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Abstract. Semantic segmentation of LiDAR point clouds is an impor-
tant task in autonomous driving. However, training deep models via con-
ventional supervised methods requires large datasets which are costly to
label. It is critical to have label-efficient segmentation approaches to scale
up the model to new operational domains or to improve performance on
rare cases. While most prior works focus on indoor scenes, we are one
of the first to propose a label-efficient semantic segmentation pipeline
for outdoor scenes with LiDAR point clouds. Our method co-designs an
efficient labeling process with semi/weakly supervised learning and is
applicable to nearly any 3D semantic segmentation backbones. Specifi-
cally, we leverage geometry patterns in outdoor scenes to have a heuristic
pre-segmentation to reduce the manual labeling and jointly design the
learning targets with the labeling process. In the learning step, we lever-
age prototype learning to get more descriptive point embeddings and
use multi-scan distillation to exploit richer semantics from temporally
aggregated point clouds to boost the performance of single-scan models.
Evaluated on the SemanticKITTI and the nuScenes datasets, we show
that our proposed method outperforms existing label-efficient methods.
With extremely limited human annotations (e.g ., 0.1% point labels),
our proposed method is even highly competitive compared to the fully
supervised counterpart with 100% labels.

1 Introduction

Light detection and ranging (LiDAR) sensors have become a necessity for most
autonomous vehicles. They capture more precise depth measurements and are
more robust against various lighting conditions compared to visual cameras. Se-
mantic segmentation for LiDAR point clouds is an indispensable technology as it
provides fine-grained scene understanding, complementary to object detection.
For example, semantic segmentation help self-driving cars distinguish drivable
and non-drivable road surfaces and reason about their functionalities, like park-
ing areas and sidewalks, which is beyond the scope of modern object detectors.

Based on large-scale public driving-scene datasets [4,5], several LiDAR se-
mantic segmentation approaches have recently been developed [68,59,9,62,50].
Typically, these methods require fully labeled point clouds during training. Since
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Fig. 1: We compare LESS with Cylinder3D [68] (our fully-supervised counter-
part), ContrastiveSceneContext [23], SQN [24], OneThingOneClick [33], and
ReDAL [55] on the SemanticKITTI [4] and nuScenes [5] validation sets. The
ratio between labels used and all points is listed below each bar. Please note
that all competing label-efficient methods mainly focus on indoor settings and
are not specially designed for outdoor LiDAR segmentation.

a LiDAR sensor may perceive millions of points per second, exhaustively labeling
all points is extremely laborious and time-consuming. Moreover, it may fail to
scale when we extend the operational domain (e.g ., various cities and weather
conditions) and seek to cover more rare cases. Therefore, to scale up the system,
it is critical to have label-efficient approaches for LiDAR semantic segmenta-
tion, whose goal is to minimize the quantity of human annotations while still
achieving high performance.

While there are some prior works studying label-efficient semantic segmen-
tation, they mostly focus on indoor scenes [11,3] or 3D object parts [6], which
are quite different in point cloud appearance and object type distribution, com-
pared to the outdoor driving scenes (e.g ., significant variances in point den-
sity, extremely unbalanced point counts between common types, like ground
and vehicles, and less common ones, such as cyclists and pedestrians). Besides,
most prior explorations tend to address the problem from two independent per-
spectives, which may be less effective in our outdoor setting. Specifically, one
perspective is improving labeling efficiency, where the methods resort to active
learning [47,55,34], weak labels [44,54], and 2D supervision [53] to reduce labeling
efforts. The other perspective focuses on training, where the efforts assume the
partial labels are given and design semi/weakly supervised learning algorithms to
exploit the limited labels and strive for better performance [33,60,44,61,20,34,66].

This paper proposes a novel framework, label-efficient semantic segmenta-
tion (LESS), for LiDAR point clouds captured by self-driving cars. Different
from prior works, our method co-designs the labeling process and the model
learning. Our co-design is based on two principles: 1) the labeling step is de-
signed to provide bare minimum supervision, which is suitable for state-of-the-
art semi/weakly supervised segmentation methods; 2) the model training step
can tap into the labeling policy as a prior and deduce more learning targets.
The proposed method can fit in a straightforward way with most state-of-the-
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art LiDAR segmentation backbones without introducing any network architec-
tural change or extra computational complexity when deployed onboard. Our
approach is suitable for effectively labeling and learning from scratch. It is also
highly compatible with mining long-tail instances, where, in practice, we mainly
want to identify and annotate rare cases based on trained models.

Specifically, we leverage a philosophy that outdoor-scene objects are often
well-separated when isolating ground points and design a heuristic approach to
pre-segment an outdoor scene into a set of connected components. The compo-
nent proposals are of high purity (i.e., only contain one or a few classes) and
cover most of the points. Then, instead of meticulously labeling all points, the
annotators are only required to label one point per class for each component. In
the model learning process, we train the backbone segmentation network with
the sparse labels directly annotated by humans as well as the derived labels based
on component proposals. To encourage a more descriptive embedding space, we
employ contrastive prototype learning [18,29,48,63,33], which increases intra-
class similarity and inter-class separation. We also leverage a multi-scan teacher
model to exploit richer semantics within the temporally fused point clouds and
distill the knowledge to boost the performance of the single-scan model.

We evaluate the proposed method on two large-scale autonomous driving
datasets, SemanticKITTI [4] and nuScenes [5]. We show that our method signif-
icantly outperforms existing label-efficient methods (see Fig. 1). With extremely
limited human annotations, such as 0.1% labeled points, the approach achieves
highly competitive performance compared to the fully supervised counterpart,
demonstrating the potential of practical deployment.

In summary, our contribution mainly includes:
– Analyze how label-efficient segmentation of outdoor LiDAR point clouds dif-

fers from the indoor settings, and show that the unbalanced category distri-
bution is one of the main challenges.

– Leverage the unique geometric structure of LiDAR point clouds and design
a heuristic algorithm to pre-segment input points into high-purity connected
components. A customized labeling policy is then proposed to exploit the
components with tailored labels and losses.

