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Abstract—With the development of 5G networks and advanced
communication technologies, connected vehicles (CV) are becoming
an increasingly important aspect of the future of transportation. The
connected vehicles will usually generate a large amount of data that
require fast and reliable communication channels with low latency. 5G
millimeter-wave (mmWave) is crucial for the next generation of
vehicle-to-vehicle (V2V) communications in CV scenarios. However,
harsh weather conditions such as rain, snow, dust, and sand can
significantly impact the performance of 5G mmWave channels for V2V
communications. Maintaining seamless connections for connected
vehicles during harsh weather conditions is a significant challenge that
researchers must address. In this paper, we propose a two-stage
strategy enabling connected vehicles to operate effectively under
moderate and severe weather conditions. Our proposed approach
involves a prediction step, which uses machine learning techniques to
forecast weather patterns and determine the optimal communication
strategy, followed by a switching step, which seamlessly chooses
between frequency or channel switch based on the prediction. By
incorporating these two steps, we aim to provide a robust and
efficient communication system that can adapt to different weather
conditions. The NS3 simulation results show that our switching
strategy is effective and can benefit the field of connected vehicle
technology.

Index Terms—Connected vehicles, 5G, harsh weather, switching
strategy, and NS3.

|. INTRODUCTION

T HIS paper expands the previous paper published in the

2022 IEEE International Conference on Wireless for Space
and Extreme Environments (WISEE) [1]. Compared to our
previous conference paper, the primary contribution of this
paper is introducing an additional frequency switch mode for
moderate weather changes, which allows for maximum
communication throughput. Rather than solely relying on
channel switching between 5G mmWave and 4G LTE channels,
our extended work proposes a four scenarios frequency
change mode for moderate weather. By providing a
comprehensive switching strategy for connected vehicles, we
aim to enhance communication reliability and performance in

adverse weather scenarios.
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The development of wireless communication technology
has led to the integration of different technologies, such as loT
and Intelligent Transport Systems (ITS), both into various

applications, such as smart cities and connected vehicles [2]
[3]. ITS aims to improve traffic flow, driving safety, and comfort

through  vehicle-to-vehicle ~ communication [4]. 5G
millimeterwave (mmWave) communication is a vital
component for connected vehicles due to its higher

transmission speed and lower latency compared to 4G Long
Term Evolution (LTE) [2] channel. While 5G mmWave is
generally the preferred communication channel for connected
vehicles due to its high throughput. However, weather
conditions such as severe rain, snow, and sand can significantly
impact its performance [1]. In these cases, 4G LTE may provide
a more reliable connection for connected vehicles, as it is less
susceptible to harsh weather conditions. It is crucial to
consider the impact of severe weather on the communication
networks of connected cars to ensure seamless and secure
communication.

The CVs are vehicle networks that transfer data with the
cloud, network devices, and servers [5]. A reliable
communication channel between vehicles is the most crucial
aspect of a successful CV network. One of the main challenges
of connected vehicles under severe weather conditions is the
potential for degraded or disrupted communication between
the cars. Harsh weather conditions, such as rain, snow, dust,
and sand can significantly impact the performance of wireless
communication channels, making it difficult for vehicles to
maintain reliable and seamless connectivity. This flaw can lead
to safety concerns and reduced efficiency in transportation,
particularly in situations where real-time communication and
coordination between vehicles are essential, such as in
autonomous driving scenarios. Another challenge is that the
communication degradation problem will occur in harsh
weather. Severe weather can result in a significant drop in the
quality of communication between vehicles, which might be
dangerous as it may lead to collisions.

For a reliable connected vehicle network, the researchers in
[6] have investigated the impact of different weather
conditions on the safety of the CV network. Studies by [7] and
[8] have used two unique attenuation models to examine the
effect of weather conditions on 5G mmWave high-frequency
communications and found that harsh weather conditions like
rain, snow, dust, and sand have a significant impact on
mmWave communications.

To provide reliable and uninterrupted communication in
connected vehicle networks, a two-stage strategy is proposed
in this paper to address weather-related impacts. The first
stage involves predicting the future received signal strength



indicator (RSSI) based on current weather and current RSSI
information by using a long short-term memory (LSTM)
network, as described in our earlier work [1]. This paper
focuses on the second stage, where the decision to switch
frequencies or channels is made based on the predicted RSSI
and throughput. Our system has different strategies for
moderate and severe weather conditions, with frequency
switching activated for mild weather changes and channel
switching for extreme weather changes. To validate the switch
strategy, the NS3 Millicar model [9] has been extended by
incorporating weather parameters and redesigning the
automatic simulation generation system for easier testing. Our
contribution to this paper can be summarized as follows:

+ We propose using long short-term memory (LSTM) to
predict the future signal strength of 5G mmWave and 4G
LTE communication channels in harsh weather conditions
based on the previous signal strength and different
weather impacts: humidity, visibility, and particle size of
the environment.

