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From One Hand to Multiple Hands: Imitation
Learning for Dexterous Manipulation From

Single-Camera Teleoperation
Yuzhe Qin , Hao Su, and Xiaolong Wang

Abstract—We propose to perform imitation learning for dex-
terous manipulation with multi-finger robot hand from human
demonstrations, and transfer the policy to the real robot hand.
We introduce a novel single-camera teleoperation system to collect
the 3D demonstrations efficiently with only an iPad and a com-
puter. One key contribution of our system is that we construct a
customized robot hand for each user in the simulator, which is a
manipulator resembling the same structure of the operator’s hand.
It provides an intuitive interface and avoid unstable human-robot
hand retargeting for data collection, leading to large-scale and
high quality data. Once the data is collected, the customized robot
hand trajectories can be converted to different specified robot
hands (models that are manufactured) to generate training demon-
strations. With imitation learning using our data, we show large
improvement over baselines with multiple complex manipulation
tasks. Importantly, we show our learned policy is significantly more
robust when transferring to the real robot.

Index Terms—Dexterous manipulation, imitation learning.

I. INTRODUCTION

D EXTEROUS manipulation with multi-finger hand is one
of the most challenging and important problems in

robotics. The complex contact pattern between the dexterous
hand and manipulated objects is difficult to model. It is very chal-
lenging to design a controller manually that can solve contact-
rich tasks in unstructured environment. Recent research shows
possibilities to learn dexterous manipulation skills with Rein-
forcement Learning (RL) [1], [2]. However, the high Degree-
of-Freedom (DoF) joints and discontinuous contact increase the
sample complexity to train an RL policy. Besides, black-box
optimization with RL rewards can also lead to unexpected and
unsafe behaviors.
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Learning from human demonstration collected by teleopera-
tion is a natural solution for dexterous manipulation given the
similar morphology. Most current teleoperation systems require
Virtual Reality (VR) [2]–[6] devices or wired gloves to capture
human hands. While providing accurate data collection, it also
limits the flexibility and scalability of the process. On the other
hand, vision-based teleoperation frees the human operator from
wearing special devices and thus reduces the cost and is more
scalable. However, vision-based teleoperation introduces new
challenges. It needs to convert the human hand motion into robot
motion command, which is called motion retargeting [7]–[9].
A human operator needs to choose the next-step movement
based on the imagination of the future robot configuration. The
human operator may find it hard to control the robot if the
retargeting mapping is not intuitive (e.g., controlling a robot
hand with less than five fingers), and extra time will be taken to
calibrate their own hands with the robot hands. Moreover, the
demonstrations collected with a specific robot hand can only be
used for imitation learning with the same robot.

In this letter, we introduce a single-camera teleoperation sys-
tem with a scalable setup and an intuitive control interface that
can collect demonstrations for multiple robot hands. Our system
only requires an iPad or iPhone as the capturing device and
DOES NOT need to perform motion retargeting online during
teleoperation. At the beginning, our system will first estimate
an operator’s hand geometry (Fig. 1, 3nd column in top 3 rows).
The key of our system is to generate a customized robot hand
on the fly in the physical simulator (Fig. 1, 4th column in top
3 rows). The customized robot hand will resemble the same
kinematics structure of the operator’s hand in both geometry
(e.g., shape and size) and morphology. The system will generate
different robot hands for different human operators, providing a
more intuitive way for performing dexterous manipulation tasks
efficiently.

After all the data collection, we perform motion retargeting
via optimization offline. We convert the trajectory of a cus-
tomized robot hand to actual specified robot hands (i.e., the
corresponding models are manufactured and commercialized
in the real world, as shown in last 3 columns in top 3 rows
of Fig. 1). We can then use the demonstrations for imitation
learning on the corresponding manipulation task. We apply the
imitation learning algorithm by augmenting the RL objective
with the collected demonstrations [2].
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Fig. 1. We introduce a teleoperation system which utilizes a single camera on an iPad to stream a human hand, estimates the hand pose and shape, and converts
it to a customized robot hand in a physical simulator for dexterous manipulation. Once the manipulation trajectories are collected, we translate them to different
specified robot hands to generate demonstrations, and use them to perform imitation learning on the same manipulation tasks. Once the policy is trained, we deploy
it to the real robot hand and show robust transfer results.

