
20

Type Information Utilized Event Detection via

Multi-Channel GNNs in Electrical Power Systems

QIAN LI and JIANXIN LI, School of Computer Science and Engineering, Beihang University, China

LIHONG WANG, National Computer Network Emergency Response Technical Team/Coordination

Center of China, China

CHENG JI, School of Computer Science and Engineering, Beihang University, China

YIMING HEI, School of Cyber Science and Technology, Beihang University, China

JIAWEI SHENG, Institute of Information Engineering, Chinese Academy of Sciences, China

QINGYUN SUN, School of Computer Science and Engineering, Beihang University, China

SHAN XUE, School of Computing, Macquarie University, Australia

PENGTAO XIE, Department of Electrical and Computer Engineering, UC San Diego, United States

Event detection in power systems aims to identify triggers and event types, which helps relevant personnel re-

spond to emergencies promptly and facilitates the optimization of power supply strategies. However, the lim-

ited length of short electrical record texts causes severe information sparsity, and numerous domain-specific

terminologies of power systems makes it difficult to transfer knowledge from language models pre-trained

on general-domain texts. Traditional event detection approaches primarily focus on the general domain and

ignore these two problems in the power system domain. To address the above issues, we propose a Multi-

Channel graph neural network utilizing Type information for Event Detection in power systems,

namedMC-TED, leveraging a semantic channel and a topological channel to enrich information interaction

from short texts. Concretely, the semantic channel refines textual representations with semantic similarity,

building the semantic information interaction among potential event-related words. The topological channel

generates a relation-type-aware graph modeling word dependencies, and a word-type-aware graph integrat-

ing part-of-speech tags. To further reduce errors worsened by professional terminologies in type analysis, a

type learning mechanism is designed for updating the representations of both the word type and relation

type in the topological channel. In this way, the information sparsity and professional term occurrence prob-

lems can be alleviated by enabling interaction between topological and semantic information. Furthermore,
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to address the lack of labeled data in power systems, we built a Chinese event detection dataset based on

electrical Power Event texts, named PoE. In experiments, our model achieves compelling results not only on

the PoE dataset, but on general-domain event detection datasets including ACE 2005 and MAVEN.
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Additional Key Words and Phrases: Event detection, power systems, multi-channel, topological channel, se-

mantic channel
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1 INTRODUCTION

Electrical power systems [1, 10] provide the whole electricity supply across the country to ensure
the basic needs of people’s livelihood. The application of automatedmonitoring and analysis on the
device-related event reports in the electrical power systems can improve management efficiency,
save labor cost, and maintain power supplement stability [17, 47]. One critical step for this is
Event Detection (ED) [12, 32, 35] and specifically, the electrical event detection. The electrical
event detection task refers to identifying triggers from power records and correctly classifying the
device-related events. Through precisely detecting electrical events, we can swiftly obtain essential
information, e.g., latent device risks, and help execute subsequent analysis. Thus, we focus on the
event detection task in the electrical power systems.
There are two main problems for electrical event detection: short texts and professional termi-

nology. Due to the advantage of short texts being easy to read and spread, device events are often
described in short sentences for efficient communication in the electrical power systems. How-
ever, the descriptions of short texts are inadequate, sparse, and irregular, which imposes higher
requirements on feature learning. Furthermore, electricity texts contain many terminologies, such
as “high voltage” and “laying path” (shown in Figure 1), which are rarely mentioned in general-
domain texts.
Event detection methods based on graph representation learning learn semantic structural in-

formation in text by composing graphs. Graph representation learning aims to map nodes, edges,
and even the entire graph to a low-dimensional space. It maintains the structure and properties
of the graph itself, which in turn serves the downstream graph data mining task. Homogeneous
graphs can only characterize data with simple structure and semantic homogeneity, while textual
composition graphs will contain multiple types of nodes and relations with rich semantic infor-
mation. Heterogeneous graphs can fully portray such responsible nonlinear relationships with
stronger representational and inference capabilities. Each type of node in a heterogeneous graph
contains a variety of rich semantic information and complex interactions between nodes. Each
type of semantic information also reflects only one aspect of the node’s characteristics. In order
to learn a more comprehensive node representation, the model needs to fuse multiple aspects of
information to enhance the node representation.
Existing methods for power system event detection fail to address the above two problems. In

recent years, researchers have proposed many methods for event detection and achieved promis-
ing results [2, 33, 63]. However, most of these methods focus on dealing with the long-tail distri-
bution [57] of data and few-shot data [4, 63], ignoring the above-mentioned problems in power
systems. Existing methods can be categorized into two main paradigms: BERT-based methods [55]
and graph-based methods [5, 36, 60]. (1) BERT-based models performwell in general domain event
detection due to the large amount of data available for pre-training. However, in the domain of
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Fig. 1. An example in our dataset. Word type means Part-of-Speech, and relation type means dependencies
between words with relation. The triggers are “uses” and “detect”.

power systems, some combinations of common words can have different meanings. For example,
“laying path” means “put something on a path” in generation domain, but it means “laying a route
of cable” in a power system. The distinction between general and electrical domains causes severe
semantic confusion. This problem can be potentially resolved by pre-training models on labeled
data in the power field, which takes time and experience. (2) Graph-based models integrate vari-
ous methods to design a graph with texts [5, 36, 38]. As shown in Figure 1, we give an example of
words, and relation is obtained by the Stanford CoreNLP tool.1 It can bring a variety of interactive
information among words. Nevertheless, graphs constructed from short electricity texts contain
few nodes and relations, which hinders the effectiveness of graph representation learning.
To solve these problems, we propose a Multi-Channel GNN Utilizing Type Information for

Event Detection (MC-TED). It contains a semantic channel and a topological channel to fuse mul-
tiple sources of information to learn better node representations. The semantic channel reflects the
similarity of words through adding relation with lower cosine distance. The topological channel
constructs a relation-type-aware graph and a word-type-aware graph to learn more comprehen-
sive node representations. They consider the word type and relation type to portray nonlinear
relationships with stronger representative and inference capabilities fully. Each type of word and
relation contains a variety of rich semantic information and complex interaction between nodes.
Furthermore, we use the Stanford CoreNLP tool to initialize the word and relation type, which
is updated in training to mitigate the errors caused by Stanford CoreNLP. To address the lack of
labeled data in the domain of the power systems, we build a Power Event detection dataset (PoE).
Experimental results show that our approach can achieve excellent performance on both the PoE
dataset and public event detection datasets, including the ACE 2005 [7] and MAVEN [57] datasets.
We also demonstrate that our word type and relation type learning strategies are particularly ben-
eficial for the word-type-aware graph and relation-type-aware graph.
This paper makes the following contributions.

• We design a novelmulti-channel event detection model (MC-TED2) utilizing word and
relation type information for the power systems from semantic and topological channels
with type utilized multi-channel GNNs to capture richer information.

• Topological channel designs a relation-type-aware graph to utilize the relation type and a
node-type-aware graph considering the node type. The two types can be learnable to miti-
gate the errors caused by the CoreNLP syntactic analysis tools.

• We construct a Chinese event detection dataset – PoE, in the domain of power systems,
derived from power system records. Our model achieves state-of-the-art performance on
the PoE as well as on the general-domain datasets including the ACE 2005 and MAVEN.

1http://corenlp.run/.
2The source code is available at https://anonymous.4open.science/r/MC-TED-3C77.
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2 RELATEDWORK

The electrical power systems contain numerous event text, but engineers only focus on the core
events regularly. It requires models to capture certain types of events, which is a schema-based
event detection task [5, 28, 36, 44, 60]. Thus, event detection in power systems is to find triggers
from the text and identify the event type corresponding to the triggers.

