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Abstract—With the development of 5G networks and advanced 

communication technologies, connected vehicles (CV) are becoming 
an increasingly important aspect of the future of transportation. The 
connected vehicles will usually generate a large amount of data that 
require fast and reliable communication channels with low latency. 5G 
millimeter-wave (mmWave) is crucial for the next generation of 
vehicle-to-vehicle (V2V) communications in CV scenarios. However, 
harsh weather conditions such as rain, snow, dust, and sand can 
significantly impact the performance of 5G mmWave channels for V2V 
communications. Maintaining seamless connections for connected 
vehicles during harsh weather conditions is a significant challenge that 
researchers must address. In this paper, we propose a two-stage 
strategy enabling connected vehicles to operate effectively under 
moderate and severe weather conditions. Our proposed approach 
involves a prediction step, which uses machine learning techniques to 
forecast weather patterns and determine the optimal communication 
strategy, followed by a switching step, which seamlessly chooses 
between frequency or channel switch based on the prediction. By 
incorporating these two steps, we aim to provide a robust and 
efficient communication system that can adapt to different weather 
conditions. The NS3 simulation results show that our switching 
strategy is effective and can benefit the field of connected vehicle 
technology. 

Index Terms—Connected vehicles, 5G, harsh weather, switching 
strategy, and NS3. 

I. INTRODUCTION 

HIS paper expands the previous paper published in the 

2022 IEEE International Conference on Wireless for Space 

and Extreme Environments (WiSEE) [1]. Compared to our 

previous conference paper, the primary contribution of this 

paper is introducing an additional frequency switch mode for 

moderate weather changes, which allows for maximum 

communication throughput. Rather than solely relying on 

channel switching between 5G mmWave and 4G LTE channels, 

our extended work proposes a four scenarios frequency 

change mode for moderate weather. By providing a 

comprehensive switching strategy for connected vehicles, we 

aim to enhance communication reliability and performance in 

adverse weather scenarios. 
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The development of wireless communication technology 

has led to the integration of different technologies, such as IoT 

and Intelligent Transport Systems (ITS), both into various 

applications, such as smart cities and connected vehicles [2] 

[3]. ITS aims to improve traffic flow, driving safety, and comfort 

through vehicle-to-vehicle communication [4]. 5G 

millimeterwave (mmWave) communication is a vital 

component for connected vehicles due to its higher 

transmission speed and lower latency compared to 4G Long 

Term Evolution (LTE) [2] channel. While 5G mmWave is 

generally the preferred communication channel for connected 

vehicles due to its high throughput. However, weather 

conditions such as severe rain, snow, and sand can significantly 

impact its performance [1]. In these cases, 4G LTE may provide 

a more reliable connection for connected vehicles, as it is less 

susceptible to harsh weather conditions. It is crucial to 

consider the impact of severe weather on the communication 

networks of connected cars to ensure seamless and secure 

communication. 

The CVs are vehicle networks that transfer data with the 

cloud, network devices, and servers [5]. A reliable 

communication channel between vehicles is the most crucial 

aspect of a successful CV network. One of the main challenges 

of connected vehicles under severe weather conditions is the 

potential for degraded or disrupted communication between 

the cars. Harsh weather conditions, such as rain, snow, dust, 

and sand can significantly impact the performance of wireless 

communication channels, making it difficult for vehicles to 

maintain reliable and seamless connectivity. This flaw can lead 

to safety concerns and reduced efficiency in transportation, 

particularly in situations where real-time communication and 

coordination between vehicles are essential, such as in 

autonomous driving scenarios. Another challenge is that the 

communication degradation problem will occur in harsh 

weather. Severe weather can result in a significant drop in the 

quality of communication between vehicles, which might be 

dangerous as it may lead to collisions. 

For a reliable connected vehicle network, the researchers in 

[6] have investigated the impact of different weather 

conditions on the safety of the CV network. Studies by [7] and 

[8] have used two unique attenuation models to examine the 

effect of weather conditions on 5G mmWave high-frequency 

communications and found that harsh weather conditions like 

rain, snow, dust, and sand have a significant impact on 

mmWave communications. 