We experiment with three types of challenging dexterous
manipulation tasks: Relocate, Flip, and Open Door as shown in
Fig. 1. By collecting data with our system using the customized
robot hand, our user studies show a large advantage over pre-
vious methods on efficiency. For example, we can efficiently
collect around 60 successful demonstrations per hour for
the Relocate task, while directly operating the Allegro Hand
in simulation can only collect around 10 successful demonstra-
tions per hour. By imitation learning with the demonstrations
collected by our system, we significantly improve dexterous
hand manipulation on all specified robot hands over baselines
in simulation.

Once the policy is learned in simulation, we can transfer it
to the real robot hand. We evaluate with an an Allegro Hand
attached on the XArm-6 robot in the real world (Fig. 1, 2 bottom
rows). By incorporating human demonstrations into training, our
policy learns more human-like natural behavior. Interestingly,
this leads to much more robust policy when generalizing to
the real world and unseen objects, while pure RL policy fails
most of the time.

II. RELATED WORK

Dexterous Manipulation: Manipulation with dexterous robot
hands has been long studied in robotics and it remains to be one

of the most challenging control task [10]–[13]. Recently, we
have witnessed Reinforcement Learning (RL) approaches [1]
delivering promising results on complex in-hand manipulation
tasks. While these results are encouraging, RL suffers from
poor sample efficiency in training. Under a high degree of
freedom (more than 20 in most hands), the RL policy can easily
explore unexpected behaviors without well-designed rewards
and external constraints.

Imitation Learning from Demonstrations: Learning from hu-
man demonstrations can not only provide external constraint
for the robot to explore the expected human-like behaviors
but also largely reduces sample efficiency. Beyond behavior
cloning [14], [15], imitation learning has been widely studied
in the form of Inverse Reinforcement Learning [16]–[19] and
incorporating expert demonstrations into the RL objectives [2],
[20]–[22]. Our work is highly inspired by Rajeswaran et al.
[2], where a VR setup is proposed to collect demonstrations
for dexterous manipulation and an algorithm named Demo
Augmented Policy Gradient (DAPG) is introduced for imitation
learning. However, data collection with VR requires a lot of
human effort and is not scalable. We propose to collect data via
a single-camera teleoperation system, which makes the process
scalable and accessible for different users.

Vision-based Teleoperation: Vision-based teleoperation frees
the operator from wearing data capture devices commonly used
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Fig. 2. Overall Pipeline: We stream the hand of human operator with an RGB-D camera. First we construct a customized robot hand in a physical simulator from
estimated hand shape parameters result and teleoperate this robot to perform dexterous manipulation task. After teleoperation, we translate the collected trajectory
on the customized hand to three different robot hands using retargeting. Finally, we train individual policy on each hand using the translated demonstrations. The
red and green curve in second and third rows represent the finger tip trajectory. Different box color means different hand.

in game industry [23] and robot teleoperation [24], [24]–[26] on
manipulation tasks, e.g. pick and place with a parallel gripper.
DexPilot [7] is a pioneering work to extend the vision-based
teleoperation to manipulation with an Allegro Hand1. To cap-
ture the hand pose, a black-clothed table with four calibrated
RealSense cameras are used in their system. Our work only
requires a single camera for teleoperation. Our novel customized
robot hand provides a more intuitive way for data collection and
allows generalization for learning with multiple robot hands,
which has not been shown before.

III. OVERVIEW

We propose a novel framework in Fig. 2 to learn dexterous
robot hand manipulation from human teleoperation, which is
composed by 3 steps as illustrated below.

