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Abstract— This paper proposes a method for learning con-
tinuous control policies for exploration and active landmark
localization. We consider a mobile robot detecting landmarks
within a limited sensing range, and tackle the problem of
learning a control policy that maximizes the mutual information
between the landmark states and the sensor observations. We
employ a Kalman filter to convert the partially observable
problem in the landmark states to a Markov decision process
(MDP), a differentiable field of view to shape the reward func-
tion, and an attention-based neural network to represent the
control policy. The approach is combined with active volumetric
mapping to promote environment exploration in addition to
landmark localization. The performance is demonstrated in
several simulated landmark localization tasks in comparison
with benchmark methods.

I. INTRODUCTION

Recent advances in embedded sensing and computation

hardware and in simultaneous localization and mapping

(SLAM) software have enabled efficient, reliable, real-time

mapping of unknown and unstructured environments [1].

However, most robot mapping methods are passive in utiliz-

ing sensing information and do not consider optimizing the

robot’s motion to improve performance. Yet, planning the

robot’s sensing trajectory to improve the quality of acquired

information [2] may play a critical role in challenging

environments in applications such as search and rescue [3],

security and surveillance [4], and wildfire detection [5].

This paper proposes an approach to learn continuous

control policies for active perception. We consider a robot

equipped with an onboard sensor capable of detecting objects

of interest (landmarks) within a limited field of view (FoV).

The objective is to maximize the mutual information between

the landmark states and potential future sensor observations

given past sensory data and robot trajectory. With a sensor

model that is linear in the landmark states and subject to

Gaussian noise, the mutual information objective is related

to the information matrix of a Kalman filter (KF) estimating

the landmark states. To prevent a non-smooth reward func-

tion due to the limited FoV, we use a differentiable FoV

formulation for reward shaping. Then, an exploration policy

is learned using proximal policy optimization (PPO) [6] over

a continuous control space with a network architecture using

an attention mechanism to handle multiple landmarks. The
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Fig. 1: Active landmark localization in the Unity simulator [7]. The
left figure shows a third-person view of an agent (red box) with
limited field of view (orange triangle) tasked with exploring and
localizing landmarks (blue boxes) in the environment. The images
on the right from top to bottom are RGB, semantic segmentation,
and depth images obtained by the agent’s onboard sensor.

proposed method is demonstrated in simulation in compari-

son to an open-loop optimization method and a policy with

a different network architecture.

Frontier-based exploration [8] is one of the early tech-

niques for autonomous robot exploration. It drives the robot

to map frontiers, separating explored and unexplored space.

To accommodate sensing noise and uncertainty, information-

based planning has been explored in many recent works in-

cluding [9]–[13]. While many information-based exploration

techniques assume a discrete control space composed of a

finite number of action choices, [14] proposed a gradient as-

cent approach, named iterative Covariance Regulation (iCR),

which optimizes an information objective over continuous

control space. The authors employed a differentiable FoV

to obtain a differentiable objective. Because iCR provides

an open-loop control sequence for a given environment, the

solution cannot be applied to a new environment without

online re-planning.

Learning a control policy from data is a central problem

in reinforcement learning (RL) [15]. RL techniques coupled

with deep learning representations have had impressive suc-

cess in games [16], where the action space is often discrete.

More recently, deep RL algorithms have been developed for

continuous control [6], [17], which is necessary for various

robotics tasks, including visual navigation for mobile [18]

and humanoid [19] robots. In this paper, we consider learning

a control policy for active perception as an alternative to

view planning at execution time. Closely related to our work,

Jeong et al. [20] applied Q-learning to an active target track-

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 2098

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 14,2023 at 20:57:51 UTC from IEEE Xplore.  Restrictions apply. 



ing problem to maximize the mutual information between

sensor data and the target states. Hsu et al. [21] developed

a multi-agent version of [20] by incorporating an attention-

block in the Q-network architecture. Chen et al. [22] focused

on learning exploration policies in a sample-efficient way

by applying imitation learning first and then employing

PPO for further improvement using a coverage reward.

