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Abstract: Recent technological developments have attracted the use of machine learning technologies and 

sensors in various pavement maintenance and rehabilitation studies. To avoid excessive road damages, which 

cause high road maintenance costs, reduced mobility, vehicle damages, and safety concerns, the periodic 

maintenance of roads is necessary. As part of maintenance works, road pavement conditions should be 

monitored continuously. This monitoring is possible using modern distress detection methods that are simple 

to use, comparatively cheap, less labor-intensive, faster, safer, and able to provide data on a real-time basis. 

This paper proposed and developed two models: computer vision and sensor-based. The computer vision 

model was developed using the You Only Look Once (YOLOv5) algorithm for detecting and classifying 

pavement distresses into nine classes. The sensor-based model combined eight Controller Area Network 

(CAN) bus sensors available in most new vehicles to predict pavement distress. This research employed an 

extreme gradient boosting model (XGBoost) to train the sensor-based model. The results showed that the 

model achieved 98.42% and 97.99% area under the curve (AUC) metrics for training and validation datasets, 

respectively. The computer vision model attained an accuracy of 81.28% and an F1-score of 76.40%, which 

agree with past studies. The results indicated that both computer vision and sensor-based models proved 

highly efficient in predicting pavement distress and can be used to complement each other. Overall, computer 

vision and sensor-based tools provide cheap and practical road condition monitoring compared to traditional 

manual instruments. 

Keywords: pavement maintenance; XGBoost; CAN sensors in roads condition; YOLOv5; sensorbased model; 

pavement condition monitoring; Deep Learning models for road condition monitoring 

 

1. Introduction 

Road condition monitoring involves routinely surveying the road surface, identifying roadway 

deficiencies, and proposing corrective priorities. It continuously monitors the road to ensure that 

it provides a safe and smooth riding experience to the passenger and causes less damage to the 

vehicles [1]. A timely and well-planned road condition assessment can reduce roadway 

maintenance and operational costs. For instance, the total maintenance costs of paved roads are 

estimated at 2–3% of initial investment costs [2]. However, delays in maintenance cause the costs 

to increase with time [3]. 

Sahin et al. [4] pointed out five steps for road maintenance and rehabilitation (M&R): network 

inventory, condition assessment, needs analysis, project prioritization, and impact analysis. The 

road conditions monitoring process as a part of M&R ensures that road distresses are identified 

and addressed prevent further deterioration. Feldman et al. [5] classified the current road 

conditions monitoring processes into manual and automated categories. 

Manual road conditions monitoring involves qualified personnel using traditional survey 

forms and walking along the roads to visually check, measure, and record the 
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observed distress [6]. This method is labor-intensive, time-consuming, costly, and creates safety 

concerns for the surveyors who perform it during the daytime when traffic flows [7]. Sometimes, 

either one or more lanes must be closed to improve this method’s safety. 

However, this brings about another shortcoming, the disruption of traffic flow. 

Automated methods that have been used to date involve using special vehicles equipped with 

special sensors to detect and capture road defects [5]. These methods have advantages over 

manual techniques, such as being less dependent on human labor and rapid operation, ensuring 

timely reporting of defects and improved safety. However, these methods are expensive and cost 

authorities a lot of money [8]. 

Researchers have recently conducted several studies using machine learning (ML) approaches 

to provide less expensive and highly efficient road condition monitoring approaches [9]. These 

approaches involve various ML models developed either to only detect or to detect and classify 

pavement defects into multiple categories. The developed models are either computer vision-

based or sensor-based (vibration-based). 

The identification of pavement distresses using machine learning (ML) has the potential to 

contribute to sustainability in the construction and maintenance of pavements. ML algorithms 

can effectively and efficiently detect and classify pavement distresses, leading to targeted and 

prioritized maintenance, preventive maintenance, and improved quality control. This can reduce 

the overall cost of and resources needed for maintenance and the extension of pavement 

lifespan, thereby reducing the need for reconstruction and the environmental impact of raw 

material extraction. Furthermore, extending pavement lifespan through effective maintenance 

can contribute to reducing carbon emissions associated with pavement construction and 

maintenance. 