2.1 Event Detection in Power Systems

Large-scale new energy is integrated into the power grid system, which introduces strong uncer-
tainty to the power system [18]. It brings significant challenges to detect events in the modern
power systems. Traditional methods convert it to a constrained optimization problem [51], or non-
convex optimization learning algorithms [65], and the like. To detect the abnormal events in the
power systems using reduced phasor measurement units data, Liu et al. [34] propose the unequal-
interval reduction method with local outlier factor. Zhou et al. [65] propose a hidden structure
semi-supervised machine for the event detection task. It incorporates information from labeled
data and unlabeled data for the power distribution network. HS3M [65] combines unlabeled data
and partly labeled data in a large margin learning objective, which is a classical method for event
detection in the power systems. It incorporates partial knowledge for event detection. SS-LOF [34]
is an event detection algorithm in the power systems using reduced data and local outlier factor
for detecting the events in power systems. It is employed to determine the region of the event
source. There are some graph-based methods for spatio-temporal solar irradiance forecasting [21],
and short-term wind speed prediction [22], and so on. To our best knowledge, there are few graph
representation learning methods for the event detection task [20, 40].

2.2 Graph-Based Event Detection

In recent years, there are two main branches: BERT based models [15, 29, 55] and graph based
models [25, 26, 41, 42, 46]. The BERT-based methods learn a better context representation through
self-attention mechanisms, and large-scale pre-train [6]. However, for the text with professional
terms and short text, there are no apparent advantages. The graph based methods commit to con-
structing syntactic dependency graph [5, 39, 60], and building event correlations [9, 59], and so
on. There have been previous approaches to incorporate syntactic information into the Graph

Convolutional Network (GCN) [60], often ignoring dependency tag information to convey rich
and valuable language knowledge to ED. Nguyen et al. [39] propose a GCN-based event detection
model over syntactic dependency trees and entity mention-guided pooling. It operates a pooling
over the graph-based convolution vectors of the current word and the entity mentioned in the
sentences. MOGANED [60] uses a dependency tree-based GCN with aggregative attention to ex-
plicitly model and aggregate multi-order syntactic representations in sentences. It models multi-
order representations via graph attention network (GAT). It utilizes both first-order syntactic
graphs and high-order syntactic graphs to explicitly model multi-order representations of candi-
date triggers. These methods for ED fail to exploit the overall contextual importance of the words,
which can be obtained via the dependency tree, to boost the performance. Lai et al. [27] propose
a novel gating mechanism to filter noisy information in the hidden vectors of the GCN models
for ED based on the information from the candidate triggers. They also introduce a mechanism
to achieve the contextual diversity for the gates and the importance of score consistency for the
graphs and models in ED. They demonstrate how gating mechanisms, gate diversity, and graph
structure can integrate syntactic information and improve the hidden vectors for ED models. Gat-
edGCN [26] is a gating mechanism to filter noisy information in the hidden vectors of the GCN
models for ED. Lai et al. [25] present how transferring open-domain knowledge from word sense
disambiguation and regulating representation based on pruned dependency graphs can improve
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few-shot learning on large-scale datasets. They propose a training signal derived from dependency
graphs to regularize the representation learning.
There have been previous approaches to incorporate syntactic information into the GCN, of-

ten ignoring dependency tag information to convey rich and valuable language knowledge to ED.
Cui et al. [5] propose an edge-enhanced graph convolutional network, which uses both syntactic
structures and dependent label information to perform ED. For the event correlations-based graph
for event detection task, Xie et al. [59] formulate event detection task as a graph parsing problem,
to overcome the inherent issues with existing trigger classification-based models. It can explicitly
model the multiple event correlations and naturally utilize the rich information conveyed by event
type and sub-type. Dutta et al. [9] propose a framework for incorporating both dependencies and
their labels using the graph transformer networks [61]. However, these methods cannot be com-
pletely applied to electrical power systems due to the characteristics of short text and professional
terms.

2.3 Topological Graph Learning

Graph neural network [2, 48, 64] can fully describe the complex nonlinear structure on the graph
and has a more vigorous representation and reasoning ability [58, 64]. Through topological graph
learning and utilizing the heterogeneity, the high-level information can be mined to overcome the
short text [13, 43]. Graph representation learning and graph neural networks have gradually be-
come the hot field of graph data mining. Traditional graph representation algorithms are mainly
shallow models, such as Metapath2vec [8] and HERec [50] based on the random walk and Skip-
Gram model. They cannot effectively capture complex nonlinear structures on the graph. Graph
neural network aims to map nodes, edges, or even the whole graph to low-dimensional vector
space and keep the structure and properties of the graph itself. It can fully describe the complex
nonlinear structure on the graph and has a more vigorous representation and reasoning ability.
The spatial embedding fusion method based on graph convolution neural network mainly real-
izes the aggregation and updating of node information in a multi-layer network. In recent years,
multi-graph [16, 19, 31, 37] and heterogeneous graph [11, 13, 14, 52, 56, 62] are effective meth-
ods to mining high-order and hidden information. Khan et al. [19] propose a multi-graph convo-
lutional network model to solve the embedding problem of the existing multivariate relational
network model. Ma et al. [37] propose a graph convolution model of multi-dimensional networks
to capture more abundant node-level information. Considering that most of the existing meth-
ods are over-parameterized and limited to learning node representation, Vashishth et al. [53] pro-
pose a Composition-based multi-relational Graph Convolutional Network (CompGCN)

in which nodes and relations are embedded into the relational graph. Huang et al. [16] propose
the framework of a multi-graph convolutional network by developing new convolution operators
on multi-graph. To solve the problem of short text classification, Hu et al. [13] convert text into a
heterogeneous graph and design a dual-level heterogeneous graph attention network for learning
text representation.
Heterogeneous graph neural networks can fully mine the complex structure and rich seman-

tics to learn node representation and improve the performance of subsequent tasks. PTE [52] de-
composes the text corpus into multiple heterogeneous text graphs and realizes the representation
learning of text graphs through the joint decomposition of multiple graphs. HAN [56] is a heteroge-
neous graph neural network integrating hierarchical attention mechanism, which learns node rep-
resentation by weighted fusion from node level and semantic level, respectively. MEIRec [11] is a
classical heterogeneous graph neural network, which can learn node representation by integrating
rich semantic information provided by multi-element paths. HGT [14] learns node representation
based on heterogeneous graph neural network by aggregating heterogeneous relation triples.
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Fig. 2. Our multi-channel event detection framework, MC-TED. It contains a topological channel and se-
mantic channel. The topological channel includes two heterogeneous graphs utilizing word dependencies
and part-of-speech tags. A relation-type-ware graph updates relation type, and a node-type-aware graph
updates node type. The semantic channel refines the textual representations with semantic similarity.

3 FRAMEWORK

Webuild amulti-channel event detectionmodel for the power systems (MC-TED), as shown
in Figure 2. The inputs of our MC-TED model are the words obtained by the CoreNLP syntactic
dependency analysis tool. All words are fed into a Bidirectional Long Short-Term Memory

(BiLSTM) [49] to get their initial representations. Then, the MC-TED model learns from the topo-
logical and semantic channels through the type utilized multi-channel GNN:

• In the topological channel, we construct a syntactic graph based on the syntactic dependency
analysis results generated by the Stanford CoreNLP tool. To consider the heterogeneity of
relations and words, we further design a relation-type-aware graph and a word-type-aware
graph, considering the relation types between words and the word types, respectively. In the
two graphs, the representations of relation types and node types are both learnable.

• In the semantic channel, we build a semantic-aware graph according to the semantic dis-
tance of the current word representations. The structure of the semantic-aware graph dy-
namically changes during the training process of the MC-TED. It reflects the similarity of
words through adding relation with lower cosine distance.