« Our proposed switching strategy for connected vehicles in
harsh weather conditions involves two scenarios switch a
frequency switch for moderate weather changes and a
channel switch for severe weather changes. The
simulation results support that our strategy works well in
both cases. This two-stage approach provides a more
targeted response to specific weather conditions, which
can help maintain reliable vehicle connectivity.

- We expand upon the NS3 Millicar model [9] by integrating
weather effects into the path loss functions. Our newly
designed model can automatically generate NS3
simulation results based on various weather parameters,
including particle size, visibility, and humidity. Our new N3
weather model is the first NS3 V2V model to consider
weather conditions.

The paper is structured into six sections. Section Il provides
an overview of related work on handover, throughput, and
received signal strength indicator (RSSI). Section Il presents
several main topics addressed in this article, while Section IV
discusses the generation of weather data. Section V presents
the numerical simulation and results. Finally, in the concluding
Section, we summarize our findings and outline future work
plans.

II. RELATED WORK

Previous studies have explored various handover methods
for 5G mmWave and 4G LTE networks. For instance, one study
proposed using dynamic Q-learning and fuzzy convolution
neural networks to make handover decisions for both
networks [10]. Another study utilized the moving average
slope of received signal strength (MAS-RSS) and signal to noise
ratio (SNR) threshold in the handover decision process [11].
The MAS-RSS technique observes the trend of RSS fluctuation
and allows for adaptive handover decisions based on changes
in network conditions. Handover refers to moving from one cell

to another and typically involves either 5G mmWave or 4G LTE
base stations. In contrast to most other works on handover, our
channel-switching approach does not involve base stations.
We focus only on the direct communication channel between
vehicles, in accordance with the 3GPP standard for next-
generation vehicular systems.

Earlier research [12] used throughput to examine the uplink
performance of the 5G mmWave network, emphasizing the
impact of a wide range of factors on the network’s
performance, such as the number of users, beam-forming, and
the usage of adaptive coding and modulation (ACM) methods.
A different article also employed throughput [13] to look at
how device thermal performance affected 5G mmWave
networks communicated. It investigates how overheating
affects signal quality, strength, and network performance. For
assessing the performance of 5G mmWave, throughput is a
valuable metric. RSSI is another metric for measuring 5G
communication performance. One study [14] utilized RSSI
feedback from individual users to design a new hybrid
beamforming approach. In another study, [15], a strategy was
presented for optimizing the user-BS connection based on RSSI
to improve the overall signal quality of 5G wireless networks.
The authors in [16] proposed an innovative algorithm for
identifying indoor locations in 5G mmWave systems using
beamforming and RSSI. Our paper utilized RSSI as a means of
prediction in the initial prediction step and throughput in the
switching step. We conducted several simulations to examine
the correlation between them.

I1l. SWITCHING MODEL
A. Design Overview

To address the V2V communications degradation problems
under harsh weather conditions, we propose a framework that
features a two-tier machine learning-based vehicle switching
strategy. As shown in Fig.1, our system consists of two
components: (1) prediction of the received signal strength
indicator (RSSI) and (2) a frequency switch or channel switch
procedure. Our previous results using LSTM, as cited in [1],
demonstrate the ability to predict accurate future RSSI values
based on current RSSI values and weather data information.
This paper focuses on the second switching strategy process.
The strategy incorporates a dual-scenario switching that
involves frequency changes for moderate harsh weather and
channel switches for severe weather. In the case of mild
weather, our system implements a frequency change to ensure
seamless communication, and it will pick one of the four
available frequencies: 28 GHz, 39 GHz, 60 GHz, and 73 GHz.
During severe weather conditions, a channel switch is
employed, which involves a transition from the 5G mmWave to
the 4G LTE channel.