Julian and Kochenderfer [5] used deep Q-learning for belief-

space planning in a distributed wildfire surveillance scenario,

modelled as a Partial Observable Markov Decision Process

(POMDP). Chen et al. [23] tackled active exploration for

landmark mapping using a graph neural network representing

the exploration policy trained with deep Q learning and

advantage actor critic methods. Chaplot et al. [24] propose

a modular and hierarchical approach to obtain a local policy

by imitation learning from analytical path planners with a

learned SLAM module and a global policy to maximize area

coverage. Our work differs from [24] since we consider an

information-theoretic objective with continuous control that

does not rely on learning from any prior geometric planner.

Lodel et al. [25] propose an information-theoretic objective

to maximize conditional mutual information between a map

estimate and new observations given past sensor data. The

authors apply PPO to acquire reference view points that

maximize the reward with local sensing of obstacles and

the robot position. Our work differs from [25] in that we

incorporate the posterior mean of the Kalman filter in the

state and we use neural network attention to handle multiple

landmarks.

The contribution of this paper is an approach for learn-

ing continuous control policies for active perception with

information-theoretic reward, employing a differentiable FoV

and an attention-based policy architecture. Our evaluation

demonstrates that our method outperforms control policies

with different neural network architectures and pre-computed

exploration trajectories in a landmark localization problem

and can also be utilized for simultaneous exploration of an

unknown environment.

II. PROBLEM STATEMENT

This section formalizes active exploration and mapping

as an optimal control problem. Consider a robot with state

xk ∈ R
nx and control input uk ∈ R

nu at discrete time

k ∈ Z≥0. The objective is to plan a trajectory to localize

several landmarks y = [y(1), . . . ,y(nl)], where y(j) ∈ R
2

for j ∈ {1, . . . , nl} denotes the position of j-th landmark and

nl is the total number of landmarks. We model the motion

of the robot using deterministic nonlinear dynamics:

xk+1 = f(xk,uk), (1)

where f : Rnx × R
nu → R

nx is a given function.

Let F ⊂ R
2 represent the FoV of the onboard sensors

within the robot’s body frame. The set of landmark indices

within the FoV is:

IF (x, {y(j)}) =
{
j ∈ {1, . . . , nl} | q

(
x,y(j)

)
∈ F

}
(2)

where q(x,y(j)) returns the robot-body-frame coordinates

of y(j). Then, a sensor measurement is denoted by zk =

[{z(j)k }j∈IF (xk,{y(j)})] ∈ R
nz|IF (xk,{y(j)})| where z

(j)
k ∈

R
nz is an observation of j-th landmark with model:

z
(j)
k = H(xk)y

(j) + vk, vk ∼ N (0, V (xk)), (3)

for all j ∈ IF (xk, {y(j)}), where the matrix H(x) ∈ R
nz×2

captures the dependence of the observation on the robot state

x and V (x) ∈ R
nz×nz is the sensing noise covariance.

We aim to maximize the conditional mutual information

between the landmark states y and a new observation zk+1

conditioned on the past observations and robot states, de-

noted as I(y; zk+1|z1:k,x1:k+1). Due to the Gaussian sensor

model (3), the conditional mutual information is given by:

I(y; zk+1|z1:k,x1:k+1) =
1

2
(log det(Yk+1)− log det(Yk))

(4)

where Yk ∈ S
2nl×2nl
�0 is a symmetric positive-definite in-

formation matrix obtained by Kalman filter updates. Since

the landmark measurements are independent, the information

matrix is block-diagonal Yk = diag(Y
(1)
k , . . . , Y

(nl)
k ) with

Y
(j)
k ∈ S

2×2
�0 . Due to the limited FoV sensor model, the

update of the information matrix is applied only to the

indices j within the set IF (x, {y(j)}):
Y

(j)
k+1 = Y

(j)
k +M(xk+1), (5)

M(x) := H(x)�V (x)−1H(x). (6)

Summarizing the formulation above, the active perception

problem we address in this paper is presented below.