Through the topological and semantic channels, theMC-TED integrates multiple aspects of mul-
tiple sources of information (e.g., node and context) to learn better word representations through
the type utilized multi-channel GNN. The type utilized multi-channel GNN considers the word
type and relation type to portray nonlinear relationships with stronger representative and infer-
ence capabilities fully. At the final step of the MC-TED, the weighted average of the two channels
is normalized to obtain the final representation of each word. It then detects triggers and event
types in each sentence through a weighted mechanism to obtain the optimal weights.
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3.1 Word Feature Representation

We use the CoreNLP syntactic analysis tool to divide a sentence T into words [w1,w2, . . . ,wN ],
where N is the number of words inT . The word representation can be contained by the GloVe 100-
dimensional word vectors [30, 45]. For our Chinese power event detection dataset PoE, a sentence
needs to be firstly segmented throughword segmentation tools. Thewordwithmultiple characters
is initialized randomly to keep dimensions consistent. Then the word embeddings are fed into a
BiLSTM to obtain the contextual representations H0.

3.2 Type Utilized Multi-Channel GNNs

Graph neural network [58] can mine the complex structure and rich semantics of the graph to
learn node representation and improve the performance of subsequent tasks. In event detection,
by modeling multiple syntactic dependency associations between words, GNN-based models can
aggregate diverse interaction information to understand the multi-semantic expression of words.
To harness the great power of GNN, we design a multi-channel graph neural network for

event detection through semantic and topological channels. As illustrated in Figure 2, it contains:
(1) topological channel, where a relation-type-aware graph (Figure 2(a)) and a word-type-aware
graph (Figure 2(b)) are generated to achieve a more detailed and comprehensive description con-
sidering the semantics of word and relation types, and (2) semantic channel, where a semantic-
aware graph is constructed based on the semantic similarity to refine the textual representations
for the event detection.With the two channels, MC-TED integrates multiple aspects of information
to learn a more comprehensive word representation.

3.3 Topological Channel

The text contains rich syntactic (topological) information, and the representations of words change
in different contexts. To improve comprehensively word representation, we use the Stanford
CoreNLP syntactic analysis tool to construct a syntactic graph where the nodes denote the words
in a sentence and edges denote the dependencies between words, with the part-of-speech tags (e.g.,
noun and verb) as node types and the dependency classes (e.g., nominal subject and direct object)
as relation types. Formally, the syntactic graph is a form of heterogeneous graph G = (V,E) with
a word type mapping function ψw : V → A and a relation type mapping function ψr : E → R,
whereV is the set of words and E is the set of relations, A is the set of word types and R is the
set of relation types, and |A| + |R | > 2.

Insights on different type information. Different from the common heterogeneous graphs,
the syntactic graph contains two kinds of type information that cannot be substituted or deduced
from each other, the word type and the relation type. It is noticed that there are two phenomenons
in the syntactic graph: (1) some relations between twowordswith the same type belong to different

types (i.e., “A1
R1−→ A2 and A1

R2−→ A2”), and (2) relations with the same type may connect two

words whose types are different (i.e., “A1
R−→ A2 and A1

R−→ A3”). Taking the text in Figure 1 as
an example, as shown in Figure 3, the relation types between the words with type “VB” and type
“NN” are from {“nsubj”, “obj”}, and the relation with type “amod” connects two words with types
{“NN”, “JJ”} and {“NN”, “VBG”}. Therefore, only obtaining relation type information or word type
information is inadequate, as the two types cannot be substituted or deduced.
To address the above issue, we divide the syntactic graph into a relation-type-aware graph and

a word-type-aware graph to utilize different type information for the type utilized multi-channel
GNN. Specifically, (1) the relation-type-aware graph has only one word type (i.e., |A| = 1) and
multiple relation types (i.e., |R | > 1) to learn the topological information under the relation type
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Fig. 3. The heterogeneity of relations and words. For one sentence, there are both multi-relationship types
for the same node type as the left, and multi-node types for the same relation type as the right.

constraint, and (2) the word-type-aware graph has multiple word types (i.e., |A| > 1) and only
one relation type (i.e., |R | = 1) for word type learning.
Furthermore, the type information in syntactic is obtained by the CoreNLP syntactic analysis

tool, which leads to type fault in some cases, especially for the electrical power system with nu-
merous professional terminology (see an example in Section 5.7). We design a type learning mech-
anism in both the relation-type-aware graph and word-type-aware graph for the type utilized
multi-channel GNNs to lessen this error caused by short text and professional terms.
Relation-type-aware graph. To consider the heterogeneity of relations, we design a relation-

type-aware graph Gr = (Vr ,Er ) with the mapping functions ψr,v : Vr → Ar and ψr,r : Er →
Rr , where |Ar | = 1 and |Rr | > 1. The relation-type-aware graph does not introduce node type
information that means all nodes are the same type. However, the relation types of this graph are
different, which are obtained by the CoreNLP syntactic analysis tool. In this way, the relation-type-
aware graph only focus on the relation types. In order to utilize the information of relation types,
we propose to learn the corresponding relation type vectors as the edge representations:

Ei j ← Rψr ,r (ei j ), i, j ∈ [1,N ], (1)

where E ∈ RN×N×dr is the representation of the edge e , and R ∈ R |Rr |×dr is the representation of
the edge type which is a learnable tensor in the type learning mechanism (dr is the dimension of
the relation type representation between two nodes).
In the relation-type-aware graph, the representations of edges and nodes in the l-th layer are

E
l ,Hl

r = GNN(El−1,Hl−1
r ), (2)

where Hl−1
r is the word (node) representations in layer l − 1 and H

0
r is the output of BiLSTM in

word feature representation. In this paper, we adapt a two-layer GCN and the edge representation
is used as the weight of the edge during the message-passing process.
In order tomake themodel better learn the representation of nodes under different relationships,

our relation-type-aware graph updates the edge representation in each layer, making the model
focus on learning edge information. The representation of edge in the layer l is updated as

E
l
i, j =Wr

[
E
l−1
i, j | |hli | |hlj

]
, i, j ∈ [1,N ], (3)

where | | means the concatenation operator, hli and h
l
j denote the representations of the two nodes i

and node j connected by the edge ei, j in the lth layer, respectively,Wr ∈ R(2×d+dr )×dr is a learnable
transformation matrix (d is the dimension of word representation).
Word-type-aware graph. We next design a word-type-aware graph Gw = (Vw ,Ew ) with the

mapping functions ψw,v : Vw → Aw and ψw,r : Ew → Rw , where |Aw | > 1 and |Rw | = 1.
The word-type-aware graph does not introduce the relation type and considers the word types
obtained by the CoreNLP syntactic tool. The node embedding of this graph is the concatenation
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of word embedding and word type embedding. Thus, for word type learning, we propose to learn
the corresponding word type vectors with the word representation:

H
l
w ,A

l = GNN([Hl−1
w | |Al−1]), (4)

where A ∈ RN×dw is a learnable vector for the word type representation in the type learning
mechanism (dw is the dimension of the word type representation).
The nodes and edges in the node-type-aware graph are the same as the relation-type-aware

graph, but the difference is that the types of nodes in this graph are considered instead of the
types of relations between nodes. Our node-type-aware graph updates the representation for each
node by aggregating the information from its neighbors through the adjacency matrix. It helps
for learning more context information for each node. In order to make the model better learn
the representation of nodes under different node types, our node-type-aware graph channel only
updates the node type representation, making the model focus on learning node information.

3.4 Semantic Channel

Topological channel can learn word representations based on syntactic dependencies from two
dimensions: node type and relation type. In addition, we design a semantic channel to learn con-
nections based on the semantic distance between words. It metrics the similarity of semantics
among words. The semantic channel can establish relationships between words that are far apart
and grammatically independent but have similar meanings.
Semantic-aware graph.Different from the topological channel, we establish links between the

words based on the semantic similarity. We then generate edge weights based on word semantic
embeddings over the corpus. The similarity score can be calculated through cosine distance. If the
similarity score exceeds a predefined threshold ρsem, it means that the two words have a semantic
relationship in the current sentence. The edge weight of each pair of words can be obtained by

αi, j = sim(hi , hj ) =
⎧⎪⎨⎪⎩

hi ·hj
| |hi | | · | |hj | | , cos(θ ) ≥ ρsem

0, cos(θ ) < ρsem
, (5)

where αi, j denotes the edge weight between words i and j.
Note that the structure of the semantic-aware graph is dynamically changing in the training

process, because the edge weight depends on the current representations of words in each step of
the training process. Finally, given the current structure of the semantic-aware graph, a GNN is
used for learning the representations of words Hs .

