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Range aggregate queries (RAQs) are an integral part of many real-world applications, where, often, fast and

approximate answers for the queries are desired. Recent work has studied answering RAQs using machine

learning (ML) models, where a model of the data is learned to answer the queries. However, there is no

theoretical understanding of why and when the ML based approaches perform well. Furthermore, since the ML

approaches model the data, they fail to capitalize on any query specific information to improve performance

in practice. In this paper, we focus on modeling łqueriesž rather than data and train neural networks to

learn the query answers. This change of focus allows us to theoretically study our ML approach to provide

a distribution and query dependent error bound for neural networks when answering RAQs. We confirm

our theoretical results by developing NeuroSketch, a neural network framework to answer RAQs in practice.

Extensive experimental study on real-world, TPC-benchmark and synthetic datasets show that NeuroSketch

answers RAQs multiple orders of magnitude faster than state-of-the-art and with better accuracy.
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1 INTRODUCTION

Range aggregate queries (RAQs) are intrinsic to many real-world applications, e.g., calculating
net profit for a period from sales records or average pollution level for different regions for city
planing [23]. Due to large volume of data, exact answers can take too long to compute and fast
approximate answers may be preferred. In such scenarios, there is a time/space/accuracy trade-off,
where algorithms can sacrifice accuracy for time or space. For example, consider a geospatial
database containing latitude and longitude of location signals of individuals and, for each location
signal, the duration the individual stayed in that location. A potential RAQ on this database, useful
for understanding the popularity of different Points of Interests, is to calculate the average time
spent by users in an area. Approximate answers within a few minutes of the exact answer can be
acceptable in such applications. We use this scenario as our running example.
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Research on RAQs has focused on improving the time/space/accuracy trade-offs. Various methods
such as histograms, wavelets and data sketches (see [13] for a survey) have been proposed to model
the data for this purpose. Recent efforts use machine learning (ML) [15, 23, 35] to improve the
performance. Such approaches learn models of the data to answer RAQs. Experimental results
show ML-based methods outperform non-learning methods in practice.
Nonetheless, there is no theoretical understanding of when and why an ML based approach

performs well. This is because modeling data makes it difficult to reason about the performance
of specific queries. That is, some queries may be easier to answer than others, e.g., average value
of one attribute may be constant for different query ranges, while that of another attribute might
change drastically. Furthermore, modelling the data misses the opportunity to utilize information
about queries in practice. For instance, patterns in query answers can be used to learn a compact
representation of the data with respect to the queries, improving the performance, while there may
be no such patterns within the entire dataset.

In this paper, instead of learning data models, we propose to learn query models. In our example
of calculating the average visit duration for a POI, the input to a query model is the POI location
and the model is trained to output the average visit duration for the POI. Query modeling skips
learning explicitly the data distribution and instead learns query answers, so that we can explicitly
relate errors in modeling to errors in query answering. Nevertheless, this is non-trivial and requires
a detailed study of modelling errors. To the best of our knowledge, no existing attempt in the
literature theoretically relates data and query properties to the error of a learned model when
answering RAQs.
We utilize neural networks as our query model. Specifically, we consider training a neural

network that takes as input an RAQ and outputs the answer to the query. We theoretically study
this approach, and provide, for the first time, a Data distribution and Query Dependent error bound

(hereafter referred to as DQD bound) for neural networks when answering RAQs. DQD bound
theoretically relates properties of the data distribution and the RAQ to the accuracy a neural
network can achieve when answering the query.
In our theoretical analysis, we consider AVG, COUNT and SUM queries, assume the database is a

collection of i.i.d samples from a data distribution and make a suitable Lipschitz assumption on
the query and data distribution. We then use VC-sampling theory and our novel result on neural
network approximation power to show the existence of a neural network that can answer the
queries on the database with bounded error. The bound gets tighter (i.e., more accurate neural
networks can be learned) as the data size, or query range, increases. Alternatively, a smaller neural
network can be used to answer queries with a fixed desired error when the data size, or query
range, increases. Intuitively, this is a result of the reduction in variance (due to sampling) of
query answers when the database is larger, because more data points are sampled from the data
distribution. Furthermore, our results utilize the Lipschitz property to provide a complexity measure
that quantifies the difficulty of answering a query from a data distribution. Using the complexity
measure, our results show settings where existence of a small neural network with low query
answering error is guaranteed.

To confirm our theoretical results, we design NeuroSketch, a neural network framework that an-
swers RAQs orders of magnitude faster than state-of-the-art and with better accuracy. NeuroSketch
uses DQD results to allocate more model capacity to queries that are difficult to answer, thereby
reducing error without increasing query time. While DQD provides a theoretical grounding for
NeuroSketch, in practice NeuroSketch is not limited to some of the assumptions we made to prove
DQD bounds, for example, it can answer more general RAQs, such as STD and MEDIAN.
To summarize, our major contributions are:
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• We present the first theoretical analysis for using ML to answer RAQs. This includes a novel
analysis framework, a novel use of VC-sampling theory and a novel result on neural network
approximation power.
• We show theoretically how data distribution, data size, query range and aggregation function
are related to the neural network error when answering RAQs. This opens the possibility
for a query optimizer that, for a data distribution, decides when to build and use a neural
network for query processing.
• To confirm our theoretical results, we design NeuroSketch, the first neural network framework
to answer generic RAQs.
• Extensive experiments show that NeuroSketch provides orders of magnitude gain in query
time and better accuracy over state-of-the-art, (DBEst [23] and DeepDB [15]) on real-world,
TPC-benchmark and synthetic datasets.

We present our problem definition in Sec. 2, DQD bound in Sec. 3, NeuroSketch in Sec. 4, our
empirical study in Sec. 5, related work in Sec. 6 and conclude in Sec. 7.

2 PROBLEM DEFINITION

Problem Setting. Consider a dataset 𝐷 with 𝑛 records and 𝑑 attributes, 𝐴1, ..., 𝐴𝑑 . Assume records
of 𝐷 are random i.i.d samples from a data distribution 𝜒 and 𝐴𝑖 ∈ [0, 1] with probability 1 for all
1 ≤ 𝑖 ≤ 𝑑 (otherwise the attributes can be normalized). We first consider the following SQL query
and discuss extensions to general RAQs in Sec.4.3.

SELECT AGG(𝐴𝑚) FROM 𝐷 WHERE

𝑐1 ≤ 𝐴1 < 𝑐1 + 𝑟1 AND ... AND 𝑐𝑑 ≤ 𝐴𝑑 < 𝑐𝑑 + 𝑟𝑑
For any 𝑖 , 𝑐𝑖 and 𝑐𝑖 + 𝑟𝑖 are the lower and upper bounds on the attribute 𝐴𝑖 . 𝑐𝑖 and 𝑟𝑖 can be 0

and 1, respectively, in which case there are no restrictions on the values of 𝐴𝑖 in the query. We
say that an attribute is not active in the query in that case, and is active otherwise. AGG is a user
defined aggregation function, with examples including SUM, AVG and COUNT aggregation functions.
𝐴𝑚 is called the measure attribute, where𝑚 is an integer between 1 and 𝑑 . Let c = (𝑐1, ..., 𝑐𝑑 ) and
r = (𝑟1, ..., 𝑟𝑑 ) be 𝑑-dimensional vectors. We call the pair q = (c, r) a query instance. Different query
instances correspond to different range predicates for the measure attribute 𝐴𝑚 and aggregation
function AGG. We define the function 𝑓𝐷 (.) so that for a query q, 𝑓𝐷 (q) is the answer to the above
SQL statement. We call 𝑓𝐷 : [0, 1]𝑑 → R a query function, where 𝑑 = 2𝑑 is the dimensionality of the
query function. Furthermore, we define 𝒬 = {(c, r) ∈ [0, 1]𝑑 , 𝑐𝑖 + 𝑟𝑖 ≤ 1∀𝑖} as the set of all possible
queries.

Example 2.1. Consider a database of user location reports and the duration a user stayed in the
reported location, shown in Fig. 1 (left). On this database, consider the RAQ of returning average visit
duration of users in a 50m×50m rectangle with bottom left corner at the geo-coordinate (𝑐1, 𝑐2). The
query function, 𝑓𝐷 (𝑐1, 𝑐2) := 𝑓𝐷 (𝑐1, 𝑐2, 50𝑚, 50𝑚), takes as input the geo-coordinate of the rectangle
and outputs the average visit duration of data points in the rectangle (we have fixed 𝑟1 and 𝑟2 to 50m
in this example). Fig. 1 (right) plots 𝑓𝐷 (𝑐1, 𝑐2), which shows, 𝑓𝐷 (−95.3615, 29.758, 50𝑚, 50𝑚) = 9,
i.e., for query instance (-95.3615, 29.758, 50m, 50m) the answer is 9.

Neural Networks to Answer RAQs We learn a neural network, 𝑓 (.;𝜃 ), to approximate the
query function, 𝑓𝐷 (.). The neural network takes as input an RAQ, q. The model forward pass

outputs an answer, 𝑓 (q;𝜃 ). The goal is to train a neural network so that its answer to the query,

𝑓 (q;𝜃 ), is similar to the ground-truth, 𝑓𝐷 (q). If such a neural network is small and can be evaluated
fast, we can use the neural network to directly answer the RAQ efficiently and accurately, by
performing a forward pass of the model.
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Fig. 1. (left) Database of location signals. (right) Avg. visit duration query function. Color shows visit duration

in hours

Problem Statement. Let Σ(𝑓 ) be the space complexity of the neural network, which is the

amount of space required to store all its parameters. Let 𝜏 (𝑓 ) be its query time complexity, which is

the time it takes to perform a forward pass of the neural network. We study the error, ∥ 𝑓𝐷 − 𝑓 ∥, in
answering queries, where wemostly consider the 1-norm, defined as ∥ 𝑓𝐷− 𝑓 ∥1 =

∫

q∈𝒬 |𝑓𝐷 (q)− 𝑓 (q) |
or∞-norm, defined as ∥ 𝑓𝐷 − 𝑓 ∥∞ = supq∈𝒬 |𝑓𝐷 (q) − 𝑓 (q) |. The problem studied in this paper is

learning to answer range aggregate queries with time and space constraints, formulated as follows.

Problem 1. Given a query function 𝑓𝐷 , class of possible neural networks, ℱ , and time and space

requirements 𝑡 and 𝑠 , find

argmin
𝑓 ∈ℱ
∥ 𝑓𝐷 − 𝑓 ∥ s.t. Σ(𝑓 ) ≤ 𝑠 , 𝜏 (𝑓 ) ≤ 𝑡 .