Problem. Obtain a control policy π that solves the infinite-

horizon stochastic optimal control problem:

max
π

Eπ

( ∞∑
k=0

γk (log det (Yk+1)− log det(Yk))

)
, (7)

subject to (1)–(3) and (5)–(6), where the function π maps a

robot state xk and measurement sequence z0:k to a control

input uk and γ ∈ [0, 1) is a discount factor.

III. CONTINUOUS CONTROL FOR ACTIVE PERCEPTION

This section presents our method for learning a continuous

control policy to reduce the uncertainty in the landmark

states. An overview of the method is shown in Fig. 2.

A. MDP Formulation with Kalman Filter

The problem stated in the previous section is a POMDP

[26] since the landmark states are unobservable and the

control policy should take the history of sensory data z1:k
into account. To avoid the POMDP complexity, we convert

the problem into an equivalent MDP, by using a Kalman

filter to compute a sufficient statistic of the state yk given

the observation history z0:k, namely the posterior distribution

yk|z1:k ∼ N (
μk, Y

−1
k

)
. The posterior mean μk ∈ R

2nl

and covariance (inverse of the information matrix) Y −1
k are

updated every time a new measurement is obtained. This

setting is formalized as an MDP (S,A, P, r, γ), with con-

tinuous state space S , continuous action space A, transition
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Fig. 2: Estimation and control architecture used for active per-
ception. A Kalman filter (right) updates the mean vector μk and
vectorized information matrix λk of several landmarks of interest
using a sensor observation zk+1 obtained from agent position xk+1.
A reward function based on the log det of the information matrix
obtained with a differentiable field of view and the proximal policy
optimization algorithm [6] are used to optimize the parameters
of a control policy, whose representation (left) uses an attention
mechanism to capture the relationship between the agent’s position
and the landmark states.

probability distribution P : S×A×S → [0, 1], stage reward

function r : S × A → R, and discount factor γ ∈ [0, 1). To

define the MDP state variable, let λk := vech(Yk) ∈ R
nλ

be the half-vectorization of the symmetric information matrix

Yk, which stacks the columns of the lower-triangular part of

Yk into a vector with dimension nλ := nl(2nl + 1). Then,

denote the Kalman filter update from time k to k + 1 for

j ∈ IF (x, {y(j)}) as:

[μ
(j)
k+1,λ

(j)
k+1] = KF (μ

(j)
k ,λ

(j)
k , zk+1,xk+1). (8)

We describe the design of the stage reward function r next.

B. Reward Shaping by Differentiable FoV

Typical RL methods for continuous control employ policy

gradient methods [17]. However, due to the limited sensor

FoV in (2), the information update in (5) may cause a sudden

jump in the stage reward in (7) with respect to the robot

state and action. Such non-smooth behavior in the reward

may prevent a policy gradient method from converging to

a desired solution. To design a smooth reward function, we

apply a differentiable FoV formulation [14], which serves

as a reward shaping. Namely, the information update (5) is

performed for all j ∈ {1, . . . , nl}, where the matrix M(x)
in (6) is replaced as follows:

M(x,μ(j)) =
(
1− Φ(d(q(x,μ(j)),F))

)
M(x), (9)

where Φ is a probit function [27], defined by the Gaussian

CDF Φ : R → [0, 1], Φ(x) = 1
2

[
1 + erf

(
x√
2κ

− 2
)]

, where

erf(y) := 2√
π

∫ y

0
e−t2dt, and d is a signed distance function

associated with the FoV F defined below.

Definition 1. The signed distance function d : R
2 → R

associated with a set F ⊂ R
2 is:

d(q,F) =

{
−minq∗∈∂F ||q− q∗||, if q ∈ F ,

minq∗∈∂F ||q− q∗||, if q /∈ F ,
(10)

where ∂F is the boundary of F .

With the proposed differentiable FoV, the information

vector λk in the Kalman Filter is replaced with the new

variable λ̄k in the observation space. Overall, the MDP state

vector sk ∈ R
nx+2nl+nλ is defined as:

sk =
[
x�
k λ̄

�
k μ�

k

]�
(11)

and the action is ak = uk. The robot motion model in (1)

and the KF update in (8) together with the differentiable FoV

in (9) define the MDP transition model.