3.5 Event Detection

Event detection is a fundamental task in the field of natural language processing, aiming at identi-
fying trigger words from the text and classifying the text into corresponding event types. Although
current methods and models for event detection have achieved increasingly good results, they are
mostly trained based on generic domain datasets and often encounter the problem of insufficient
annotated data when faced with event detection tasks in a specific domain. In electrical power
systems, device events are often described in short sentences for efficient communication and con-
venience for reading and spreading. Thus, it requires the model to impose higher requirements on
feature learning and fuse multiple aspects of information to enhance the node representation.
We pass the representation of the topological channel and the semantic channel through a

weighted mechanism to obtain the optimal weights of the three different graphs. The word repre-
sentations in text are formulated as follows:

Z = λ1Hr + λ2Hw + λ3Hs , (6)
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Table 1. Statistics of Datasets used in Our Work

Dataset Field Language #Events #Event Types #Sentences #Tokens #Average Sentence Length

MAVEN [57] General English 111,611 168 49,873 1,276,000 25.5
ACE 2005 [7] General English 4,090 33 15,789 303,000 19.1
PoE (Ours) Power Chinese 5,124 26 4,767 53,071 11.1

Different from other datasets, our dataset is a Chinese dataset in electrical power systems.

Table 2. Event Type and Sub-type on PoE

Number Event Type Event Sub-type

1 measurement measurement
2 statistics total, ratio
3 requirement stipulate, expect
4 operate connect, disconnect, modify, check
5 happen start, complete, cancel, analyze, implement, suffer

6 defect
damage, carve, break, burn, placement, dislocation, deformation, corrosion

mismatch, shed, variant

It contains six event types and twenty-six sub-types. The defect event type consists of eleven sub-types and the

measurement event type only has one sub-type.

where λ1, λ2, λ3 are the parameters. We feed the representation of each word into a fully-connected
network. It is followed by a softmax function to compute distribution p (t | Z) for event type t :

p (t | Z) = softmax(WtZ + bt ), (7)

whereWt maps the word representation Z to the feature score for each event type and bt is a bias
term. After softmax, the event label with the largest probability is chosen as the event classification
result. The loss function is formulated as follows:

J (θ ) = −
NT∑

i=1

Ni∑

j=1

logp (P tj | Ti ,θ ), (8)

where NT is the number of sentences, Ni is the number of words in the i-th sentence, P tj is the

event type t in the j−th word, and Ti is the i-th sentence.

4 DATASETS AND SETTINGS

4.1 Datasets

We construct a Chinese event detection dataset in electrical power systems, called PoE. The text
is device-related event reports in electrical power systems, written by a professional. Due to the
advantage of short texts being easy to read and spread, device events are often described in short
sentences for efficient communication in electrical power systems. Furthermore, the event release
in power system is usually short and contains numerous professional terms, which is convenient
for relevant personnel to respond quickly. Thus, the raw data are the short sentence-level data.
It describes daily operation of electrical equipment containing 763 event reports. There are 4,767
sentences, 5,124 events, and 53,071 tokens, containing 26 sub-categories of events, as shown in
Table 1. To verify the effect of MC-TED on open datasets, we also conduct experiments on ACE
2005 and MAVEN datasets. The average sentence length are 11.1 tokens in PoE, which is 14.4 and
8.0 less than MAVEN and ACE 2005. Furthermore, compared with ACE 2005 and MAVEN datasets,
PoE has a few None event type sentences, which is the most event type in other datasets.
Table 2 shows the event type and sub-type detail of PoE. It contains six categories of event type

and 26 categories of event sub-type. The PoE mainly describes the equipment statistics, defects,
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Table 3. Statistical Information on PoE

Dataset #Sentence Number #Event Sentence Number #Event Trigger #No Event Trigger #Candidate Trigger

Train 3,813 3,521 4,095 1,728 5,823
Valid 477 452 515 217 732
Test 477 451 514 215 729

It is divided into three parts: train, valid, and test sets. The partition rule is to make the ratio of sentence number, event

sentence number, and candidate trigger close to 8:1:1.

Table 4. Statistical Information of Co-occurrence Events on PoE Training Data

Dataset #One Type Number #Two Type Number #Three Type Number #Four Type Number #Co-occurrence Proportion

Event Type 2,675 423 282 141 0.24
Event Sub-type 2,289 634 352 246 0.35

#One Type Number means the number of sentences having only one event type or one sub-type. #Co-occurrence

Proportion means the proportion of co-occurrence sentences.

Fig. 4. Frequency and number of event type. (a) The samples are concentrated between 0 and 50. When the
sentence length exceeds 100, the samples become very sparse. (b) The sentence distribution of event type.
The largest number of event types is the happen and smallest is the measurement event type.

requirements, and maintenance events in the electric power systems. The data set focuses on nine
major equipment defects, including damage, burn, corrosion, long-term placement, dislocation,
deformation, fall off, and open circuit. The datasets are divided into training, validation, and test
sets at an 8:1:1 ratio according to the sentence number, as shown in Table 3. The proportion of
event number, event trigger, and no event trigger in the three datasets are basically the same. The
training set contains all event types to ensure that there are no invisible event types in the test set.
Table 4 shows co-occurrence events information of the event type and sub-type detail of PoE

on training data. The co-occurrence sentences means a sentence belong to different event types
or event sub-types. Our data set contains up to four co-occurrence event types. For the event type
and event sub-type, most sentences on the PoE contain only one event type and sub-type, which
is the same as the existing event detection data set. However, the PoE contains more multi-event
sentences. It has 12% sentences containing two different event types and 18% sentences containing
two different event sub-types. Thus, our data set is more suitable for studying the event type
detection problem caused by event co-occurrence.
Furthermore, we analysis the sentence length and event type distributions in Figures 4 and 5. In

Figure 4(a), the maximum and shortest sentence length are 224 and 6. The most sentences are in
[10,25], accounting for 72% of the total data set. The average sentence length is 18.88. It can be seen
that the text length is short in PoE, increasing the difficulty of event detection. In Figure 4(b), the
event “operate” is the largest number of events in the six categories, with a total of 2,049 sentences,
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Fig. 5. Sub-type event numbers. The distribution of sub-type events is uneven. The implement sub-type that
belongs to the happen event type contains more than 700 sentences and the variant sub-type coming from
the defect event type has fewer than 10 sentences.

accounting for 39.98%. The events with the least number are “measure” events (403 events in total,
accounting for 7.86%). In Figure 5, the type with the largest number of events is “implementation”
in 26 sub-categories, with a total of 743 events. The least number of events is the “deformation”
event, 11 events in total. The difference between the type with the largest number of events and
the type with the least number of events is very large, indicating that the long tail phenomenon is
obvious in the sub-categories, the same as ACE 2005 [7] and MAVEN [57].

Compared with the common ED datasets, PoE contains the following four differences:

• Power Field. Different from ACE 2005 and MAVEN, PoE is an event detection dataset from
the power systems instead of the general field. The events in PoE, including electrical equip-
ment maintenance measures and recommendations, are closely related to the business in the
electric power field.

• Short Text. The texts in PoE are collected from the electrical records, which are usually
the short sentences with non-compliant grammar. The little information brings difficulty to
semantic understanding. (In PoE, the average text length is 18.8.)