Notation. Bold face letters, e.g., c, denote vectors, and subscripts denote the elements of a vector,
e.g., 𝑐𝑖 is the 𝑖-th element of c.

3 DQD BOUND FOR NEURAL NETWORKS ANSWERING RAQS

We theoretically study the relationship between the accuracy a neural network can achieve when
answering RAQs and data and query properties. Sec. 3.1, states our Data distribution and Query
Dependent error bound (DQD bound) when considering SUM and COUNT aggregation functions,
and discusses its implications. We prove the bound in Sec. 3.2. We present results for AVG query
function in Sec. 3.3 and discuss how our techniques can be generalized to other query functions
and modelling choices.

3.1 DQD Bound Statement

3.1.1 Incorporating Data Distribution. The data distribution, 𝜒 , underlying a database, 𝐷 , impacts
the difficulty of answering queries on the database with a neural network. For instance, in Exam-
ple 2.1, if all users have the same visit duration for all their visits, the query function 𝑓𝐷 (𝑐1, 𝑐2)
will be constant, and thus can be easily modeled. On the other hand, the skewness in the data
distribution, as depicted in Fig. 1, can make answering queries more difficult as the query function
𝑓𝐷 (𝑐1, 𝑐2) changes drastically from one location to another. Importantly, this is a property of the
data distribution, 𝜒 , and not only of the observed database 𝐷 . For instance, we expect similar
skewness in observations if we collect more user data (i.e., as 𝐷 grows), or if location data are
collected from a different period of time not covered in 𝐷 (i.e., a different sample of 𝜒). Thus, by
incorporating data distribution in our analysis, we are able to study the impact of data size as well as
properties intrinsic to the distribution (that will be unaffected by the randomness in observations)
on answering RAQs. To do so, (1) we need to capture the dependence of query answers on data
distribution and (2) find a means of measuring the complexity of modeling query answers when
data follows a certain distribution.

To capture the dependence on data distribution, we define distribution query function, 𝑓𝜒 (q), as
the expected value of the query function, i.e., 𝑓𝜒 (q) = E𝐷∼𝜒 [𝑓𝐷 (q)], where 𝐷 is sampled from data
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distribution, 𝜒 . We refer to the query function, 𝑓𝐷 (q), as observed query function to distinguish it
from distribution query function.

To capture the difficulty of modeling a function, we use the 𝜌-Lipschitz property. A function, 𝑓 ,
is 𝜌-Lipschitz if |𝑓 (x) − 𝑓 (x′) | ≤ 𝜌 ∥x − x′∥1, for all x and x′ in the domain of the function, where
we consider 𝜌-Lipschitz property in 1-norm. Intuitively, 𝜌 captures the magnitude of correlation
between x and 𝑓 (x). It bounds how much 𝑓 (x) can change with a change in x. If 𝜌 is large, 𝑓
can change abruptly even with a small change in x. This makes the function more difficult to
approximate, as more model parameters will be needed to account for all such possible abrupt
changes.
Combining the above, we propose to use the Lipschitz constant of the normalized Distribution

Query function, referred to as LDQ, as a measure of difficulty of answering RAQs. LDQ is the

Lipschitz constant of the function 𝑓 (q) = 𝑓𝜒 (q)
𝑛

=
1
𝑛
E𝐷∼𝜒 [𝑓𝐷 (q)]. We normalize the distribution

query function by data size to account for its change in magnitude when data size increases (for
sum and count queries, magnitude of 𝑓𝐷 (q) increases as data size increase). LDQ is a property of 𝜒
and 𝑓𝐷 . For ease of reference, we often implicitly assume a given data distribution 𝜒 and refer to
LDQ as a property of a query function.

3.1.2 Theorem Statement. Let 𝑓 𝑆
𝐷
and 𝑓 𝐶

𝐷
be query functions with aggregation functions SUM and

COUNT, respectively, and let 𝜌𝑆 and 𝜌𝐶 be their respective LDQs. For 𝑖 ∈ {𝑆,𝐶}, we study the time,

space and accuracy of a neural network, 𝑓 , when approximating 𝑓 𝑖
𝐷
, as formalized below.

Theorem 3.1 (DQD Bound). For 𝑖 ∈ {𝑆,𝐶}, there exists a neural network 𝑓 with space and query

time complexity 𝑂̃ (𝑑 (𝜘𝜌𝑑𝜀−11 + 1)𝑑 ), where 𝑂̃ hides logarithmic factors, s.t.

P
𝐷∼𝜒

[

1

𝑛
∥ 𝑓 − 𝑓 𝑖𝐷 ∥1 ≥ 𝜀1 + 𝜀2

]

≤ 𝜘𝑑+12 𝑑𝜀−𝑑2 exp (−𝜘−12 𝜀22𝑛),

Where 𝜘1 and 𝜘2 are universal constant.

Proof of Theorem 3.1 is presented in Sec. 3.2. Here, we discuss the theorem statement and its
implications.

A Confidence/Error Analysis. DQD bound relates, with a desired probability (i.e., confidence
level), error a neural network can achieve when answering RAQs to its query time and space
complexity through data dependent properties. The error is scaled by data size, 𝑛, to account for the
change in the magnitude of query answers when data size changes. Parameter 𝜀1 allows trading-off
accuracy for space or time complexity and 𝜀2 allows trading-off accuracy for confidence in the
bound. The probability is over sampling a database from the data distribution. That is, DQD states
that, when observing a database 𝐷 that follows a distribution 𝜒 , with high probability, there exists a
neural network that can answer RAQs on 𝐷 and achieve the specified time/space/accuracy trade-off.
Distribution Dependent Complexity Measure. DQD bound establishes LDQ of the query

function as a measure of complexity when answering RAQs with neural networks. It implies that
query time will be faster when LDQ is small. LDQ is a property of the data distribution and the
query in question. Thus, Theorem 3.1 allows us to quantify how easy or difficult it is to approximate
query answers for a data distribution using a neural network. We provide specific examples of
LDQ for different data distributions in Sec. 3.1.3 and empirically confirm impact of LDQ on query
answering in Sec. 5.7.

Faster on LargerDatabases. Let the confidence in theDQDbound be𝛿 = 𝜘𝑑+12 𝑑𝜀−𝑑2 exp (−𝜘−12 𝜀22𝑛).
Fixing the value of 𝛿 , we observe that 𝑛 and 𝜀2 are negatively correlated, where increasing data size
𝑛 leads to reduction in 𝜀2. That is, for a fixed confidence parameter, the error of a neural network
decreases as data size increases. Now let 𝜀 = 𝜀1 + 𝜀2 be the total neural network error. Also fixing
𝜀 in addition to 𝛿 but allowing 𝜀1 to vary, we observe that increase in data size results in smaller
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query time and space complexity, for a fixed neural network error and confidence level. Thus, DQD
bound shows the counter-intuitive result that when answering queries with a neural network query
time can be lowered by increasing the database size. We empirically confirm this phenomenon in
Sec. 5.7. Intuitively, this happens because when data size is larger the model only needs to learn
the patterns in the data distribution, while for smaller databases, the observed database can be
different from the data distribution and the model has to memorize all the points, making it more
challenging.
Low-Error Cases. DQD bound shows that a neural network can answer queries fast and

accurately if the data size is large and LDQ of a query function is small. Thus, DQD bound shows
scenarios when using a neural network can provide good performance and presents a property of
data distribution that can guarantee low error for a neural network framework when answering
RAQs. Nonetheless, it does not preclude neural networks from performing well in other scenarios,
which requires further theoretical investigation.

Achieving Zero Error. For a fixed and small data size, even if neural network size is allowed to
approach infinity, the DQD bound provides a non-zero error bound. That is, letting neural network
size go to infinity by reducing 𝜀1 to zero does not achieve total zero error (we empirically verify
this in Sec. 5.7), as the total error in that case will be equal to 𝜀2 (which can be large depending on
𝑛). This is because 𝑓𝐷 can be discontinuous even though 𝑓𝜒 is assumed to be Lipschitz continuous,
so that no neural network can approximate it exactly. Points of discontinuity can be seen in Fig. 1
(right), where the query answer can suddenly change. Such points of discontinuity happen when the
query boundary matches a data point, because in such cases, arbitrarily small changes to the query
boundary can change the query answer. As data size increases, 𝑓𝐷 behaves more like a continuous
function (because 𝑓𝜒 is Lipschitz continuous), so the achievable error by a neural network goes
down. Note that techniques that create a discontiuous function approximator, e.g., quantizating the
query space, can potentially help a neural network achieve zero error, as a large enough neural
network can memorize a fininte set of points exactly [43]. However, our DQD bound is for queries
over space of reals (i.e., approximation of infinite set of points), and without input preprocessing or
quantization.

3.1.3 Impact of Distribution and LDQ. The model complexity needed to answer RAQs depends on
data distribution through LDQ of 𝑓 𝑆

𝐷
and 𝑓 𝐶

𝐷
. We provide examples of LDQ for different distributions.

Example 3.2. Let 𝜒 be a 1-dimensional uniform distribution. By definition, we have 𝑓 𝐶𝜒 (𝑐1, 𝑟1) =
𝑛P𝑝∼𝜒 [𝑝 ∈ (𝑐1, 𝑟1)] , where (𝑐1, 𝑟1) defines a query range (see Sec. 2) and 𝑝 is a data point sampled

from 𝜒 . 𝜒 is uniform soP𝑝∼𝜒 [𝑝 ∈ (𝑐1, 𝑟1)] = 𝑟1. Differentiating and using the definition,
𝜕𝑓 𝐶𝜒 (𝑐1,𝑟1)

𝜕𝑐1
=

0 and
𝜕𝑓 𝐶𝜒 (𝑐1,𝑟1)

𝜕𝑟1
= 𝑛, so that 1

𝑛
𝑓 𝐶𝜒 (𝑐1, 𝑟1) is 𝜌-Lipschitz with 𝜌 = 1. A similar result also holds for

1
𝑛
𝑓 𝑆𝜒 (𝑐1, 𝑟1). The small Lipschitz constant matches the intuition that uniform distribution is easy to

approximate.