This paper aims to prepare a computer vision model for detecting and classifying pavement 

distresses based on Deep Learning (DL) and compare its performance to the sensor-based model. 

The paper also aims to combine eight Controller Area Network (CAN) bus sensors to develop a 

sensor-based model that predicts the presence of pavement defects once vehicles equipped with 

these sensors are driven over said defects. The two models can be used by road authorities to 

automate the process of collecting road condition data. The sensors’ model can complement the 

vision-based model in adverse weather conditions, where computer vision is ineffective. 

The remainder of this paper is organized as follows: Section 2 provides a summary of recent 

studies that applied machine learning approaches to prepare models for road condition 

monitoring, Section 3 discusses the source of data used, model selection, model training, and 

results, and Section 4 presents the conclusion and conclusion remarks. 

2. Literature Review 

In literature, various studies have conducted research to detect and classify pavement 

distress using different DL methods based on computer vision and vibrations (sensors). 

Computer vision-based models involve the use of images in model training. For instance, Wang et 

al. [10] used 5000 images to develop a convolutional neural network (CNN) model for detecting 

cracks in asphalt pavements. In this study, the trained model achieved an accuracy of 96.32 and 

94.29% on training and testing data, respectively. Similarly, Kim et al. [11] developed an AlexNet 

CNN model trained for crack detection with images scraped from the internet and achieved 

precision and recall values greater than 90%. The model also detected cracks from real-time video 

with 81% and 88% recall and precision, respectively. CrackNet CNN was employed by Zhang et al. 

[12] in developing a model for automated pixel-level pavement crack detection using 1800 three-

dimensional (3D) images. The testing of 200 3D images showed that the model achieved 90.13%, 

87.63%, and 88.86% values in precision, recall, and F1-score, respectively. Also, Zhang et al. [13] 

developed a model for automated pixel-level crack detection on 3D asphalt pavement surfaces 

using CrackNet-R recurrent neural network (RNN). The model was trained on 3000 3D images and 

tested on 500 3D images. The testing results showed that the model achieved 88.89% precision, 

95.00% recall, and 91.84% F1-score. 

Also, Maeda et al. [14] developed a vision-based DL model based on a Single Shot MultiBox 

Detector (SSD) algorithm using 9053 road damage images captured using a smartphone installed 

on a car dashboard. The model achieved recall and precision values of more than 71% and 77%, 
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respectively. Similarly, Maeda et al. [15] investigated road damage detection using artificial images 

in DL models developed by generative models, such as a generative adversarial network (GAN). 

The results showed that the F1-score of the model improved by 2% and 5% when the proportion 

of original images was small and large, respectively. 

Other researchers developed sensor-based models using various sensors to predict the 

presence of defects on road surfaces. Aleadelat et al. [16] used smartphone accelerometers to 

determine International Roughness Index (IRI) and achieved an adjusted R2 of 0.8. Souza et al. [17] 

used sensor data collected from smartphone accelerometers and complexity invariant distance to 

develop an ML model. The model achieved a classification accuracy of 80% to 98%. Similarly, 

Christodoulou et al. [18] used vibration sensors to detect pavement patch defects using 

smartphone images. The results showed that the vibration-based approaches were efficient; 

however, they failed to cover the entire roadway and could not detect non-vibration-induced 

defects. To address this observed shortcoming, a vision model was developed instead. Also, 

Sandamal et al. [19] used onboard diagnostic devices and smartphone sensors to develop a low-

cost road condition monitoring system for detecting road potholes. The system confirmed 

smartphone sensor data to be effective in the prediction of potholes. 

In her study, Pomoni [20] explored the use of smart tires in vehicles to detect the tire–road 

friction. The review of 105 references revealed how different sensors can be embedded in vehicle 

tires and assist in the detection of road surface conditions to enhance driver comfort. 