(i) Customized hand teleoperation is proposed to collect
demonstrations for dexterous manipulation tasks. It only re-
quires video streaming from an iPad. A key innovation of
the system is constructing a customized robot hand on the fly
based on the estimated shape of the operator’s own hand. The
human operators can then control the customized robot hand in
a physical simulation environment to perform dexterous manip-
ulation tasks. The demonstrations can be efficiently collected
with around 60 demonstrations per hour.

(ii) Multi-robots demonstration translation, which can
translated the original demonstration on the customized hand
to any dexterous hand that is available in the real-world, e.g.,
Allegro Hand. It computes the state-action trajectory, i.e. joint
position and motor command, for the new specified hand
that can be consumed by imitation learning algorithm. In our

1[Online]. Available: https://www.wonikrobotics.com/research-robot-hand

Fig. 3. Hardware setup with an iPad and a computer.

experiments, we try on three robot hands with different geome-
try, DoF, and even different number of fingers.

(iii) Demonstration-augmented policy learning is used
to train dexterous manipulation policy on the same task as
demonstrations. It augments the Reinforcement Learning
objective with behavior cloning using the translated
demonstration from (ii). Our framework can efficiently learn
dexterous human-like skills on complex tasks which are not
well solved by RL alone.

We perform Sim2Real transfer on the learned policies with a
real Allegro Hand attached on the XArm-6 robot as shown in
Fig. 1. In our experiments, we show learning with our demon-
strations can significantly increase the robustness of our policy
against the Sim2Real gap.

IV. CUSTOMIZED HAND TELEOPERATION

The hardware of our teleoperation system consists of an iPad
and a laptop as shown in Fig. 3. We use the front camera of an
iPad to stream the RGB-D video of the human operator at 25
fps. The teleoperation system consists of three components, a
physical simulator, a hand detector, and a GUI to visualize the
current simulation environment.
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A. Task Description

We construct our physical simulator based on SAPIEN [27],
and design multiple dexterous manipulation tasks there.

Relocate. The robot picks up an object and moves it to a target
position. It requires the agent to manipulate the object to match
the given goal. The first row of Fig. 1 illustrates the relocate
task. We experiment with three objects including Tomato Soup
Can, Potted Meat Can and Mustard Bottle. The goal is visualized
using the transparent object (as shown in Fig. 2). It is a goal-
conditioned task where we randomize both the initial pose and
the goal pose for each trial.

Flip. As shown in the second row of Fig. 1, it requires the
robot to flip a mug on the table. The robot needs to rotate the
object 90 degrees carefully to avoid pushing the object away.
This task evaluates the robot’s ability to exert force in a certain
direction. We randomize the position and the horizontal rotation
of the mug for each trial.

Open Door. As shown in the third row of Fig. 1, the robot
needs to first rotate the handle to unlock the door, and then pull
the handle to open the door. The robot needs to grasp the handle
with appropriate configuration so that it can achieve both the
rotate and pull action. We randomize the position of the door for
each trial.

B. Hand Detector

Our hand detector takes the RGB-D frames from camera as
input. The outputs are composed of three parts: (i) wrist pose,
which is the absolute position and orientation of hand wrist in the
camera space; (ii) hand pose parameters, which is 15 rotations to
specify the joint value of finger joints represented in axis-angle
format; (iii) hand shape parameters, which is a 10-d vector
represents the hand geometry at initial pose. It characterizes the
shape of finger and palm in SMPL-X [28] representation. First,
we use MediaPipe [29] hand tracker to detect the axis-aligned
bounding-box and crop the image around the hand region. The
cropped images are then fed into the pre-trained FrankMo-
cap [30] model. Frankmocap takes cropped hand images as
input and regresses the 10-d shape and 45-d pose parameters of
the human hand. We use SMPL-X model to represent pose and
shape parameters, where the shape parameters capture the hand
geometry and the pose parameters capture the hand deformation
using joint rotation. Given the shape and pose parameters, we
can reconstruct a hand in the canonical frame where the wrist
is placed at the origin. To compute wrist pose, we adopt the
Perspective-n-Point (PnP) algorithm to match the key points in
canonical frame and the detected key points in camera frame to
solve the transformation from wrist to camera.