Example 3.3. Let 𝜒 be a 1-dimensional Gaussian distribution with standard deviation 𝜎 and 𝜇 = 0,
we have that

|
𝜕P𝑝∼𝜒 [𝑝 ∈ (𝑐1, 𝑟1)]

𝜕𝑐1
| = | 1

𝜎
√
2𝜋
(𝑒− 1

2 (
𝑐1+𝑟1
𝜎 )2 − 𝑒− 1

2 (
𝑐1
𝜎 )2 ) |

≤ 2

𝜎
√
2𝜋

and that

|
𝜕P𝑝∼𝜒 [𝑝 ∈ (𝑐1, 𝑟1)]

𝜕𝑟1
| = | 1

𝜎
√
2𝜋

𝑒−
1
2 (

𝑐1+𝑟1
𝜎 )2 | ≤ 1

𝜎
√
2𝜋
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so that 1
𝑛
𝑓 𝐶𝜒 (𝑐1, 𝑟1) is 𝜌-Lipschitz with 𝜌 =

3

𝜎
√
2𝜋
. Thus, for smaller 𝜎 the function becomes more

difficult to model, as the neural network has to model a sharp change in the function.

3.1.4 Measuring Complexity in Practice. DQD bound can help decide whether to use neural net-
works to answer RAQs, or to design complexity aware algorithms for practical use-cases (as we do
in Sec. 4). Such use-cases require measuring LDQ, which can be difficult in practice. For two queries
q and q′, the Lipschitz constant bounds the maximum change in the function, 𝑓 , normalized by

distance,
|𝑓 (q)−𝑓 (q′) |
∥q−q′ ∥ . Since this maximum is calculated over all query pairs, it is difficult to estimate.

Furthermore, it depends on the data distribution itself, while we only have access to samples from
the distribution. In practice, we observed that the Average Query function Change, AQC, can be

used as a proxy for LDQ. Specifically, we define 𝐴𝑄𝐶 =
1

( |𝑄 |2 )
∑

q,q′∈𝑄
|𝑓 (q)−𝑓 (q′) |
∥q−q′ ∥ , where 𝑄 ⊆ 𝒬 is a

set of queries sampled from all possible queries. We experimentally verify the usefulness of this
complexity measure in Sec. 5.5.

3.2 DQD Bound Proof

3.2.1 Analysis Framework. For a neural network 𝑓 when modelling a query function, 𝑓𝐷 , we

decompose its error, Δ =
1
𝑛
∥ 𝑓𝐷 − 𝑓 ∥1, into two terms, approximation error and sampling error :

Δ ≤ 1

𝑛
∥ 𝑓𝜒 − 𝑓 ∥1

︸        ︷︷        ︸

approximation error, Δ𝑎

+ 1

𝑛
∥ 𝑓𝜒 − 𝑓𝐷 ∥1

︸         ︷︷         ︸

sampling error, Δ𝑠

(1)

Approximation error, Δ𝑎 , quantifies how accurately the neural network can approximate the
distribution query function. Δ𝑎 depends on the space/time complexity of the neural network.
For instance, larger neural networks have more representation power and can approximate a
distribution query function more accurately. Sampling error, Δ𝑠 , quantifies the difference, due to
sampling, between the distribution and observed query functions. Δ𝑠 depends on data size: the
more data sampled, the more similar observed and distribution query functions will be (latter is the
expected value of the former). We bound each term separately in Secs. 3.2.2 and 3.2.3. Sec. 3.2.4
combines the results which yields Theorem 3.1.

3.2.2 Bounding Approximation Error. For a desired bound on approximation error, Δ𝑎 , we charac-
terize the time/space complexity required for a neural network to achieve the error bound. Universal
function approximation theorem [18, 29] guarantees existence of a neural network of arbitrary
time/space complexity that can achieve any desired error value, but does not show its time/space
complexity. Recent work (e.g., [22, 28, 41]) study number of neural network parameters needed
to achieve a desired error. However, number of neural network parameters cannot be related to
its space complexity, because magnitude of the parameters can be unbounded, thus leading to
unbounded storage cost even for a fixed number of parameters. We present the following theorem,
showing the required time/space complexity to achieve a desired error bound, 𝜀1 (see Sec. 6 for a
comprehensive discussion of related work).

Theorem 3.4. Given a 𝜌-Lipschitz function 𝑓 , there exists a neural network, 𝑓 , with space and time

complexity 𝑂̃ (𝑑 (𝜘𝜌𝑑𝜀−11 + 1)𝑑 ) , where 𝑂̃ hides logarithmic factors in 𝜌 , 𝑑 and 𝑘 , such that

(a) ∥ 𝑓 − 𝑓 ∥1 ≤ 𝜀1.

(b) Furthermore, if 𝑑 ≤ 3, ∥ 𝑓 − 𝑓 ∥∞ ≤ 𝜀1,

Where 𝜘 is a universal constant.

Theorem 3.4 (a) bounds Δ𝑎 by considering 𝑓𝜒 as the function, 𝑓 , in the theorem statement.
Theorem 3.4 (b) provides a stronger guarantee that can provide an ∞-norm DQD bound in low
dimensions. For conciseness, we have not stated that version of DQD bound since the ideas are
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Fig. 2. Constructed neural network and its architecture. Values on edges and nodes show edge weight and

unit bias.

similar. Theorem 3.4 is a step towards characterizing neural network approximation power in a
data management context. We expect tighter characterizations to be possible, especially for high
dimensions. Our theoretical framework for DQD bound can readily benefit from such tighter
characterizations. Nonetheless, 𝑑 is small for many practical applications when answering RAQs.
For instance, in Example 2.1 that mimics a real-world use-case, the query function is 4-dimensional.
Proof Sketch of Theorem 3.4. We uniformly partition the space into cells and construct a neural

network that estimates cell vertices exactly. This memorization property is used to bound error
within each cell. For instance, Fig. 2 (a) shows the distribution query function for a COUNT query
with fixed range 𝑟 = 0.1 on a two-dimensional Gaussian data distribution. A 3x3 grid on input
space creates 16 vertices, shown in Fig. 2 (a). Our construction ensures that the error for these 16
vertices is zero, as shown in Fig. 2 (b).

Network Architecture. We construct a ReLU neural network, 𝑓 , with two hidden layers, shown

in Fig. 2 (c). 𝑓 can be written as a summation of 𝑘 smaller units, called g-units. Each g-unit ensures
that a cell vertex is memorized correctly and 𝑘 controls neural network size. The 𝑖-th g-unit, 𝑔𝑖 for
1 ≤ 𝑖 ≤ 𝑘 , is constructed as shown in Fig. 2 (c). It has 𝑑 inputs, 𝑑 units in its first layer and 1 unit in
its second layer. Each input is only connected to one of the units in the first layer with weight -1.
All units in the first layer are connected to the unit in the second layer, and their weight is −𝑀 ,
where𝑀 is a constant at least equal to 1. The 𝑗-th unit, 1 ≤ 𝑗 ≤ 𝑑 in first layer has bias 𝑏 𝑗,𝑖 and the

unit in second layer has bias 1
𝑡
for an integer 𝑡 . The output of the second unit is multiplied by a

parameter 𝑎𝑖 . Then, the neural network is 𝑓 (𝒙) = ∑𝑘
𝑖=1 𝑔𝑖 (𝒙) + 𝑏, where 𝑏 is the bias of the third

layer. The tunable parameters of the neural network are 𝑎𝑖 , 𝑏 𝑗,𝑖 , and 𝑏 for 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑑 .
Network Parameters. Let the set of cell vertices in the uniform grid be 𝑃 = {(𝑖1, ..., 𝑖𝑑 )/𝑡, 𝑖𝑟 ∈

Z, 0 ≤ 𝑖𝑟 ≤ 𝑡}, for an integer 𝑡 so that 𝑘 = |𝑃 | = (𝑡 + 1)𝑑 (recall that input space is [0, 1]𝑑 ). Also let
𝝅
𝑖 be the base 𝑡 + 1 representation of an integer 𝑖 written as a vector, i.e., 𝝅 𝑖

= (𝜋𝑖
1, ..., 𝜋

𝑖
𝑑
) so that

𝑖 =
∑𝑑

𝑟=1 𝜋
𝑖
𝑟 (𝑡 + 1)𝑑−𝑟 . For example, when 𝑡 = 3, 𝜋6

= (1, 2), since 6 = 1(𝑡 + 1) + 2. Note that 𝝅
𝑖

𝑡
∈ 𝑃

and ⟨𝝅0

𝑡
, ..., 𝝅

𝑘−1

𝑡
⟩ is an ordering of cell vertices. Alg. 1 enumerates using this ordering over the

cell vertices and sets, at the 𝑖-th iteration, the parameters of the 𝑖-th g-unit so that 𝝅
𝑖

𝑡
is correctly

memorized. It calculates, 𝑦, the estimate of the neural network for point 𝝅
𝑖

𝑡
based on the g-units

set before the 𝑖-th iteration (line 3). Then it sets the parameter of the 𝑖-th g-unit to account for the

difference between 𝑦 and the true value, 𝑓 ( 𝝅𝑖

𝑡
). Fig. 3 shows this process in our example. On the

left, Fig. 3 shows, at the end of each iteration 𝑖 , the function 𝑏 +∑𝑖
𝑗=1 𝑔 𝑗 (𝒙) (define

∑0
𝑗=1 𝑔 𝑗 (𝒙) = 0).

On the right it shows that at the 10-th iteration, the model sets 𝑔10 to memorize the 10-th point
correctly. Alg. 1 and g-unit architecture are designed so that when the 10-th point is memorized,
the neural network value for the previously memorized points does not change.