Ameddah et al. [1] developed a model using smartphone sensors based on k-means clustering 

algorithms and achieved 88.67% accuracy in real-time road pavement monitoring. In another 

study, Ahmed et al. [21] used Traffic Speed Deflectometer (TSD) data to predict pavement 

structural conditions using Random Forest, XGBoost, and logistic regression models. The models 

achieved 65%, 69%, and 57% accuracy, respectively. Lekshmipathy et al. [22] compared the 

performance of vibration-based and vision-based approaches for automated distress detection 

using ML. This study employed a vibration-based method using a smartphone accelerometer and 

gyroscope as well as a vision-based method using video processing. The developed models 

achieved 80% and 84% accuracy for the vibrationbased and vision-based models, respectively. 

Results were validated manually on-site and revealed that the first approach is sufficient for routine 

monitoring purposes while the latter is more appropriate for detailed analysis. 

In summary, the literature review revealed that no past studies had used CAN bus sensors to 

predict pavement distress. This study aimed at preparing a pavement detection model based on 

CAN bus sensors and compares the performance of said model with the computer vision-based 

model. The vision-based model is prepared based on the YOLOv5 algorithm. 

3. Methodology 

This section explains the methods used in data collection, processing, model selection, 

model preparation, analysis, and evaluation of results. These methods are summarized in Figure 

1 and discussed in more detail in the following subsections. 
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Figure 1. Flow chart of research methodology. 

3.1. Data Collection 

3.1.1. Vision-Based Data 

Image datasets used in this study were collected from various sources on the internet to train 

the vision-based model. The datasets contained images of road pavement surfaces collected from 

multiple countries, including the United States, Japan, India, and the Czech Republic. The German 

Asphalt Pavement Distress (GAPs) dataset, which includes a total of 1969 gray-valued images [23], 

and the CRACK500 dataset, which consists of 500 Red– Green–Blue (RGB) images of pavement 

cracks approximately 2000 × 1500 pixels in size that were collected on the main campus of Temple 

University using cell phones were used in this study [24]. In addition, the Road Damage dataset 

was used, which consists of 9053 labeled road images 600 × 600 pixels in size, was acquired from 

a smartphone camera installed on the dashboard of a car [14]. This paper randomly selected 3500 

images from these datasets using an excel spreadsheet with the “RAND” command. The final 

dataset was obtained after the excel spreadsheet was randomized three times. This dataset was 

then divided into 80% and 20% ratios for model training and validation, respectively, and 350 

images (10% of the image dataset) were added to the training dataset as background images to 

reduce the effect of False Positives (FPs) [25]. 

3.1.2. Sensor-Based Data 

The sensor-based dataset was collected from the American Honda Motor Co., Inc. It was 

extracted from a data collection called ‘Toward Driving Scene Understanding: A Dataset for 

Learning Driver Behavior and Causal Reasoning’ by Ramanishka et al. [26]. The dataset includes 

104 hours of actual human driving in the San Francisco Bay Area collected using an instrumented 

vehicle equipped with different sensors with driving speeds ranging from 0 mph to 120 mph. The 

dataset comprises video and sensor readings recorded on various road sections for all types of 

roads (based on functionality). 

Videos 

This study selected five videos from the dataset to represent all speeds ranging from 0 mph 

to 120 mph and all road classes. These videos were used to generate frames (images) for model 

testing. Figure 2 below shows sample images with different types of road surface distress. 

Sensors 

For every video, there was a set of nine sensor readings recorded. The sensor recordings 

include iso-time stamp, real-time kinematic (RTK) position, real-time kinematic (RTK) track, 

acceleration pedal angle, brake pedal, turn signal (left turn & right turn), steer (steer angle & steer 

speed), speed, and yaw. These readings were recorded using Controller Area Network (CAN) bus 

sensors. The first three readings were not used in this study since they are not affected by the road 

surface condition. Figure 3 presents sample plots for the remaining sensor readings. The plots are 

from the first 20,000 (out of 265,000 readings associated with the five sample videos) readings (y-

axis) plotted against the frequencies 

(x-axis). 
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 (a) Longitudinal cracks  (b) Longitudinal cracks and patches  

Figure 2. Distress on frames extracted from videos. 

