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Abstract
Finding the optimal pass sequence of compila-

tion can lead to a significant reduction in program

size. Prior works on compilation pass ordering

have two major drawbacks. They either require

an excessive budget (in terms of the number of

compilation passes) at compile time or fail to gen-

eralize to unseen programs. In this work, instead

of predicting passes sequentially, we directly learn

a policy on the pass sequence space, which out-

performs the default -Oz flag by an average of

4.5% over a large collection (4683) of unseen

code repositories from diverse domains across 14

datasets. To achieve this, we first identify a small

set (termed coreset) of pass sequences that gen-

erally optimize the size of most programs. Then,

a policy is learned to pick the optimal sequences

by predicting the normalized values of the pass

sequences in the coreset. Our results demonstrate

that existing human-designed compiler passes can

be improved with a simple yet effective technique

that leverages pass sequence space which contains

dense rewards, while approaches operating on the

individual pass space may suffer from issues of

sparse reward, and do not generalize well to held-

out programs from different domains. Website:

https://rlcompopt.github.io.

1. Introduction
For more efficient execution with fewer resources (e.g.,

memory, CPU, and storage), applying the right ordering for

compiler optimization passes to a given program, i.e., pass
ordering, is an important yet challenging problem. Manual

efforts require expert knowledge and are time-consuming,
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Figure 1. A depiction of our main contributions. (Top) Coreset
Optimization: A process for discovering a small set of pass se-

quences (coreset) that generalizes. (Bottom) Normalized Value
Prediction: A process where our model learns to predict the nor-

malized value of pass sequences from the coreset.

error-prone, and often yield sub-par results, due to the huge

size of the search space. For example, the LLVM compiler

has 124 different compilation passes. If the pass sequences

have a length of 45, then the possible number of sequences

(12445 ∼ 1094) is already more than the atoms in the uni-

verse (∼ 1080 (Planck Collaboration et al., 2016)).

To address this problem, optimization-based approaches

(e.g., MLGO (Trofin et al., 2021), MLGoPerf (Ashouri

et al., 2022)) run adaptive search algorithms to optimize

a set of programs for many hours. While this achieves

strong performance gain, the procedure can be slow and

does not distill knowledge from past experience and requires

searching from scratch for unseen programs.

Recently, machine learning (ML)-guided pass ordering has

emerged as an interesting field to replace this laborious pro-

cess (Wang & O’Boyle, 2018). Along this line, many works

show promising results using language modelling (Cum-

mins et al., 2017), evolutionary algorithms (Kulkarni &

Cavazos, 2012), and reinforcement learning (Haj-Ali et al.,

2020a) to achieve better specific ordering for given pro-

grams. To handle unseen programs, Autophase (Haj-Ali
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et al., 2020b) learns a pass selection policy via reinforce-

ment learning, and applies it to unseen programs without

further search procedure, and GO (Zhou et al., 2020) fine-

tunes the models for unseen programs. While these ap-

proaches show promosing results for unseen programs from

the same/similar domain, they can be quite slow in the

training stage, and have not shown good generalization to

programs from very different domains, due to the fact that

for different programs, the benefits are manifested only after

a cleverly designed long pass ordering path (i.e., sparse
reward in reinforcement learning).

In such cases, applying sequential search techniques, even

guided with SoTA machine learning techniques, can be

ineffective and may lead to overfitting of local noisy reward

signals. To deal with these issues, we propose a novel pass

ordering optimization pipeline to reduce the code size of a

program. The key idea is the following: instead of searching

good passes sequentially, we directly find a universal core

set of pass sequences (termed coreset) from the training set,

and make decision on top of this different action space to

avoid the challenge of sparse reward.

Construction of the coreset. Specifically, the coreset is con-

structed by approximately optimizing a submodular objec-

tive with a greedy approach that has approximation guaran-

tees. The resulting coreset contains 50 pass sequences of

varying lengths, each of which has an average number of

12.5 passes. Surprisingly, despite the huge search space of

compiler passes, the small coreset gives strong performance

across programs from diverse domains, ranging from the

Linux Kernel to BLAS. Specifically, the 50 pass sequences

in the coreset lead to an average code size reduction of 5.8%
compared to the default -Oz setting, across 10 diverse code-

bases (e.g. Cbench (Fursin, 2014), MiBench (Guthaus et al.,

2001), NPB (Bailey et al., 1995), CHStone (Hara et al.,

2008), and Anghabench (Da Silva et al., 2021)) of over one

million programs in total.

Picking good pass sequences from the coreset. While it is

still time-consuming to find an optimal pass sequence from

the coreset with exhaustive search, we find that the (near)

optimal pass sequence can be directly predicted with high

accuracy via a graph neural network (GNN) architecture

adapted to encode the augmented ProGraML (Cummins

et al., 2021) graphs of programs. Therefore, we can run

a few pass sequences selected by the model on an unseen

program to obtain a good code size reduction. This enables

us to find a good pass configuration that leads to 4.5% im-

provement on average, with just 45 compilation passes, a

reasonable trade-off between the cost of trying compilation

passes and the resulting performance gain.

We compare our approach with extensive baselines, includ-

ing reinforcement learning (RL) -based methods such as

PPO, Q-learning, and behavior cloning. We find that RL-

based approaches operating on the original compiler pass

space often suffer from unstable training (due to inaccurate

value estimation) and sparse reward. As a result, they fail

to generalize to unseen programs at inference. In compar-

ison, our approach transforms the vast action space into a

smaller one with much more densely distributed rewards.

In this transformed space, approaches as simple as behav-

ior cloning can be effective and generalizable to unseen

programs.

2. Related Work
Recently, many methods have been proposed to use deep

learning to perform compiler optimization.

CodeBERT (Feng et al., 2020) pre-trained language mod-

els on program languages with different pre-training de-

signs, and finetuned the pre-trained models in downstream

tasks including code document generation and code search.

GraphCodeBERT (Guo et al., 2020) further extended Code-

BERT to leverage data flows in pre-training with more

pre-training objectives such as edge prediction and node

alignment. Their main contribution is learning program

representations, while our main contribution is compiler

optimization with a manipulated search space. Their repre-

sentation is at the source code level, while our representation

is at the Intermediate Representation (IR) level.

Cereda et al. (2020) used similarity matching, an idea from

recommender systems, to select optimization passes for

programs. However, they only considered 7 optimization

passes and only considered whether to apply them without

considering their orders (thus making it a binary decision for

each pass). Moreover, their approach needs to compare an

input program with all the programs in the dataset for simi-

larity matching, which may not scale up to a large dataset

consisting of thousands of programs. Note that the inference

overhead of our approach is insensitive to the size of the

training set.