Proving the Bound.We provide proof sketch for Theorem 3.4 (a), using lemmas formally stated
and proven in Sec. A of our technical report [45]. Proof for Theorem 3.4 (b) is similar. Lemma A.1
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Fig. 3. Neural Network Construction Steps

Algorithm 1 Neural Network Construction

Input: A function 𝑓 , a parameter 𝑡

Output: Neural network 𝑓

1: 𝑏 ← 𝑓 (0)
2: for 𝑖 ← 1 to (𝑡 + 1)𝑑 − 1 do
3: 𝑦 ← 𝑏 +∑𝑖−1

𝑗=1 𝑔 𝑗 ( 𝝅
𝑖

𝑡
)

4: for 𝑟 ← 1 to 𝑑 do

5: 𝑏𝑟,𝑖 ← 𝜋𝑖
𝑟

𝑡

6: 𝑎𝑖 ← 𝑡 (𝑓 ( 𝝅𝑖

𝑡
) − 𝑦)

7: return 𝑓

states that 𝑓 (x) achieves zero error at cell vertices, i.e.,

𝑓 (x) = 𝑓 (x),∀x ∈ 𝑃 . (2)

Furthermore, 𝑓 is 𝜌-Lipschitz so its change is bounded within each cell. That is, for x, x′ ∈ 𝐶𝑖 ,

where 𝐶𝑖
= { 𝝅 𝒊

𝑡
+ z, z ∈ [0, 1

𝑡
]𝑑 } is the subset of input space in the 𝑖-th cell, the Lipschitz property

implies

|𝑓 (x) − 𝑓 (x′) | ≤ 𝜌𝑑

𝑡
. (3)

Lemma A.2 proves that 𝑓 change is bounded within each cell, i.e.

|𝑓 (x) − 𝑓 (x′) | ≤ 𝜙 (𝑑, 𝜌, 𝑡, x, x′) (4)
for some function 𝜙 specified in Lemma A.2. 𝜙 depends on x and x′ since the bound is different
depending on where in space x and x′ are. Using triangle inequality with Eq. 3 and 4, we have

|𝑓 (x) − 𝑓 (x) − (𝑓 (x′) − 𝑓 (x′)) | ≤ 𝑑𝜌

𝑡
+ 𝜙 (𝑑, 𝜌, 𝑡, x, x′). (5)

Letting x′ = 𝝅
𝑖

𝑡
in Eq. 5 and using Eq. 2, we obtain

|𝑓 (x) − 𝑓 (x) | ≤ 𝑑𝜌

𝑡
+ 𝜙 (𝑑, 𝜌, 𝑡, x, 𝝅

𝑖

𝑡
) . (6)

Lemma A.3 shows that integrating right hand side of Eq. 6 over x and across cells yields
3𝜌𝑑

𝑡
so we

bound the 1-norm error as

∥ 𝑓 − 𝑓 ∥1 ≤
3𝜌𝑑

𝑡
. (7)

LemmaA.4 shows that space and time complexity of 𝑓 is 𝑂̃ (𝑘𝑑). Setting 𝜀1 = 3𝜌𝑑

𝑡
and 𝜘 = 3, recalling

that 𝑘 = (𝑡 + 1)𝑑 , and substituting 𝑘 = (𝜘𝜌𝑑𝜀−11 + 1)𝑑 in the space/time complextiy experssion
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proves Theorem 3.4 (a). Lemma proofs require a detailed study of neural network behaviour, see
Sec. A of technical report [45] .

3.2.3 Bounding Sampling Error. We present the following theorem that bounds the sampling error
with high probability.

Theorem 3.5. Let 𝑓 𝐶𝜒 and 𝑓 𝑆𝜒 be distribution query functions for COUNT and SUM aggregation

functions and 𝑓 𝐶
𝐷

and 𝑓 𝑆
𝐷
the corresponding observed query functions for a database, 𝐷 , of 𝑛 points in

𝑑 dimensions sampled from 𝜒 . For 𝑖 ∈ {𝑆,𝐶},

P
𝐷∼𝜒

[

1

𝑛
∥ 𝑓 𝑖𝜒 − 𝑓 𝑖𝐷 ∥∞ > 𝜀2

]

≤ 𝜘𝑑+1𝑑𝜀−𝑑2 exp (−𝜘−1𝜀22𝑛),

Where 𝜘 is a universal constant.

Theorem 3.5 provides a high probability bound on Δ𝑠 in Eq. 1. The proof of Theorem 3.5 uses VC
sampling theory, which presents a novel use of VC theory for the database literature. VC theory
helps us understand the impact of the distribution a database follows on operations performed
(e.g., answering RAQs) on the database. In fact, Theorem 3.5 is independent of our use of learned
models, and simply characterizes impact of sampling when answering RAQs on a database that
follows a certain data distribution. This is different from the typical use of VC theory in machine
learning, where the goal is to study generalization of a trained model to unseen testing data. We
present a proof sketch for the case of COUNT. Proof for SUM is similar, but uses a generalization of
VC-dimension.

Proof Sketch of Theorem 3.5 for COUNT. We start by rewriting the query function. Define the
indicator function ℎ as

ℎ𝐶q (p) =
{

1 if ∀𝑖, 𝑐𝑖 ≤ 𝑝𝑖 < 𝑐𝑖 + 𝑟𝑖
0 otherwise.

So 𝑓𝐷 (q) =
∑

p∈𝐷 ℎ𝐶q (p) and 𝑓𝜒 (q) = 𝑛𝐸p∼𝜒 [ℎq (p)]. Let ℋ𝐶
= {ℎ𝐶q ,∀q}, so to bound error

supq
1
𝑛
|𝑓𝐷 (q) − 𝑓𝜒 (q) |, we bound

sup
ℎ∈ℋ𝒞

| 1
𝑛

∑︁

p∈𝐷
ℎ(p) − Ep∼𝜒 [ℎ(p)] |. (8)

VC-dimension ofℋ𝐶 is known to be 2𝑑 [32] (see Lemma A.12 of technical report [45] ), so applying
VC theory bounds [9] (stated in Theorem A.11 of technical report [45] ) to Eq. 8 proves the
theorem. □

3.2.4 Completing the Proof. Let 𝜀1 and 𝜀2 be the two error parameter, and let 𝑓 be the neural
network in Theorem 3.4 that achieves error 𝜀1. Furthermore, let 𝐸1 be the event

1
𝑛
∥ 𝑓 𝑖𝜒 − 𝑓 𝑖

𝐷
∥∞ ≤ 𝜀2

holds for a random 𝐷 sampled from 𝜒 . Observe that if 𝐸1 holds, by triangle inequality, the event

𝐸2 defined as 1
𝑛
∥ 𝑓 − 𝑓 𝑖

𝐷
∥1 ≤ 𝜀2 + 𝜀1 also holds. Thus, P[𝐸1] ≤ P[𝐸2]. Taking the complement of

both event, and observing that probability of complement of 𝐸1 is bounded by Theorem 3.5 yields
Theorem 3.1.

3.3 Other Query Functions and Model Choices

Proof of DQD bound for SUM and COUNT aggregation functions decomposes the error into approxima-
tion error and sampling error. Theorem 3.4, which bounds the approximation error, is independent
of the aggregation function used and applies to any function. To utilize the theoretical framework
for other query functions, we need to bound the corresponding sampling error (Theorem 3.5 is
specific to SUM and COUNT). In Sec. 3.3.1, we discuss this for AVG aggregation function and provide a
general discussion for other query functions in Sec. 3.3.2. In Sec. 3.3.3 we discuss the applicability
of our analysis framework to other modeling choices.
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3.3.1 AVG Aggregation Function. Our study of AVG aggregation function is a variation of that of
SUM and COUNT. We discuss the differences, then present our sampling error bound.

First, we consider a variation of distribution query function, defined as 𝑓 𝐴𝜒 (q) =
𝑓 𝑆𝜒 (q)
𝑓 𝐶𝜒 (q)

. which

we found to be easier to theoretically study (𝑓 𝐴𝜒 is not the expected answer to AVG query, but

expected answer to SUM query divided by expected answer to COUNT query). Since it depends on
data distribution, it still allows us to study impact of data distribution on query answering. Second,
we define LDQ as the Lipschitz constant of 𝑓 𝐴𝜒 . LDQ in this case is not normalized by data size (as

it was for SUM and COUNT in Sec. 3.1.1), since magnitude of query answers for AVG do no change as
data size changes. Third, for small query ranges few points in the database may match the query,
even if data size is large. In such cases, for AVG aggregation function, the observed query function
will be a poor estimate of the distribution query function. For COUNT or SUM query functions, few
data points in a range means that both SUM and COUNT values are small, but this is not the case for
the AVG function whose distribution query answer is independent of the number of points sampled
in the range. To capture this dependence on query range, we define 𝒬𝜉 = {q, 𝑠 .𝑡 ., 𝑓 𝐶𝜒 (q) ≥ 𝜉}. Our
bound depends on 𝜉 , which captures the probability of observing a point in a range.

Lemma 3.6. Recall that 𝑓 𝐴
𝐷
(q) = 𝑓 𝑆

𝐷
(q)

𝑓 𝐶
𝐷
(q) is the AVG query function. Let err(q) = |𝑓 𝐴𝜒 (q)−𝑓 𝐴𝐷 (q) |

|𝑓 𝐴𝜒 (q) |+1
. We

have

P
𝐷∼𝜒

[

supq∈𝒬𝜉
err(q) ≥ 𝜀

]

≤ 𝜘𝑑+1𝑑

(

1 + 𝜀
𝜉𝜀

)𝑑

exp

(

−𝜘−1 ( 𝜉𝜀

1 + 𝜀 )
2𝑛

)

,

Where 𝜘 is a universal constant.

Proof Sketch. Proof applies Theorem 3.5 to numerator and denominator of AVG query function
(Sec. A.4 of technical report [45] ). □

Combining Lemma 3.6 and Theorem 3.4 show similar discussions to Sec. 3.1.2 on dependence on
data distribution and size also apply to AVG queries. Lemma 3.6 also shows impact of query range.

More Accurate on Larger Ranges. Impact of query range is modeled through the parameter 𝜉 .
Larger 𝜉 means the bound applies to larger ranges, where the confidence in the bound increases
with 𝜉 . Fixing the confidence level, observe that 𝜉 and 𝜀 are negatively correlated. Increasing the
query ranges considered reduces the sampling error. Thus, if LDQ of the query function is small
(approximation error is low) and query range is large (sampling error is low), a neural network can
answer AVG RAQs accurately and efficiently. LDQ can be calculated similar to examples in Sec. 3.1.2.

3.3.2 Other Query Functions. Bounding sampling error for queries with COUNT, SUM or AVG ag-
gregation functions but different range predicates (e.g., circular predicate (c, r) matching points
p, ∥p − c∥2 ≤ r) can be done similar to proof of Theorem 3.5 (only finding range predicate’s VC-
dimension needs further study). However, applicability of VC theory depends on the aggregation
function.