C. PPO with Attention-Based Network Architecture

The return from a state is defined as the sum of discounted
future rewards, Rk =

∑∞
j=k γ

j−kr(sj ,aj). The value func-
tion V π : S → R, the action-value function Qπ : S×A → R,
and the advantage function Aπ : S×A → R under a control
policy π are defined by V π(s) = Eπ [R0|s0 = s], Qπ(s,a) =
Eπ [R0|s0 = s,a0 = a], Aπ(s,a) = Qπ(s,a) − V π(s). We
apply PPO [6], an actor-critic method for learning the neural
network models of both the value function and the control
policy. PPO has shown superior performance for continuous
control tasks with smooth policy updates. The policy πθ is
updated to minimize a clipped surrogate objective:

LCLIP(θ) = E

[
min

{
πθ

πθk

Âk, clip

(
πθ

πθk

, 1− ε, 1 + ε

)
Âk

}]
,

(12)

where Âk is an estimate of the advantage function, set as

Âk =
∑T−k+1

i=0 (γλ′)i δk+i where δk = rk + γVφ(sk+1) −
Vφ(sk), and λ′ represents the parameter controlling the

balance between value estimations’ bias and variance.

The value function is subsequently updated to minimize∑T
k=0(Vφ(sk)−Rk)

2.

To take a reasonable trajectory that maximizes information

gain, the agent should plan based on its previous observa-

tions. Some related works directly incorporate historical ob-

servations and agent states or use recurrent neural networks

[23], [25]. In contrast, our model uses the landmark means

and information matrices as part of the state, and because

they form a sufficient statistic it is not necessary to have

historical information.

Another important aspect of our design is that the agent

should be aware of the relationship between its current posi-

tion and the landmark states in order to prioritize observing

uncertain landmarks. To capture the position relationship

we employ an attention mechanism [28] in the design of

the policy architecture. We encode the agent position xk ∈
R

nx into Emb(x) with two 32-unit fully connected layers

(FC), and the landmark states olm
k ∈ R

nl×4 (reshaped from

[λ�
k μ�

k ]
� ∈ R

4nl ) into Emb(olm
k ) with a 64-unit FC fol-

lowed by a 32-unit FC. Then, we obtain the agent-landmark

relationship embedding denoted as EmbRELP by calculating

the attention of Emb(x) over all Emb(olm
k ). Finally, we

concatenate Emb(x) and EmbRELP and pass through two 64-

unit fully connected layers to compute the action or value.

An illustration of our model is shown in Fig. 2.
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D. Joint Exploration and Landmark Localization

In addition to landmark localization, we consider simulta-

neous exploration of an unknown environment. A map state

m ∈ R
nm is defined by discretizing the space Ω ⊂ R

2

into hm × wm = nm ∈ N tiles, and associating each tile

j ∈ 1, . . . , n with a position p(j) ∈ R
2 and an occupancy

value m(j) ∈ R (m(j) = 1 if occupied, and m(j) = −1
if free ). While Gaussian density estimate obtained from

the KF provides a continuous real value, by applying a

threshold function which returns 1 for positive input and

−1 for negative input, the map state can be estimated as

a binary value. Using the index set notation of (2), the

set of map tile indices within the field of view can be

described as IF (x, {p(j)}). Using the image sensor from

the flying robot, the occupancy within the FoV can be

measured directly. The sensor state is given by zmap
k =

[{zmap(m(j))}j∈IF (xk,{p(j)})], and the sensor model is set as

zmap(m(j)) = m(j)+v, where v ∼ N (0, σ). Similarly to the

landmark localization problem above, we consider a unified

exploration and landmark localization problem by computing

a control policy π, mapping a state xk and observations

z0:k = [zland�
0:k , zmap�

0:k ]� to an input uk, that solves:

max
π

Eπ

( ∞∑
k=0

γk
(
ραlandrland

k + (1− ρ)αmaprmap
k

))
, (13)

with rmap
k = log det(Ȳk+1) − log det(Ȳk), Ȳ

(j)
k+1 = Ȳ

(j)
k +

1
σ2 ξ

(j)
k , ξ

(j)
k = 1− Φ(d(q(xk,p

(j)),F)), where Ȳ
(j)
k ∈ R+

is a j-th diagonal element in the information matrix Ȳk

of the volumetric map, subject to the models in (1)–(3).