Mammadli et al. (2020) aimed for program runtime reduc-

tion via pass ordering, while we aim for program size reduc-

tion. Moreover, they used a tiny dataset - 109 single-source

benchmarks from an LLVM test suite, while we use a much

larger dataset set. The small size of their datasets and the

lack of test sets may make their method prone to overfit-

ting. The core learning algorithm in Mammadli et al. (2020)

is deep Q learning (Mnih et al., 2015). We compared our

method against another reinforcement learning (RL) algo-

rithm PPO (Schulman et al., 2017).

Mammadli et al. (2021) proposed LoopLearner, which,

given the source code of a loop, suggests a semantically

invariant transformation that will likely allow the compiler

to produce more efficient code. Their method applies only

to loops in programs for program speedup.
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Autophase (Haj-Ali et al., 2020b) proposed to extract statis-

tics of IR instructions and use PPO to find a sequence of

compilation passes that minimizes program execution time.

They used 100 randomly generated programs as the train-

ing set and nine real benchmark programs as the test set,

while we used a much large real-world training set and

test set. MLGO (Trofin et al., 2021) integrated machine

learning techniques, including policy gradient and evolution

strategies, in an industrial compiler LLVM, which used the

inlining pass to reduce program size, while we use a much

larger set of compiler passes for program size reduction.

MLGoPerf (Ashouri et al., 2022) used the inlining pass to

optimize program speed with reinforcement learning.

Zhou et al. (2020) proposed the GO framework, targeting

the optimization of the compilers for computational graphs

in deep learning. Brauckmann et al. (2020) used abstract

syntax trees and control flow graphs for learning compiler

optimization goals. They show that using such graphs allows

them to outperform state-of-the-art in the task of heteroge-

neous OpenCL mapping.

Cummins et al. (2021) proposed a graph-based represen-

tation for IR, called ProGraML, encoding the data flows,

control flows, and function calls in programs. Cummins et al.

(2022) provided a Python library CompilerGym for com-

piler optimization, supporting the construction of various

program features and convenient interactions with compilers.

Our work is based on both ProGraML and CompilerGym.

3. Method
3.1. Action space

The CompilerGym framework (Cummins et al., 2022) pro-

vides a convenient interface for the compiler pass ordering

problem. The default environment allows choosing one of

124 discrete actions at each step corresponding to running

a specific compiler pass. In this work we will use the term

pass interchangeably with action. We fix the maximum num-

ber of passes to compile a program to 45 to match the setup

in Haj-Ali et al. (2020b); Cummins et al. (2022). Given that

our trajectories have a length of 45 steps, this means we have

12445 ∼ 1.6× 1094 possible pass sequences to explore. To

find an optimal pass sequence for a program, we can apply

some existing reinforcement learning methods including Q

learning like DQN (Mnih et al., 2015) and policy gradient

like PPO (Schulman et al., 2017).

Pass Sequences. However for this problem it turns out

that certain pass sequences are good at optimizing many

different programs (where “good” is defined as better than

the compiler default -Oz). We found that constraining the

action space to a learned set of pass sequences enables state

of the art performance and also significantly reduces the

challenge of exploration. This allows us to cast the problem

Figure 2. An exemplar reward matrix for 67 programs and 50 pass

sequences. The values plotted are the pre-normalized values. Most

of the pass sequences do not lead to strong rewards, except for a

few. On the other hand, certain pass sequences (i.e., columns) can

lead to high rewards for multiple programs simultaneously and

thus are good candidates for the coreset.

as one of supervised learning over this set of pass sequences.

We use the following algorithm to find a good set of pass

sequences.

Suppose we have N programs and M promising pass se-

quences. Let R = [rij ] ∈ R
N×M be the reward matrix, in

which rij > 0 is the ratio of the codesize of i-th program if

applied with j-th pass sequence, compared to -O0 (i.e., the

code size without compiler optimization). rij > 1 means

that the j-th pass sequence does better than -O0 in codesize

reduction for i-th program, and rij < 1 means it performs

worse. The reward matrix is normalized per row, by the

maximum reward for each program, so that the optimal pass

sequence has reward of 1 for each program.

Then we aim to pick a subset S of K pass sequences, called

the coreset, from all M pass sequences, so that the overall

saving J(S) is maximized:

max
|S|≤K

J(S) =

N∑
i=1

max
j∈S

rij (1)

Finding M candidate pass sequences. Note that there can

be an exponential number of pass sequences, and we cannot

construct the entire reward matrix, instead we seed a list

of candidate pass sequences. For this, we run a random

policy on a subset of M (17500) selected training programs.

In applying the random policy, we uniformly sample a se-

quence of 45 passes in each episode, run E (200) episodes

on a program, and pick the best pass sequence as the can-

didate sequence of the program, resulting in M candidate

sequences in total. If part of the best pass sequence leads

to the same state (the state is a 40-digit SHA1 checksum of
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the program’s IR, which can be obtained from the IrSha1
observation in CompilerGym), they are truncated so that the

sequence becomes shorter. If multiple pass sequences yield

the same reward we only retain the first after ordering them

length-lexicographically. On average these last two steps

reduce the length of the candidate pass sequences by 80%.

We then construct the reward rij by applying the j-th pass

sequence to program i, and comparing it with -O0.

Finding the best coreset S with a greedy algorithm. As

a function defined in subsets, J(S) can be proven to be a

nonnegative and monotone submodular function (See Ap-

pendix). While maximizing a submodular function is NP-

hard (Ward & Živnỳ, 2016), the following greedy algorithm
is proven to be an efficient approximate algorithm that leads

to fairly good solutions (Nemhauser et al., 1978). Start-

ing from S0 = ∅, at each iteration t, it picks a new pass

sequence jt as follows:

jt := arg max
j /∈St−1

J(St−1 ∪ {j}) (2)

And St ← St−1 ∪ {jt} until we pick K pass sequences.

We set K = 50 in this paper as a larger coreset showed

diminishing improvement (a coreset with 50 sequences al-

ready accounted for 95% of the improvement of using all

M candidate sequences).

Given the discovered coreset S, we define a generalized
action as a pass sequence in S. Applying a generalized

action to a program means that we roll out the corresponding

pass sequence on the program and return the best program

state (i.e., having the highest cumulative reward), which can

be done by caching the program state at each step.

Obtaining this coreset took 641 CPU core-hours. Less than

1% of time was spent on minimizing the size of the coreset.

Most of the time was spent on random exploration on the

training set to generate a promising set of pass sequences.

Generating the coreset is an upfront cost that is paid only

once. What was surprising to us is how well this generalized

to unseen programs (as can be seen in the performance of

our method on the held-out test set in Table 3).