3.3.3 DQD for Query Modelling Approaches. Our analysis framework allows for providing DQD
bounds for other query modeling approaches, where we define query modelling as an approach
that directly models the query answers. Furthermore, our analysis of sampling error (Theorem 3.5,
Lemma 3.6) does not depend on modeling choices and is generic to query modeling approaches.
Thus, insights about the role of data size can be applicable to other query modeling approaches.
For instance, consider answering count queries on uniformly distributed data in range [0, 1],
as in Example 3.2. For data size 𝑛, as data size increases, the number of data points in a query
(𝑐1, 𝑟1) becomes more similar to 𝑟1 × 𝑛, which is the expected number of points that fall in any
range of length 𝑟1. Thus, one can estimate the answer to count query with a model 𝑔 defined as
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Fig. 4. NeuroSketch Framework

𝑔(𝑐1, 𝑟1) = 𝑛 × 𝑟1. Answering queries with 𝑔 takes constant time (it’s a single operation), and its
accuracy improves as data size increases, as supported by Theorem 3.5.

4 NEUROSKETCH

DQD bound formalizes how complexity of answering RAQs relates to data and query properties.
In this section, we present a novel complexity-aware neural network framework, NeuroSketch,
that utilizes results from DQD bound to allocate model capacity. We first present an overview of
NeuroSketch, then discuss its details and finally discuss how it can be used in real-world database
systems together with our DQD bound.

4.1 NeuroSketch Overview

The key idea behind NeuroSketch design is that, even on the same database, some queries can
be more difficult to answer than others (e.g., larger ranges vs. smaller ranges, see Sec. 3.3.1). By
allocating more model capacity to queries that are more difficult, we can improve the performance.
We do so by partitioning the query space and training independent neural networks for each
partition. The partitioning allows diverting model capacity to harder queries, which our DQD
bound allows us to quantify. By creating models specialized for a specific part of the query space,
query specialization allows us to control how model capacity is used across query space.
Fig. 4 shows an overview of NeuroSketch. During a pre-precessing step, (1) we partition and

index the query space using a kd-tree. The partitioning is done based on our query specialization
principle, with the goal of training a specialized neural network for different parts of the query
space. (2) To account for the complexity of the underlying function in our partitioning, we merge
the nodes of the kd-tree that are easier to answer based on our DQD bound, so that our model
only has to specialize for the certain parts of the space that are estimated to be more difficult. (3)
After some nodes of the kd-tree have been merged, we train a neural network for all the remaining
leaves of the kd-tree. Finally, to answer queries at query time, we traverse the kd-tree to find the
leaf node a query falls inside, and perform a forward pass of the neural network.

4.2 NeuroSketch Details

Training NeuroSketch uses a training query set 𝑄 ⊆ 𝒬. 𝑄 can be sampled from 𝒬 according to a
workload distribution, or can be a uniform sample in the absence of any workload information. We
do not assume access to workload information, but our framework can take advantage of the query
workload if available.

Partitioning & Indexing. To partition the space, we choose partitions that are smaller where
the queries are more frequent and larger where they are less frequent. This allows us to divert more
model capacity to more frequent queries, thereby boosting their accuracy if workload information is
available. We achieve this by partitioning the space such that all partitions are equally probable. To
do so, we build a kd-tree on our query set,𝑄 , where the split points in the kd-tree can be considered
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Algorithm 2 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_&_𝑖𝑛𝑑𝑒𝑥 (𝑁,ℎ, 𝑖)
Input: A kd-tree node 𝑁 , tree height ℎ and dimension, 𝑖 to split the node, 𝑁 on
Output: A kd-tree with height ℎ rooted at 𝑁
1: if ℎ = 0 then

2: return

3: 𝑁 .𝑣𝑎𝑙 ← median of 𝑁 .𝑄 along 𝑖-th dimension
4: 𝑁 .𝑑𝑖𝑚 ← 𝑖

5: 𝑄𝑙𝑒 𝑓 𝑡 = {q|q ∈ 𝑁 .𝑄, 𝑞 [𝑁 .𝑑𝑖𝑚] ≤ 𝑁 .𝑣𝑎𝑙}
6: 𝑄𝑟𝑖𝑔ℎ𝑡 = {q|q ∈ 𝑁 .𝑄, 𝑞 [𝑁 .𝑑𝑖𝑚] > 𝑁 .𝑣𝑎𝑙}
7: for 𝑥 ∈ {𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡} do
8: 𝑁𝑥 ← new node
9: 𝑁𝑥 .𝑄 ← 𝑄𝑥

10: 𝑁 .𝑥 ← 𝑁𝑥 ⊲Adding 𝑁𝑥 as left or right child of 𝑁

11: 𝑔𝑒𝑡_𝑖𝑛𝑑𝑒𝑥 (𝑁𝑥 , ℎ − 1, (𝑁 .𝑑𝑖𝑚 + 1) mod 𝑑)
Algorithm 3𝑚𝑒𝑟𝑔𝑒 (𝑁, 𝑠)
Input: kd-tree root node 𝑁 and desired number of partitions 𝑠
Output: kd-tree with 𝑠 leaf nodes
1: repeat

2: for all Leaf nodes 𝑁 do

3: 𝐴𝑄𝐶𝑁 ← 1

( |𝑁 .𝑄 |
2 )

∑

q,q′∈𝑁 .𝑄,q≠q′
|𝑓𝐷 (q)−𝑓𝐷 (q′) |
∥q−q′ ∥

4: 𝑁 ← the leaf node with smallest 𝐴𝐶𝑄𝑁

5: 𝑁 .𝑚𝑎𝑟𝑘𝑒𝑑 ← 𝑡𝑟𝑢𝑒

6: for all Sibling leaf nodes 𝑁1, 𝑁2 do

7: if 𝑁1.𝑚𝑎𝑟𝑘𝑒𝑑 = 𝑁2.𝑚𝑎𝑟𝑘𝑒𝑑 = 𝑡𝑟𝑢𝑒 then

8: Merge 𝑁1 and 𝑁2

9: until There are 𝑠 leaf nodes

as estimates of the median of the workload distribution (conditioned on the current path from the
root) along one of its dimensions. We build the kd-tree by specifying a maximum height, ℎ, and
splitting every node until all leaf nodes have height ℎ, which creates 2ℎ partitions. Splitting of a
node 𝑁 is done based on median of one of the dimensions of the subset, 𝑁 .𝑄 , of the queries, 𝑄 ,
that fall in 𝑁 . Alg. 2 shows this procedure. To build an index with height ℎ rooted at a node, 𝑁𝑟𝑜𝑜𝑡

(note that 𝑁𝑟𝑜𝑜𝑡 .𝑄 = 𝑄), we call 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_&_𝑖𝑛𝑑𝑒𝑥 (𝑁𝑟𝑜𝑜𝑡 , ℎ, 0). We note that other partitioning
methods (e.g., clustering the queries to perform partitioning) are also possible, but we observed
kd-tree to be a simple practical solution with little overhead that performed well.
Merging. We merge some of kd-tree leaves using DQD bound. As discussed in Sec. 3.1.4, LDQ

can be difficult to measure in practice, so we use AQC as a proxy, as shown in Alg. 3. At each
iteration, we first measure the approximation complexity for the leaf nodes, in line 3, where the
approximation complexity, 𝐴𝑄𝐶𝑁 for a leaf node 𝑁 is calculated based on queries that fall in the
node 𝑁 . Then, we mark the node with the smallest 𝐴𝑄𝐶𝑁 for merging. When two sibling leaf
nodes are marked, they are merged together, as shown in line 8. The process continues until the
number of remaining leaf nodes reaches the desired threshold. In practice, we observed that the
quantity 𝐴𝑄𝐶𝑁 is correlated with the error of the neural networks, which empirically justifies this
design choice (see Sec. 5.5).
Training Neural Networks. We train an independent model for each of the remaining leaf

nodes after merging. For a leaf node, 𝑁 , the training process is a typcial supervised learning
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Algorithm 4Model Training

Input: A dataset 𝐷 , a kd-tree node 𝑁

Output: Neural network 𝑓 for node 𝑁

1: Initialize the parameters, 𝜃 , of a neural network 𝑓 (.;𝜃 )
2: repeat

3: Sample, 𝑄𝑏𝑎𝑡𝑐ℎ , a subset of 𝑁 .𝑄

4: Update 𝜃 in direction −∇𝜃
∑

q∈𝑄𝑏𝑎𝑡𝑐ℎ

(𝑓 (q;𝜃 )−𝑓𝐷 (q))2
|𝑄𝑏𝑎𝑡𝑐ℎ |

5: until convergence

6: return 𝑓

Algorithm 5 𝑎𝑛𝑠𝑤𝑒𝑟_𝑞𝑢𝑒𝑟𝑦 (𝑁, q)
Input: kd-tree root node 𝑁 and query q

Output: Answer to q

1: while 𝑁 is not leaf do
2: if 𝑞 [𝑁 .𝑑𝑖𝑚] ≤ 𝑁 .𝑣𝑎𝑙 then

3: 𝑁 ← 𝑁 .𝑙𝑒 𝑓 𝑡

4: else

5: 𝑁 ← 𝑁 .𝑟𝑖𝑔ℎ𝑡
return 𝑁 .𝑚𝑜𝑑𝑒𝑙 .𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠 (q)

procedure and shown in Alg. 4 for completeness. The answer to queries for training, used in line 4
of Alg. 4, can be collected through any known algorithm, where a typical algorithm iterates over
the points in the database, pruned by an index, and for a candidate data point checks whether it
matches the RAQ predicate or not. This is a pre-processing step and is only performed once to train
our model. The process is embarrassingly parallelizable across training queries, if preprocessing
time is a concern. Furthremore, if the data is disk resident, we keep partial SUM/COUNT answers for
each training query while scanning data from disk, so a single scan of data is sufficient (similar to
building disk-based indexes) to collect training query answers. Once trained, NeuroSketch is much
smaller than data and expected to fit in memory, so it will be much faster than disk-based solutions.
We use Adam optimizer [19] for training and train a fully connected neural network for each of the
partitions. The architecture is the same for all the partitions and consists of 𝑛𝑙 layers, where the
input layer has dimensionality 𝑑 , the first layer consists of 𝑙𝑓 𝑖𝑟𝑠𝑡 units, the next layers have 𝑙𝑟𝑒𝑠𝑡
units and the last layer has 1 unit. We use relu activation for all layers (except the output layer).
𝑛𝑙 , 𝑙𝑓 𝑖𝑟𝑠𝑡 and 𝑙𝑟𝑒𝑠𝑡 are hyper-parameters of our model. Although approaches in neural architecture
search [47] can be applied to find them, they are computationally expensive. Instead, we do a grid
search to find the hyper-parameters so that NeuroSketch satisfies the space and time constraints in
Problem 1 while maximizing its accuracy.
Answering Queries. As shown in Alg. 5, to answer a query, q, first, the kd-tree is traversed

to find the leaf node that the query q falls into. The answer to the query is a forward pass of the
neural network corresponding to the leaf node.
4.3 General RAQs and Real-World Application