– Adapt beneficial components into label-efficient LiDAR segmentation and
carefully design a network-agnostic pipeline that achieves on-par performance
with the fully supervised counterpart.

– Evaluate the proposed pipeline on two large-scale autonomous driving datasets
and extensively ablate each module.

2 Related work

2.1 Segmentation networks for LiDAR point clouds

In contrast to indoor-scene point clouds, outdoor LiDAR point clouds’ large
scale, varying density, and sparsity require the segmentation networks to be
more efficient. Many works project the 3D point clouds from spherical view
[43,27,10,12,58,2,30,39](i.e., range images) or bird’s-eye-view [45,65] onto 2D im-
ages, or try to fuse different views [31,19,1]. There are also some works directly
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dataset vegetation road building car motorcycle person bicycle
SemanticKITTI 1606 1197 799 257 2 2 1

nuScenes 867 2242 1261 270 3 16 1

Table 1: Point distribution across the most common and rarest cate-
gories of SemanticKITTI [4] and nuScenes [5]. Numbers are normalized
by the sample quantity of bicycles.

consuming point clouds [52,14,25,8]. They aim to structure the irregular data
more efficiently. Zhu et al . [68] employ the voxel-based representation and al-
leviate the high computational burden by leveraging cylindrical partition and
sparse asymmetrical convolution. Recent works also try to fuse the point and
voxel representations [50,62,64,9], and even with range images [59]. All of these
works can serve as the backbone network in our label-efficient framework.

2.2 Label-efficient 3D semantic segmentation

Label-efficient 3D semantic segmentation has recently received lots of atten-
tion [17]. Previous explorations are mainly two-fold: labeling and training.

As for labeling, several approaches seek active learning [47,55,34], which it-
eratively selects and requests points to be labeled during the network training.
Hou et al . [23] utilize features from unsupervised pre-training to choose points
for labeling. Wang et al . [53] project the point clouds to 2D and leverage 2D
supervision signals. Some works utilize scene-level or sub-cloud-level weak la-
bels [44,54]. There are also several approaches using rule-based heuristics or
handcrafted features to help annotation [37,51,20].

As for training, Xie et al . [23,57] utilize contrastive learning for unsuper-
vised pre-training. Some approaches employ self-training to generate pseudo-
labels [33,60,44]. Lots of works use Conditional Random Fields (CRFs) [33,61,20,34]
or random walk [66] to propagate labels. Moreover, there are also works that uti-
lize prototype learning [33,66], siamese learning [61,44], temporal constraints [36],
smoothness constraints [44,47], attention [54,66], cross task consistency [44], and
synthetic data [56] to help training.

However, most recent works mainly focus on indoor scenes [11,3] or 3D object
parts [6], while outdoor scenarios are largely under-explored.

3 Method

In this section, we present our LESS framework. Since existing label-efficient
segmentation works typically address domains other than autonomous driving,
we first conduct a pilot study to understand the challenges in this novel setting
and introduce motivations behind LESS (Sec. 3.1). After briefly going over our
LESS framework (Sec. 3.2), we dive into the details of each part (Secs. 3.3 to 3.6).

3.1 Pilot study: what should we pay attention to?

Previous works [33,23,47,53,44,54,61,66] on label-efficient 3D semantic segmenta-
tion mainly focused on indoor datasets, such as ScanNet-v2 [11] and S3DIS [3]. In
these datasets, input points are sampled from high-quality reconstructed meshes
and are thus densely and uniformly distributed. Also, objects in indoor scenar-
ios typically share similar sizes and have a relatively balanced class distribu-
tion. However, in outdoor settings, input point clouds demonstrate substantially
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higher complexity due to the varying point density and the ubiquitous occlusions
throughout the scene. Moreover, in outdoor driving scenes, the sample distri-
bution across different categories is highly unbalanced due to factors including
occurring frequency and object size. Tab. 1 shows the point distribution over two
autonomous driving datasets, where the numbers of road points are 1,197 and
2,242 times larger than that of bicycle points, respectively. The extremely un-
balanced distribution adds extra difficulty for label-efficient segmentation, whose
goal is to only label a tiny portion of points.

car
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terrain
fence

bicyclist

motorcycle

person
bicycle mIoU
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40%
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80%
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Fig. 2: Pilot study: performances
(IoU) of the most common and
rarest categories. Models are trained
with 100% of labels and 0.1% of la-
bels (in terms of points or scans) on Se-
manticKITTI [4].

We conduct a pilot study to fur-
ther examine this challenge. Specifi-
cally, we train a state-of-the-art se-
mantic segmentation network, Cylin-
der3D [68], on the SemanticKITTI
dataset with three intuitive setups:
(a) 100% labels, (b) randomly anno-
tating 0.1% points per scan, and (c)
randomly selecting 0.1% scans and
annotating all points for the selected
scans. The results are shown in Ap-
pendix S.1. Without any special ef-
forts, “0.1% random points” can al-
ready achieve a mean IoU of 48.0%,
compared to 65.9% by the fully super-
vised version. On common categories,
such as car, road, building, and vege-
tation, the performances of the “0.1% label” models are close to the fully su-
pervised model. However, on the underrepresented categories, such as bicycle,
person, and motorcycle, we observe substantial performance gaps compared to
the fully supervised model. These categories tend to have small sizes, appear less
frequently, and are thus more vulnerable when reducing the annotation budget.
However, they are still critical for many applications such as autonomous driv-
ing. Moreover, we find that “0.1% random points” outperforms “0.1% random
scans” by a large margin, mainly due to its label diversity.

These observations inspire us to rethink the existing paradigm of label-
efficient segmentation. While prior works typically focus on either efficient la-
beling or improving training approaches, we argue that it can be more effective
to address the problem by co-designing both. By integrating the two parts, we
may cover more underrepresented instances with a limited labeling budget, and
exploit the labeling efforts more effectively during network training.