3.2. Normalized Value Prediction

After discovering the “good” pass sequences (i.e., the core-

set), we can turn the problem of the sequential decision-

making on compiler passes into a problem of supervised

learning. We aim to train a model to predict the best pass

sequence conditioned on the program, where the training

target is the index of the pass sequence that results in the

greatest code size reduction. However, one important ob-

servation we have is that there are typically multiple pass

sequences in the coreset that lead to the greatest code size

reduction (see Figure 3 for the examples). Therefore, in-

stead of predicting a single class label, we leverage the fact

that we have access to the values for all pass sequences

and predict the softmax normalized values of the pass se-

quences detailed below. This approach is similar to behavior

cloning (Pomerleau, 1988) but with soft targets over the

coreset.

For a program with an index i, we use rij to denote the

reward (i.e., the code size reduction) when it is applied with

j-th sequence, which forms a value vector ri = [rij ]
K
j=1.

Then, the normalized values of the pass sequences are de-

fined by

vi = Softmax(ri/T ) (3)

where T is a temperature parameter.

For an initial observation oi of the program, our model

outputs a probability distribution, ai = f(oi), over the pass

sequences. The target of the training is to make ai close to

the normalized values of the pass sequences. To this end, we

use the Kullback–Leibler (KL) divergence to supervise the

model, which can be reduced to the following cross entropy

loss up to a constant term.

L(vi,ai) = −
K∑
j=1

vij log aij (4)

3.3. Program Representations

Since we use the CompilerGym (Cummins et al., 2022) envi-

ronments for program optimization, we exploit the program

representations from CompilerGym, where program source

code is converted to LLVM IR (Lattner & Adve, 2004)

and several representations are constructed from the IR, in-

cluding the ProGraML graph (Cummins et al., 2021), the

Autophase feature (Haj-Ali et al., 2020b), and the Inst2vec

feature (Ben-Nun et al., 2018).

Autophase We use the Autophase features (Haj-Ali et al.,

2020b) to build some baseline models, which will be de-

tailed in Section 4.2. The Autophase feature is a 56-

dimension integer feature vector summarizing the LLVM

IR representation, and it contains integer counts of various

program properties such as maximum loop depth. we use

an MLP to encode it and output a program representation.

ProGraML In addition to the Autophase features, we also

leverage ProGraML (Cummins et al., 2021) graphs for train-

ing GNN models. ProGraML is a graph-based represen-

tation that encodes semantic information of the program

which includes control flow, data flow, and function call

flow. This representation has the advantage that it is not a

fixed size - it does not oversimplify large programs - and yet

it is still a more compact format than the original IR format.

Each node in a ProGraML graph has 4 features described

in Table 1. The “text” feature is a textual representation

and the main feature that captures the semantics of a node.
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For example, it tells us what an “instruction” node does

(e.g., it can be alloca, store, add, etc). Each edge in a

ProGraML graph has 2 features described in Table 1.

Extending ProGraML with type graphs There is an is-

sue with the ProGraML graph. Specifically, a node of type

variable/constant node can end up with a long textual rep-

resentation (for the “text” feature) if it is a composite data

structure. For example, a struct (as in C/C++) containing

dozens of data members needs to include all the members

in its “text” feature. In other words, the current ProGraML

representation does not automatically break down compos-

ite data types into their basic components. Since there is an

unbounded number of possible structs, this prevents 100%

vocabulary coverage on any IR with structs (or other com-

posite types). To address this issue, we propose to expand

the node representing a composite data type into a type

graph. Specifically, a pointer node is expanded into this type

graph:[variable] <- [pointer] <- [pointed-type],

where [] denotes a node and <- denotes an edge con-

nection. A struct node is expanded into a type graph

where all its members are represented by individual nodes

(which may be further expanded into their components) and

connected to a struct node. An array is expanded into

this type graph: [variable] <- [array] <- [element-
type]. The newly added nodes are categorized as type
nodes and the edges connecting the type nodes are type
edges. The type nodes and type edges constitute the type

sub-graphs in the ProGraML graphs. In this manner, we

break down the composite data structures into the type

graphs that consist of only primitive data types such as

float and i32.

3.4. Network Architecture

Since the Autophase feature can be encoded by a simple

MLP, we discuss only the network architectures for encod-

ing the ProGraML graphs in this section.

We use a graph neural network (GNN) as the backbone

to encode the ProGraML graphs and output a graph-level

representation. The GNN encodes the graph via multiple

layers of message passing and outputs a graph-level repre-

sentation by a global average pooling over the node features.

The goal of graph encoding is to use the structure and re-

lational dependencies of the graph to learn an embedding

that allows us to learn a better policy. To this end, we ex-

perimented with several different GNN architectures such

as Graph Convolutional Network (GCN) (Kipf & Welling,

2017), Gated Graph Convolutions Network (GGC) (Li et al.,

2015), Graph Attention Network (GAT) (Brody et al., 2022),

Graph Isomorphism Network (GIN) (Xu et al., 2019). To

better capture the rich semantics of node/edge features in

the ProGraML graphs, we propose Graph Edge Attention

Network (GEAN), a variant of the graph attention net-

Feature Description

N
o

d
e type One of {instruction, variable, constant, type}

text Semantics of the node

function Function index

block IR basic block index

E
d

g
e flow Edge type. One of {call, control, data, type}

position Integer edge position in flow branching

Table 1. Features in the ProGraML graph representation which we

augment with type information (changes highlighted). We ablate

the augmentations in Section 4.5.

work (Veličković et al., 2017). These GNNs leverage both

the node and edge features, so we start by presenting how

to embed the node and edge features.

Node embedding For the “text” features of the nodes, we

build a vocabulary that maps from text to integer. The

vocabulary covers all the text fields of the nodes in the

graphs in the training set. The final vocabulary consists of

117 unique textual representations, and we add an additional

item “unknown” to the vocabulary which denotes any text

features that may be encountered at inference time and we

have not seen before. The i-th textual representation is

embedded using a learnable vector xi ∈ R
d, where d is

the embedding dimension. The “type” feature is not used

because it can be inferred from the “text” feature.

Edge embedding The edge embedding is the sum of three

types of embedding as the following.

• Type embedding We have 4 types of edge flows, so

we use 4 learnable vectors to represent them.

• Position embedding The “position” feature of an edge

is a non-negative integer which does not have an upper

bound. We truncate any edge positions larger than 32

to 32 and use a set of 32 learnable vectors to represent

the edge positions.

• Block embedding We use the block indices of the

two nodes connected by the edge to construct a new

edge feature. The motivation is that whether the edge

goes beyond an IR basic block can influence program

optimization. Suppose the block indices of the source

node and the target node of an edge are respectively bi
and bj . We get the relative position of the two nodes

with respect to IR basic blocks in the following way:

pblock = sign(bi − bj). If the edge connects two nodes

in the same IR basic block, then pblock is 0. And

pblock = ±1 indicates the edge goes from a block

to the next/previous block. There are 3 possible values

for pblock, so it is embedded using 3 learnable vectors.