C. Customized Robot Hand

Our system builds a customized robot hand based on the
hand geometry of each user. Given the shape parameters from
initialization, we can reconstruct a human hand at rest pose. We
then build an articulated hand model in the physical simulator
based on the reconstructed human hand. A desired property of
the built customized robot hand is that we can directly apply the

Fig. 4. Illustration of different customized robot hands generated from differ-
ent human hands. The hand on left and right comes from different human. The
red lines visualize the kinematics tree.

TABLE I
DOF COMPARISON FOR DIFFERENT ROBOT MODELS. CUSTOMIZED STANDS

FOR THE CUSTOMIZED ROBOT HAND

human hand pose parameters from hand detector without any
motion retargeting. We extract the joint skeleton of the human
hand (the red lines in Fig. 4) and create a robot model with
the exactly the same kinematics tree. The relative transforma-
tion between each consequent joint pairs is preserved between
human and robot hand. And the joint property is also kept the
same. We choose primitive shapes, e.g. box for the palm and
capsules for fingers, for efficient collision detection [31] and
stable simulation [32]. The customized hand has 45 (15*3) DoF,
which matches the SMPL-X model. We can rotate the joints of a
customized robot hand using detected pose parameters without
motion retargeting. Fig. 4 shows different human hands and
the corresponding customized hands. In this figure, the right
human hand has a shorter thumb. This characteristic reflects in
the customized robot hand.

D. System Efficiency

We use a laptop with an RTX 2070 GPU. The processing
time for each RGB-D frame is less than 30 ms, which includes
image-processing (< 1ms), hand detection (3 ms), hand pose
regression (25 ms), and control of the customized hand (< 1ms).
We choose to stream the images in 25 fps with size (640,480),
but higher fps is also possible. The initialization process usually
takes less than 5 s.

V. MULTI-ROBOTS DEMONSTRATION TRANSLATION

Table I shows the DoF of each finger for different robot
models. The finger DoF is given in the order from Thumb to
Pinky. We need to convert the demonstration from the cus-
tomized hand to a specified robot, namely motion retargeting.
With our customized hand, we can skip the computationally-
heavy motion retargeting during teleportation and do it offline.
We use optimization based motion retargeting to process the
demonstration. The optimization objective is defined based onN
link positions pairs define on both hands, e.g. thumb tip position,
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specified by robot URDF file.

min
qRt

N∑

i=0

||fC
i (qCt )− fR

i (qRt )||2 + α||qRt − qRt−1||2

s.t. qRlower ≤ qRt ≤ qRupper, (1)

where qCt is joint angles at step t for customized robot and qRt
is the counterpart for a specific robot, e.g. Schunk Robot Hand.
We use fC

i and fR
i to represent the forward kinematics function

of i− th link position on the two robots. To improve the tem-
poral consistency, we add a normalization term to penalize the
joint angle change and initialize qCt from qCt−1. With retargeted
kinematics motion, we can then estimate the action of robot
controller following [33]: first smooth the joint trajectory with
a low-pass filter, then compute the robot action using analytical
inverse dynamics.

VI. DEMONSTRATION-AUGMENTED POLICY LEARNING

Given the retargeted demonstration, we perform imitation
learning to solve the dexterous tasks defined in Section IV-A.
Naive behavior cloning may be hard to work with randomized
initial and target pose. Instead, we adopt imitation learning
algorithms that incorporate the demonstration into RL. Specif-
ically, we use Demo Augmented Policy Gradient (DAPG) [2]
formulated below as our imitation algorithm.

gaug =
∑

(s,a)∈ρπθ

∇ lnπ(a|s)Aπ(s, a)+

∑

(s,a)∈ρπdemo

∇ lnπθ(a|s)λ0λ
k
1 max
(s,′a′)∈ρπ

Aπ(s,′ a′),

where the first line is the vanilla policy gradient objective in RL
and the second line is imitation objective using demonstration. It
can be regarded as a combination of behavior cloning and online
RL. ρπ is the occupancy measure under policy π, λ0 and λ1

are hyper-parameters, and k is the training iterations. Aπ(s,′ a′)
is the advantage function. Intuitively, the policy receive more
information from demonstration during the initial stage of train-
ing while the policy learns more from the interaction trajectory
afterwards.