3.2 Overview

Our LESS framework integrates pre-segmentation, labeling, and network train-
ing. It can work with most existing LiDAR segmentation backbones without
changing their network architectures or inference latency. As shown in Fig. 3,
our pipeline takes raw LiDAR sequences as input. It first employs a heuris-
tic method to partition the point clouds into a set of high-purity components
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Weak
Labels
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Fig. 3: Overview of our LESS pipeline. (a) We first utilize a heuristic algo-
rithm to pre-segment each LiDAR sequence into a set of connected components.
(b) Examples of the proposed components. Different colors indicate different
components. For clear visualization, components of ground points are not shown.
(c) Human annotators only need to coarsely label each component. Each color
denotes a proposed component, and each click icon indicates a labeled point.
Only sparse labels are directly annotated by humans. (d) We then train the net-
work to digest various labels and utilize multi-scan distillation to exploit richer
semantics in the temporally fused point clouds.

(Sec. 3.3). Instead of exhaustively labeling all points, annotators only need to
quickly label a few points for each component proposal (e.g ., one point label for
each class that appears). Besides the human-annotated sparse labels, we derive
other types of labels so as to train the network with more context information
(Sec. 3.4). During the network training, we employ contrastive prototype learn-
ing to realize a more descriptive embedding space (Sec. 3.5). We also boost the
single-scan model by distilling the knowledge from a multi-scan teacher, which
exploits richer semantics within the temporally fused point clouds (Sec. 3.6).

3.3 Pre-segmentation

We design a heuristic pre-segmentation to subdivide the point cloud into a col-
lection of components. Each resulting component proposal is of high purity,
containing only one or a few categories, which facilitates annotators to coarsely
label all the proposals, i.e., one point label per class (Sec. 3.4). In this way, we
can derive dense supervision by disseminating the sparse point-wise annotations
to the whole components. Since modern networks can learn the semantics of ho-
mogeneous neighborhoods from sparse annotations, spending lots of annotation
budgets on large objects may be futile. Our component-wise coarse annotation
is agnostic to the object size, which benefits underrepresented small objects.

For indoor scenarios, many prior arts [33,20,47] leverage the surface normal
and color information to generate super voxels and assume that the points within
each super voxel share the same category. These approaches, however, might not
generalize to outdoor LiDAR point clouds, where the surface can be noisy and
color information is not available. Since the homogeneity assumption is hard to
hold, we instead propose to lift this constraint and allow each component to
contain more than one category.

Unlike indoor scenarios, objects in outdoor scans are often well-separated af-
ter detecting and isolating the ground points. Inspired by this philosophy, we de-
sign an intuitive approach to pre-segment each LiDAR sequence, which includes
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four steps: (a) Fuse overlapping scans. We first split a LiDAR sequence into
sub-sequences, each containing t consecutive scans. We then fuse the scans of
each sub-sequence based on the provided ego-poses. In this way, we can label
the same instance across overlapping scans at one click. (b) Detect ground
points. While the ground surface may not be flat at the full-scene scale, we as-
sume for each local region (e.g ., 5m × 5m), the ground points can be fitted by a
plane. We thus partition the whole scene into a uniform grid according to the xy
coordinates, and then employ the RANSAC algorithm [15] to detect the ground
points for each local cell. Since the ground points may belong to different cate-
gories (e.g ., parking zone, sidewalk, and road), we regard the ground points from
each local cell as a single component instead of merging all of them. We allow a
single ground component to contain multiple classes, and one point per class will
be labeled later. (c) Construct connected components. After detecting and
isolating the ground points, the remaining objects are often well-separated. We
build a graph G, where each node represents a point. We connect every pair of
points (u, v) in the graph, whose Euclidean distance is smaller than a threshold τ .
We then divide the points into groups by calculating the connected components
for the graph G. Due to the non-uniform point density distribution of the LiDAR
point clouds, it is hard to use a fixed threshold across different ranges. We thus
propose an adaptive threshold τ(u, v) = max(ru, rv) × d to compensate for the
varying density, where ru and rv are the distances between the points and the
sensor centers, and d is a pre-defined hyper-parameter. (d) Subdivide large
components. After step (c), there usually exist some connected components
covering an enormous area (e.g ., buildings and vegetation), which are prone to
include some small objects. To keep each component of high purity and facilitate
network training, we subdivide oversized components to ensure each component
is bounded within a fixed size. Also, we ignore small components with only a few
points, which tend to be noisy and can lead to excessive component proposals.

In practice, we find our pre-segmentation generates a small number of com-
ponents for each sequence. The component proposals cover most of the points,
and each component tends to have high purity. These open up the possibility of
quickly bootstrapping the labeling from scratch. Moreover, unlike other meth-
ods [33,20,47] relying on various handcrafted features, our method only utilizes
the simple geometrical connectivity, allowing it to generalize to various scenarios
without tuning lots of hyper-parameters. Please refer to Sec. 4.4 for statistics of
the pre-segmentation results and the supplementary material for more details.

3.4 Annotation policy & training labels

Instead of meticulously labeling every point, we propose to coarsely annotate the
component proposals. Specifically, for each component proposal, an annotator
needs to first skim through the component and then label only one point for each
identified category. Fig. 3 (c) illustrates an example where the pre-segmentation
yields three components colored in red, blue, and green, respectively. Because
the blue component only has traffic-sign points, the annotator only needs to
randomly select one point to label. The green component is similar, as it only
contains road points. In the red component, there is a bicycle lying against a
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traffic sign, and the annotator needs to select one point for each class to label. By
coarsely labeling all components, we are unlikely to miss any underrepresented
instances, as the proposed components cover the majority of points. Moreover,
since the number of components is orders of magnitude smaller than that of
points and our coarse annotation policy frees annotators from carefully labeling
instance boundaries (required in the labeling process to build SemanticKITTI [4]
dataset), we are thus able to reduce manual labeling costs.