The final embedding of an edge is the sum of its type, posi-

tion, and block embedding vectors.
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Graph mixup We note that the ProGraML graphs of two

programs can be composed into a single graph without af-

fecting the semantics of the two programs. And their value

vectors can be added up to correctly represent the value vec-

tor of the composite graph. In this manner, we can enrich

the input space to the GNNs and mitigate model overfitting

for the normalized value prediction method.

Graph Edge Attention Network We introduce the GEAN

in this paragraph and defer its mathematical details to the

Appendix. There are two main differences between the GAT

and GEAN. 1) GEAN adopts a dynamic edge representa-

tion. Specifically, GAT uses the node-edge-node feature to

calculate the attention for neighborhood aggregation, while

GEAN uses the node-edge-node feature to calculate not

only the attention but also a new edge representation. Then,

the updated edge representation is sent to the next layer for

computation. Note that GAT uses the same edge embedding

in each layer. We conduct an ablation study showing that

the edge representation in GEAN improves the generaliza-

tion of the model. 2) GAT treats the graph as an undirected

graph while GEAN encodes the node-edge-node feature to

output an updated node-edge-node feature, where the two

updated node features represent the feature to be aggregated

in the source node and the target node, respectively. This

ensures that the directional information is preserved in the

neighborhood aggregation.

3.5. Dataset Preparation

Overfitting issues could happen if training is performed

on a small subset of programs, or the set of programs is

not diverse enough. To mitigate this we find it helpful to

create an aggregate dataset that uses many different public

datasets as curated by CompilerGym, selecting the program

benchmarks with a maximum of 10k IR instruction counts.

CompilerGym gives us access to 14 different datasets con-

structed using two different methods, where a benchmark

program in the datasets is a single translation unit (i.e. object

file).

• Curated These are small collections of hand-picked

programs. They are curated to be distinct from one

another without overlap and are not useful for training.

Typically programs are larger as they may comprise

multiple source files combined into a single program.

These are commonly used for evaluating compiler op-

timization improvements.

• Uncurated These are comprised of individual com-

piler IRs from building open source repositories such

as Linux and Tensorflow. We also include synthetically

generated programs, targeted for compiler testing (not

optimization).

Type Dataset Train Val Test

Uncurated

anghabench-v1 707,000 1,000 2,000

blas-v0 133 28 29

github-v0 7,000 1,000 1,000

linux-v0 4,906 1,000 1,000

opencv-v0 149 32 32

poj104-v1 7,000 1,000 1,000

tensorflow-v0 415 89 90

clgen-v0 697 149 150

csmith-v0 222 48 48

llvm-stress-v0 697 149 150

Curated

cbench-v1 0 0 11

chstone-v0 0 0 12

mibench-v1 0 0 40

npb-v0 0 0 121

Total - 728,219 4,495 4,683

Table 2. CompilerGym dataset types and training splits. The hand-

curated datasets are used solely to evaluate generalization to real-

world program domains at test time. The units of the numbers

are “benchmarks” as in the CompilerGym, where a benchmark

represents a particular program that is being compiled.

For our aggregate dataset we decided to holdout the entirety

of the four curated datasets for use as an out-of-domain test

set. This is important because they represent the types of

programs we expect to see in the wild. We also split the

uncurated datasets into train, validaton, and test programs.

We limited the size of the programs by setting the maximum

IR instruction counts of a program to 10k for two reasons.

First, we need to consider the GPU memory constraints.

Second, it may not be optimal to embed a very large program

like the Linux kernel to obtain a single embedding, for

which our model will output a few pass sequences. This is

because we want to perform fine-grained optimization over

the program units because each part of a large program may

react differently to optimization pass sequences.

3.6. Evaluation

For all our metrics and rewards we leverage the IR instruc-

tion count as value we are trying to minimize. We also

report metrics on each CompilerGym dataset as well as

the mean over datasets to get a single number to compare

overall results.

• The mean percent improved over -Oz
(MeanOverOz) (Haj-Ali et al., 2020b) defined

as following:

ĪOz = MeanOverOz :=
1

|P|
∑
p

IOz
p − Iπθ

p

IOz
p

, (5)

where p is a specific program from the set of programs

P in the dataset. IOz
p is the number of IR instructions
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in the program after running the default compiler pass

-Oz. Iπθ
p is the number of IR instructions in the pro-

gram after applying the policy under consideration.

We can think of this as a simple average of the percent

improvement over -Oz.

• We also compare the geometric mean

(GMeanOverOz) (Cummins et al., 2022) of fi-

nal sizes across all programs relative to -Oz to give a

weighted comparison that is insensitive to outliers.

ĪOz
G = GMeanOverOz :=

(∏
p

IOz
p

Iπθ
p

) 1
|P|

(6)

4. Experiments
4.1. Experimental Setup

The experiments are based on the CompilerGym (Cummins

et al., 2022) environment. Given the source code of a pro-

gram, an optimization policy proposes a sequence of 45

compiler passes. Although the compiler can accept multi-

ple passes in a single invocation, we apply the 45 passes

with 45 invocations of the compiler in our setting so that

we can cache the intermediate IR between passes. At each

invocation, the program size (measured by the IR instruc-

tion counts) is recorded. The smallest program size during

this process is used to calculate the performance metrics.

For our method and the baseline methods, we search over

a set of hyper-parameters, including the temperature T in

Eq. 3, number of layers, the embedding dimension of the

node/edge features, and the output dimension in the hid-

den layers in the MLPs. We select the best configuration

for each method based on the validation metric (validation

MeanOverOz in 45 steps). Then, we run the training and

testing with the best configuration of a method for 3 times

with different random seeds.

4.2. Baseline Methods

-Oz This is the Clang compiler’s default optimization for

program size reduction, and the passes sequence of -Oz is

always the same for all programs. The number of passes

applied by -Oz is 97, which are all exposed through Com-

pilerGym as actions. -Oz also runs additional analyses that

are not included in CompilerGym. Our approach is limited

to 45 passes, using fewer passes then -Oz.

Oracle We consider a brute-force search over the coreset

in order to find the best pass sequence for a given program.

This gives us an upper-bound of the downstream policy

network. In our case the coreset has 50 sequences and a

sequence has an average number of 12.5 passes, resulting in

a total of 625 passes in the coreset. The brute-force search

is to roll out each sequence in the coreset and use the result

from the best one.

Top-45 We also consider how well we would do if the oracle

is only allowed to use the first few pass sequences in the

coreset but limited to 45 passes. By the construction of the

coreset, the first few sequences are the ones that are most

popular. Any passes after the first 45 passes are truncated.