General RAQs. NeuroSketch can be used for more general RAQs than defined in Sec. 2. An
RAQ consists of a range predicate, and an aggregation function AGG. In NeuroSketch, we make no
assumption on the aggregation function AGG and our empirical results evaluated NeuroSketch on
SUM, AVG, COUNT, MEDIAN and STD. We consider range predicates that can be represented by a query
instance q, and a binary predicate function, 𝑃𝑓 (q, x), that takes as inputs a point in the database, x,
x ∈ 𝐷 , and the query instance q, and outputs whether x matches the predicate or not. Then, given
a predicate function and an aggregation function, range aggregate queries can be represented by
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Dataset G5, G10, G20 PM [21] TPC1, TPC10 [25] VS

# Points 105 4.17×104 2.65×106, 2.65×107 105

Dim 5, 10, 20 4 13 3

Table 1. Dataset information

the query function 𝑓𝐷 (q) = AGG({x : x ∈ 𝐷, 𝑃𝑓 (x, q) = 1}). We avoid specifying how the predicate
function should be defined to keep our discussion generic to arbitrary predicate functions, but
some examples follow. To represent the RAQs of the form discussed in Sec. 2, q can be defined
as lower and upper bounds on the attributes and 𝑃𝑓 (q, x) defined as the WHERE clause in Sec. 2.
We can also have 𝑃𝑓 (q, x) = 𝑥 [1] > 𝑥 [0] × 𝑞 [0] + 𝑞 [1], so that 𝑃𝑓 (q, x) and q define a half-space
above a line specified by q. For many applications, WHERE clauses in SQL queries are written
in a parametric form [3ś5] (e.g., WHERE 𝑋1 >?𝑝𝑎𝑟𝑎𝑚1 OR 𝑋2 >?𝑝𝑎𝑟𝑎𝑚2, where ?𝑝𝑎𝑟𝑎𝑚 is the
common SQL syntax for parameters in a query). Such queries can be represented as query functions
by setting q to be the parameters of the WHERE clause.
NeuroSketch and DQD in Practice. Possible RAQs correspond to various query function

and NeuroSketch learns different models for different query functions. This follows the query

specialization design principle, where a specialized model is learned to answer a query function
well. A query processing engine can be used to decide which query functions to use NeuroSketch
for. This can happen both on the fly, when answering queries, and during database maintenance.
During maintenance, DQD bound can be used to decide which queries to build NeuroSketch for
(e.g., for queries with small LDQs). Moreover, after NeuroSketch is built for a query function, DQD
can be used to decide whether to use NeuroSketch for a specific query instance or not on the fly.
For instance, queries with large ranges (that NeuroSketch answers accurately according to DQD)
can be answered by NeuroSketch, while queries with smaller ranges can be asked directly from the
database.

5 EMPIRICAL STUDY

5.1 Experimental Setup

System Setup. Experiments are performed on a machine with Ubuntu 18.04 LTS, an Intel i9-9980XE
CPU (3GHz), 128GB RAM and a GeForce RTX 2080 Ti NVIDIA GPU.
Datasets. Table 1 shows the datasets used in our experiments, with details discussed below.

Fig. 5 shows the histogram of measure column values used in the experiments.
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PM. PM [21] contains Fine Particulate Matter (PM2.5) measuring air pollution and other statistics
(e.g., temperature) for locations in Beijing. Similar to [23], PM2.5 is the measure attribute.

TPC-DS. We used TPC-DS [25], a synthetic benchmark dataset, with scale factors 1 and 10,
respectively referred to as TPC1 and TPC10. Since we study RAQs, we use the numerical attributes
in store_sales table as our dataset, and net_profit as measure attribute.

Veraset. As was used in our running example, we use Veraset dataset, which contains anonymized
location signals of cell-phones across the US collected by Veraset [2], a data-as-a-service company.
Each location signal contains an anonymized id, timestamp and the latitude and longitude of the
location. We performed stay point detection [42] on this dataset (to, e.g., remove location signals
when a person is driving), and extracted location visits where a user spent at least 15 minutes
and for each visit, also recorded its duration. 100,000 of the extracted location visits in downtown
Houston were sampled to form the dataset used in our experiments, which contains three columns:
latitude, longitude and visit duration. We let visit duration to be the measure attribute.

GMMs. We study data dimensionality with synthetic 5, 10 and 20 dimensional data from Gaussian
mixture models (GMM) (100 components, random mean and co-variance), referred to as G5, G10
and G20. GMMs are often used to model real data distribution [30].

Query Distribution. Our experiments consider query functions consisting of AVG, SUM, STDEV
(standard deviation) and MEDIAN aggregation functions together with two different predicate
functions. First, similar to [23], our experiments show the performance on the predicate function
defined by the WHERE clause in Sec. 2. We consider up to 3 active attributes in the predicate
function. To generate a query instance with 𝑟 active attributes, we first select, uniformly at random,
𝑟 activate attributes (from a total of 𝑑 possible attributes). Then, for the selected active attributes,
we randomly generate a range. Unless otherwise stated, the range for each active attribute is
uniformly distributed. This can be thought of as a more difficult scenario for NeuroSketch as it
requires approximating the query function equally well over all its domain, while also giving a
relative advantage to other baselines, since they are unable to utilize the query distribution. Unless
otherwise stated, for all datasets except Veraset, we report the results for one active attributes and
use AVG aggregation function. For Veraset, we report the results setting latitude and longitude as
active attributes. Second, to show how NeuroSketch can be applied to application specific RAQs, in
Sec. 5.2.2, we discuss answering the query of median visit duration given a general rectangle on
Veraset dataset.
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Measurements. In addition to query time and space used, we report the normalized absolute

error for a query in the set of test queries, 𝑇 , defined as
|𝑓𝐷 (q)−𝑓𝐷 (q,𝜃 ) |
1
|𝑇 |

∑

q∈𝑇 |𝑓𝐷 (q) |
. We ensure that none of the

test queries are in the training set. The error is normalized by average query result magnitude to
allow for comparison over different data sizes and datasets when the results follow different scales.
Learned Baselines. We use DBEst [23] and DeepDB [15] as the state-of-the-art model-based

AQP engines. Both algorithms learn data models to answer RAQs. We use the open-source imple-
mentation of DBEst available at [24] and DeepDB at [16]. For DBEst, we perform a gird search
on its MDN architecture (number of layers, layer width, number of Gaussian componenets) and
optimize it per dataset. For DeepDB we optimize its RDC threshold for each dataset. We do not use
[35] as a baseline, which samples new data points at query time from a learned model to answer
queries because the results in [35] show worse accuracy and same query time ([35] improves
storage) compared with sampling directly from the data (which we have included as baseline). We
also modified NeuroCard [37], a learned cardinality estimation method to answer RAQs, but we
observed the modified approach to perform worse than DeepDB on RAQs. We do not present the
results for [37], since it is not designed for RAQs and performed worse than DeepDB.
Sampling-based Baselines. We use VerdictDB [26] as our sampling-based baseline, using its

publicly available implementation [27]. We also implemented a sampling-based baseline designed
specifically for range aggregate queries, referred to as TREE-AGG. In a pre-processing step and for a
parameter 𝑘 , TREE-AGG samples 𝑘 data points from the database uniformly. Then, for performance
enhancement and easy pruning, it builds an R-tree index on the samples, which is well-suited for
range predicates. At query time, by using the R-tree, finding data points matching the query is
done efficiently, and most of the query time is spent on iterating over the points matching the
predicate to compute the aggregate attribute required. For both TREE-AGG and VerdictDB, we set
the number of samples so that the error is similar to that of DeepDB.

NeuroSketch Training and Evaluation. NeuroSketch training is performed in Python 3.7 and
Tensorflow 2.1, with implementation publicly available at [46]. Model training is done on GPU.
Models are saved after training. For evaluation, a separate program written in C++ and running
on CPU loads the saved model, and for each query performs a forward pass on the model. Model
evaluation is done with C++ and on CPU, without any parallelism for any of the algorithms. Unless
otherwise stated, model depth is set to 5 layers, with the first layer consisting of 60 units and the
rest of 30 units. The height of the kd-tree is set to 4, and parameter 𝑠 = 8 so that the kd-tree has 8
leaf nodes after merging.
5.2 Baseline Comparisons

5.2.1 Results Across Datasets. Fig. 6 (a) shows the error on different datasets, where NeuroSketch
provides a lower error rate than the baselines. Fig. 6 (b) shows that NeuroSketch achieves this while
providing multiple orders of magnitude improvement in query time. NeuroSketch has a relatively
constant query time because, across all datasets, NeuroSketch’s architecture only differs in its input
dimensionality, which only impacts number of parameters in the first layer of the model and thus
changes model size by very little. Due to our use of small neural networks, we observe that model
inference time for NeuroSketch is very small and in the order of few microseconds, while DeepDB
and DBEst answers queries multiple orders of magnitude slower. DBEst does not support multiple
active attributes and thus its performance is not reported for VS. The results on G5 to G20 show
the impact of data dimensionality on the performance of the algorithms. As was suggested by
our theoretical results, for NeuroSketch, the error increases as dimensionality increases. A similar
impact can be seen for DeepDB, manifesting itself in increased query time. Furthermore, the R-tree
index of TREE-AGG often allows it to perform better than the other baselines, especially for low
dimensional data. Finally, Fig. 6 (c) shows the storage overhead of each methods. NeuroSketch
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Metric NeuroSketch
TREE-
AGG

DeepDB &
VerdictDB

Norm. MAE 0.045 0.052 N/A

Query time (𝜇𝑠) 25 601 N/A

Table 2. Median visit duration for general rectangles

answers queries accurately by taking less than one MB space, while DeepDB’s storage overhead
increases with data size, to more than one GB.
5.2.2 Results Across Different Workloads. We use TPC1 and VS to study impact of query workload
on performance of the algorithms. Unless otherwise stated results are on TPC1. Due to its poor
performance on TPC1 and not supporting multiple active attributes (for VS queries), we exclude
DBEst from the experiments here.
Impact of Query Range. We set the query range to 𝑥 percent of the domain range, for 𝑥 ∈
{1, 3, 5, 10} and present the results in Fig. 7. The error of NeuroSketch increases for smaller query
ranges, as our theoretical results suggest. As mentioned before, this is because for smaller ranges
NeuroSketch needs to memorize where exactly each data point is, rather than learning the overall
distribution of data points. Nevertheless, NeuroSketch provides better accuracy than the baselines
for query ranges at least 3 percent, and performs queries orders of magnitude faster for all ranges.
If more accurate answers are needed for smaller ranges, increasing the model size of NeuroSketch
can improve its accuracy at the expense of query time (see Sec. 5.3).
Impact of No. of Active Attributes. In Fig. 8, we vary the number of active attributes in

the range predicate from one to three. Accuracy of all the algorithms drops when there are more
active attributes, with NeuroSketch outperforming the algorithms both in accuracy and query time.
Having more active attributes is similar to having smaller ranges, since fewer points will match the
query predicate. Thus, our theoretical results explain the drop in accuracy.
Impact of Aggregation Function. Fig. 9 shows how different aggregation functions impact

performance of the algorithms. NeuroSketch is able to outperform the algorithms for all aggregation
functions. VerdictDB and DeepDB implementation did not support STDEV and no result is reported
for STDEV for these methods.