The hyper parameter ρ ∈ [0, 1] controls the weight of

each reward, and αland, αmap are normalization factors. One

notable difference from the landmark scenario is that, the set

of indices IF (x, {p(j)}) is independent from the map state

m, thereby the posterior mean of the Kalman Filter is not

needed in the observation space.

The state vector sk ∈ R
nx+2nl+nλ+2nm consists of

sland
k ∈ R

nx+2nl+nλ of the landmark localization task

(11) and smap
k ∈ R

2nm of the map exploration. The

state smap
k includes the agent’s differentiable FoV ξ

(j)
k and

the current information of each pixel in the map Ȳ
(j)
k :

sk =
[
sland�
k ; smap�

k

]�
, smap

k =
[
{ξ(j)k }nm�

j=1 {Ȳ (j)
k }nm�

j=1

]�
.

The two states for landmark localization and volumetric

exploration are processed independently to extract their

corresponding feature vectors: sland
k goes through the same

attention-based network without the last fully-connected

layer, while smap
k is reshaped as a 2-channel image Smap

k ∈
R

2×hm×wm and compressed by two convolutional layers

followed by a flatten operation. The two feature vectors

are concatenated and fed to two fully-connected layers to

compute the action or value.

IV. EVALUATION

We consider aerial surveillance of a 3-D environment

using a flying robot with downward-facing RGB-D sensor.

For simplicity, we assume that the orientation and height of

the robot are not controlled, and the x − y position of the

robot can be controlled directly by linear velocities, while

the landmarks are located in a 2-D plane with the same

height. Hence, the robot state is the position xk ∈ R
2

and the control input is the linear velocity u ∈ R
2 so

that xk+1 = xk + uk. The robot’s FoV is a circle with

a fixed radius on the ground. For sensing of landmarks,

we suppose both range and bearing sensors are available,

thereby the sensor model is described by the robot-body-

frame coordinates, i.e, H = I2 and V = σ2I2 with a sensor

noise magnitude σ ∈ R≥0. Under this setting, it is easily

shown that the information matrix Yk by Kalman Filter (5)

and differentiable FoV (9) becomes a diagonal matrix, and

thus λk = diag(Yk) ∈ R
2nl is sufficient for the information

vector in observation space. At each episode, the initial

estimations of landmark positions μ0 are sampled from a

Gaussian distribution, while its mean value corresponds to

landmarks’ true positions, and the variance is determined by

the sensor noise.

We demonstrate the performance of our approach in sev-

eral simulations. First, we show qualitative and quantitative

results for landmark localization. With non-uniform initial in-

formation values among the landmarks, the agent prioritizes

landmarks with low information. Then, promising results for

the joint exploration and landmark localization method are

presented. Finally, we apply our method in a high-fidelity

Unity simulation showing its potential for transfer in a real-

world setting.

A. Evaluation Settings

We first conduct landmark localization experiments with

3, 5, and 8 randomly scattered landmarks in the environment.

Respectively, the agents takes 8, 15, and 18 time steps

per episode in each scenario during the training, so that

the agent requires an efficient exploration by the terminal

time. At the beginning of each episode, the agent’s position

is chosen randomly using a uniform distribution, x0 ∼
Uniform([−2, 2]× [−2, 2]), while the landmark positions are

specified using a uniform distribution within [−8, 8]×[−8, 8],
[−10, 10]× [−10, 10] and [−12, 12]× [−12, 12], respectively.

The control scaling factors are set as 3, namely, the neural

network stochastic control policy uk ∼ πθ(·|sk) is updated

within the range uk ∈ [−3, 3] × [−3, 3]. Regarding the

hyper-parameters in Sec. III-B, we chose a smoothing factor

κ, sensing radius, and sensor noise σ as 0.5, 2 and 0.5,

respectively. The models are trained for a million time steps

using a 24G NVIDIA GeForce RTX 3090 GPU. Specifically,

the training process for each model was completed within 30

minutes in our experiment.