RL-PPO We reproduce the Autophase (Haj-Ali et al.,

2020b) pipeline by using the state-of-the-art RL algorithm

PPO (Schulman et al., 2017) to learn a policy model. We

have two program representations for training the RL mod-

els, including the Autophase feature and the ProGraML

graphs (note that Haj-Ali et al. (2020b) only used the

Autophase feature). The Autophase/ProGraML feature

is sent to a GNN/MLP for feature encoding, which out-

puts a program-level embedding. Following Haj-Ali et al.

(2020b), we add an additional action history feature to the

RL pipeline, which is a histogram of previously applied

passes. The vector of the histogram of action history is

divided by 45 (i.e., the number of the total passes in our

budget) for normalization. A 2-layer MLP is used to encode

the action history to obtain a feature vector, which is con-

catenated with the program embedding extracted from the

ProGraML graph or the Autophase feature. The concate-

nated feature is sent to a 2-layer MLP to output the action

probability for the policy network. The value network (i.e.,

the critic) in our PPO pipeline mimics the policy network

(i.e., the actor) in feature encoding and outputs a scalar to es-

timate the state values. The state values are the expectation

of the discounted cumulative rewards where the reward in

each step is the improvement over -O0: (I
(t)
p − Iπθ

p )/I
(t)
p ,

where I
(t)
p denotes the current IR instruction count of the

program p at time step t. This reward is reasonable since

it makes the value approximation Markovian. At inference,

an action is sampled from the output of the learned policy

network at each time step until the total number of steps

reaches 45.

Q-value-rank We consider each pass sequence in the core-

set as a generalized action and train a Q network to predict

the value of each generalized action. Recall that the value

vector rp is the highest cumulative reward observed during

the rollout of each pass sequence in the coreset on program

p. The Q-value-rank model is trained to approximate the

value vector using a mean squared loss.

BC We consider learning a standard behavior cloning model

to predict the best pass sequences from the coreset, where

the best pass sequence is defined as the following. As in the

previous paragraph, the value vector is denoted by rp. If

there is only one i such that rpi = maxj∈n r
p
j , then the clas-

sification label is i. If there are multiple such i’s (multiple

pass sequences) that achieve the largest reward maxj∈n r
p
j ,

then we order the corresponding pass sequences by length-

lexicographic ordering. The classification label is selected

to be the first one after the ordering. This ensures that our

7
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Figure 3. GEAN-Q-value-rank: ground truth of rewards and model predictions over the 50 generalized actions for three benchmarks.

definition for the best pass sequence (among the coreset) for

a program is unique and consistent. We use a standard cross

entropy loss to train the single-class classification model.

NVP This is the normalized value prediction method de-

scribed in Section 3.2.

The last three methods (i.e., Q-value-rank, BC, and NVP)

share the same inference protocol. Note that they all output

a vector a of length 50 whose entries correspond to the

pass sequences in the coreset. At inference, we roll out

the pass sequences with the highest values in a one by one

until our budget of 45 passes is reached. Since the pass

sequences have an average length of 12.5, typically 3 or

4 pass sequences are applied (anything beyond 45 passes

will be truncated). For BC and NVP, we also tried sampling

pass sequences using the model output probabilities, but

that resulted in worse performance. So, we simply selected

sequences with the maximum values/probabilities.

4.3. Main Results

In Table 3 we present the main results of our experiments

comparing our proposed method -NVP to various base-

lines. The test programs were completely held-out during

both data-driven learning phases (pass sequence search and

model training).

The results show that our model achieves strong perfor-

mance over the prior method (Autophase-RL-PPO) pro-

posed in (Haj-Ali et al., 2020b). Additionally, we can see

that both the GEAN model and the normalized value pre-

diction over the discovered coreset are needed to achieve

the best performance within 45 passes. See Figure 6 in the

Appendix for a visualization of the improvement in program

size over the 45 passes on programs from the holdout set.

The Oracle shows strong performance but requires a large

number of interactions with the compiler. But, this shows

that the pass sequence search generalizes to new unseen

programs. This is somewhat unsurprising given that the

compiler’s built-in hand-tuned pass list (-Oz) works reason-

ably well for most programs.

Method #passes ĪOz(%) ĪOz
G

Compiler (-Oz) 97 0 1.000

Autophase-PPO 45 -16.3±9.8 0.960±0.036

GCN-PPO 45 -10.3±1.0 0.998±0.003

GGC-PPO 45 -12.3±0.1 0.988±0.001

GIN-PPO 45 -15.1±5.9 0.972±0.029

GAT-PPO 45 -65.7±40.1 0.806±0.132

GEAN-PPO 45 -12.0±0.6 0.997±0.002

Autophase-Q 45 -3.9±0.2 1.006±0.002

GEAN-Q 45 0.7±1.3 1.016±0.012

Autophase-BC 45 2.9±0.1 1.045±0.000

GEAN-BC 45 2.8±0.6 1.045±0.007

Autophase-NVP 45 4.0±0.4 1.056±0.005

GCN-NVP 45 4.3±0.1 1.058±0.001

GGC-NVP 45 4.4±0.2 1.059±0.002

GIN-NVP 45 4.3±0.3 1.058±0.003

GAT-NVP 45 4.5±0.2 1.060±0.001

GEAN-NVP 45 4.5±0.1 1.059±0.000

Top-45 45 -7.5 0.992

Oracle 625 5.8 1.075

Table 3. Evaluation results on held-out test set averaged over all

datasets. All methods except Compiler and Oracle baselines use

45 compiler optimization passes. -PPO denotes RL-PPO, and -Q
denotes Q-value-rank. For each method, we run the training and

testing 3 times with the best configuration selected by validation.

The performance of Top-45 by itself is weak showing that

in order to achieve good results in a reasonable number

of passes (45) we need to leverage a general policy and

search to select the most likely candidate pass sequences to

evaluate.

4.4. Why Did the RL-PPO Baseline Fail?

We provide an empirical analysis of why the RL-PPO ap-

proaches obtain much lower performance compared to our

NVP approaches. We hypothesize two possible reasons for

8
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the failures of RL-PPO. 1) Inaccurate state-value estima-
tion results in a high variance in training. In the PPO algo-

rithm, we have a policy network (the actor) to output a prob-

ability distribution over the actions. And we have a value

network (the critic) for estimating the state values, where the

approximation is based on regressing the cumulative reward

of trajectories sampled from the current policy (Schulman

et al., 2017). The update of the policy network is based on

the state value outputted by the value network. Inaccurate

state value estimation results in a high variance in training

the policy network. Due to the stochastic nature of the value

estimation that stems from the Monte Carlo sampling in

cumulative reward regression, it is difficult to analyze how

accurately the value network approximates the ground truth

state values (which are unknown even for the programs in

the training set). We alleviate this issue by analyzing the

Q-value-rank approach (as introduced in Section 4.2),

which can be seen as a simplified version of the value ap-

proximation in PPO. The Q-value-rank approach is

simpler because the values to estimate are deterministic (i.e.,

the value vector rp is fixed for a program p). Moreover,

since we consider the 50 pass sequences in our coreset as 50

generalized actions, the Q-value-rank approach can be

seen as the value approximation in a PPO pipeline where a

trajectory consists of only a single step over the 50 general-

ized actions. In this sense, the Q-value-rank approach

is a simplified version of the regular value estimation in PPO.