To provide reliable and uninterrupted communication in 

connected vehicle networks, a two-stage strategy is proposed 

in this paper to address weather-related impacts. The first 

stage involves predicting the future received signal strength 
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indicator (RSSI) based on current weather and current RSSI 

information by using a long short-term memory (LSTM) 

network, as described in our earlier work [1]. This paper 

focuses on the second stage, where the decision to switch 

frequencies or channels is made based on the predicted RSSI 

and throughput. Our system has different strategies for 

moderate and severe weather conditions, with frequency 

switching activated for mild weather changes and channel 

switching for extreme weather changes. To validate the switch 

strategy, the NS3 Millicar model [9] has been extended by 

incorporating weather parameters and redesigning the 

automatic simulation generation system for easier testing. Our 

contribution to this paper can be summarized as follows: 

• We propose using long short-term memory (LSTM) to 

predict the future signal strength of 5G mmWave and 4G 

LTE communication channels in harsh weather conditions 

based on the previous signal strength and different 

weather impacts: humidity, visibility, and particle size of 

the environment. 

• Our proposed switching strategy for connected vehicles in 

harsh weather conditions involves two scenarios switch a 

frequency switch for moderate weather changes and a 

channel switch for severe weather changes. The 

simulation results support that our strategy works well in 

both cases. This two-stage approach provides a more 

targeted response to specific weather conditions, which 

can help maintain reliable vehicle connectivity. 

• We expand upon the NS3 Millicar model [9] by integrating 

weather effects into the path loss functions. Our newly 

designed model can automatically generate NS3 

simulation results based on various weather parameters, 

including particle size, visibility, and humidity. Our new N3 

weather model is the first NS3 V2V model to consider 

weather conditions. 

The paper is structured into six sections. Section II provides 

an overview of related work on handover, throughput, and 

received signal strength indicator (RSSI). Section III presents 

several main topics addressed in this article, while Section IV 

discusses the generation of weather data. Section V presents 

the numerical simulation and results. Finally, in the concluding 

Section, we summarize our findings and outline future work 

plans. 

II. RELATED WORK 

Previous studies have explored various handover methods 

for 5G mmWave and 4G LTE networks. For instance, one study 

proposed using dynamic Q-learning and fuzzy convolution 

neural networks to make handover decisions for both 

networks [10]. Another study utilized the moving average 

slope of received signal strength (MAS-RSS) and signal to noise 

ratio (SNR) threshold in the handover decision process [11]. 

The MAS-RSS technique observes the trend of RSS fluctuation 

and allows for adaptive handover decisions based on changes 

in network conditions. Handover refers to moving from one cell 

to another and typically involves either 5G mmWave or 4G LTE 

base stations. In contrast to most other works on handover, our 

channel-switching approach does not involve base stations. 

We focus only on the direct communication channel between 

vehicles, in accordance with the 3GPP standard for next-

generation vehicular systems. 

Earlier research [12] used throughput to examine the uplink 

performance of the 5G mmWave network, emphasizing the 

impact of a wide range of factors on the network’s 

performance, such as the number of users, beam-forming, and 

the usage of adaptive coding and modulation (ACM) methods. 

A different article also employed throughput [13] to look at 

how device thermal performance affected 5G mmWave 

networks communicated. It investigates how overheating 

affects signal quality, strength, and network performance. For 

assessing the performance of 5G mmWave, throughput is a 

valuable metric. RSSI is another metric for measuring 5G 

communication performance. One study [14] utilized RSSI 

feedback from individual users to design a new hybrid 

beamforming approach. In another study, [15], a strategy was 

presented for optimizing the user-BS connection based on RSSI 

to improve the overall signal quality of 5G wireless networks. 

The authors in [16] proposed an innovative algorithm for 

identifying indoor locations in 5G mmWave systems using 

beamforming and RSSI. Our paper utilized RSSI as a means of 

prediction in the initial prediction step and throughput in the 

switching step. We conducted several simulations to examine 

the correlation between them. 

III. SWITCHING MODEL 

A. Design Overview 

To address the V2V communications degradation problems 

under harsh weather conditions, we propose a framework that 

features a two-tier machine learning-based vehicle switching 

strategy. As shown in Fig.1, our system consists of two 

components: (1) prediction of the received signal strength 

indicator (RSSI) and (2) a frequency switch or channel switch 

procedure. Our previous results using LSTM, as cited in [1], 

demonstrate the ability to predict accurate future RSSI values 

based on current RSSI values and weather data information. 

This paper focuses on the second switching strategy process. 

The strategy incorporates a dual-scenario switching that 

involves frequency changes for moderate harsh weather and 

channel switches for severe weather. In the case of mild 

weather, our system implements a frequency change to ensure 

seamless communication, and it will pick one of the four 

available frequencies: 28 GHz, 39 GHz, 60 GHz, and 73 GHz. 

During severe weather conditions, a channel switch is 

employed, which involves a transition from the 5G mmWave to 

the 4G LTE channel. 