B. Landmark Localization Quantitative Comparisons

One demonstration of the trajectories generated from our

learning policy in three different maps is depicted in Fig. 3,

which illustrates that the agent traverse through all the

landmarks. We compare our method, named PPO-att, to

two baselines: (1) PPO-mlp: a policy network replacing the
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3 Landmarks 5 Landmarks 8 Landmarks

Trajectories

Fig. 3: Landmark localization trajectories. At test time, the agent is randomly initialized near the origin and has to explore the map to
reduce uncertainty in the landmark positions with a limited sensing radius of 2. The blue dots indicate the real positions of the landmarks.
The small red triangle and square show the agent’s initial and current positions, respectively.

attention block with a multi-layer perceptron and (2) iCR-
landmark: the open-loop optimal control method iCR [14],

which performs finite-horizon trajectory optimization. We

use the same hyper-parameters, protocols, and landmark and

agent initial positions for all methods.

Each method is tested for 30 episodes per environment.

Note that PPO-att and PPO-mlp are both trained with three

random seeds to get three models in each environment. Each

model runs 10 episodes in each map. We utilize two metrics

for quantitative comparisons: (1) Reward: mean and standard

deviation values of the cumulative reward, and (2) MAE: the

mean absolute error of the landmark localization at the end of

each episode. Both metrics are computed over 30 episodes.

We also tested the methods in environments with and without

additive Gaussian noise in the robot dynamics (1). The results

are shown in Table I.

iCR-landmark is capable of finding an optimal control

sequence after sufficient number of iterations. However, it

is not able to generalize the control input to different ground

truth of the landmark positions, and its performance is highly

dependent on a precomputed initial control sequence. The

iCR-landmark trajectory can be recomputed at run-time, but

such approach is out of our scope aiming to generalize a pre-

computed policy to new environments. Secondly, according

to the acquired data, PPO-mlp performs relatively well when

there are only three landmarks but obtains the worst results

when there are more landmarks. Intuitively, although PPO-
mlp is able to handle landmark randomization, it cannot

extract relationship features between landmarks and the

agent. Thus, when the amount of the landmarks increases,

exploration fails and leads to a significant performance drop.

In contrast, our method always performs the best among

other compared methods and is able to localize randomized

landmarks with a small mean absolute error at the end of

each episode. It is noteworthy that PPO-mlp also exhibits an

advantage over other methods in scenarios with agent motion

noise. They demonstrated the robustness of the proposed

method in noisy dynamical environments.

C. Landmark Localization with Non-uniform Information

We conduct a supplementary experiment to further demon-

strate the features and advantages of our method by set-

ting non-uniform initial information, where one landmark

has much higher information (named high-info landmark
hereafter) than others. Fig. 4 shows different trajectories

TABLE I: Quantitative Comparison Results. The table shows the
average and standard deviation for the cumulative episode rewards
(higher is better) and the average estimation error after mapping
(lower is better). Tests are performed in three kinds of maps with
or without motion noise.

Method 3 Landmarks 5 Landmarks 8 Landmarks
Reward MAE Reward MAE Reward MAE

iCR-landmark w/o noise 11.93 ± 6.71 0.37 20.57 ± 7.58 0.34 29.18 ± 10.0 0.36
w/ noise 13.3 ± 5.32 0.37 18.43 ± 6.48 0.39 25.31 ± 7.69 0.34

PPO-mlp w/o noise 16.39 ± 4.82 0.34 18.97 ± 6.23 0.36 16.36 ± 10.39 0.37
w/ noise 16.27 ± 4.9 0.32 15.26 ± 6.39 0.36 16.78 ± 9.64 0.37

PPO-att w/o noise 18.54 ± 2.9 0.29 30.27 ± 3.0 0.31 38.25 ± 8.0 0.35
w/ noise 18.13 ± 3.3 0.32 26.53 ± 6.17 0.33 30.15 ± 11.03 0.36

generated by the learned control policy for different landmark

configurations. We can clearly see that the agent always

prioritizes its exploration to landmarks with lower initial

information values, and even ignores the high-info landmark
due to the limited number of time steps. With these experi-

ments, we verify that our approach is capable of prioritizing

less certain landmarks.