• Professional Terms. PoE is a Chinese sentence-level event detection dataset, containing
numerous professional terms in the power systems, such as “laying path”, “direct buried”, and
“penetration seal”. It brings limitations to the existing methods in the general field, since the
semantics of some terms change when they are used in the power systems.

• Colloquial expressions. The existing data sets are crawling from news, whose expression
is more formal, basically in accordance with the grammar rules. The PoE comes from equip-
ment maintenance records of electrical worker. Therefore, it contains numerous colloquial
expressions, and missing sentence elements.

4.2 Implementation Details

All models are implemented based on PyTorch, an open-source deep learning framework. The
model parameters are initialized as Gaussian distribution and updated and optimized by Adam
algorithm [23]. For re-implementation, Table 5 reports our hyper-parameter settings in MC-TED
onACE 2005,MAVEN, and PoE. The common parameters are set as follows: the learning rate is 0.15,
the regularization coefficient is 0.001, the model layer is 2, the word representation dimension is
100, the word type representation dimension is 25, and the relation type representation dimension
is 25. The batch size is 10 on ACE 2005 and PoE, and 32 on MAVEN. For our MC-TED, we adopt a
two-layer GCN [56] as the graph neural network in our framework. The random dropout ratio is
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Table 5. Hyper-parameter Settings in MC-TED

Hyper-parameters ACE 2005 MAVEN PoE

GCN initial learning rate 0.15 0.15 0.15
Train epoch 100 100 100
Model dimensions 150 150 150
Batch size 10 32 10
Model layer 2 2 2
Dropout rate 0.55 0.50 0.60
Threshold ρsem 0.10 0.12 0.15
λ1 2 2 2
λ2 1 1 1
λ3 2 2 2

Due to the differences among the three datasets, the optimal hyper-parameters are

different.

set to 0.55, 0.50, and 0.60 on ACE 2005, MAVEN, and PoE. The similarity score thresholds ρsem are
0.10, 0.12, and 0.15 on ACE 2005, MAVEN, and PoE. The early stop strategy is selected to prevent
the model from overfitting. Specifically, if the model does not decrease the loss function of the
validation set for 100 consecutive turns, the operation is stopped.

To ensure the fairness, all baseline models use the same dataset partitioning as stated in Sec-
tion 4.1. We use the same value for the common hyper-parameters, including the optimizer, learn-
ing rate, batch size, and epoch. All graph-based, LSTM-based, and CNN-based models use the
same node representation dimension, which is set to 150 dimensions to keep dimensions consis-
tent with the GNN-based models. For CNN-based methods, the filter kernel size is set to 3×3 with
two layers. For LSTM-based methods, the model layer is two. For BERT-based approaches, we use
BERT [6] as sequence encoder, which has 12 layers, 768-dimensional hidden embeddings, and 12
attention heads. All the experiments are conducted on one NVIDIA V100 32GB GPU. Note that all
the hyper-parameter settings are tuned on the validation set by the grid search with five trials.

4.3 Baselines

Many event detection models have been designed for these years, which can be divided into CNN-
based, LSTM-based, GNN-based, BERT-based, and power systems baselines according to model
structure. We compare our method with the following four types of ED baselines:

CNN-based baselines. (1) CNN is a two-layer CNN model. It uses sequence tagging to imple-
ment event detection. (2) DMCNN [3] leverages a CNN to automatically learn sequence represen-
tations with a dynamic multi-pooling mechanism.

LSTM-based baselines. (3) BiLSTM (2-layer) is a two layer BiLSTM. (4) MLBiNet (2-layer) [36]
uses a multi-layer bidirectional network to model document-level dependencies. We use CoreNLP
to obtain the entity for embedding.

GNN-based baselines. (5) GCN (2-layer) [24] is a semi-supervised graph convolutional network
without considering node type and relation type. (6) GAT (2-layer) [54] uses attention mechanism
for learning neighbor weights. (7) MOGANED [60] uses a multi-order graph attention network
to effectively model the multi-order syntactic relations in dependency trees. (8) GatedGCN [26]
designs a graph based on dependency tree and distance to the candidate trigger of each word.
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Table 6. Event Detection Results on our Electrical Power Dataset PoE and PoE-Multi

Datasets PoE (Our Dataset) PoE-Multi (only multiple event sentences)

Metric F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)

CNN 61.03 ± 1.24 59.17 ± 1.71 63.02 ± 1.10 55.23 ± 0.21 54.19 ± 1.01 58.63 ± 1.34
DMCNN [3] 62.34 ± 1.53 59.83 ± 1.57 64.27 ± 1.93 55.83 ± 1.21 57.39 ± 0.94 58.30 ± 0.74

BiLSTM 62.50 ± 1.66 56.98 ± 1.72 65.89 ± 1.56 54.83 ± 1.02 53.39 ± 0.26 57.73 ± 1.07
MLBiNet (2-layer) [36] 62.50 ± 1.66 56.98 ± 1.72 65.89 ± 1.56 60.78 ± 1.12 54.89 ± 1.20 61.83 ± 1.04

GCN [24] 60.36 ± 1.13 61.14 ± 1.09 59.60 ± 1.54 57.48 ± 1.30 57.89 ± 1.98 54.38 ± 1.48
GAT [54] 58.88 ± 1.47 57.43 ± 1.93 60.42 ± 1.27 54.89 ± 2.73 56.84 ± 2.83 57.38 ± 1.03
MOGANED [60] 61.95 ± 1.78 58.94 ± 1.73 64.84 ± 1.34 58.87 ± 0.84 56.48 ± 0.92 59.89 ± 1.26
GatedGCN [26] 61.83 ± 1.92 60.73 ± 1.34 65.89 ± 1.92 59.34 ± 1.43 58.72 ± 2.04 60.73 ± 1.44
EE-GCN [5] 62.46 ± 1.17 57.41 ± 1.42 67.80 ± 1.21 60.02 ± 2.32 56.37 ± 1.93 60.78 ± 2.34

BERT+CRF 63.48 ± 1.05 61.13 ± 1.52 67.48 ± 1.81 60.37 ± 0.83 61.08 ± 0.89 63.92 ± 0.38
BERT+BiLSTM 63.23 ± 1.87 61.83 ± 1.30 66.83 ± 1.93 61.73 ± 2.84 60.47 ± 1.93 63.78 ± 0.47
BERT+CNN 63.21 ± 1.92 61.83 ± 0.37 66.98 ± 1.32 61.87 ± 1.37 60.29 ± 1.93 63.37 ± 2.29
DMBERT [55] 63.56 ± 1.72 62.21 ± 1.78 67.70 ± 1.33 61.28 ± 0.73 59.48 ± 1.34 64.28 ± 1.27

HS3M [65] 60.23 ± 1.21 57.95 ± 1.25 64.93 ± 1.75 56.32 ± 1.02 56.76 ± 1.52 56.69 ± 1.59
SS-LOF [34] 62.53 ± 1.17 59.65 ± 1.83 62.90 ± 1.76 58.25 ± 0.70 58.19 ± 1.54 55.29 ± 1.65

MC-TED (Ours) 65.58 ± 1.24 63.71 ± 1.29 69.93 ± 1.61 62.82 ± 1.23 61.03 ± 1.72 65.38 ± 1.29

The PoE-Multi means the sentences set that contain multiple events in a sentence. Our approach performs best, even

when only considering multiple event sentences, which shows MC-TED is the best choice in PoE.

It considers the important scores to build the graph. (9) EE-GCN [5] is an edge-enhanced graph
convolutional network using the syntactic structure, which uses the syntactic structure and the
typed dependent label information.

BERT-based baselines. (10) BERT+CRF is a vanilla BERT model. It uses a multi-classification
approach to implement event detection. (12) BERT+BiLSTM uses a BERT based model and a two
layer BiLSTM after the BERT. (13) BERT+CNN adapts a BERT model and a two layer CNN model
after the BERT. (14) DMBERT [55] takes advantage of BERT and adopts the dynamic multi-pooling
mechanism to aggregate features.