 

Figure 3. Cont. 

( a )  Acceleration pedal angle ( b )   Brake pedal pressure 

( c )   Steer angle (degrees) ( d )   Steer speed (mph) 
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Figure 3. Plots to show sensor readings. 

The videos that were recorded simultaneously with the sensor readings in the above Figure 

3 were analyzed to identify the distresses on the road along the vehicle path. The distresses of 

interest in this study were those located only within the right-of-way where vehicles typically 

travel. This is because the rest of the distresses did not affect the ride if the vehicle tire did not 

pass over them. A value of 1 was assigned for observed distresses, and a 0 for places with no 

distresses. Figure 4 below shows a sample distress distribution along the road. 

 

Figure 4. Presentation of observed distresses. 

3.2. Model Selection 

3.2.1. Vision-Based Model 

A computer vision model was developed using the YOLOv5 algorithm. It was selected because 

of its advantages [27]. These advantages include ease of exporting to other file formats 

( e )   Turn signal (left turn) ( f )   Turn signal (right turn) 

( g )   Speed (mph) ( h )   Yaw (degrees/s) 

  
Figure 4.  Presentation of observed distresses.  
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(exportability), its high accuracy value, ease to use, small memory requirements of about 88% 

compared to YOLOv4 (27 MB vs. 244 MB), and its high speed (about 180% faster than YOLOv4, 140 

FPS vs. 50 FPS). 

Yolov5 Architecture 

Figure 5 presents the architecture of YOLOv5. The model consists of three main parts: The 

Backbone, Neck (PAnet), and Head (YOLO Layer). These parts play different roles in the model. The 

Backbone extracts vital features from an input image by reducing the spatial resolution of the input 

image and increasing its feature (channel) resolution. YOLOv5 uses Cross Stage Partial Network 

(CSP-Darknet53) as a backbone. The CSP extracts beneficial characteristics from an input image 

and passes them to the model neck. The model neck creates feature pyramids that aid the model 

simplification during object scaling. This simplification helps recognize the same object in various 

sizes and scales. Feature pyramids help assist the models in performing efficiently on previously 

unseen data. The final detection step is carried out in the Model Head, which uses anchor boxes 

to construct final output vectors with class probabilities, abjectness scores, and bounding boxes. It 

is used to perform the last stage of operations. 

 

Distress Classification 

The computer vision model’s purpose was to detect and classify pavement distress into nine 

groups. The groups include Fatigue/Alligator, Block Cracks, Transverse Cracks, Longitudinal Wheel 

Path Cracks, Longitudinal Non-Wheel Path Cracks, Edge, Joint, and reflective Cracks, Patches, 

Potholes, Raveling, Shoving, and Rutting. The classification is based on the Distress Identification 

manual by the United States Department of Transportation [6]. 

3.2.2. Sensor-Based Model 

This study uses Deep Learning (DL) to predict the presence of distress using sensors. The 

expected output is either 1 (distress present) or 0 (distress absent). Therefore, a classification 

model (type of supervised learning) is selected. 

  

  



Sustainability 2023, 15, 6438 8 of 18 

Several classification models have been used to date [28]. In this study, the XGBoost model 

has been selected because of its advantages over other approaches. These advantages include 

ease of use, high computational efficiency, and high model accuracy compared to algorithms like 

Random Forest (RF) and logistic regression [21]. This model was used to train on all eight sensors 

combined to predict the distresses. 