D. Joint Exploration and Landmark Localization

We also evaluate the joint exploration and landmark lo-

calization method described in Sec. III-D. The environment

size is set as 30×30. During training, the agent is randomly

initialized with a uniform distribution on [13, 17] for both the

x and y axes. The initial positions of the 5 landmarks are

also uniformly randomized in a larger x, y range of [5, 25].
The time horizon is fixed at 15 steps per episode. The rest

of the environment and training parameters are the same in

Sec. IV-A.

We compare two policies trained with different reward

weights ρ in (13). The weight of the exploration-exploitation
policy is set to ρ = 0.2, i.e., the agent is pursuing both

map exploration and landmark localization exploitation. The

weight in the exploitation policy is set to ρ = 1.0, i.e., the

agent is only exploiting the landmark localization since only

rland
k is kept in the reward.

To demonstrate the agent’s ability of localizing the land-

marks and exploring the map simultaneously, the 5 land-

marks are randomly initialized in a more concentrated area

(e.g. [20, 25] for x and y in Fig. 5). Exploration-exploitation

policy is expected to visit the landmarks first to obtain high

information initially, and then explore the rest of the map

to continue gaining information. In contrast, the exploitation

policy is expected to remain around the landmarks leaving

the majority of the map unexplored.
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Fig. 4: Trajectories under non-uniform initial information values.
When there is one landmark with higher initial information, the
agent prioritizes the sensing of other landmarks with lower infor-
mation. The green dots illustrate landmarks with higher information.

Fig. 5: Landmark localization and exploration using an exploitation
policy (top) and an exploration-exploitation policy (bottom). The left
column shows the final trajectory on the ground-truth map. The two
columns on the right show the estimated landmark positions and
occupancy map at the beginning and the end of the episode.

Fig. 6: Snapshots at time steps 0, 5, 10 and 15 in an active landmark localization episode in the Unity simulator.

Fig. 5 shows the test results for the exploitation policy

(top) and the exploration-exploitation Policy (bottom). It is

obvious that the agent employing the exploration-exploitation

policy continues to explore the map after detecting the

landmarks, while with the exploitation policy the agent

stays only around the landmarks. Qualitatively, the landmark

positions are better estimated by the exploitation policy at the

last step because it focuses on maximizing the information

gain of only the landmarks.

E. Unity Simulation
To examine the applicability of the method in real-world

environments, we designed a Unity simulation [7] which

provides realistic training and testing settings. We used 5
landmarks represented by different objects in Unity and

positioned randomly in a bounded area in each episode. An

aerial agent explores the environment to localize the scattered

landmarks, as illustrated in Fig. 1. The agent is equipped with

a downward-facing aligned semantic and depth sensor with

Gaussian noise on the depth values. When a landmark object

is inside the sensor FoV, the agent uses the semantic map to

extract the pixels of interest. Then, based on the depth values

of the extracted pixels and the intrinsic and extrinsic camera

matrices, we obtain a 3-D point cloud observation of object

and estimate its center position in the plane. To guarantee

the same shape of the sensor model, we also apply a squared

signed distance function for the calculation. Fig. 6 illustrates

the agent exploring the environment. PPO-att trained in a 2-

D environment achieved a desired trajectory visiting all the

landmarks.

V. CONCLUSION

This paper proposed a learning method for active landmark

localization and exploration with an information-theoretic

cost over continuous control space. Key aspects of our

method include (i) reward shaping using a differentiable

FoV, (ii) attention-based neural network architecture for

landmark prioritization, and (iii) joint landmark localization

and environment exploration. Future work will focus on

deterministic computation of reward gradients, collision and

occlusion modeling, and deployment on a real robot system.
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