B. Attenuation Model of Dust and Sand 

Dust and sand can have a significant effect on millimeter 

wave propagation. Millimeter waves have a shorter 
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wavelength than radio waves, which makes them more 

susceptible to being scattered or absorbed by small particles 

such as dust and sand. When millimeter waves encounter dust 

or sand particles, they can be scattered in many directions, 

which can cause them to 

 

Fig. 1: System Overview 

lose their strength and weaken. This scattering effect can also 

cause interference between different signals, making it difficult 

to distinguish between them. In addition to scattering, dust, 

and sand can absorb millimeter waves. This absorption effect 

can cause the signal to lose strength as it travels through dust 

or sand, weakening it when it reaches its destination. 

Overall, the effect of dust and sand on millimeter wave 

propagation can be significant and can limit the range and 

effectiveness of millimeter wave communication and sensing 

systems. To mitigate these effects, techniques such as signal 

processing, beamforming, and antenna design can be used to 

improve the robustness and reliability of millimeter wave 

systems in dusty or sandy regions. 

This paper uses the Mie scattering method to develop a 

mathematical model that calculates the reduction in strength 

of mmWave propagation. The model considers the ratio of 

particle diameter (sand/dust) to the wavelength of the signal 

for accurate results and is particularly applicable at higher 

frequencies. The key parameters affecting the attenuation 

value are particle radius, frequency, humidity, and complex 

permittivity. The attenuation of dust and sand is defined as α 

in dB according to Sharif and Musa et al. [17], [18] as shown in 

equation (1). 

  (1) 

Where C1, C2, and C3 are unknown coefficients that depend on 

the real part and imaginary part of the complex permittivity of 

the dusty/sandy medium, ae is the radius of the sand in meters, 

v is the visibility in km, f is the frequency in GHz, and d is the 

attenuation length. Humidity (H) can significantly affect the 

complex permittivity of materials, particularly those sensitive 

to moisture. Complex permittivity measures how a material 

responds to an electric field. It consists of two components: the 

real part (dielectric constant) and the imaginary part (loss 

factor). Overall, the effect of humidity on complex permittivity 

can vary depending on the specific material and the humidity 

level. It is essential to consider the impact of humidity on a 

material’s dielectric properties when designing and testing 

electronic devices or other applications that involve the use of 

electric fields. The effect of the moisture humidity on the 

dielectric constant and loss factor is represented by 

ε1 = ε′ + 0.04H − 7.78 × 10−4 H2 + 5.56 × 10−6 H3 (2) ε2 = ε′′ + 

0.02H − 3.71 × 10−4 H2 + 2.76 × 10−6 H3 (3) 

Visibility is another important parameter affecting the 

transmitting medium’s attenuation factor. Visibility refers to 

the degree to which an object, person, or location can be seen 

or perceived. In general, it describes the clarity and sharpness 

of what can be seen and is often used to describe the 

conditions under which something is visible. For example, 

regarding weather, visibility may refer to the distance at which 

objects can be seen due to factors such as fog, haze, dust, and 

sand. 

C. RSSI Prediction using LSTM networks 

RSSI is a crucial parameter measuring the quality of a 

communication link at the receiver end. It is widely used as the 

main parameter for vertical and horizontal handovers [19], 

[20]. However, a high-performance and accurate RSSI 

prediction model is required to achieve seamless connectivity 

through channel switching. In our previous paper [1], we 

implemented an accurate LSTM-based RSSI predictor to help 

decide whether switching is needed between 5G and 4G 

technologies on different occasions. LSTM network is the state-

of-the-art artificial neural network suited for time-series 

forecasting and speech recognition that outperforms other 

machine learning models. Each LSTM unit consists of three 

fundamental gates: Input, Output, and Forget gates. The Forget 

gate decides whether to keep or remove an old record. The 

Input gate learns from the new coming data, while the Output 

gate updates the processed data. 

Our LSTM prediction stage involves designing a single LSTM 

layer with 100 LSTM units and a Dropout layer with a value of 

0.3. As suggested by its name, the Dropout is in charge of 

arbitrarily discarding neurons and units throughout the neural 

network training process to prevent over-fitting. An ultimately 

linked dense layer serves as the top layer and is intended to 

produce the estimated values. The deep LSTM model was 

implemented using Python 3.9.12 and TensorFlow 

2.9.0 and trained over 40 epochs with a batch size of 1024. 

D. Switching Under Different Weather 

In the event of harsh weather, we have prepared two 

scenarios: moderate and severe weather conditions. Before 

presenting our strategy, we must highlight two basic facts 

according to the Third Generation Partnership Project (3GPP). 

5G mmWave offers faster transfer speeds, greater traffic 

capacity, and reduced latency compared to 4G LTE networks. 