Figure 3 shows that the value estimation is inaccurate for

programs in the held-out test set even for Q-value-rank
approach. Therefore, it is even more challenging to esti-

mate the state values in PPO. The inaccuracy leads to a high

variance in training the policy network. 2) The reward is
very sparse. As shown in Figure 2, the rewards are very

sparse. Therefore, the good states (i.e., the program states

with a higher chance to be optimized in code size reduction)

are rarely seen by the value/policy network during rollouts.

Then, the value network does not have a good value estima-

tion for those good states, and the policy network does not

converge to output a good policy for them. We conjecture

these two issues are the main reason for why the RL-PPO
methods obtain the worst performance as shown in Table 3.

4.5. Ablation Studies

Ablation for GEAN-NVP We perform 3 ablation exper-

iments for GEAN-NVP, where we remove graph mixup,

mask the edge embedding, and remove the type graph,

respectively. The results in Table 4 show that the test

MeanOverOz metric drops after removing any of the three

components. Specifically, the performance drops signifi-

cantly after removing the type graph, which validates its

importance.

The effect of the temperature The temperature parameter

T in Eq. 3 controls how sharp the target distribution is. The

Figure 4. The effect of temperature on GEAN-NVP. Each point is

obtained in a single run.

Method Test MeanOverOz

GEAN-NVP 4.7% (0.0%)

- graph mixup 4.4% (-0.3%)

- edge embedding 4.4% (-0.3%)

- type graph -5.3% (-10.0 %)

Table 4. Ablation on GEAN-NVP components. Each number is

obtained in a single run.

distribution tends to be sharper as the temperature decreases.

To analyze the influence of the temperature on the general-

ization of the model, We vary the temperature T in training

the GEAN-NVP model and report the results in Figure 4.

5. Conclusions
In this paper, we develop a pipeline for program size re-

duction under limited compilation passes. We find that it is

a great challenge to approximate the state values (i.e., the

maximum code size reduction) for a diverse set of programs,

so existing state-of-the-art methods such as proximal policy

optimization (PPO) fail to obtain good performances. To

tackle this problem, we propose a search algorithm that dis-

covers a good set of pass sequences (i.e., the coreset), which

generalizes well to unseen programs. Moreover, we propose

to train a GNN to approximate the normalized state values

of programs over the coreset, for which we propose a variant

of the graph attention network, termed GEAN. Our pipeline

of coreset discovery and normalized value prediction via

GEAN perform significantly better than the PPO baselines.
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A. Proofs
Lemma A.1. The objective J(S) defined in Eqn. 1

max
|S|≤K

J(S) =

N∑
i=1

max
j∈S

rij (7)

(with the additional definition J(∅) = 0), is a nonnegative and monotone submodular function.

Proof. Since rij > 0, it is clear that J(S) ≥ 0 is nonnegative.

To incorporate the special case J(∅) = 0, note that J(S) can be written as

max
|S|≤K

J(S) =

N∑
i=1

max

(
max
j∈S

rij , 0

)
. (8)

Let r̂ij = rij and r̂i,0 = 0, then in order to prove J(S) is monotone and submodular, by additivity, we only need to prove

Ji(S) := maxj∈S∪{0} r̂ij is monotone and submodular.

For any A ⊆ B, it is clear that

Ji(A) = max
j∈A∪{0}

r̂ij ≤ max
j∈B∪{0}

r̂ij = Ji(B) (9)

So Ji(S) is monotone.

To prove submodularity, for any A ⊆ B, we comare the quatity of Ji(A ∪ {j}) − Ji(A) and Ji(B ∪ {j}) − Ji(B) for

j /∈ B.

Case 1: r̂ij is a maximum over the subset B. In this case, then r̂ij is also a maximum over the subset A. Then

Ji(A ∪ {j}) = Ji(B ∪ {j}) = r̂ij , since Ji(A) ≤ Ji(B), we have:

Ji(A ∪ {j})− Ji(A) ≥ Ji(B ∪ {j})− Ji(B) (10)

Case 2: r̂ij is a maximum over A but not in B. Then Ji(A ∪ {j}) − Ji(A) ≥ 0, but Ji(B ∪ {j}) − Ji(B) = 0. So

Eqn. 10 still holds.

Case 3: r̂ij is neither a maximum in A or in B. Then both Ji(A ∪ {j})− Ji(A) = 0 and Ji(B ∪ {j})− Ji(B) = 0. So

Eqn. 10 still holds.

By definition of submodularity (Eqn. 10), we know Ji(S) is submodular and so does J(S).

B. GEAN Encoding
Our Graph Edge Attention Network (GEAN) has the following key features.

Attention with edge features We modify the attention mechanism in GAT to output an edge embedding and two node

features for neighborhood aggregation. For clarity, we show a table containing the notations used in the GNN in Table 5. The

feature update process can be mathematically defined by the following equations, where Mi, i = 1, . . . , 5 is an encoding

fully connected layer.

X
′(t+1)
ij = M1(X

(t)
i , E

(t)
i→j , X

(t)
j ), (11)

a
′(t+1)
ij = M2(X

(t)
i , E

(t)
i→j , X

(t)
j ), (12)

X
(t+1)
ji = M3(X

(t)
i , E

(t)
i→j , X

(t)
j ), (13)

a
(t+1)
ji = M4(X

(t)
i , E

(t)
i→j , X

(t)
j ), (14)

E
(t+1)
i→j = M5(X

(t)
i , E

(t)
i→j , X

(t)
j ), (15)
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Figure 5. Graph attention. Circles denote nodes and solid arrows denote edges. Squares are the calculated features, and dash arrows

represent feature aggregation. The orange/green squares denote the features to be aggregated in the target/source nodes of the edges. The

edge embedding and the attention are not shown.