Power systems baselines. (15) HS3M [65] combines unlabeled data and partly labeled data in a
large margin learning objective, which is a classical method for event detection in the power sys-
tems. It incorporates partial knowledge for event detection. (16) SS-LOF [34] is an event detection
algorithm in the power systems using reduced data and local outlier factor for detecting the events
in power systems. It is employed to determine the region of the event source.

5 EXPERIMENTS AND RESULTS

5.1 Experimental Results

In order to verify the effectiveness of MC-TED, the latest CNN-based, LSTM-based, graph-based,
and BERT-based event detection models are selected as the baseline models. We perform event
detection on PoE, MAVEN, and ACE 2005 datasets and report the average results with the standard
deviation across the 10-folds cross-validation in Tables 6 and 7. Part of the results are from the
original papers [3, 5, 36, 55, 57, 60].

MC-TED consistently outperforms all comparison algorithms on the electrical power datasets

(PoE), as well as only having multiple event sentences on the PoE in Table 6. Compared with CNN-
based models (CNN and DMCNN), MC-TED achieves 4.55% and 3.24% improvements in terms of
the F1-score on PoE, and promotes at least 6% points on only multiple event sentences, respec-
tively. It should be contributed to semantic dependencies modeling and syntactic topology pre-
serving ability of the proposed model. Compared with BERT+CRF, BERT+BiLSTM, BERT+CNN,
and DMBERT, MC-TED improves the F1-score by at least 2% on PoE and 1% on only multiple
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Table 7. Event Detection Results on General Datasets MAVEN and ACE 2005

Datasets MAVEN ACE 2005

Metric F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)

DMCNN [3] 60.60 ± 0.20 66.30 ± 0.89 55.90 ± 0.50 68.00 ± 1.95 73.70 ± 2.42 63.30 ± 3.30
MLBiNet (2-layer) [36] 63.69 ± 1.29 62.52 ± 1.61 66.91 ± 2.75 74.60 ± 1.82 72.62 ± 1.35 76.74 ± 1.83
MOGANED [60] 63.80 ± 0.18 63.40 ± 0.88 64.10 ± 0.90 72.10 ± 0.39 70.40 ± 1.38 73.90 ± 2.24
GatedGCN [26] 65.82 ± 1.37 63.72 ± 1.73 67.78 ± 1.83 73.40 ± 1.89 76.70 ± 1.48 70.50 ± 1.72
EE-GCN [5] 66.92 ± 1.53 64.29 ± 1.67 69.82 ± 1.38 74.84 ± 1.87 75.84 ± 1.92 72.93 ± 1.62
BERT+CRF 67.80 ± 0.15 65.00 ± 0.84 70.90 ± 0.94 74.10 ± 1.56 71.30 ± 1.77 77.10 ± 1.99
DMBERT [55] 67.10 ± 0.41 62.70 ± 1.01 72.30 ± 1.03 74.30 ± 0.81 70.20 ± 1.71 78.90 ± 1.64

MC-TED (Ours) 68.47 ± 1.04 66.55 ± 1.43 70.09 ± 1.78 75.26 ± 1.53 74.62 ± 1.73 73.38 ± 1.82

Our model achieves the best performance on F1, which demonstrates the universality of our method.

event sentences through modeling multi-channel graphs catching more semantic information in
a complex context. MC-TED models the heterogeneity of the graph compared with other graph-
based models. It fully considers the semantic information of multiple node types and relations and
performs weighted fusion, achieving better results.
Table 7 shows the overall results of each approach per evaluation dataset using uniform param-

eter settings in Section 4.2. MC-TED achieves a significant improvement in most cases on MAVEN
and ACE 2005. Compared with DMCNN andMLBiNet, our model consistently outperforms in both
ACE 2005 andMAVENon F1, precision, and recall. Thus, ourmethod performed significantly better
than the CNN-based and LSTM-based methods, which learns word representation from topolog-
ical and semantic perspectives. Compared with BERT+CRF and DMBERT, MC-TED has the best
performance and uses significantly fewer word representation dimensions through building graph
for each sentence. Compared with MOGANED [60], GatedGCN [26], and EE-GCN [5], three recent
graph neural network models, our model respectively achieves 4.67%, 2.65%, and 1.55% improve-
ments on the F1-score on MAVEN, and improves at least 0.42% points on ACE 2005. It shows that
our method is significantly superior to the graph-based methods due to utilizing node and edge
types information.
Specifically, compared with EE-GCN, it achieves 3.12%, 1.55%, and 0.42% improvements of F1-

score on PoE, MAVEN, and ACE 2005. It demonstrates that MC-TED fully accounts for the rich se-
mantics reflected by multiple node types and relations. Therefore, the node representation is more
comprehensive and differentiated. GCN, GAT, EE-GCN, MOGANED, MLBiNet, GatedGCN, and
MC-TED consider the importance of neighbors in learning node representations, and the perfor-
mance of our model is more competitive due to its ability to capture multiple semantic information
on multi-channel heterogeneous graphs.
It should be noted that the improvement of MC-TED is more significant on the PoE dataset. It im-

proves at least 1.5 points on the three evaluation metrics. The major reason is that PoE is a Chinese
power field dataset, which increases the difficulty of syntactic analysis and type recognition. There-
fore, even though MC-TED can fuse multiple node types and relations types, its improvement is
not obvious because ACE 2005 does not provide validity information. Therefore, for Precision and
Recall evaluation metrics, our model is not optimal. It has the best performance in F1 evaluation
metric. Taken together, MC-TED achieved peak performance across all datasets, demonstrating
the need to model relation-type-aware graph, node-type-aware graph as well as semantic-aware
graph.

5.2 Ablation Study on Three Graphs

For further evaluation on the components of MC-TED, we conduct the ablation experiments on
PoE and report the results in Table 8.
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Table 8. Ablation Study of Topological Channel and Semantic Channel

Method F1 (%) Precision (%) Recall (%)

Relation-type-aware graph (G1) 62.94 ± 1.25 59.00 ± 1.91 67.45 ± 1.65
Word-type-aware graph (G2) 61.95 ± 1.93 59.91 ± 1.26 64.14 ± 1.38
Semantic-aware graph (G3) 62.90 ± 1.33 57.42 ± 1.33 69.53 ± 1.25

Homogeneous graph (G0)+G3 62.64 ± 1.15 59.48 ± 1.64 66.15 ± 1.48
G1+G2 63.94 ± 1.62 64.77 ± 1.52 63.13 ± 1.38
G1+G3 64.07 ± 1.12 62.27 ± 1.79 70.25 ± 1.61

G2+G3 63.48 ± 1.42 60.18 ± 1.92 67.17 ± 1.43

G1+G2+G3 65.58 ± 1.24 63.71 ± 1.29 69.93 ± 1.61

The bold values are the best result and the underlined values are the second best result.

Table 9. Ablation Study of Topological Channel

Method F1 (%) Precision (%) Recall (%)

MC-TED (only Topological Channel) 63.94 ± 1.62 64.77 ± 1.52 63.13 ± 1.38
w/o relation type module 62.82 ± 1.39 62.78 ± 1.23 62.20 ± 1.89
w/o node type module 63.28 ± 1.90 64.29 ± 2.14 63.01 ± 1.29
w/o relation and node types module 61.83 ± 1.27 62.51 ± 1.43 64.10 ± 1.03

w/o relation type learning module 63.14 ± 1.19 65.94 ± 2.37 63.26 ± 1.43
w/o node type learning module 62.39 ± 1.04 63.30 ± 1.58 63.18 ± 1.13
w/o relation and node types learning module 62.02 ± 2.05 62.21 ± 1.61 64.47 ± 1.75

The bold values are the best result and the underlined values are the second best result.