5G mmWave operates in the frequency range between 24 GHz 

and 100 GHz, with higher frequency channels providing better 

communication capabilities. When the weather is normal, 5G 

mmWave is the preferred channel over 4G. When the weather 
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worsens, it is better to use 5G mmWave but with a lower 

frequency band in the case of moderate weather deterioration 

- frequency change scenario. Suppose weather conditions 

worsen again so that the 28GHz channel can no longer provide 

reliable communication. In that case, our system will initiate a 

channel switch from 5G mmWave to 4G LTE - channel switch 

scenario. 

In the frequency switch scenario, we have selected four 

frequency levels: 28 GHz, 39 GHz, 60 GHz, and 73 GHz. These 

frequencies have received significant attention from 

researchers, and 28 GHz and 39 GHz are already being utilized 

commercially in T-Mobile and Verizon cell phone networks. 

IV. WEATHER DATA GENERATION 

In this section, we will discuss the generation of harsh 

weather we are focusing on. As previously mentioned in 

Section II, the three main weather parameters that our model 

considers are visibility, humidity, and particle radius. 

A. Local Climatological Data (LCD) Dataset 

Following a thorough search of available public weather data 

online, we found that the LCD weather dataset [21] was 

suitable for our simulation purpose. This dataset provides 

humidity and visibility data for various locations in the United 

States. For our simulation, we used the weather data of 

BLANDING MUNICIPAL AIRPORT, UT, US, from 01/01/2021 to 

12/31/2021. We chose this area because it is closer to the 

desert, and its weather data are collected every twenty 

minutes. 

B. Three Particle Size Levels 

The LCD dataset provides visibility and humidity information 

but not the particle size of sand or dust in sandy areas. As 

demonstrated in the study [8], most sand particle sizes fall 

between 90 µm and 600 µm. To make our simulation results 

more realistic to the real world, we divided particle sizes into 

three levels, as illustrated in Table I, and randomly generated 

values for each group during the simulation. 

TABLE I: Three Particle Size Levels 

Parameters Value Range 
Low Level (µm) 90-200 

Medium Level (µm) 200-400 
High Level (µm) 400-600 

V. SIMULATION RESULTS AND DISCUSSION 

We perform a series of simulations to examine the impact of 

moderate and severe weather on 5G mmWave frequency 

channel and 4G LTE channel. Our simulation analysis denotes 

different weather parameter impacts on both channels. 

Furthermore, we will examine existing equipment that can be 

refined and adapted to fit our proposed design. 

A. Simulation Setup 

A comprehensive simulation setup has been described in [1]. 

Our prior research shows that the multivariate LSTM model 

can predict future RSSI values under various weather 

conditions. However, the main limitation of using RSSI values is 

that they cannot be used to compare the transmission 

performance from two different technologies, like 4G LTE and 

5G mmWave. For example, under similar harsh weather 

conditions, 4G LTE may drop from -45 dBm to -48 dBm with a 

6% decrease, while 5G mmWave may drop from -75 dBm to -

85 dBm with an 11% decrease. A 6% decrease in LTE channel 

does not necessarily indicate better communication than an 11 

% decrease in 5G mmWave. Therefore, we need a different 

metric to compare the communication performance. To 

address this issue, we propose to include throughput TABLE II: 

Simulation Parameters 
Parameters Value Range 

Particle Size (µm) 90-600 
Visibility (km) 2-10 
Humidity (%) 0-100 

Frequency (GHz) 2.1, 28, 39, 60, 73 
Speed (m/s) 20 
V2V Scenario Highway 
Vehicle States Line-of-Sight 

into our system. Throughput refers to the amount of data 

successfully transferred from one location to another within a 

specific time frame. We have expanded our NS3 model [1] by 

incorporating throughput as the primary metric for comparing 

transmission performance. 

In our updated simulation scenario, two vehicles drive in the 

same direction at the same speed and aim to maintain 

communication via sidelink through various 5G mm-Wave 

frequencies or a 4G LTE channel, as shown in Fig. 2. The 

communications will be impacted as they traverse harsh 

weather environments with dust and sand. To evaluate this 

impact, we utilize our modified NS3 module to simulate 

communication throughput across different channels. Our 

system will then choose the optimal channel in harsh weather. 

The simulation parameters are shown in Table II. 