VII. EXPERIMENT

We first demonstrate the benefits of using the proposed cus-
tomized robot hand in teleoperation for data collection a user
study. Then we show that the demonstrations collected by our
system can improve the policy learning performance by a large
margin on various tasks in simulated environment. Finally, we
perform real-world experiments, which shows that the demon-
stration can improve the policy robustness when transferring to
the real-world with higher success rate.

A. Teleoperation User Study

We compare the proposed customized robot hand with the
standard robot hand during teleoperation. We ask 17 different
human operators to perform Relocate and open door tasks using

TABLE II
SUCCESS RATE AND COMPLETION TIME FOR RELOCATE TASK. S.1 AND S.2

DENOTES STAGE 1 AND STAGE 2

TABLE III
SUCCESS RATE AND COMPLETION TIME FOR OPEN DOOR TASK. S.1 AND S.2

DENOTES STAGE 1 AND STAGE 2

4 different robot hand models: (1) Customized robot hand; (2)
Schunk SVH hand; (3) Adroit hand; (4) Allegro hand. For the
last three robots, online motion retargeting is required to convert
human hand motion onto robot motion.

Task Setup. Each human operator is asked to perform Relo-
cate and open door with all four robot hands. Each task-robot
pair is tested five consecutive times. For Relocate task, the
randomly-sampled target position is visualized by a transparent-
green shape, as shown on the top-right of Fig. 2. For each task,
the operator will have three-minute trials to get familiar with
the task. A common issue is that operators will become more
proficient during the testing. They tend to get better results for the
task-robot pairs tested later than the former one. For fairness, the
order of robot hands to be tested is randomized for each operator.

Evaluation Protocols. We divide both Relocate and open
door tasks into two stages. For Relocate, the first stage is
succeeded when the object is lifted up while the second stage
is succeeded when the distance between object and target is
smaller than a given threshold. For open door, the first stage
is successful when the door is unlocked by rotating the handle
while the second stage is succeed when the door is opened. We
will report the average success rate and completion time for
each stage of each task. Note that the completion time does not
include the time for initialization, which is required for all these
four robots to construct the frame alignment between simulated
robot hand and real human hand.

Results. The average success rate and task completion time
over all operators are shown in Table II for Relocate and Table III
for Open Door. The customized robot hand achieves the highest
success rate on all tasks with a large margin compared with the
online retargeting method on the other three hands. Considering
the initialization process and other overhead, operator can collect
around 60 demos per hour for Relocate while using allegro
hand can only get 10 demos with success. Human operators
report that the customized hand is more controllable than other
robot hands. One cause is the uncontrollable time consump-
tion required by online motion retargeting. On the laptop with
specified in Section IV, the motion retargeting steps will takes
76± 65 milliseconds. The large variance is caused by iterative
optimization in online retargeting. It increases the difficulty
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Fig. 5. Learning curves of RL and DAPG on all tasks with four different robot hands in four rows. The first three columns are Relocate task with three objects.
Following two columns are Flip Mug and Open Door tasks. The x-axis is training iterations and y-axis is the normalized return. The shaded area indicates the
standard deviation for three random seeds.

of predicting next-step hand motion. By removing the online
retargeting using our customized hand, the teleoperation system
can provide smoother and more immediate feedback to human
operators. We also find the allegro hands perform the worst in
most metrics. One possible cause is that allegro hand only has 4
fingers, and it is much larger than other robot hands with 253 mm
length, while the average length is 193 mm for adult males and
is 172 mm for adult females.