Based on the component proposals, we can obtain three types of labels.
Sparse labels: points directly labeled by annotators. Although only a tiny sub-
set of points are labeled, sparse labels provide the most accurate and diverse
supervision. Weak labels: classes that appear in each component. Weak labels
are derived based on human-annotated sparse labels within each component. In
the example of Fig. 3 (c), all red points can only be either bicycles or traffic
signs. We disseminate weak labels from each component to the points therein.
The multi-category weak labels provide weak but dense supervision and cover
most points. Propagated labels: for the pure components (i.e., only one cat-
egory appears), we can propagate the label to the entire component. Given the
effectiveness of our pre-segmentation approach, the propagated labels also cover
a wide range of points. However, since some categories may be easier to be sep-
arated and prone to form pure components, the distribution of the propagated
labels may be biased and less diverse than the sparse labels.

We formulate a joint loss function by exploiting the three types of labels: L =
Lsparse + Lpropagated + Lweak, where Lsparse and Lpropagated are weighted cross-
entropy loss with respect to the sparse labels and propagated labels, respectively.
We utilize inverse square root of label frequency [38,69,35] as category weights
to emphasize underrepresented categories. Here, we calculate a cross-entropy loss
for each label type separately, because propagated labels significantly outnumber
sparse labels while sparse labels provide more diverse supervision.

Denote the weak labels as binary masks lij for point i and category j. lij = 1
when point i belongs to a component that contains category j. We exploit the
multi-category weak labels by penalizing the impossible predictions:

Lweak = − 1

n

n∑

i=1

log(1−
∑

lij=0

pij) (1)

where pij is the predicted probability of point i, and n is the number of points.
Prior approaches [54,44] aggregate per-point predictions into component-level
predictions and then utilize the multiple-instance learning loss (MIL) [41,42] to
supervise the learning. Here, we only penalize the negative predictions without
encouraging the positive ones. This is because our network takes a single-scan
point cloud as input, but the labels are collected and derived over the temporally
fused point clouds. Hence, a positive instance may not always appear in each
individual scan, due to occlusions or limited sensor coverage.

3.5 Contrastive prototype learning

Besides the great success in self-supervised representation learning [7,21,40], con-
trastive learning has also shown effectiveness in supervised learning and few-shot
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learning [26,18,46,49]. It can overcome shortcomings of the cross-entropy loss,
such as poor margins [13,32,26,63], and construct a more descriptive embedding
space. Following [18,29,48,63,33], we exploit the limited annotations by learning
distinctive class prototypes (i.e., class centroids in the feature space). Without
pre-training, a contrastive prototype loss Lproto is added to Sec. 3.4 as an aux-
iliary loss. Due to the limited annotations and unbalanced label distribution,
only using samples within each batch to determine class prototypes may lead
to unstable results. Inspired by the idea of momentum contrast [21], we instead
learn the class prototypes Pc by using a moving average over iterations:

Pc ← mPc + (1−m)
1

nc

∑

yi=c

stopgrad(h(f(xi))) (2)

where f(xi) is the embedding of point xi, h is a linear projection head with vector
normalization, stopgrad denotes the stop gradient operation, yi is the label of
xi, nc is the number of points with label c in a batch, and m is a momentum
coefficient. In the beginning, Pc are initialized randomly.

The prototype loss Lproto is calculated for the points with sparse labels and
propagated labels within each batch:

Lproto =
1

n

n∑

i

−wyi log
exp(h(f(xi)) ·Pyi

/τ)∑
c exp(h(f(xi)) ·Pc/τ)

(3)

where h(f(xi)) ·Pyi indicates the cosine similarity between the projected embed-
ding and the prototype, τ is a temperature hyper-parameter, n is the number
of points, and wyi

is the inverse square root weight of category yi. Lproto aims
to learn a better embedding space by increasing intra-class compactness and
inter-class separability.

3.6 Multi-scan distillation
We aim to learn a segmentation network that takes a single LiDAR scan as
input and can be deployed in real-time onboard applications. During our label-
efficient training, we can train a multi-scan network as a teacher model. It applies
temporal fusion of multiple scans and takes the densified point cloud as input,
compensating for the sparsity and incompleteness within a single scan. The
teacher model is thus expected to exploit the richer semantics and perform better
than a single-scan model. Especially, it may improve the performance for those
underrepresented categories, which tend to be small and sparse. After that, we
distill the knowledge from the multi-scan teacher model to boost the performance
of the single-scan student model.

Specifically, for a scan at time t, we fuse the point clouds of neighboring
scans at time {t + iΔ; i ∈ [−2, 2]} (Δ is a time interval) using the ego-poses of
the LiDAR sensor. To enable a large batch size, we use voxel subsampling [67]
to normalize the fused point cloud to a fixed size. Labels are then fused accord-
ingly. Besides the spatial coordinates, we also concatenate an additional channel
indicating the time index i of each point. The teacher model is trained using the
loss functions introduced in Secs. 3.4 and 3.5.

The student model shares the same backbone network and is first trained
from scratch in the same way as the teacher model except for the single-scan
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input. We then fine-tune it by incorporating an additional distillation loss Ldis.
Specifically, following [22], we match student predictions with the soft pseudo-
labels generated by the teacher model via a cross-entropy loss:

Ldis = −T 2

n

n∑
i

∑
c

exp(uic/T )∑
c′ exp(uic′/T )

log

(
exp(vic/T )∑
c′ exp(vic′/T )

)
(4)

where uic and vic are the predicted logits for point i and category c by the teacher
and student models respectively, and T is a temperature hyper-parameter. A
higher temperature is typically used so that the probability distribution across
classes is smoother, and the distillation is thus encouraged to match the negative
logits, which also contain rich information. The cross-entropy is multiplied by
T 2 to align the magnitudes of the gradients with existing other losses [22].

Please note that the idea of multi-scan distillation may only be beneficial for
our label-efficient LiDAR segmentation setting. For the fully supervised setting,
all labels are already available and accurate, and there is no need to leverage the
pseudo labels. For the indoor setting, all points are sampled from high-quality
reconstructed meshes, and there is no need for a multi-scan teacher model.

4 Experiments
We employ Cylinder3D [68], a recent state-of-the-art method for LiDAR seman-
tic segmentation, as our backbone network. We utilize ground truth labels to
mimic the obtained human annotations, and no extra noise is added. Please re-
fer to the supplementary material for more implementation and training details.