 

Fig. 2: Simulation Design 

B. Moderate Weather Change Scenario 

We simulated our updated NS3 model using the LCD 

weather dataset to show its performance under moderate 
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weather conditions. For clearly displaying reasons, we will use 

one day to discuss the simulation result. The front vehicle sets 

up different communication channels to the back vehicle 

simultaneously, and the throughput is shown in Fig. 3, 4, and 5 

for three particle size levels. The results in Figure 3 suggest that 

communication is reliable when particle size is large at 28 GHz, 

while 39 GHz shows fluctuating throughput. On the other 

hand, 60 GHz and 73 GHz have poor performance. In Figure 4, 

we observed that under medium particle conditions, 28 GHz 

and 39 GHz demonstrate stable communication, but 60 GHz 

and 73 GHz experience a significant drop in throughput. Finally, 

in Figure 5, most channels are reliable for small particle size, 

with only 60 GHz and 73 GHz experiencing a few 

communication issues. Notably, the 28 GHz and 39 GHz 

frequencies consistently exhibit stable and reliable 

throughput, suggesting that our system can switch to these 

frequencies to maintain communication reliability during 

moderate weather conditions. 

 

Fig. 3: Different Frequency Throughput of Large Particle. 

 

Fig. 4: Different Frequency Throughput of Medium Particle. 

 

Fig. 5: Different Frequency Throughput of Small Particle. 

C. Severe Weather Change Scenario 

To simulate severe weather conditions, we altered the 

visibility of the LCD dataset and ran simulations for twovehicle 

scenarios. We conducted different simulations for three 

particle size groups to ensure consistency with moderate 

weather. Results, shown in Fig. 6, 7, and 8, indicate that in 

environments with large particle size, 5G mmWave is heavily 

impacted and communication fails completely. In these cases, 

vehicle communication should switch to 4G LTE channels. In 

medium particle size environments, 4G LTE typically performs 

better, with 5G mmWave only outperforming it in a few 

instances. In Fig 7, at timestamps 32, 37, and 70, the 5G 

mmWave throughput exceeded the 4G LTE channel; in these 

cases, we need to switch to the 5G mmWave channel. At these 

points, the corresponding humidity drops to 67 and 57, which 

matches our previous results that when humidity decreases, 

the attenuation effect is also decreasing. In Fig. 8, 25% of time 

stamps need to switch to a 4G LTE channel in case of severe 

weather, and about 75% choose a 5G mmWave channel. 

According to these three figures, as the particle size of the dust 

or sand environment increase, severe weather tends to affect 

communication performances more largely. 

 

Fig. 6: Different Channel Throughput of Large Particle. 

 

Fig. 7: Different Channel Throughput of Medium Particle. 

 

Fig. 8: Different Channel Throughput of Small Particle. 

D. Relationship between Throughput and Predicted RSSI 

Our proposed switching strategy relies on throughput as the 

primary criterion for determining whether a switch should 

occur. However, one major limitation of this approach is that 
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the throughput simulation time in NS3 can be too long. A 

2second throughput running time in the NS3 simulator might 

cause ten minutes in the real world. To address this issue, we 

aim to investigate the correlation between throughput and the 

predicted RSSI. The correlation between throughput and 

predicted RSSI for moderate and severe weather is shown in 

Fig. 9 and 10. The blue line represents throughput, while the 

orange line represents predicted RSSI. As observed, a strong 

correlation exists between the two metrics, implying that we 

can employ the expected Received Signal Strength Indication 

(RSSI) as an indicator to predict the throughput performance 

to save simulation time. 

E. An Existing Promising Equipment 

We want to draw attention to a piece of equipment already 

available in the market, namely, the CubeSA 60Pro [22]. This 

device shares some similarities with our proposed model. The 

CubeSA 60Pro operates on 5G 60 GHz mmWave continuously, 

and when the signal faces challenges during harsh weather 

conditions, it automatically switches to a 5 GHz channel. The 

existence and effectiveness of such equipment validate our 

proposed switching strategy’s feasibility and provide further 

evidence that our strategy can be implemented in future 

equipment designs. 

VI. CONCLUSION 

In this paper, we extend our previous prediction stage into a 

two-stage switching strategy for connected vehicles under 

different harsh weather conditions. We introduce a new 

meaningful and comparable metric, throughput, as the 

determinant for frequency or channel switch in case of severe 

weather. The simulation results demonstrate the effectiveness 

of our proposed strategy. For future work, we will validate this 

proposed model by conducting experiments on the dielectric 

constant, particle size range, and dust concentration in the 

desert region of the United States. Additionally, we aim to 

implement reinforcement learning in the switching strategy 

and evaluate its performance. 

 

Fig. 9: Relationship between Throughput and Predicted RSSI under Moderate Weather. 

 

Fig. 10: Relationship between Throughput and Predicted RSSI under Severe Weather. 
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