B. Attenuation Model of Dust and Sand

Dust and sand can have a significant effect on millimeter
wave propagation. Millimeter waves have a shorter



wavelength than radio waves, which makes them more
susceptible to being scattered or absorbed by small particles
such as dust and sand. When millimeter waves encounter dust
or sand particles, they can be scattered in many directions,
which can cause them to
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Fig. 1: System Overview

lose their strength and weaken. This scattering effect can also
cause interference between different signals, making it difficult
to distinguish between them. In addition to scattering, dust,
and sand can absorb millimeter waves. This absorption effect
can cause the signal to lose strength as it travels through dust
or sand, weakening it when it reaches its destination.

Overall, the effect of dust and sand on millimeter wave
propagation can be significant and can limit the range and
effectiveness of millimeter wave communication and sensing
systems. To mitigate these effects, techniques such as signal
processing, beamforming, and antenna design can be used to
improve the robustness and reliability of millimeter wave
systems in dusty or sandy regions.

This paper uses the Mie scattering method to develop a
mathematical model that calculates the reduction in strength
of mmWave propagation. The model considers the ratio of
particle diameter (sand/dust) to the wavelength of the signal
for accurate results and is particularly applicable at higher
frequencies. The key parameters affecting the attenuation
value are particle radius, frequency, humidity, and complex
permittivity. The attenuation of dust and sand is defined as a
in dB according to Sharif and Musa et al. [17], [18] as shown in
equation (1).

_aefd
Qap) = —,

[C1 + C202 f? + Csal f] (1)

Where (1, C2, and C3 are unknown coefficients that depend on
the real part and imaginary part of the complex permittivity of
the dusty/sandy medium, ais the radius of the sand in meters,
v is the visibility in km, fis the frequency in GHz, and d is the
attenuation length. Humidity (H) can significantly affect the
complex permittivity of materials, particularly those sensitive
to moisture. Complex permittivity measures how a material
responds to an electric field. It consists of two components: the
real part (dielectric constant) and the imaginary part (loss
factor). Overall, the effect of humidity on complex permittivity
can vary depending on the specific material and the humidity
level. It is essential to consider the impact of humidity on a
material’s dielectric properties when designing and testing
electronic devices or other applications that involve the use of

electric fields. The effect of the moisture humidity on the
dielectric constant and loss factor is represented by

e1=€+0.04H-7.78x 104 H2+ 556 x 106 H3(2) e2=¢"+
0.02H -3.71 x 10~*H?+ 2.76 x 10-6 H3(3)

Visibility is another important parameter affecting the
transmitting medium’s attenuation factor. Visibility refers to
the degree to which an object, person, or location can be seen
or perceived. In general, it describes the clarity and sharpness
of what can be seen and is often used to describe the
conditions under which something is visible. For example,
regarding weather, visibility may refer to the distance at which
objects can be seen due to factors such as fog, haze, dust, and
sand.

C. RSS! Prediction using LSTM networks

RSSI is a crucial parameter measuring the quality of a
communication link at the receiver end. It is widely used as the
main parameter for vertical and horizontal handovers [19],
[20]. However, a high-performance and accurate RSSI
prediction model is required to achieve seamless connectivity
through channel switching. In our previous paper [1], we
implemented an accurate LSTM-based RSSI predictor to help
decide whether switching is needed between 5G and 4G
technologies on different occasions. LSTM network is the state-
of-the-art artificial neural network suited for time-series
forecasting and speech recognition that outperforms other
machine learning models. Each LSTM unit consists of three
fundamental gates: Input, Output, and Forget gates. The Forget
gate decides whether to keep or remove an old record. The
Input gate learns from the new coming data, while the Output
gate updates the processed data.

Our LSTM prediction stage involves designing a single LSTM
layer with 100 LSTM units and a Dropout layer with a value of
0.3. As suggested by its name, the Dropout is in charge of
arbitrarily discarding neurons and units throughout the neural
network training process to prevent over-fitting. An ultimately
linked dense layer serves as the top layer and is intended to
produce the estimated values. The deep LSTM model was
implemented using Python 3.9.12 and TensorFlow
2.9.0 and trained over 40 epochs with a batch size of 1024.

D. Switching Under Different Weather

In the event of harsh weather, we have prepared two
scenarios: moderate and severe weather conditions. Before
presenting our strategy, we must highlight two basic facts
according to the Third Generation Partnership Project (3GPP).
5G mmWave offers faster transfer speeds, greater traffic
capacity, and reduced latency compared to 4G LTE networks.
5G mmWave operates in the frequency range between 24 GHz
and 100 GHz, with higher frequency channels providing better
communication capabilities. When the weather is normal, 5G
mmWave is the preferred channel over 4G. When the weather



worsens, it is better to use 5G mmWave but with a lower
frequency band in the case of moderate weather deterioration
- frequency change scenario. Suppose weather conditions
worsen again so that the 28GHz channel can no longer provide
reliable communication. In that case, our system will initiate a
channel switch from 5G mmWave to 4G LTE - channel switch
scenario.