Median Visit Duration Query Function. We consider the query of median visit duration given
a general rectangular range. The predicate function takes as input coordinates of two points p and p′,
representing the location of two non-adjacent vertices of the rectangle, and an angle, 𝜙 , that defines
the angle the rectangle makes with the x-axis. Given q = (p, p′, 𝜙), the query function returns
median of visit duration of records falling in the rectangle defined by q. This is a common query
for real-world location data, and data aggregators such as SafeGraph [1] publish such information.
Table 2 shows the results for this query function. Neither DeepDB nor DBEst can answer this

query. The predicate function is not supported by those methods, and extending those methods
to support them is not trivial. On the other hand, NeuroSketch can answer this query function,
with similar performance to other queries on VS dataset. Although VerdictDB can be extended to
support this query function, the current implementation does not support the aggregation function,
so we do not report the results on VerdictDB.
5.3 Model Architecture Analysis

5.3.1 Time/Space/Accuracy Trade-Offs of Model Architectures

Setup. We study different time /space/accuracy trade-offs achievable by NeuroSketch and other
methods in Fig. 10 based on different system parameters. For NeuroSketch, we vary number of layers
(referred to as depth of the neural network), 𝑑 , number of units per layer (referred to as width of the
neural network),𝑤 , and height of the kd-tree, ℎ, to see their impact on its time/space/accuracy (we
avoid merging kd-tree nodes here, and study the impact of merging separately in Sec. 5.5). Fig. 10
shows several possible combinations of the hyperparameters. For each line in Fig. 10, NeuroSketch
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is run with two of the hyperparameters kept constant and one changing. The line labels are of the
form (ℎ𝑒𝑖𝑔ℎ𝑡,𝑤𝑖𝑑𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ), where two of height, width or depth have numerical values and are the
constant hyperparameters for that particular line. Furthermore, the value of one of height, width or
depth is {𝑑,𝑤,ℎ} and is the variable hyperparameter for the plotted line. For example, line labelled
(h, 120, 5) means the experiments for the corresponding line are with a NeuroSketch architecture
with 120 number of units per layer, 5 layers and each point plotted corresponds to a different value
for the kd-tree height, and label (0, 30, d) means the experiments are run with varying depth of
the neural network, with kd-tree height 0 (i.e. only one partition) and the neural width network is
30. The hyperparameter values are as follows. For lines (h, 120, 5) and (h, 30, 50), kd-tree height is
varied from 0 to 4, for the line labelled (0, w, 5) neural network width is {15, 30, 60, 120} and for
lines (0, 120, d) and (0, 30, d) neural network depth is {2, 5, 10, 20}.
TREE-AGG and VerdictDB are plotted for sampling sizes of 100%, 50%, 20% and 10% of data

size. For DeepDB, we report results for RDC thresholds in [0.1, 1] (minimum error is at RDC
threshold=0.3. Error increases for values less than 0.1 or more than 1).

Results. Fig. 10 (a) shows the trade-off between query time and accuracy. NeuroSketch performs
well when fast answers are required but some accuracy can be sacrificed, while if accuracy close to
an exact answer is required, TREE-AGG can perform better. Furthermore, Fig. 10 (b) shows the
trade-off between space consumption and accuracy. Similar to time/accuracy trade-offs, we observe
that when the error requirement is not too stringent, NeuroSketch can answer queries by taking
a very small fraction of data size. Finally, NeuroSketch outperforms DeepDB in all the metrics.
Furthermore, comparing TREE-AGG with VerdictDB shows that, on this particular dataset, the
sampling strategy of VerdictDB does not improve upon uniform sampling of TREE-AGG while the
R-tree index of TREE-AGG improves the query time over VerdictDB.
Moreover, Fig 10 shows the interplay between different hyperparameters of NeuroSketch. We

see that increasing depth and width of the neural networks improves the accuracy, but after a
certain accuracy level the improvement plateaus and accuracy even worsens if depth of the neural
network is increased but the width is too small (i.e., the red line). Nevertheless, using partitioning
method allows for further improving the time/accuracy trade-off as it improves the accuracy at
almost no cost to query time. We also observe that kd-tree improves the space/accuracy trade-off,
compared with increasing the width or depth of neural networks. This shows that our paradigm of
query specialization is beneficial, as learning multiple specialized models each for a different part

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 100. Publication date: May 2023.



100:20 Sepanta Zeighami, Cyrus Shahabi, and Vatsal Sharan

PM  VS G5 G10 G20 TPC1 TPC10
Datasets

100

101

Ti
m

e 
(s

ec
.)

(a) Training Set Generation

20 40 60
Duration (mins.)

1
1.2

1.5

2

N
or

m
. M

AE
 R

at
io

(b) Architecture Search

10 2 10 1 100 101

Duration (mins.)

10 2

10 1

100

N
or

m
 M

AE

(c) Training Duration
VS PM TPC1 width=120 width=30

Fig. 13. Preprocessing Time Study

102 103 104 105
n

0.00

0.01

0.02

N
or
m
al
iz
ed
 M

AE
(a) Accuracy

102 103 104 105
n

100

101

102

Q
ue
ry
 ti
m
e 
(μ
s)

(b) Query Time
Uniform Gaussian GMM

Fig. 14. DQD Bound on Synthetic Datasets

of the query space performs better than learning a single model for the entire space. We discuss
these results in the context of our DQD bound in Sec. 5.7.

5.3.2 Visualizing NeuroSketch for Different Model Depth. Fig. 11 shows the function NeuroSketch
has learned for our running example, for two neural networks with the same architecture, but with
depths 5 and 10. Comparing Fig. 11 with Fig. 1, we observe that NeuroSketch learns a function with
similar patterns as the ground truth but the sharp drops in the output are smoothened out. We also
observe that the learned function becomes more similar to the ground truth as we increase the
number of parameters. Note that the neural networks are of size about 9% and 3.8% of the data size.

5.4 NeuroSketch Generalization Analysis

Fig. 12 studies generalization ability of NeuroSketch from train to test queries across across datasets.
The results are for a NeuroSketch with tree height 0 (i.e., no partitioning), neural network depth 5
and with neural network widths of 30 and 120. Fig. 13 (a) shows that training size of about 100,000
sampled query points is sufficient for both architectures to achieve close to their lowest error.
Furthermore, when sample size is very small, smaller architecture generalizes better, while the
larger neural network improves performance when enough samples are available.

In Fig. 13 (b), we plot the average Eucleadian distance from test queries to their nearest training
query, refered to as dist. NTQ. To compare across datasets, datasets are scaled to be in [0, 1] for
this plot, and the difference in dist. NTQ values is due to different data dimensionality and number
of active attributes in the queries. We ensure none of the test queries appear in the training set,
but as the number of training samples increases, dist. NTQ decreases. Nonetheless, when model
size is small, eventhough increasing number of samples beyond 100,000 decreaes dist. NTQ, model
accuracy does not improve. This suggests that for small neural networks, the error is due to the
capacity limit of the model to learn the query function, and not lack of training data.

5.5 Ablation Study of Partitioning

We study the impact of merging in the prepossessing step of NeuroSketch. Recall that we set the
tree height to 4, so that the partitioning step creates 16 partitions that are merged using AQC, after
which 8 partitions remain. We compare this approach with two alternatives. (1) We perform no
partitioning and train a single neural network to answer any query. (2) We set the tree height to 3

so that we obtain 8 partitions without performing any merging. Table 3 shows the result of this
comparison. It shows that performing partitioning, either with merging or without merging is
better than no partitioning across all datasets. Second, for almost all datasets, merging provides

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 100. Publication date: May 2023.



NeuroSketch: Fast and Approximate Evaluation of Range Aggregate Queries with Neural Networks 100:21

Dataset
Normalized

AQC STD

% Improved

(Merging)

% Improved

(No Merging)

VS 1.02 47.6 44.1
PM 0.30 22.8 18.6
TPC1 0.17 23.5 6.7
G5 0.41 12.0 13.2
G10 0.10 6.8 6.8
G20 0.07 14.6 14.6

Correlation with STD 0.87 0.94

Table 3. Improvement of partitioning over no partitioning

Fig. 15. 2D data subsets
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Fig. 16. Learned and True Query Functions on 2D Datasets

better or equal performance compared with no merging. Thus, in practice, using AQC as an estimate
for function complexity to merge nodes is beneficial.
In fact, we observed a correlation coefficient of 0.61 between AQC and the error of trained

models, which quantifies the benefits of using AQC as an estimate for function complexity. It also
implies that AQC can be used to decide whether a query function is too difficult to approximate. For
instance, in a database system, the query optimizer may build NeuroSketches for query functions
with smaller AQC, and use a default query processing engine to answer query functions with larger
AQC.

Furthermore, Table 3 shows that the benefit of partitioning is dataset dependent. We observed
a strong correlation between the standard deviation of AQC estimates across leaf nodes of the
kd-tree and the improvement gain from partitioning. Specifically, Let 𝑅 = {𝐴𝑄𝐶𝑁 ,∀ leaf 𝑁 }, as
calculated in line 3 of Alg. 3. We calculate STD(𝑅)

AVG(𝑅) as the normalized AQC STD for each dataset.

This measurement is reported in the second column of Table 3. The last row of the table shows
the correlation of the improvement for the partitioning methods with this measure. The large
correlation suggests that when the difference in the complexity of approximation for different
parts of the space is large, partitioning is more beneficial. This matches our intuition for using
partitioning, where our intention is to allow specialized models to focus on the complex parts of
the query space. It shows that partitioning is beneficial if there are parts of the space that are more
complex than others.