XGBoost Model Architecture 

XGBoost stands for Extreme Gradient Boosting. It is a popular boosting algorithm for 

regression and classification purposes. It uses successive iterations to improve the errors of base 

estimators by taking multiple weak learners. In this model, decision tree classifiers are used as base 

estimators. If data is not complicated, XGBoost creates an ensemble of linear models. It can also 

create an ensemble of a gradient-boosted tree (gbtree), which utilizes a decision tree as a base 

estimator. It first establishes a base model that predicts the target variable, and subsequent models 

are trained to fit the residuals from the previous steps. The XGBoost algorithm uses decision trees 

in a sequential form. This algorithm assigns weights to all the independent variables, which are 

then fed into the decision tree, which predicts results. The weight of variables predicted incorrectly 

by the tree is increased, and the variables are then fed to the second decision tree. These individual 

classifiers then ensemble to give a stronger and more precise prediction model. Figure 6 shows the 

flowchart of this model. 

(i) Decision Tree 

A decision tree is a building block of an XGBoost model. It has a flowchart-like tree structure, 

where each internal node denotes a test on an attribute, each branch represents an outcome of 

the test, and each leaf node (terminal node) holds a class label. It is commonly used for 

classification and regression models. A tree can be seen as a piecewise constant approximation. 

The output of an XGBoost model does not depend on a single decision tree since every decision 

tree has a high variance. The best method to improve the outcome is to combine several trees; 

when multiple trees are combined and perfectly trained on sample data, the overall (resultant) 

variance is low. In the case of a classification problem, the final output is taken using the majority 

voting classifier. 

(ii) Boosting 

In the boosting technique, weak classifiers are used to build a robust classifier, achieved by 

building weak classifiers in series. The first step involves creating the model from training data. The 

second step consists in making the second model that tries to correct the errors in the first model. 

The process continues until the complete dataset is predicted or the maximum number of models 

is added, as shown in Figure 5. 

To assess the prediction performance, the Loss (L) is calculated using Equation (1), where yi 

stands for the actual value of data and pi stands for the corresponding predicted value. The overall 

loss of the algorithm is shown in Equation (2). 

 L(yi, pi) =  (1) 

 (yi, pi) =  (2) 
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Figure 6. XGBoost model flowchart. 

3.3. Model Training 

3.3.1. Vision-Based Model 

The model was trained on the Google Colaboratory (Google Colab) environment. The 

training parameters were fine-tuned to achieve desirable results. Table 1 shows the final values 

obtained from the training. 

Table 1. Training parameters. 

S/N Parameter Value 

1 Batch Size 40 

2 Epochs 150 

3 Learning Rate 0.01 

4 Optimizer SGD = 1 × 10−2 

5 Anchor Sizes Dynamic 

3.3.2. Sensor-Based Model 

The XGBoost model was trained on a Windows 10 Pro with NVIDIA GEFORCE 

GTX GPU, AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz, and 16 GB RAM using 

TensorFlow. All eight sensor readings were combined into a single excel spreadsheet file for 

training and to check their influences on the prediction of distress made by the model. Table 2 

shows the hyperparameters used in the initial training. The initial training aimed to obtain the 

optimum training parameters. When completed, hyperparameter tuning was done using 

GridSearchCV. This optimum value was achieved by setting initial hyperparameter lists, as shown 

in Table 2. These values and their ranges are provided by 
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XGBoost developers [29]. After initial training, the outputs were plotted to demonstrate the 

estimated model’s optimum number of trees and tree depth. 

Table 2. (a) Initial training hyperparameters. (b) Hyperparameter sets. 

S/N Parameter Value 

 (a)  

1 learning rate 0.1 

2 max depth 3 

3 n_estimators 5000 

4 subsample 0.5 

5 colsample_bytree 0.5 

 (b)  

1 learning_rate_list [0.02, 0.05, 0.1] 

2 max_depth_list [2, 3, 5] 

3 n_estimators_list [1000, 2000, 3000] 

Figure 7 shows plots of the results of the model performance. The table indicates that the 

model performs best at a maximum depth of 5 and higher values of trees. 

 

Figure 7. Model Performance at a different number of trees and tree depths. 

