26] We have carefully
designed the system using the open source technologies
actively supported by a diverse set of developers. This
ensures long-term scalability of our system for low-
resource small to medium sized companies.

7 | RESULTS AND DISCUSSION

The development of the Smart Connected Worker system
and subsystem architectures is based upon use cases
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derived from the collective experience of five CESMII
members who participated in the Smart Connected
Worker roadmap project. These use cases provide the
framing for identification of actors and actions that form
the basis of the functional requirements that are used to
establish the SCW System Requirements Specification
from which the system architecture was developed. The
system architecture was used to implement a multi-agent
model to capture the causal relationship between human
workflows and energy consumption and to leverage
advanced manufacturing workers intelligence for effec-
tive decision making at the edge of manufacturing. Power
meters are used to capture power consumption signals
from machines and cameras to capture worker actions. A
machine-learning pipeline of skeleton-based action recogni-
tion is implemented to recognize worker actions with
respect to machine states.[27] Concurrently, an unsupervised
method is applied on the power signal to detect the state
transition of specific machine components, as demonstrated
in Reference [28] The design methodology of the two ML
agents leverages the causality underlying worker machine
interactions to develop two applications. The first applica-
tion provides a non-intrusive real time monitoring function
of the manufacturing workflow with interactive features.
The second application designs a simple messaging system
for workers to report the anomalies they observed by a
predefined alarm gesture - crossed-arms-above-head. When
this worker state is detected, the system is triggered to save
the past data for future analysis and for the identification of
anomaly causes. The worker action recognition algorithm

of the non-intrusive workflow monitoring is composed of a
cascaded NN where the first NN is a pose estimation soft-
ware to extract the skeletal representations of human bodies
from raw videos.[27] Compared to raw videos, the skeletal
representations that are matrices of (25� 3� number of
people in the scene) need much less bandwidth for data
transmission. The video streams we tested for the worker
action recognition algorithm and object detection are 640�
480 at a rate of 15 frames per second (about 0.7 Mbps using
H.264 coding). This requirement is sufficient which fits well
within the typical local area network bandwidth. Based
upon typical power ratings for CPUs and GPUs (approxi-
mately 350W combined), with the schema that we propose
(which can use a single camera to monitor multiple
machines and a single computing unit to service multiple
cameras) we estimate that the net energy savings (e.g., with
regard to machine idle time management) can be in excess
of five times the energy cost of sensing and computing
(i.e., intelligence).

The system architecture was also utilized for a real-
time 3D printing use case as illustrated in Figure 5. For
this application a YOLO-based object detection frame-
work takes as input the annotated images collected from
real-world working scenarios, trains on cloud platforms,
and deploys on edge computing devices for the real-time
detection of machine states and fault scenarios.

The proposed method is flexible to the heterogenous
environment of SMMs and can be readily scaled to detect
general machines by adjusting bounding boxes and
assigned labels during local dataset construction. This

FIGURE 4 Multi-layered scientific workflow architecture.
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framework achieved exceptional accuracy and inference
speed in the real-time monitoring of a 3D printer's
machine states, as demonstrated in.[29] Furthermore, the
proposed framework is also adaptable since the trained
model could be further improved (either at the edge or in
the cloud) when new datasets are made available.

The proposed framework of the human-machine
interaction monitoring has been exercised to create an
interactive VR guidance system for users of the 3D
printer as shown in Figure 6. A Hololens attached to the
operator's head captures the operator perspective and the
proposed model can deliver the finger and text recogni-
tion outputs to the VR displayed in front of the operator.

By analyzing the predicted output, the interactive real-
time guidance system prompts the user for the subse-
quent instructions and record the user's actions in real-
time for monitoring and later analysis.

With the proposed methodology, the user can also
refer to the hints and cues displayed on the Hololens to
operate the 3D printer correctly and more efficiently.
Experimental results with the use case of 3D printer oper-
ation proved to benefit both the operators in their opera-
tion of the machine and the supervisors in the real-time
supervision of the operators' actions. Comparison with
human baselines demonstrated the effectiveness and effi-
ciency of the proposed methodology.

FIGURE 5 Real-time machine state monitoring and fault detection.