Topological channel. Both the relation-type-aware graph and the word-type-aware graph are
vitally essential for the type utilized multi-channel GNN. As shown in Table 8, on the one hand,
compared with the full MC-TED, removing the relation-type-aware graph (G1 in Table 8) results
in low performance (e.g., a 2.10% decrease in terms of F1 score). On the other hand, considering
inside the topological channel, compared with only applying the word-type-aware (G2 in Table 8),
G1 plus G2makes an improvement of 1.99%, implying the relation-type-aware graph contributes to
the topological information capture. The conclusion is consistent for the word-type-aware graph.
The main reason is that it achieves a more detailed and comprehensive description considering the
semantics of word and relation types. Furthermore, we replace the two graphs with a single GCN
and use a homogeneous graph (i.e., without any word type information and relation type infor-
mation, G0 in Table 8) as its input. The results show a 2.94% decrease after the replacement and a
2.68% decrease when only applying the semantic channel, which reflect the importance of the topo-
logical channel with type utilizing multi-channel GNN. It may be because the topological channel
designs two different heterogeneous graphs utilizing word dependencies and part-of-speech tags.
The relation-type-aware graph updates the edge representation in each model layer, making the
model focus on learning edge information. All the observations indicate that our model through
utilizing the relation type improves the event detection performance.
Semantic channel. The semantic-aware graph helps capture richer semantic information be-

yond the original syntactic topology. From Table 8, it is noticed that the performance drops by
1.64% in terms of F1 score when not including the semantic-aware graph (G3 in Table 8). It demon-
strates that the semantic channel can establish relationships between words that are far apart
and grammatically independent but have similar meanings. The structure of the semantic-aware
graph dynamically changes during the training process. Furthermore, after adding the semantic-
aware graph, the performance of only applying the relation-type-aware graph or word-type-aware
graph increases by 1.13% and 1.53%, respectively. Therefore, the semantic channel improves the
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superiority of MC-TED, independent of the topological channel. It also demonstrates that the se-
mantic channel refines textual representations with semantic similarity, building the semantic in-
formation interaction among potential event-related words.
All the observations demonstrate the effectiveness of two channel in our model. With the two

channels, MC-TED integrates multiple aspects of information to learn a more comprehensive word
representation through fusing multiple sources of information. The semantic channel reflects the
similarity of words through adding relation with lower cosine distance. The topological channel
constructs a relation-type-aware graph and a word-type-aware graph to learn more comprehen-
sive node representations. They consider the word type and relation type to portray nonlinear
relationships with stronger representative and inference capabilities fully.

5.3 Ablation Study on Topological Channel

We evaluate variants on topological channel of our approach, as shown in Table 9. We show the
experimental results and observe that:
Type module. We exclude the relation type module of relation-type-aware graph for the type

utilized multi-channel GNN. As a consequence, excluding the module decreases the F1-scores by
1.12%, as well as precision by 1.99%, and recall by 0.97%. Thus, the F1-scores decrease in all metrics,
thereby showing that the relation type module could significantly improve the performance. The
relation type module positively affected the learning of word relationship, and relation type knowl-
edge is helpful for event detection with the type utilized multi-channel GNN. We further exclude
the node type module, which improves event detection by utilizing node type knowledge. The de-
creases for the F1, precision, and recall are 0.66%, 0.48%, and 0.12%, respectively, with significant
effects on performance. When both the relation type and node type are excluded, the performance
is decreased dramatically. These findings indicate that relation type module in G1 and word type
module in G2 can effectively improve event detection.
Type learning module. The topological channel has relation type learning and node type

learning module for learning more appropriate word representations according to context. It is
designed for weaken word and relation type errors in the electric power texts caused by the termi-
nology vocabulary. When the relation type learning module is excluded, the F1-score is decreased
by 0.80%. Compared with removing the whole relation type module, the performance is increased
which demonstrates the validity of adding relation type.We further exclude both relation and node
type learning modules, the F1-score decreases 1.92% points. These results suggest that all of the
modules are useful, and that the relation type module is the most important for event detection
because excluding them dramatically degraded the performance.

5.4 Discussion on Generalized Variants

To evaluate the effectiveness and generality of components, we experiment various variants on our
dataset, as shown in Table 10. Specifically, for word initial representation, we employ six models:
Random, Random+BiLSTM, Glove, Glove+BiLSTM, BERT and BERT+BiLSTM. It consists of two
branches, that is whether to use BiLSTM. For the encoder, we apply GAT, GCN, and BERT to learn
word embedding. For the aggregation method, we adopt concatenation and average methods to
merge the representation of three graphs. We analyze the experimental results and observe that:
Initial representation. In themost circumstance, using BiLSTM can boost word representation

through learning context information. Furthermore, based on different static word representation
methods, the random method acquires the best performance in most instances, which utilizes sig-
nificantly fewer dimensions of words than BERT.
Encoder. GCN encoder is better than GAT encoder in our scheme. This is mainly because GCN

structure alleviates the effect of word representation smoothing, which is more suitable for our
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Table 10. Evaluation for Variants on PoE

Initial Representation Encoder Aggregation F1 (%) Precision (%) Recall (%)

Random

GAT
Concatenation 62.38 ± 1.66 61.28 ± 1.98 65.21 ± 1.46
Weighted 60.02 ± 1.62 58.24 ± 1.20 62.32 ± 1.74

GCN
Concatenation 61.19 ± 1.08 60.23 ± 1.60 62.79 ± 1.04
Weighted 61.76 ± 1.01 60.23 ± 1.01 59.37 ± 1.63

BERT
Concatenation 62.53 ± 1.12 60.93 ± 1.29 66.93 ± 1.32
Weighted 63.83 ± 1.27 61.92 ± 1.72 67.28 ± 1.28

Random+BiLSTM

GAT
Concatenation 60.87 ± 1.76 61.39 ± 1.03 64.29 ± 1.84
Weighted 60.06 ± 1.44 60.90 ± 1.37 63.05 ± 1.17

GCN
Concatenation 59.64 ± 1.81 60.45 ± 1.10 62.82 ± 1.39
Weighted (Ours) 65.58 ± 1.24 63.71 ± 1.29 69.93 ± 1.61

BERT
Concatenation 63.82 ± 1.01 60.92 ± 1.73 66.38 ± 1.83
Weighted 63.23 ± 1.87 61.83 ± 1.30 66.83 ± 1.93

Glove

GAT
Concatenation 60.76 ± 1.19 59.74 ± 1.29 62.22 ± 1.98
Weighted 60.20 ± 1.92 58.20 ± 1.76 62.72 ± 1.93

GCN
Concatenation 59.32 ± 1.90 62.36 ± 1.81 61.01 ± 1.89
Weighted 62.14 ± 1.25 57.18 ± 1.53 56.67 ± 1.65

BERT
Concatenation 63.34 ± 1.74 62.03 ± 1.24 67.38 ± 1.74
Weighted 62.93 ± 1.83 60.35 ± 1.39 66.87 ± 1.39

Glove+BiLSTM

GAT
Concatenation 63.85 ± 1.52 60.13 ± 1.39 61.71 ± 1.21
Weighted 60.91 ± 1.63 53.52 ± 1.94 61.62 ± 1.75

GCN
Concatenation 59.16 ± 1.51 60.73 ± 1.09 59.58 ± 1.02
Weighted 62.55 ± 1.14 62.64 ± 1.12 61.01 ± 1.60

BERT
Concatenation 63.04 ± 1.37 60.65 ± 1.63 65.26 ± 1.35
Weighted 63.84 ± 1.84 60.74 ± 1.63 67.83 ± 1.34

BERT

GAT
Concatenation 61.68 ± 1.25 60.28 ± 1.29 65.12 ± 1.78
Weighted 60.90 ± 1.84 58.49 ± 1.02 59.94 ± 1.82