We evaluate the proposed method on two large-scale autonomous driving
datasets, SemanticKITTI [4] and nuScenes [5]. SemanticKITTI [4] is collected
in Germany with 64-beam LiDAR sensors. The (sensor) capture and annotation
frequency is 10 Hz. It contains 10 training sequences (19k scans), 1 validation
sequence (4k scans), and 11 testing sequences (20k scans). 19 classes are used for
segmentation. nuScenes [5] is collected in Boston and Singapore with 32-beam
LiDAR sensors. Although the (sensor) capture frequency is 20Hz, the annota-
tion frequency is only 2Hz. It contains 700 training sequences (28k scans), 150
validation sequences (6k scans), and 150 testing sequences (6k scans). 16 classes
are used for segmentation. For both datasets, we follow the official guidance [4,5]
to use mean intersection-over-union (mIoU) as the evaluation metric.

4.1 Comparison on SemanticKITTI
We compare the proposed method with both label-efficient [55,24,33,23] and
fully supervised [58,65,1,16,12,27,50,31,68] methods. Please note that all compet-
ing label-efficient methods mainly focus on indoor settings and are not specially
designed for outdoor LiDAR segmentation. Among them, ContrastiveSC [23]
employs contrastive learning as unsupervised pre-training and uses the learned
features for active labeling, ReDAL [55] also employs active labeling, OneThin-
gOneClick [33] proposes a self-training approach and iteratively propagate the
labels, and SQN [24] presents a network by leveraging the similarity between
neighboring points. We report the results on the validation set. Since Con-
trastiveSC [23] and OneThingOneClick [33] are only tested on indoor datasets in
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52.7 86 31 48 51 42 52 52 0 95 47 82 0 80 47 83 53 72 42 38
PolarNet [65] 53.6 92 31 39 46 24 54 62 0 92 47 78 2 89 46 85 60 72 58 42

MPF [1] 57.0 94 28 55 62 36 57 74 0 95 47 81 1 88 53 86 54 73 57 42
S-BKI [16] 57.4 94 34 57 45 27 53 72 0 94 50 84 0 89 60 87 63 75 64 45

TemporalLidarSeg [12] 61.3 92 43 54 84 61 64 68 0 95 44 83 1 89 60 85 64 71 59 47
KPRNet [27] 63.1 95 43 60 76 51 75 81 0 96 51 84 0 90 60 88 66 76 63 43
SPVNAS [50] 64.7 97 35 72 81 66 71 86 0 94 48 81 0 92 67 88 65 74 64 49
AMVNet [31] 65.2 96 49 65 89 55 71 86 0 96 54 83 0 91 62 88 67 74 65 49

Cylinder3D [68] 65.9 97 55 79 80 67 75 86 1 95 46 82 1 89 53 87 71 71 66 53
Cylinder3D� 66.2 97 48 72 94 67 74 91 0 93 44 79 3 91 60 88 70 72 63 53

ReDAL [55] 5% 59.8 95 30 59 63 50 63 84 1 92 39 78 1 89 54 87 62 74 64 50
OneThingOneClick [33] 0.1% 26.0 77 0 0 2 1 0 2 0 63 0 38 0 73 44 78 39 53 25 0

ContrastiveSC [23] 0.1% 46.0 93 0 0 62 45 28 0 0 90 39 71 6 90 42 89 57 75 54 34
SQN [24] 0.1% 52.0 93 8 35 59 46 41 59 0 91 37 76 1 89 51 85 61 73 53 35

LESS (Ours) 0.1% 66.0 97 50 73 94 67 76 92 0 93 40 79 3 91 60 87 68 71 62 51
SQN [24] 0.01% 38.3 83 0 22 12 17 15 47 0 85 21 65 0 79 37 77 46 67 44 12

LESS (Ours) 0.01% 61.0 96 33 61 73 59 68 87 0 92 38 76 5 89 52 87 67 71 59 46

Table 2: Comparison on the SemanticKITTI validation set. Cylin-
der3D [68] is our fully supervised counterpart. Cylinder3D� is our re-trained
version with our proposed prototype learning and multi-scan distillation.

the original paper, we adapt the source code published by the authors and train
their models on SemanticKITTI [4]. For other methods, the results are either
obtained from the literature or correspondences with the authors.

Tab. 2 lists the results, where our method outperforms existing label-efficient
methods by a large margin. With only 0.1% sparse labels (as defined in Sec. 3.4),
it even completely match the performance of the fully supervised baseline Cylin-
der3D [68], which demonstrates the potential of deployment into real applica-
tions. By checking the breakdown results, we find that the differences between
methods mainly come from the underrepresented categories, such as bicycle, mo-
torcycle, person, and bicyclist. Existing label-efficient methods, which are mainly
designed for indoor settings, suffer a lot from the highly unbalanced sample dis-
tribution, while our method is remarkably competitive in those underrepresented
classes. See Fig. 4 for further demonstration. OneThingOneClick [33] fails to
produce decent results, which is partially due to its pure super-voxel assump-
tion that does not always hold in outdoor scenes. As for the 0.01% annotations
setting, the performance of SQN [24] drops drastically to 38.3%, whereas our
proposed method can still achieve a high mIoU of 61.0%. For completeness, we
also re-train Cylinder3D [68] with our proposed prototype learning and multi-
scan distillation. We find that the two strategies provide marginal gain in the
fully-supervised setting, where all labels are available and accurate.

4.2 Comparison on nuScenes
We also compare the proposed method with existing approaches on the nuScenes [5]
dataset and report the results on the validation set. Since the author-released
model of Cylinder3D [68] utilizes SemanticKITTI for pre-training, here, we re-
port its result based on training the model from scratch for a fair comparison.
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Fig. 4: Qualitative examples on the SemanticKITTI [4] (first row) and
nuScenes [5] (second row) validation sets. Please zoom in for the details.
Red rectangles highlight the wrong predictions. Our results are similar to the
fully supervised counterpart, while ContrastiveSceneContext [23] produces worse
results on underrepresented categories (see persons and bicycles). Please noet
that, points in two datasets (with different density) are visualized in different
point size for better visualization.