Figure 8 shows the model performance at various learning rates, which shows that the 

performance is optimum at 0.05. Therefore, the optimal training parameters are learning rate = 

0.05, maximum depth = 5, and the number of estimators (n_estimators/ number of trees) = 3000, 

subsample = 0.5, and colsample_bytree = 0.5. 

  



Sustainability 2023, 15, 6438 11 of 18 

 

3.4. Performance Metrics 

3.4.1. Vision-Based Model 

The performance of the vision-based model developed using the YOLOv5 algorithm is 

assessed based on precision, recall, average Mean Precision (mAP), and F1-score. Equations (3)–

(6) show that the four metrics are measures of True Positives (TP), False 

Positives (FP), and False Negatives (FN). FP is the measure of how the model makes wrong 

predictions, FN measures how the model misses the detections, and TP is the measure of correct 

detections done by the model. APk stands for the average precision of class k, and n stands for the 

total number of classes. 

The F1-score is the harmonic mean of precision and recall. It is a good performance 

measure for imbalanced data since it considers how data is distributed [30]. Equation (8) shows 

F1-score computation, where P stands for Precision and R stands for recall. 

True Positives 

 Precision =  (3) 

True Positives + False Positives 

True Positives 

 Recall =  (4) 

True Positives + False Negatives 

1 k=n mean Average Precision 

(mAP) = n∑k=1 APk (5) 

 F1score  (6) 

3.4.2. Sensor-Based Model 

Metrics 
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The performance of an XGBoost model is assessed using a Pearson correlation, accuracy, and 

F1-score. The Pearson correlation coefficient (ρr,p) between two arrays (R,P) is defined as the 

covariance between array R and array P divided by the product of their respective standard 

deviations (σr,σp). Its value ranges from −1 to 1, where a value −1 means perfect negative 

correlation, 0 means no correlation, and 1 means a perfect positive linear relationship between 

the two values. Equation (7) shows the mathematical expression of the Pearson correlation [31]. 

 cov(R, P) E((R −µr)(P −µp)) 

ρr,p = = (7) σrσp σrσp 

where: µr stands for the mean of R—array, µp stands for the mean of P—array, and E((R −µr)(P −µp)) 

represents the average value of (R,P) that is expected in a long sequence of repeated trials of the 

random experiment. 

Accuracy is the ratio of all correct predictions to the total number of predictions. It is 

obtained as a ratio of the sum of True Positives (TP) and True Negatives (TN) to the total number 

of predictions sample size, as shown by Equation (8). The F1-score is presented in 

Equation (6). 

True Posives + True Negatives 

 Accuracy =  (8) 

Total Sample Size 

Feature Importance Assessment 

The sensor-based model was prepared using a combination of 8 different sensors. All sensors 

contributed to the final model results and performance. Feature Importance 

Assessment (FIA) was done to assess the extent to which individual sensors contribute to the final 

results. Figure 9 presents the results of this analysis. The results show that the prediction made by 

the model is mainly influenced by the steering angle at 26.70% and influenced the least by steer 

speed at 5.30%. 

 

Figure 9. Feature importance to the model predictions. 

3.5. Results and Analysis 

  

yaw (degrees/s),  

8.10 % streer speed  

( mph), 5.30% 

steer ange  

( deg), 26.70% 

velocity  

( mph), 14.94% 

break pedal  

pressure  

( kPa), 14.90% 

pedal angle  

( percent),  

11.13 % 

turn signal (r- 

turn), 9.90% 

turn signal (l- 

turn), 9.03% 

FEATURE IMPORTANCE 



Sustainability 2023, 15, 6438 13 of 18 

3.5.1. Results of Vision-based Road Surface Detection Model 

Figure 10 shows the precision–recall curves (PR curves). The curves show how the precision 

values vary with the increase in recall values during training. It shows that the model attained an 

overall mean average precision (mAP@0.5) of 93.9% in all pavement classes. All curves are close 

to each other and are concentrated in the upper right corner, which indicates that the model can 

predict and classify the distresses with high accuracy. 