5.6 NeuroSketch Preprocessing Time Analysis

Training Set Generation. Fig. 13 (a) shows the time it takes to generate the training set of 100,000
queries is at most 60 seconds, with most datasets taking only a few seconds. The reported results
are obtained by answering the queries in parallel on GPU. The queries are answered by scanning
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all the database records per query and with no indexing. We expect faster training set generation
by building indexes.

Achitecture Search. Fig. 13 (b) shows the time to perform architecture search for each dataset.
We use Optuna [6], a tool that uses baysian optimization to perform hyperparameter search. We
use the query time and space requirement (to solve Problem 1), to limit maximum number of neural
network parameters. Then, we use Optuna to find the width and depth of the neural network that
minimizes error. We run Optuna for a total of one hour and set model size limit to be equal to the
nueral network size in our default setting. For a point in time, 𝑡 we report the ratio of error of
the best model found by Optuna upto time 𝑡 divided by error of our default model architecture.
This ratio over time is plotted in Fig. 13 (b). The figure shows that Optuna find a model that
provides accruacy within 10% of our default architecture in around 20 minutes. It also finds a better
architecture for VS dataset than our default, showing that NeruoSketch accuracy can be improved
by performing dataset specific parameter optimization. Optuna trains models in parallel (multiple
models fit in a single GPU), and also stops training early if a setting is not promissing, so that more
than 300 parameter settings are evaluated in the presented one hour for each dataset.
Training Time. Fig. 13 (c) shows the accuracy of neural networks during training. Models

converge within 5 minutes of training across datasets, and error fluctuates when training for longer.
Models with larger width converge faster.

5.7 Confirming DQD Bound with NeuroSketch

Model Size and DQD. We revisit Fig 10 in the context of our DQD bound. First, unsurprisingly,
we observe that the overall trend of improved accuracy for larger models matches DQD. More
interestingly, we further observe that Fig 10 shows increase in data size increases accuracy, but only
up to a certain point, after which increasing model size has little impact. This also matches DQD,
where, in Theorem 3.1, increasing size which reduces 𝜀1 only reduces total error (i.e., 𝜀1 + 𝜀2) up to
when 𝜀1 = 0. After 𝜀1 = 0, error cannot be reduced further by increasing number of parameters. As
discussed in Sec. 3.1.2, this is because 𝑓𝐷 , unlike 𝑓𝜒 , may be a discontinuous function, so error of a
neural network is not guaranteed to ever go to zero (i.e. Theorem. 3.4 doesn’t apply to 𝑓𝐷 ).
Data Size, LDQ and DQD. We corroborate the observations made in the DQD bound with

NeuroSketch using synthetic datasets, so that we can calculate the corresponding LDQs. We sample
𝑛 points from uniform, Gaussian and two-component GMM distributions (see Sec. 3.1.3 on how to
calculate their LDQs) and answer RAQs with COUNT aggregation function on the sampled datasets,
varying the value of 𝑛. We train NeuroSketch with partitioning disabled to isolate the neural
network ability to answer queries.

Fig. 14 shows the result of this experiment. In Fig. 14 (a), we fix the neural network architecture
so that query time and space complexity is fixed (we use one hidden layer with 80 units) and train
NeuroSketch for different data sizes and distributions. We observe that, as DQD bound suggests,
the error decreases for larger data sizes. Furthermore, uniform distribution, which has a smaller
LDQ, achieves the lowest error, then Gaussian whose LDQ is larger and finally GMM which has the
largest LDQ. Fig. 14 (b) shows similar observations, but with accuracy fixed to 0.01 and space and
time complexity allowed to change. Specifically, we perform a grid search on model width, where
we train NeuroSketch for different model widths and find the smallest model width where the error
is at most 0.01. We report query time of the model found with our grid search in Figs. 14 (b). As
DQD bound suggests, the query time and space consumption decrease when data size increases.
Moreover, the same observations hold for storage cost, where we haven’t plotted the results as they
look identical to that of Figs. 14 (b) (both storage cost and query time are a constant multiple of
the number of parameters of the neural network, so both storage cost and query time are constant
multiples of each other).
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Dataset VS (2D) PM (2D) TPC (2D)

Norm. MAE 0.035 0.014 0.0029

Norm. AQC 1.28 0.95 0.77

Table 4. DQD Bound on 2D Real/Benchmark Datasets

Interestingly, for small data sizes, the difficulty of answering queries across distributions does
not follow their LDQ order, where uniform distribution is harder when 𝑛 = 100 compared with a
Gaussian distribution. When data size is small, a neural network has to memorize the location of
all the data points, which can be more difficult with uniform distribution as the observed points
may not follow any recognizable pattern. Nonetheless, as data size increases, as suggested by DQD
bound, the error, query time and space complexity improve, and the difficulty of answering queries
from different distributions depends on the LDQ.

DQD and Real/Benchmark Distributions. To further investigate impact of data distribution
on accuracy, we visualize 2D subsets of PM, VS and TPC1. We perform RAQs that ask for AVG of
the measure attribute where predicate column falls between 𝑐 and 𝑐 + 𝑟 , where 𝑟 is fixed to 10% of
column range and 𝑐 is the query variable (and input to the query function). Fig. 15 plots the datasets.
Fig. 16 shows the corresponding true query functions and the function learned by NeuroSkech
(without partitioning). Sharp changes in the VS dataset caues difficulties for NeuroSketch, leading
to inaccuracies around such sharp changes. This is reflected in both AQC and MAE values shown in
Table 4 (Norm. AQC is AQC of the functions after they are scaled to [0, 1] to allow for comparions
across datasets), where PM and TPC which have less such changes have smaller AQC and MAE.

We use Fig. 16 (a) to illustrate why abrupt changes (i.e., large LDQ) make function approximation
difficult. Observe in Fig. 16 (a) such an abrupt change in query function where lat. is between 29.73
and 29.8 (the begning and end of the linear piece are marked in the figure with vertical lines). We
see that a single linear piece is assigned to approximate the function in that range (recall that ReLU
neural networks are piece-wise linear functions). Such a linear piece has high error, as it cannot
capture the (non-linear) change in the function. The error resuling from this approximation grows
as the magnitude of the abrupt change in the true function increases. Alternatively, more linear
pieces are needed to model the change in the function, which results in a larger neural network.

6 RELATED WORK

Answering RAQs. The methods for answering RAQs can be divided into sampling-based methods
[7, 12, 14, 26] and model-based methods [8, 13, 15, 23, 31, 35, 44]. Sampling-based methods use
different sampling strategies (e.g., uniform sampling, [14], stratified sampling [12, 26]) and answer
the queries based on the samples. Model-based methods develop a model of the data that is used to
answer queries. The models can be of the form of histograms, wavelets, data sketches (see [13] for
a survey) or learning based regression and density based models [15, 23, 35]. These works create a
model of the data and use the data models to answer queries.

In the case of learned models, a model is created that learns the data, in contrast with NeuroSketch
that predicts the query answer. That is, regression and density based models of [23], generative
model of [35] and the sum-product network of [15] are models of the data created independent
of potential queries. We experimentally showed that our modeling choice allows for orders of
magnitude performance improvement. Secondly, data models can answer specific queries, (e.g. [23]
answers only COUNT, SUM, AVG, VARIANCE, STDDEV and PERCENTILE aggregations) while,
our framework can be applied to any aggregation function. Finally, our theoretical analysis for
using a learned model is novel, in that it studies why and when a neural network can perform well.
Such a study is missing across all existing learning based methods.
Furthermore, learned cardinality estimation [17, 20, 36ś38] is related to our work, in that it

answers COUNT queries. However, we consider general aggregation functions and such methods
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do not apply (we also observed that modifying a representative of such approaches, [37], to
answer RAQs performed worse than DeepDB in practice). [20] uses neural networks for cardinality
estimation and thus our theoretical results are applicable to justify their success. Furthermore, [17]
theoretically studies training size needed to learn selectivity function, which is orthogonal to our
work.
Neural Network Approximation. To approximate a function 𝑓 with a neural network, similar to
Theorem 3.4 but under different settings, existing work [11, 18, 22, 28, 33, 34, 39ś41] characterize
neural network size, 𝑠 , in terms of its error, 𝜀, in the form 𝑠 = 𝐶1𝜀

−𝑑𝐶2 , where 𝐶1 and 𝐶2 depend on
properties of 𝑓 . The works differ in their notions of size and assumptions on 𝑓 , leading to different
𝐶1 and 𝐶2 values. Closest to our setting, [18, 28, 33, 34] bound approximation error for Lipschitz
functions for a given number of neural network parameters, but don’t consider the storage cost.
Storage cost cannot be related to the number of parameters if the magnitude of the parameters are
unbounded, as is the case in [18, 33, 34]. [28] also does not explicitly bound the storage cost, but
analyzing their construction yields a bound that, compared to our result, is exponentially worse in
𝜌 and polynomially worse in 𝑑 .

7 CONCLUSION

We presented the first DQD bound for an ML method when answering RAQs. Our DQD bound
shows how the error of a neural network relates to the data distribution, data size and the query
function. Based on our DQD bound, we introduced NeuroSketch, a neural network framework for
efficiently answering RAQs, with orders of magnitude improvement in query time over the state-
of-the-art algorithms. A NeuroSketch trained for a query function is typically much smaller than
the data and answers RAQs without accessing the data. This is beneficial for efficient release and
storage of data. For instance, location data aggregators (e.g., SafeGraph [1]) can train a NeuroSketch
to answer the average visit duration query, and release it to interested parties instead of the dataset.
This improves storage, transmission and query processing costs for all parties. Future work can
focus on DQD bounds for high dimensions and studying approximation error for separate function
classes. Our Lipschitz assumption is very generic (only assumes a bound on the function derivative
magnitude), and can yield a loose bound in high dimensions or for some functions classes (e.g.,
linear functions that can have large derivative magnitude but are easy to approximate). Additionally,
modeling impact of query workload on neural network accuracy, as well as studying parallelism
and model pruning methods [10] to remove unimportant model weights for faster evaluation time.
Support for dynamic data is another interesting future direction. One approach is to frequently test
NeuroSketch, and re-train the neural networks whose accuracy fall below a certain threshold. We
conjecture that DQD can be used to decide how often retraining is required.
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