Notation Meaning

E The set of edges in the graph

(i, j) Edge from node i pointing to node j

X
(t)
i Representation of node i at layer t

E
(t)
i→j Representation of the edge (i, j) at layer t

X
(t)
ij Representation for node i associated with edge (i, j)

X
′(t)
ij Representation for node i associated with edge (j, i)

a
(t)
ij Raw attention associated with representation X

(t)
ij

a
′(t)
ij Raw attention associated with representation X

′(t)
ij

α
(t)
ij Normalized attention associated with a

(t)
ij

α
′(t)
ij Normalized attention associated with a

′(t)
ij

Ti Target neighbors of node i: {j|(i, j) ∈ E}
Si Source neighbors of node i: {j|(j, i) ∈ E}

Table 5. The notations in GEAN.

In words, the node-edge-node triplet, (X
(t)
i , E

(t)
i→j , X

(t)
j ), associated with edge (i, j), is encoded by fully connected layers

to output 5 features, including X
′(t+1)
ij and a

′(t+1)
ij (a representation and attention to be aggregated in node i), and X

(t+1)
ji

and a
(t+1)
ji (a representation and attention to be aggregated in node j), and the updated edge representation E

(t+1)
i→j . Note

that the features to be aggregated to a target node are marked with the ′, and those to a source node are without the ′ (see

Figure 5). After the feature encoding, we perform an attention-weighted neighborhood aggregation for each node, which

can be mathematically described by the following equations.[[
α
(t+1)
ij

]
j∈Ti

∥∥∥∥[α′(t+1)
ij

]
j∈Si

]
= Softmax

[[
a
(t+1)
ij

]
j∈Ti

∥∥∥∥[a′(t+1)
ij

]
j∈Si

]
(16)

X
(t+1)
i =

∑
j∈Ti

α
(t+1)
ij X

(t+1)
ij +

∑
j∈Si

α
′(t+1)
ij X

′(t+1)
ij (17)

where ‖ denotes concatenation.
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In comparison, GAT only outputs an attention score by encoding the node-edge-node triplet: a
(t+1)
ij = (X

(t)
i , E

(t)
i→j , X

(t)
j ),

and the feature for neighborhood aggregation is only conditioned on the neighbors: X
(t+1)
ij = MLP(X

(t)
j ). To summarize,

our encoding approach can ensure that the GNN model is aware of the direction of the edge and that the edge embedding is

updated in each layer, which helps improve the performance (as shown in Table 3).

C. Detailed Results
We report the detailed performance of some of the models in Table 6. The results are obtained from a single run with the

best model configuration.

Dataset Oracle Top-45 Autophase-RL-PPO Autophase-NVP GEAN-RL-PPO GEAN-NVP

anghabench-v1 0.7%/1.011 -1.0%/0.996 -15.9%/0.974 -0.2%/1.002 -0.8%/0.996 -0.0%/1.003

blas-v0 2.6%/1.028 -0.4%/0.997 -1.7%/0.984 2.1%/1.023 -1.0%/0.990 2.4%/1.026

cbench-v1 3.5%/1.041 -2.4%/0.984 -10.1%/0.925 -0.1%/1.008 -1.6%/0.998 2.2%/1.028

chstone-v0 9.3%/1.106 1.2%/1.016 1.3%/1.018 8.3%/1.095 5.4%/1.060 8.8%/1.101

clgen-v0 5.4%/1.060 3.1%/1.034 -0.5%/0.998 4.6%/1.051 0.3%/1.005 5.0%/1.056

csmith-v0 21.2%/1.320 -96.3%/0.851 -116.0%/0.954 21.1%/1.320 -124.6%/0.965 21.1%/1.320

github-v0 1.0%/1.011 0.2%/1.002 0.1%/1.001 0.9%/1.010 -0.2%/0.999 0.9%/1.010

linux-v0 0.6%/1.007 -0.4%/0.998 -0.5%/0.997 0.6%/1.006 -2.3%/0.989 0.6%/1.007

llvm-stress-v0 6.3%/1.087 -18.9%/0.885 -67.0%/0.731 0.7%/1.035 -17.5%/0.888 2.1%/1.045

mibench-v1 1.7%/1.020 0.0%/1.003 -2.8%/0.976 -5.8%/0.963 -0.3%/1.000 -0.1%/1.003

npb-v0 9.8%/1.159 5.7%/1.085 0.9%/1.035 5.1%/1.079 3.7%/1.068 5.5%/1.085

opencv-v0 5.2%/1.061 1.0%/1.013 0.5%/1.007 4.2%/1.051 0.3%/1.004 4.8%/1.057

poj104-v1 7.8%/1.105 3.9%/1.055 -17.5%/0.876 6.1%/1.080 -0.7%/1.008 6.3%/1.082

tensorflow-v0 6.1%/1.077 -0.2%/0.998 0.2%/1.004 5.9%/1.075 -0.2%/0.998 5.9%/1.075

Average 5.8%/1.075 -7.5%/0.992 -16.3%/0.960 3.8%/1.054 -10.0%/0.997 4.7%/1.062

Table 6. Detailed evaluation results on held-out test sets.
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D. Trajectory comparison

Figure 6. Program optimization example over many steps comparing the Autophase-RL-PPO (blue) approach with our GEAN-NVP
(orange) approach. The dashed line represents the compiler default -Oz performance and higher is better. The results are obtained from a

single run with the best model configuration.
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E. Compiler passes