Method Anno.mIOU(%)

(AF)2-S3Net [9]

100%

62.2
SPVNAS [50] 74.8

Cylinder3D [68] 75.4
AMVNet [31] 77.2
RPVNet [59] 77.6

ContrastiveSC [23] 0.2% 63.5
LESS (Ours) 0.2% 73.5

ContrastiveSC [23] 0.9% 65.5
LESS (Ours) 0.9% 74.8

Table 3: Comparison on nuScenes
validation set. Cylinder3D [68] is our
fully supervised counterpart.

pre- weak propa. proto. multi-scan mIoU
seg. labels labels learning distillation (%)

� � � � � 48.1
� � � � � 59.3
� � � � � 61.6
� � � � � 62.2
� � � � � 63.5
� � � � � 64.9
� � � � � 66.0

Table 4: Ablation study on the Se-
manticKITTI validation set. All
variants use 0.1% sparse labels.

For other fully-supervised methods [9,50,31,59], the results are either obtained
from the literature or correspondences with the authors. Since no prior label-
efficient work is tested on the nuScenes [5] dataset, we adapt the source code
published by the authors to train ContrastiveSceneContext [23] from scratch.

We want to point out that points in the
nuScenes dataset are much sparser than those in
SemanticKITTI. In nuScenes, only 2 scans per
second are labeled, while in SemanticKITTI, 10
scans per second are labeled. Due to the dif-
ference of sensors (32-beam vs. 64-beam), the
number of points per scan in nuScenes is also
much smaller (26k vs. 120k). See the right inset
for the comparison of two datasets (fused points
for 0.5 seconds). Considering the sparsity of the
original ground truth labels, here we report the
0.2% and 0.9% annotation settings.

Tab. 3 shows the results, where our proposed method outperforms Con-
trastiveSceneContext [23] by a large margin. With only 0.2% sparse labels, our
result is also highly competitive with the fully-supervised counterpart [68].
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Statistics SemanticKITTI nuScenes

one-category components 68.6% 80.6%
two-category components 23.8% 14.9%

components with more than two categories 7.6% 4.5%
average number of categories per component 1.40 1.25

coverage of sparse labels 0.1% 0.2%
coverage of propagated labels 42.0% 53.6%

coverage of weak labels 95.5% 99.0%

Table 5: Statistics of the pre-segmentation and labeling. Only sparse
labels are directly annotated by humans.

pre-seg- mIoU #labels for IoU (%) of
annotation policy mentation (%) motorcycle motorcycle

randomly sample points � 48.1 943 22.2
randomly sample scans � 35.6 548 0.0

active labeling [23] � 54.2 456 36.7
uniform grid partition � 61.4 1024 (76k) 61.3

geometric partition [28,33] � 61.9 1190 (294k) 64.0
LESS (Ours) � 64.9 1146 (933k) 72.3

Table 6: Comparison of various annotation policies on SemanticKITTI.
All methods utilize 0.1% annotations and the same backbone network [68]. The
fourth column indicates the number of sparse labels (and propagated labels) for
an underrepresented category (i.e., motorcycle). Multi-scan distillation is not
utilized here. The IoU results are calculated on the validation set.

4.3 Ablation study

Tab. 4 shows the ablation study of each component. The first row is the result of
training with 0.1% random point labels. By incorporating the pre-segmentation,
we spend the limited annotation budget on more underrepresented instances,
thereby significantly increasing mIoU from 48.1% to 59.3%. Derived from the
component proposals, weak labels and propagated labels complement the human-
annotated sparse labels and provide dense supervision. Compared to multi-
category weak labels, propagated labels provide more accurate supervision and
thus lead to a slightly higher gain. Both contrastive prototype learning and
multi-scan distillation further boost the performance and finally close the gap
between LESS and the fully-supervised counterpart in terms of mIoU.

4.4 Analysis of pre-segmentation & labeling

By leveraging the unique geometric structure and a careful design, our pre-
segmentation works well for outdoor LiDAR point clouds. Tab. 5 summarizes
some statistics of the pre-segmentation and labeling results. For both datasets,
only less than 10% of the components contain more than two categories, which
validates that our pre-segmentation generates high-purity components. The high
“coverage of propagated labels” indicates that we thus deduce a good amount of
“free” supervision from the pure components. The low “coverage of sparse labels”
shows that annotators indeed only need to label a tiny portion of points, thus
reducing human effort. The “coverage of weak labels” confirms that the proposed
components can faithfully cover most points. Furthermore, the consistent results
across two distinct datasets verify that our method generalizes well in practice.
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single-scan
(before distillation)

multi-scan
teacher

single-scan
(after distillation)

Fig. 5: Improving segmentation with multi-scan distillation. The multi-
scan teacher leverages the richer semantics via temporal fusion to accurately
segment the bicycle and ground, which provides high-quality supervision to en-
hance the single-scan model.

single-scan (before) multi-scan teacher single-scan (after)
mIoU bicycle mIoU bicycle mIoU bicycle

64.9% 45.6% 66.8% 51.5% 66.0% 49.9%

Table 7: Results of the multi-scan distillation on the SemanticKITTI
validation set. 0.1% annotations are used.

Tab. 6 shows the comparison of different annotation policies (i.e., how to
use the labeling budget). The first two baselines are introduced in Sec. 3.1,
“active labeling” utilizes the features from contrastive pre-training to actively
select points [23], “uniform grid partition” uniformly divides the fused point
clouds into a grid according to the xy coordinates and treats each cell as a
component, “geometric partition” extracts handcrafted geometric features and
solves a minimal partition problem [28,68]. All of them are trained with the same
backbone Cylinder3D [68]. The first three methods employ no pre-segmentation
and are trained with Lsparse only. The other approaches utilize our labeling policy
(i.e., one label per class for each component) and are trained with additional
Lpropagated, Lweak, and Lproto. As a result, their performances are much higher
than the first three methods. We also report the number of labels and the IoU
for an underrepresented category. We see that our policy leads to more useful
supervisions and higher IoUs for underrepresented categories.