B. Task Learning Comparison

Training. We evaluate on the tasks of Relocate three different
objects, Flip a mug, and Open Door. We use the processed
demonstration to train policy to perform these tasks and compare
them with the RL baseline. We use Trust Region Policy Opti-
mization(TRPO) [34] as the on-policy algorithm. Both policy
and value function are 32× 32 2-layer Multi-Layer Perceptrons
(MLPs). The TRPO will use 200 trajectories for each step. The
imitation learning algorithm is DAPG described in Section V
with the same hyper-parameters as TRPO. We collect 50 tra-
jectories of demonstration for each task and retarget the motion
from customized hand to the specified robot. We train policies
with three random seeds.

State and Action. The robot state space contains robot joint
angles, velocity of hand palm, object position, and orientation at
each time step. We include target position for Relocate and joint
angle of door for Open Door. The action space is composed of
two parts: hand palm and finger joints. The motion of the palm
is controlled by 6 velocity controllers while the finger joints are
actuated by position controllers.

We evaluate both RL and DAPG on Relocate, Flip, and Open
Door tasks. The training curves are shown in Fig. 5. The success
rate of three specified robot hand is summarized in Table IV.
For Relocate, the task is considered successful when the object
position is within 0.1 unit length to the target at the end of the
episode. For Flip, the robot will get success when the orientation
of mug is flipped back, where the angle between the negative
z-axis and the direction of gravity is less than 5◦. For Open Door,
the task is successful when the joint angle of door hinge is larger
than 60◦.

As shown in Fig. 5 and Table IV, imitation learning method
outperforms the RL baseline for most tasks and robots. It shows
the demonstration generated by motion retargeting can improve
policy training. The only exception is Open Door with allegro
hand. We visualize the policy trained by DAPG and RL in Fig. 7:
DAPG tries to open the door by grasping the handle in a natural
behavior while RL policy press on the handle with a large force
and open the door purely by friction. These results highlight
the value of demonstration to regulate the behavior of policy to
be expected (human-like) and safe.

C. Ablation Study

To investigate the influence of different dynamics conditions
and the number of demonstrations, we ablate the object fric-
tion, controller parameters, object density, and the number of
demonstrations. We choose the Relocate task with tomato soup
can using Schunk robot for ablation study. Fig. 6(a) shows that
the learning curve is robust to friction change. To hold the object
firmly, a two-finger parallel-jaw gripper usually needs to form an
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TABLE IV
SUCCESS RATE OF THE EVALUATED METHODS. WE USE ± TO REPRESENT MEAN AND STANDARD DEVIATION OVER THREE RANDOM SEEDS. RELOCATE TASK

HAS THREE DIFFERENT OBJECTS: TOMATO SOUP CAN, POTTED MEAT CAN, AND MUSTARD BOTTLE. THE SUCCESS OF RELOCATE IS DEFINED BASED ON THE

DISTANCE BETWEEN OBJECT AND TARGET. THE SUCCESS OF FLIP IS DEFINED BASED ON THE ORIENTATION OF THE OBJECT. THE SUCCESS RATE OF OPEN DOOR

IS DEFINED BASED ON THE JOINT ANGLE OF DOOR HINGE

Fig. 6. Ablation Study: Learning curves of DAPG on the Relocate task with tomato soup can using Schunk Robot Hand. We ablate: (a) friction parameter of the
relocated object; (b) density of object; (c) PD controller parameters: stiffness and damping; (d) number of demonstrations used to train DAPG. The demonstrations
are kept the same for all conditions.

Fig. 7. Comparison of the naturalness on Open Door using Allegro Robot
Hand. Top Row: policy learned by DAPG with demonstrations; Bottom Row:
policy learned by RL without demonstrations.

antipodal grasp [35], which is sensitive to friction change. Dif-
ferent from parallel-gripper, the dexterous hand can form force
closure with multiple contact points, thus can withstand smaller
friction. Similar results can also be found in Fig. 6(b). Fig. 6(c)
illustrates the influence of controller parameters. Fig. 6(d) shows
more demonstrations can achieve better performance.