FIGURE 6 Demonstration of the interactive VR guidance system.
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The multi-layer workflow-driven advanced manufactu-
ring architecture is successfully mapped to the overarching
SCW edge platform's off-site and on-site components in
Figure 1. We have developed and deployed end-to-end pre-
dictive solutions in two distinct manufacturing applications
that leverage the scientific workflow-driven manufacturing
design framework. The first application predicts WiFi
Received Signal Strength Indicator (RSSI) on a manufactur-
ing floor dynamically in real-time.[30] The edge-intelligent
Kepler workflow provides a real-time heat map of the WiFi
signal distribution spatially across the manufacturing floor.
This heat map empowers factory personnel to make data-
driven decisions when installing new machines for collect-
ing manufacturing process data to make automated deci-
sions and can be utilized as a computational engine to
provide geolocation for simulated human workflows.
Behind the scenes, a lightweight Docker container encapsu-
lates the Kepler workflows. This workflow leverages a
trained CNN model to predict WiFi antenna location in
real-time. The end-to-end training and execution of compu-
tationally expensive deep learning models on HPC is
orchestrated by Kepler workflows. In the second applica-
tion, the scientific workflow framework was leveraged to
train and execute ML at the edge to classify surface rough-
ness from speckle images generated by real time laser
refraction. We built a generalizable scientific workflow
which trains a Siamese Neural Network[31] to recognize

different surfaces (categories). As shown in Figure 7 the Sia-
mese Neural Network classifies an incoming image to
regions by calculating probabilities. The workflow-driven
framework enabled us to leverage this NN as a reduced
order model in edge computing devices.

These two use cases demonstrated Kepler workflow's
capability to orchestrate edge-aware computation and
their adaptability to a diverse set of deep learning appli-
cations. The modular design makes the framework scal-
able for a wide range of manufacturing scenarios that
aim to combine Computational Physics and ML to boost
manufacturing effectiveness.

Readers who would like to find the success factors of
the proposed methodology and the deployment case
study are encouraged to read Smart Connected Worker
Edge Platform for Smart Manufacturing: Part 2: Imple-
mentation and On-site Deployment Case Study.

8 | CONCLUSION

The system architecture of the proposed edge platform
was developed from a methodically derived SRS. The
architecture (and the SRS) could also be applicable to
other edge to cloud-based platforms for smart manufactur-
ing. For non-intrusive workflow monitoring and anomaly
identification, a multi-agent model was implemented to

FIGURE 7 Kepler scientific workflow with Siamese neural network.
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capture the relationship between human workflows and
energy consumption. Future directions include exploration
of additional case studies of the multi-agent software
model (with similar correlation-based ML agents) for
novel manufacturing applications in the fields of energy
efficiency, cybersecurity, and context awareness. In addi-
tion, the multi-agent features of the SCW architecture rep-
resent an ideal framework for developing real time
intelligent systems that not only adaptively ingests new
data features but are also capable of adaptively producing
new programming by deploying symbolic AI in combina-
tion with workflow engines like Kepler scientific
workflows. The SRS and system architecture were used to
develop real-time machine state monitoring and fault
detection for 3D printing that achieved excellent accuracy
and speed in the real-time monitoring of the machine
states. Future work in real-time machine state monitoring
will require introducing other machine signals, such as
energy consumption, to the machine state monitoring and
fault detection framework. By analyzing the predicted
machine states jointly with the energy consumption via
time series data, the proposed framework may be applica-
ble for optimizing energy usage between machines. In
addition to improving operational performance the plat-
form of human-machine interaction monitoring was
developed to create a VR guidance system for the 3D
printer users. Human-machine interaction is a compli-
cated topic that involves far more than just text output and
keystroke input. Therefore, future applications involve
combining the proposed visual-based methodology with
multimedia inputs, such as the machine's digital signal
and energy signature, to create more robust and compre-
hensive monitoring methods. The SRS derived system
architecture was also used to establish a scientific
workflow platform that has been utilized to create a vari-
ety of computational systems that include: (1) prediction
of real-time WiFi signal strength across the factory floor
for collecting manufacturing process data and (2) classifica-
tion of 3D printed surface roughness from laser refraction
(i.e., speckle) images. In the future, we would like to
extend the scientific workflow architecture to support
online-learning which can enable end-users, such as oper-
ations managers, to update the underlying model's train-
ing parameters, daily or weekly, by training on the most
recent manufacturing data collected by the edge devices.
Further, we would like to support reinforcement learning
capability where the underlying ML system continuously
learns from manufacturing outcomes and self-adjusts its
parameters to maximize the manufacturing performance.
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