4.5 Analysis of multi-scan distillation
Tab. 7 and Fig. 5 show the results of multi-scan distillation. The teacher model
exploits the densified point clouds via temporal fusion and thus performs better
than the single-scan model (even compared to the fully supervised single-scan
model). Through knowledge distillation from the teacher model, the student
model improves a lot in the underrepresented classes and completely matches
the fully supervised model in mIoU.

5 Conclusion and future work
We study label-efficient LiDAR point cloud semantic segmentation and propose
a pipeline that co-designs the labeling and the model learning and can work
with most 3D segmentation backbones. We show that our method can utilize
bare minimum human annotations to achieve highly competitive performance.

We have shown LESS is an effective approach for bootstrapping labeling
and learning from scratch. In addition, LESS is also highly compatible for effi-
ciently improving a performant model. With the predictions of an existing model,
the proposed pipeline can be used for annotators to pick and label component
proposals of high-values, such as underrepresented classes, long-tail instances,
classes with most failures, etc. We leave this for future exploration.
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In this supplementary material, we first present the implementation and
training details of our proposed method and baseline methods (Appendix S.1).
We then show the visual examples of our pre-segmentation results (Appendix S.2),
the full results on the nuScenes dataset (Appendix S.3), and the multi-scan distil-
lation results on the SemanticKITTI dataset (Appendix S.4). Finally, we analyze
the generated label distribution (Appendix S.5) and the robustness to label noise
(Appendix S.6).

S.1 Implementation & training details

Pre-segmentation & labeling While some prior works require perfect pre-
segmentation results, our proposed labeling and training pipeline (using weak
and propagated labels) allows imperfect component proposals (e.g., a component
with multiple categories or an object instance divided into multiple components),
which greatly mitigates the impact of pre-segmentation quality on final per-
formance. Our pre-segmentation heuristic only includes two key steps: ground
removal and connected component construction. Compared to other complex
heuristics, it has fewer hyperparameters. Also, thanks to the good property of
outdoor point clouds (i.e., objects are well-separated), we find that, in our ex-
periments, the hyper-parameters are intuitive and easy to select without much
effort.

For example, during the ground removal, we find that the cell size and the
RANSAC threshold are robust across datasets, and we set them to be 5m× 5m
and 0.2m for both datasets. When building connected components, the parame-
ter d should accommodate the LiDAR sensor (the sparser the points, the larger
the d). We set d to 0.01 and 0.02 for SemanticKITTI [4] and nuScenes [5] datasets,
respectively. In our experiments, choosing hyper-parameters with visual inspec-
tion is convenient and sufficient to achieve satisfactory results.

For the SemanticKITTI [4] dataset, we fuse
every 5 adjacent scans for the 0.1% setting
and every 100 adjacent scans for the 0.01%
setting. Fusing more adjacent scans will im-
prove labeling efficiency, but may sacrifice pre-
segmentation quality as points may become
blurry, especially for dynamic objects. After
constructing connected components, oversized
components are subdivided along the xy axes
to ensure each component is within a fixed size
(i.e., 2m × 2m for non-ground components).
We also ignore small components with no more
than 100 points. For each component of size s,
we randomly label 1 point for each category whose number of points is more
than 0.05s. The motivation here is to prevent those noisy and ambiguous points
within each component from decreasing the component purity. In real applica-
tions, human labelers may also miss or ignore those noisy categories to accelerate
the annotation.
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(AF)2-S3Net [9]

100%

62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++ [39] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [65] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
SPVNAS [50] 74.8 74.9 39.9 91.1 86.4 45.8 83.7 72.1 64.3 62.5 83.3 96.2 72.7 73.6 74.1 88.3 87.4

Cylinder3D [68] 75.4 75.3 41.7 91.6 86.1 52.9 79.3 79.2 66.1 61.5 81.7 96.4 72.3 73.8 73.5 88.1 86.5
AMVNt [31] 77.0 77.7 43.8 91.7 93.0 51.1 80.3 78.8 65.7 69.6 83.5 96.9 71.4 75.1 75.3 90.1 88.3
RPVNet [59] 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9

ContrastiveSC [23] 0.2% 63.5 65.6 0.0 82.7 87.3 42.8 46.3 57.1 32.2 59.0 76.4 94.2 62.5 65.9 68.8 87.8 86.8
LESS (Ours) 0.2% 73.5 73.7 38.3 92.0 89.7 46.9 75.6 70.9 58.4 64.8 83.0 95.6 67.6 70.9 71.8 89.2 87.3

ContrastiveSC [23] 0.9% 64.5 64.0 12.7 80.7 87.6 41.1 55.8 61.6 37.5 59.1 75.2 94.2 65.6 67.0 70.1 88.0 87.2
LESS (Ours) 0.9% 74.8 75.0 42.3 91.9 89.9 51.0 80.0 72.6 60.1 64.9 83.6 95.7 67.5 71.7 73.1 89.5 87.6

Table S8: Comparison of different methods on the nuScenes validation
set. Cylinder3D [68] is our fully supervised counterpart.

For the nuScenes [5] dataset, we share the same hyperparameters as Se-
manticKITTI, except for the following. We fuse every 40 adjacent scans, and
ignore small components with no more than 10 points. For each component pro-
posal of size s, we randomly label 1 (or 4) point(s) for each category whose
number of points is more than 0.01s, corresponding to the 0.2% (0.9%) settings.
These subtle differences are mainly due to the points in the nuScenes [5] dataset
are much sparser (e.g., the right inset shows the fused points for 0.5 seconds),
and we fuse more points and annotate more labels to compensate for the point
sparsity.