In the frequency switch scenario, we have selected four
frequency levels: 28 GHz, 39 GHz, 60 GHz, and 73 GHz. These
frequencies have received significant attention from
researchers, and 28 GHz and 39 GHz are already being utilized
commercially in T-Mobile and Verizon cell phone networks.

IV. WEATHER DATA GENERATION

In this section, we will discuss the generation of harsh
weather we are focusing on. As previously mentioned in
Section I, the three main weather parameters that our model
considers are visibility, humidity, and particle radius.

A. Local Climatological Data (LCD) Dataset

Following a thorough search of available public weather data
online, we found that the LCD weather dataset [21] was
suitable for our simulation purpose. This dataset provides
humidity and visibility data for various locations in the United
States. For our simulation, we used the weather data of
BLANDING MUNICIPAL AIRPORT, UT, US, from 01/01/2021 to
12/31/2021. We chose this area because it is closer to the
desert, and its weather data are collected every twenty
minutes.

B. Three Particle Size Levels

The LCD dataset provides visibility and humidity information
but not the particle size of sand or dust in sandy areas. As
demonstrated in the study [8], most sand particle sizes fall
between 90 um and 600 um. To make our simulation results
more realistic to the real world, we divided particle sizes into
three levels, as illustrated in Table I, and randomly generated
values for each group during the simulation.

TABLE |: Three Particle Size Levels

Parameters Value Range
Low Level (um) 90-200
Medium Level (um) 200-400
High Level (um) 400-600

V. SIMULATION RESULTS AND DISCUSSION

We perform a series of simulations to examine the impact of
moderate and severe weather on 5G mmWave frequency
channel and 4G LTE channel. Our simulation analysis denotes
different weather parameter impacts on both channels.
Furthermore, we will examine existing equipment that can be
refined and adapted to fit our proposed design.

A. Simulation Setup

A comprehensive simulation setup has been described in [1].
Our prior research shows that the multivariate LSTM model
can predict future RSSI values under various weather
conditions. However, the main limitation of using RSSI values is
that they cannot be used to compare the transmission
performance from two different technologies, like 4G LTE and
5G mmWave. For example, under similar harsh weather
conditions, 4G LTE may drop from -45 dBm to -48 dBm with a
6% decrease, while 5G mmWave may drop from -75 dBm to -
85 dBm with an 11% decrease. A 6% decrease in LTE channel
does not necessarily indicate better communication than an 11
% decrease in 5G mmWave. Therefore, we need a different
metric to compare the communication performance. To
address this issue, we propose to include throughput TABLE II:
Simulation Parameters

Parameters Value Range
Particle Size (um) 90-600
Visibility (km) 2-10
Humidity (%) 0-100
Frequency (GHz) 2.1, 28, 39,60, 73
Speed (m/s) 20
V2V Scenario Highway
Vehicle States Line-of-Sight

into our system. Throughput refers to the amount of data
successfully transferred from one location to another within a
specific time frame. We have expanded our NS3 model [1] by
incorporating throughput as the primary metric for comparing
transmission performance.

In our updated simulation scenario, two vehicles drive in the
same direction at the same speed and aim to maintain
communication via sidelink through various 5G mm-Wave
frequencies or a 4G LTE channel, as shown in Fig. 2. The
communications will be impacted as they traverse harsh
weather environments with dust and sand. To evaluate this
impact, we utilize our modified NS3 module to simulate
communication throughput across different channels. Our
system will then choose the optimal channel in harsh weather.
The simulation parameters are shown in Table II.