 

Figure 10. Precision–recall curve. 

Figure 11 shows how the F1-score changes with the increase in confidence during training. 

The model attained an overall F1-score of 82%, indicating good accuracy under this metric [30]. 

3.5.2. Results of Sensor-based Road Surface Detection Model 

Figure 12 shows how the values of AUCs change with the increase in the number of trees. 

The XGBoost model achieved an accuracy of 81.28% and an F1-score of 76.40%, implying that the 

model can predict distresses with high accuracy. Also, the trained model reached 98.42% AUC in 

the training dataset and 97.99% in the validation dataset, using the Area Under the Curve (AUC) 

metrics. The figure shows that the values of AUC increase sharply with the number of trees from 

0 to 500, then the rate of increase decreases and becomes almost constant as the number of trees 

approaches 3000. This observation implies that the training process has been successful, and there 

is no overfitting. Also, these results show that the developed model has high prediction accuracy 

since the AUC value above 90% indicates high prediction accuracy, while AUC between 70% and 

90% presents moderate accuracy. An AUC of less than 70% means poor prediction accuracy of the 

model [32]. 
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Figure 11. F1 confidence curve. 

 

Figure 12. Train and validation AUC versus the number of trees. 

3.6. Score the Test Data 
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This paper used 20,000 arrays of sensor-based data for testing purposes to see how the model 

detects pavement distresses. The distresses detected by the computer vision-based models and 

the sensor-based models were used to make separate arrays, and Pearson correlation analysis was 

done using the Pandas library in Python. Figure 13 shows the confusion matrix for actual versus 

predicted distresses. The matrix shows a correlation of 83% between the distresses detected by 

the computer vision-based model and those detected by the sensor-based model. 

 

Figure 13. Confusion matrix for Actual versus Predicted distresses. 

Figure 14 below shows the relationship between the observed distresses (ground truth) and 

the model-predicted distresses (model-predicted). The overlaps between the two lines indicate 

that the model prediction was in agreement with the actual condition on-site. This plot shows that 

the model can predict most of the distresses and can be used with high accuracy. 
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Figure 14. Relationship between predicted and actual distresses observed. 

4. Conclusions 

This study has proposed models for detecting pavement distress as a measure of road 

condition monitoring. The models comprise both computer vision and sensor-based approaches. 

The study used freely available data from the internet and Honda Motors Company [26]. In 

developing the vision model, this study used YOLOv5 algorithm that was trained on 3500 images. 

The model achieved 95%, 93.4%, 97.2%, and 94% values in precision, recall, mean average 

precision, and F1-score, respectively. The sensor-based model was developed using the XGBoost 

model. The model was trained on eight different CAN bus sensors combined. The model achieved 

98.42% and 97.99% in training and validation using area-under-curve (AUC) metrics, compared to 

83.04% achieved by Chen et al. [33] using the XGBoost model. The results obtained in this paper 

also fall within the high accuracy range of an AUC above 90% [32]. In comparison, AUC that lies 

between 70% and 90% presents moderate accuracy and an AUC of less than 0.7 indicates a poor 

prediction. In conclusion, the results obtained in this paper showed that different CAN bus sensors 

could be used to predict the presence of pavement distresses with high accuracy and therefore, 

they can be used to complement the vision-based model in adverse weather conditions. 

Limitations and Recommendations of the Study 

This paper prepared a CAN bus sensor model to predict the presence of pavement distresses 

without classification of the distress types. There is a need to conduct further research to employ 

sensors and develop models that can detect and classify pavement distresses simultaneously. In 

some conditions where the vision-based model does not perform well, a model pooling technique 

can be employed where the sensor-based model can complement the vision-based model. This 

pooling technique will assist in capturing the distresses during adverse weather conditions, such 

as rainy weather or wet road surfaces—i.e., where the poor performance of the vision-based 

model is observed. 
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