D. Real-World Robot Experiments

In the real-world robot experiments, we attached an Allegro
hand onto a XArm-6 robot arm2 instead of using a flying hand.
The experiment setup is shown in Fig. 8. We evaluate on the
Relocate and Flip tasks. In simulation, we also build the same
XArm6+Allegro model as real-world robot. To facilitate the

2[Online]. Available: https://www.ufactory.cc/pages/xarm

Fig. 8. Left side: real robot setup. The cyan poster on the table is a reference
coordinate to determine whether the object is moved to the target position. Right
side: simulated robot arm setup.

sim2real transfer, we apply additive Gaussian noise onto the
object pose to the observation and randomize the dynamics
parameters during policy training.

Task Setup. The observation space are composed of robot
proprioceptive state, object pose. The target object position
is additionally included for Relocate. The object pose in the
observation is fixed during the episode and only the initial pose
is given, which is estimated by Iterative Closet Point (ICP) with
point cloud captured by a RealSense D435.

For Relocate, we randomize the initial and target object
position for each evaluation trail. The initial object position is
randomized within a 20 cm square and the target object position
is randomized within a 40 cm square with fixed height. The
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Fig. 9. Objects Used in Experiments: Visualization of known objects and novel objects used in Relocate task. The first row shows the grasping process and the
second row show the object. We test on three known objects and five novel objects.

TABLE V
SUCCESS RATE OF THE EVALUATED METHODS ON RELOCATE AND FLIP TASKS.

WE USE ± TO REPRESENT MEAN AND STANDARD DEVIATION OVER THREE

RANDOM SEEDS

task is success if the robot can lift the object up to the target
position. To determine the final object position, we use the
reference coordinate on the table as shown in Fig. 8 to record
the xy position of object. If the difference of of xy position
between object and target is within 5 cm, the trail is considered
as a success. In the experiments, we divide the objects into two
groups: known object and novel objects. As visualized in Fig. 9,
the known object group is composed of three objects that the
policies are trained on while the novel object group is composed
of five objects that are not seen during training. We evaluate the
policy separately on both groups. The task execution sequence
is visualized on the second bottom row of Fig. 1.

For Flip, we randomize the initial object position within a
20 cm square. The task is success if the distance between the
table top and the highest point on the bottom of mug is smaller
than 1 cm, which means that the orientation of mug is nearly
vertical. The task execution sequence is visualized on the bottom
row of Fig. 1.

Quantitative Results. During evaluation, we randomly sam-
ple 9 object initial and target position pairs and use the same pairs
for each policy. For both known object and novel object settings
in the Relocate task, we also sampled the object randomly and
use the same set of sampled objects for each policy. We evaluate
both RL and DAPG policies trained with three different random
seeds. The success rate for both tasks is shown in Table V. We
find when transferred to the real robot, the gap between imitation
learning and pure RL is much larger than it is in simulation.
We conjecture that a more human-like manipulation policy with
imitation learning is more robust to the Sim2Real gap. More
interestingly, for the Relocate task, the learned policies can even
generalize to novel objects that are not seen in training. Note
in our experiments, the geometric shape is not captured by the

policy, but only the 6D object pose is. This shows the advantage
of multi-finger hand: When operating like human, it offers a
certain robustness against the change of shape.

VIII. CONCLUSION

We propose a novel single-camera teleoperation system to
collect human hand manipulation data for imitation learning.
We introduce a novel customized robot hand, providing a more
intuitive way for different human operators to collect data. We
show the collected demonstrations can improve the learning of
dexterous manipulation on multiple robots and robustness when
deployed in real world, when the data collection only needs to
be conducted once.

Limitations. Our pipeline is designed for dexterous hand. The
performance will drop for Open Door if we use the retargeted
demonstrations to train a parallel gripper since parallel gripper
can not perform power grasp.
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