5G mm-Wave

Fig. 2: Simulation Design

B. Moderate Weather Change Scenario

We simulated our updated NS3 model using the LCD
weather dataset to show its performance under moderate



weather conditions. For clearly displaying reasons, we will use
one day to discuss the simulation result. The front vehicle sets
up different communication channels to the back vehicle
simultaneously, and the throughput is shown in Fig. 3,4, and 5
for three particle size levels. The results in Figure 3 suggest that
communication is reliable when particle size is large at 28 GHz,
while 39 GHz shows fluctuating throughput. On the other
hand, 60 GHz and 73 GHz have poor performance. In Figure 4,
we observed that under medium particle conditions, 28 GHz
and 39 GHz demonstrate stable communication, but 60 GHz
and 73 GHz experience a significant drop in throughput. Finally,
in Figure 5, most channels are reliable for small particle size,
with only 60 GHz and 73 GHz experiencing a few
communication issues. Notably, the 28 GHz and 39 GHz
frequencies consistently exhibit stable and reliable
throughput, suggesting that our system can switch to these
frequencies to maintain communication reliability during
moderate weather conditions.

Different Frequency Throughput of Large Particle

Throughput (Mbps)

—=—28 GHz 39 GHz 60 GHz 73 GHz

Fig. 3: Different Frequency Throughput of Large Particle.
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Fig. 4: Different Frequency Throughput of Medium Particle.
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Fig. 5: Different Frequency Throughput of Small Particle.

C. Severe Weather Change Scenario

To simulate severe weather conditions, we altered the
visibility of the LCD dataset and ran simulations for twovehicle

scenarios. We conducted different simulations for three
particle size groups to ensure consistency with moderate
weather. Results, shown in Fig. 6, 7, and 8, indicate that in
environments with large particle size, 5G mmWave is heavily
impacted and communication fails completely. In these cases,
vehicle communication should switch to 4G LTE channels. In
medium particle size environments, 4G LTE typically performs
better, with 5G mmWave only outperforming it in a few
instances. In Fig 7, at timestamps 32, 37, and 70, the 5G
mmWave throughput exceeded the 4G LTE channel; in these
cases, we need to switch to the 5G mmWave channel. At these
points, the corresponding humidity drops to 67 and 57, which
matches our previous results that when humidity decreases,
the attenuation effect is also decreasing. In Fig. 8, 25% of time
stamps need to switch to a 4G LTE channel in case of severe
weather, and about 75% choose a 5G mmWave channel.
According to these three figures, as the particle size of the dust
or sand environment increase, severe weather tends to affect
communication performances more largely.

Different Channel Throughput of Large Particle

Throughput(Mbps)

Time Stamp

——4G LTE 5G mmWave

Fig. 6: Different Channel Throughput of Large Particle.
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——4GLTE 5G mmWave

Fig. 7: Different Channel Throughput of Medium Particle.

Different Channel Throughput of Small Particle

Fig. 8: Different Channel Throughput of Small Particle.

D. Relationship between Throughput and Predicted RSSI

Our proposed switching strategy relies on throughput as the
primary criterion for determining whether a switch should
occur. However, one major limitation of this approach is that



the throughput simulation time in NS3 can be too long. A
2second throughput running time in the NS3 simulator might
cause ten minutes in the real world. To address this issue, we
aim to investigate the correlation between throughput and the
predicted RSSI. The correlation between throughput and
predicted RSSI for moderate and severe weather is shown in
Fig. 9 and 10. The blue line represents throughput, while the
orange line represents predicted RSSI. As observed, a strong
correlation exists between the two metrics, implying that we
can employ the expected Received Signal Strength Indication
(RSSI) as an indicator to predict the throughput performance
to save simulation time.

E. An Existing Promising Equipment

We want to draw attention to a piece of equipment already

existence and effectiveness of such equipment validate our
proposed switching strategy’s feasibility and provide further
evidence that our strategy can be implemented in future
equipment designs.

VI. CONCLUSION

In this paper, we extend our previous prediction stage into a
two-stage switching strategy for connected vehicles under
different harsh weather conditions. We introduce a new
meaningful and comparable metric, throughput, as the
determinant for frequency or channel switch in case of severe
weather. The simulation results demonstrate the effectiveness
of our proposed strategy. For future work, we will validate this
proposed model by conducting experiments on the dielectric
constant, particle size range, and dust concentration in the

Throughput and Predicted RSSI
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Fig. 9: Relationship between Throughput and Predicted RSSI under Moderate Weather.
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Fig. 10: Relationship between Throughput and Predicted RSSI under Severe Weather.

available in the market, namely, the CubeSA 60Pro [22]. This
device shares some similarities with our proposed model. The
CubeSA 60Pro operates on 5G 60 GHz mmWave continuously,
and when the signal faces challenges during harsh weather
conditions, it automatically switches to a 5 GHz channel. The

desert region of the United States. Additionally, we aim to
implement reinforcement learning in the switching strategy
and evaluate its performance.

vi
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