Network training As for contrastive prototype learning, the momentum pa-
rameter m is empirically set to 0.99, temperature parameter τ is set to 0.1. In
multi-scan distillation, we fuse the scans at time {t + 0.5i; i ∈ [−2, 2]} for Se-
manticKITTI, and {t + 0.5i; i ∈ [−3, 3]} for nuScenes. We tried multiple sets
of parameters (different numbers of scans and intervals). They do lead to some
differences (∼3% mIOU), and we choose the best empirically. We keep all points
for scan i = 0, and use voxel downsampling to sub-sample 120k points from
other scans. The temperature T is set to 4.

We sum up all loss terms with equal weights and train the models on 4
NVIDIA A100 GPUs. For SemanticKITTI, the batch size is 12 and 8 for the
single-scan and the multi-scan model, respectively. For nuScenes, the batch size
is 16 and 12 for the single-scan and the multi-scan model, respectively. We utilize
the Adam optimizer, and the learning rate is initially set to 1e-3 and then decayed
to 1e-4 after convergence. During distillation, the learning rate is set to 1e-4.
Other training parameters are the same as Cylinder3D [68].
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Fig. S6: Examples of the pre-segmentation results. First row: detected
ground points of each cell. Non-ground points are colored in gray. Each other
color indicates a proposed ground component. Second row: connected compo-
nents of the non-ground points. Each color indicates a connected component.
The example is from the nuScenes dataset, where 40 scans are fused.

Baseline Methods We adopt the author released code to train OneThin-
gOneClick [33] and ContrastiveSceneContext [23] on SemanticKITTI and nuScenes.
For other methods, the results are either obtained from the literature or corre-
spondences with the authors.

For ContrastiveSceneContext [23], we first compute the overlapping ra-
tio between every pair of scans within each sequence, where the voxel size is
set to 0.3m. We then use pairs of scans whose overlapping ratio is no less than
30% for contrastive pre-training. During pre-training, we train the model with
a voxel size of 0.15m for 100k iterations. The batch size is 12 and 20 for Se-
manticKITTI and nuScenes, respectively. We then follow the provided pipeline
to infer the point features and select points for labeling. After that, we train the
segmentation network with the pre-trained weights for 30k iterations. The voxel
size is set to 0.1m, and the batch size is set to 18 and 36 SemanticKITTI and
nuScenes, respectively. We disable the elastic distortion and the color-related
data augmentation.

For OneThingOneClick [33], we first apply the geometrical partition de-
scribed in [28] to generate the super-voxels, where only the point coordinates
are used as input. We then randomly label a subset of super-voxels for a given
annotation budget. We follow the authors’ guidance to train the modules for
three iterations. In each iteration, we train the 3D-U-Net for 32 epochs (51k
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sparse (×0.1%) 0.8 2.7 0.9 0.6 0.8 1.8 1.8 2.7 0.4 0.7 0.6 1.4 0.8 1.0 1.0 2.0 1.0 3.1 4.1
propagated (%) 79 12 75 77 75 52 64 48 16 6 9 17 77 25 55 29 32 28 9

Table S9: The coverage of sparse labels and propagated labels for the
SemanticKITTI dataset. The numbers are the ratios between the number
of sparse labels (and propagated labels) and the number of points within each
category.
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sparse (×0.1%) 2.4 20.9 4.0 4.6 4.8 8.0 19.9 12.2 3.4 3.4 0.6 1.7 1.9 3.1 4.8 7.9
propagated (%) 16 16 53 52 54 46 29 20 49 59 32 2 2 11 62 55

Table S10: The coverage of sparse labels and propagated labels for the
nuScenes dataset. The numbers are the ratios between the number of sparse
labels (and propagated labels) and the number of points within each category.

iterations) and the RelationNet for 64 epochs (102k iterations). During training,
the voxel size is set to 0.1m, and the batch size is set to 12. We disable the elastic
distortion for the data augmentation.

S.2 Visual results of pre-segmentation

Fig. S6 shows the examples of our pre-segmentation results.

S.3 Full results on nuScenes

Tab. S8 shows the full results on the nuScenes validation set.

S.4 Full table of multi-scan distillation

Tab. S11 shows the full results of the multi-scan distillation. The multi-scan
teacher model leverages the richer semantics via temporal fusion and achieves
significantly better performances in the underrepresented categories, such as
bicycle, person, and bicyclist. Through knowledge distillation from the teacher
model, the student model also improves a lot in those categories.
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Method mIOU c
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single-scan (before) 64.9 97 46 72 91 69 73 88 0 92 39 77 4 90 58 88 66 73 61 52
multi-scan teacher 66.8 97 52 82 94 72 78 92 0 93 40 79 1 89 54 87 70 72 64 53
single-scan (after) 66.0 97 50 73 94 67 76 92 0 93 40 79 3 91 60 87 68 71 62 51

Table S11: Results of the multi-scan distillation on the SemanticKITTI
validation set. 0.1% annotations are used.

S.5 Label distribution

Tab. S9 and Tab. S10 summarize the distributions of the generated sparse labels
and the propagated labels. By leveraging our proposed pre-segmentation and
labeling policy, we put more emphasis on the underrepresented categories. For
example, the ratios of sparse labels for bicycle and road are 2.68 vs. 0.36 in the
SemanticKITTI dataset, and 20.85 vs. 0.63 in the nuScenes dataset. As for the
propagated labels, we find the distributions are unbalanced. For categories, such
as car and building, they are easier to be separated and form pure components,
thus having high coverages of propagated labels. However, some categories, such
as bicycle, road, sidewalk, and parking, are prone to be connected with other
categories, thus having low coverages of propagated labels. The discrepancy be-
tween the distributions of the two types of labels confirms that we need to treat
them separately instead of simply merging them with a single loss function.

S.6 Robustness to label noise

In the paper, we use point labels from the original datasets to mimic the anno-
tation policy, and no extra noise is added.

To evaluate the robustness of our method to label noise, we randomly change
3% (or 10%) of the sparse point labels to a random category, which alters weak
labels and propagated labels accordingly. The resulting mIoU drops 2.1% (or
3.7%), which is within a reasonable range and verifies that our method will not
be significantly affected by the label noise.
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