Index Flag Index Flag Index Flag

0 -add-discriminators 42 -globalsplit 84 -lower-expect

1 -adce 43 -guard-widening 85 -lower-guard-intrinsic

2 -aggressive-instcombine 44 -hotcoldsplit 86 -lowerinvoke

3 -alignment-from-assumptions 45 -ipconstprop 87 -lower-matrix-intrinsics

4 -always-inline 46 -ipsccp 88 -lowerswitch

5 -argpromotion 47 -indvars 89 -lower-widenable-condition

6 -attributor 48 -irce 90 -memcpyopt

7 -barrier 49 -infer-address-spaces 91 -mergefunc

8 -bdce 50 -inferattrs 92 -mergeicmps

9 -break-crit-edges 51 -inject-tli-mappings 93 -mldst-motion

10 -simplifycfg 52 -instsimplify 94 -sancov

11 -callsite-splitting 53 -instcombine 95 -name-anon-globals

12 -called-value-propagation 54 -instnamer 96 -nary-reassociate

13 -canonicalize-aliases 55 -jump-threading 97 -newgvn

14 -consthoist 56 -lcssa 98 -pgo-memop-opt

15 -constmerge 57 -licm 99 -partial-inliner

16 -constprop 58 -libcalls-shrinkwrap 100 -partially-inline-libcalls

17 -coro-cleanup 59 -load-store-vectorizer 101 -post-inline-ee-instrument

18 -coro-early 60 -loop-data-prefetch 102 -functionattrs

19 -coro-elide 61 -loop-deletion 103 -mem2reg

20 -coro-split 62 -loop-distribute 104 -prune-eh

21 -correlated-propagation 63 -loop-fusion 105 -reassociate

22 -cross-dso-cfi 64 -loop-guard-widening 106 -redundant-dbg-inst-elim

23 -deadargelim 65 -loop-idiom 107 -rpo-functionattrs

24 -dce 66 -loop-instsimplify 108 -rewrite-statepoints-for-gc

25 -die 67 -loop-interchange 109 -sccp

26 -dse 68 -loop-load-elim 110 -slp-vectorizer

27 -reg2mem 69 -loop-predication 111 -sroa

28 -div-rem-pairs 70 -loop-reroll 112 -scalarizer

29 -early-cse-memssa 71 -loop-rotate 113 -separate-const-offset-from-gep

30 -early-cse 72 -loop-simplifycfg 114 -simple-loop-unswitch

31 -elim-avail-extern 73 -loop-simplify 115 -sink

32 -ee-instrument 74 -loop-sink 116 -speculative-execution

33 -flattencfg 75 -loop-reduce 117 -slsr

34 -float2int 76 -loop-unroll-and-jam 118 -strip-dead-prototypes

35 -forceattrs 77 -loop-unroll 119 -strip-debug-declare

36 -inline 78 -loop-unswitch 120 -strip-nondebug

37 -insert-gcov-profiling 79 -loop-vectorize 121 -strip

38 -gvn-hoist 80 -loop-versioning-licm 122 -tailcallelim

39 -gvn 81 -loop-versioning 123 -mergereturn

40 -globaldce 82 -loweratomic

41 -globalopt 83 -lower-constant-intrinsics

Table 7. A list of LLVM compiler pass indices and their corresponding command line flag, which can be obtained from the CompilerGym

LLVM environment.

F. Pass sequences in the coreset
We show the 50 pass sequences in the coreset below, where the index corresponds to Table 7. The order of the sequences

here is the same as the order in which they were added to the coreset.
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(48, 112, 46, 110, 97, 53, 10)
(10, 53, 122, 31, 36, 111, 10, 97)
(39, 31, 53, 36, 47, 30, 33, 9, 10)
(41, 47, 104, 46)
(99, 111, 97, 40, 31, 47, 10, 36, 53)
(29, 72, 55, 103, 36, 122, 59, 30, 65, 53, 10)
(53, 36, 103, 47, 55, 9, 29, 10)
(111, 39, 10, 69, 90, 9, 29, 69, 10, 53)
(104, 39, 41, 97, 53, 10, 26, 78, 55)
(27, 36, 103, 24, 53, 97, 53, 38, 69, 97, 57, 10, 29)
(36, 38, 24, 64, 39, 53, 55, 9, 10, 118, 30)
(47, 53, 111, 57, 120, 10, 38, 21, 39)
(39, 38, 103, 117, 116, 97, 122, 10, 41, 59)
(72, 71, 31, 36, 97, 103, 78, 47, 97, 53, 41, 120, 10, 52, 97)
(31, 63, 29, 39, 93, 41, 74, 103, 120, 10, 55, 114, 55, 68, 57, 53, 95, 78, 97, 10)
(97, 65, 10, 111, 25, 74, 97, 53, 102, 120, 73, 55, 10, 53, 26)
(29, 55, 39, 61, 27, 41, 36, 25, 103, 10)
(27, 39, 64, 55, 53, 38, 122, 31, 111, 64, 10, 39, 21, 105, 36)
(53, 97, 97, 21, 65, 105, 54, 120, 10, 122, 30, 28, 39, 53)
(50, 21, 120, 97, 39, 67, 10, 29, 47, 53, 79, 36, 97, 10)
(65, 9, 55, 27, 105, 57, 103, 38, 120, 8, 29, 53, 116, 55, 39, 10, 63, 97)
(57, 9, 26, 102, 39, 8, 111, 55, 10, 104, 1)
(111, 57, 55, 120, 54, 36, 53, 122, 105, 95, 76, 47, 39, 97, 10)
(29, 103, 102, 30, 36, 61, 29, 41, 71, 10, 61, 41, 52)
(102, 10, 111, 30, 36, 121, 54, 55, 46, 50, 65, 75, 57, 9, 10, 104, 97, 53)
(56, 38, 27, 29, 50, 80, 83, 97, 55, 111, 96, 10)
(10, 64, 31, 10, 52, 111, 116, 36, 40, 48, 54, 30, 53, 114, 29, 120, 10)
(91, 115, 46, 2)
(47, 53, 36, 117, 9, 55, 74, 111, 116, 120, 9, 77, 29, 97, 10)
(27, 104, 55, 57, 26, 103, 10, 29, 31, 36, 120, 102, 53)
(102, 103, 31, 117, 59, 8, 36, 39, 75, 53, 76, 97, 70, 41, 122, 55)
(102, 53, 97, 10, 57, 71, 41, 111, 39, 71, 45, 118, 23, 53)
(30, 48, 29, 120, 103, 96, 47, 29, 78, 21, 122, 41, 36, 10)
(21, 121, 97, 38, 31, 52, 70, 53, 71, 97, 56, 111, 40, 39, 65, 10, 53)
(103, 57, 39, 53, 79, 47, 54, 97, 50, 116, 56, 53, 36, 10)
(71, 29, 111, 102, 53, 120, 38, 47, 21, 10, 120, 39, 23, 71, 40, 52)
(38, 10, 71, 39, 54, 102, 57, 103, 53, 46, 54, 116, 29, 10, 114, 41, 66)
(59, 30, 120, 79, 38, 53, 115, 10)
(99, 41, 31, 122, 36, 120, 29, 21, 111, 117, 48, 30, 10, 53)
(105, 9, 27, 55, 46, 53, 103, 76, 46, 71, 39, 41, 39, 10, 109, 30)
(59, 9, 10, 121, 114, 110, 120, 97, 10, 1, 21, 47, 53, 10, 96, 97)
(39, 99, 66, 111, 23, 25, 45, 10, 53, 75, 102, 74, 40, 105, 52, 71, 30)
(38, 47, 50, 24, 57, 30, 41, 72, 53, 56, 122, 97, 70, 15, 10, 26, 29, 53)
(53, 111, 120, 64, 36, 15, 122, 96, 121, 39, 10)
(46, 23, 120, 91)
(103, 66, 117, 47, 54, 30, 120, 36, 65, 53, 29, 96, 61, 10)
(53, 115, 86, 122, 67, 54, 30, 61, 46, 36, 10, 53)
(45, 48, 23, 91, 41, 54, 2)
(53, 91, 67, 86, 52, 61, 41, 29, 54, 10)
(123, 54, 75, 59, 10, 53, 97, 86, 80, 115, 41, 50, 10)
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