GCN
Concatenation 62.96 ± 1.53 61.37 ± 1.35 66.40 ± 1.06
Weighted 61.61 ± 1.10 60.46 ± 1.30 65.50 ± 1.43

BERT
Concatenation 62.84 ± 1.23 61.05 ± 1.35 66.92 ± 1.83
Weighted 63.48 ± 1.05 61.13 ± 1.52 67.48 ± 1.81

BERT+BiLSTM

GAT
Concatenation 63.64 ± 1.83 60.38 ± 1.23 61.70 ± 1.87
Weighted 61.74 ± 1.64 59.53 ± 1.92 62.76 ± 1.85

GCN
Concatenation 59.60 ± 1.34 60.63 ± 1.29 63.01 ± 1.54
Weighted 64.16 ± 1.81 60.25 ± 1.62 64.17 ± 1.01

BERT
Concatenation 61.63 ± 1.53 60.74 ± 1.26 66.26 ± 1.25
Weighted 63.06 ± 1.03 61.24 ± 1.53 66.42 ± 1.32

The bold values are the best result and the underlined values are the second best result.

dataset with short sentences. For BERT-based encoder, performance will be reduced compared to
Random+BiLSTM+GCN method. The main reason is that event detection in short texts is more
dependent on syntactic dependency correlation. In our baseline methods, the BERT-based method
has better performance than all LSTM-based models and GNN-based models. However, in the
BERT-based models, we try to combine the graph method and the model has a bad effect. It may
be because the whole model is strongly dependent on BERT’s representation, so it is difficult to
further improve. Furthermore, the training time of BERT-based model was significantly longer
than that of graph-based model. In order to meet the practical application requirements, we use
graph-based model as the encoder.
Aggregation method. Our weighted aggregation method is to set appropriate weights among

relation-type-aware graph, word-type-aware graph, and semantic-aware graph for obtaining the
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Fig. 6. Parameter study on label rate. The label rate refers to the proportion of labeled data. MC-TED pre-
forms best at all label ratios, which demonstrates our method also works with small samples.

Fig. 7. Parameter study on model layer. We tested the performance of GCN layer between 1 and 5. When
the number of model layers is 2, the performance reaches the peak.

final representation of each word. Our concatenation aggregation method merges the represen-
tation of three graphs, which makes the word dimension three times larger. In our scheme, the
weighted method usually obtains better results than the concatenation method.

5.5 Parameter Study

In order to further evaluate the sensitivity of MC-TED to parameters, we conduct parameter ex-
periments on PoE. Figures 6, 7, 8, and 9 show the effects of label rate, the GCN layer, the dimension
of node representation, and the cosine distance of node representation.
Label rate. As shown in Figure 6, we compare our model with EE-GCN and MLBiNet using

two layers. MC-TED is significantly superior to the advanced graph-based methods on most label
rates. It shows that our model utilizes the node type and relation type is efficient regardless of the
number of labeled samples. MC-TED performs best when we use the full dataset.
Model layer. The number of layers of the heterogeneous graph neural network is relatively

shallow. As the number of layers deepens, the effect of heterogeneous graph neural network
will decrease significantly (semantic confusion phenomenon). Figure 7 shows the performance
of MC-TED with 1-5 layers GCN. It can be seen that as the number of model layers deepens, the
performance of our model will decrease significantly (semantic confusion phenomenon). The 2-
layer, MC-TED can learn the node representation with distinguishing degree by capturing the

ACM Transactions on the Web, Vol. 17, No. 3, Article 20. Publication date: May 2023.



20:20 Q. Li et al.

Fig. 8. Parameter study on representation dimension. PoE not only have the problems of long tail and multi-
event difficulties existing in ACE andMAVEN, but also have the characteristics of short text, many terms, and
colloquial language, which increase the difficulty of detection. Therefore, the performance of PoE is lower
than that of the other two data sets. In addition, our model performs best on representation dimension
of 150.

Fig. 9. Parameter study on threshold ρsem. In all datasets, our model performs best on the threshold of 0.3. F1
values vary significantly in our data set and ACE 2005, which demonstrates the validity of semantic channel.

heterogeneous structure and retain rich semantics on the graph, while the node representation
learned by the 5-layer of our model has become indistinguishable. The number of layers of MC-
TED is relatively shallow (usually, 1-2 layers are better). The MC-TED model performs best with 2
GCN layers.
Model dimensions.The representation dimension of nodeswill directly affect the performance

of MC-TED. As shown in Figure 8, with the increase of node representation dimension, the per-
formance of our model increased slowly at first, then remained unchanged, and finally decreased
slowly. This is because MC-TED needs enough dimensions to encode semantic and structural in-
formation, but too large dimensions may introduce some redundancy and lead to the over-fitting
phenomenon. MC-TED performs best when the node representation dimension is 150. Therefore,
we finally set the node representation dimension as 150.

Cosine distance. In the semantic-aware channel, we construct the edge between nodes accord-
ing to cosine distance. We let nodes whose distance is less than the threshold have no edges, and
MC-TED updates edge in training. As shown in Figure 9, with the increase of the threshold, the
performance of the MC-TEDmodel increased slowly at first, and then decreased slowly. It achieves
optimal performance when the threshold value is 0.3.
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Table 11. Analysis of Type Learning Mechanism

Method F1 (%) Precision (%) Recall (%)

MC-TED 65.58 ± 1.24 63.71 ± 1.29 69.93 ± 1.61

w/o relation type learning module 63.75 ± 1.47 64.92 ± 1.92 62.63 ± 1.03
w/o word type learning module 63.29 ± 1.58 60.65 ± 1.37 66.16 ± 1.65

The bold values are the best result.

Fig. 10. Analysis of multiple channels: topological graph and learning process of the semantic graph. In the
semantic channel, the connection of the graph will change with the increase of model training epochs. The
words in one event will be connected, and the connection of words in different events will be disconnected.

5.6 Analysis of Multiple Channels

We further provide more detailed analysis on topological channel and semantic channel. Specifi-
cally, we (1) investigate the type learning mechanism in topological channel for the type utilized
multi-channel GNN by ablation study, (2) visualize the structure change of the semantic-aware
graph to study the effect of network reconstruction, and (3) compare the two graphs to seek the
relation between the two channels. We have the following three observations.
Type learning in topological channel is essential. As an important part of reducing the

error of wrong analysis of both relation types and word types, the type learning mechanism is
proven to be necessary in Table 11. Without the relation type learning or word type learning, the
results of event detection have a decline by 1.83% and 2.29% in terms of F1 score. Thus, the type
learning mechanism can effectively reduce the cumulative error caused by the analysis tool, which
is exacerbated by the professional domain-specific terms in the power systems.
Dynamic structure learning in semantic channel is obviously effective. The semantic

channel reconstructs the semantic-aware graph and learns a new structure based on the current
representations in each training step. We visualize the structure change of semantic-aware graph
during a training process in Figure 10(b), (c), and (d), taking 50 epochs as an interval. The effective-
ness of structure learning is obvious that the semantic-relevance words in an event are becoming
a cluster during the training process and the corresponding trigger is eventually at the cluster cen-
ter. The tight connections between the trigger and core arguments makes the trigger identification
more accurate, and cluster characteristics help to classify the event type.
Semantic channel and topological channel complement each other. Figure 10(a) and (b)

show examples of the topological graph and semantic graph. It is clearly noticed that the semanti-
cial channel learns a graph which supplements the non-semantic shortcomings of the topological
one in some cases. For instance, the words “voltage” and “cable” are connected with semantic rel-
evance, while ignored by the topological graph. The above conclusion is also the same for the
topological channel with the type utilized multi-channel GNN.
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Fig. 11. An example of event type prediction. The red color represents wrong prediction. Our method identi-
fies the candidate trigger penetration is a real trigger and the event type is operate-measure, and judges the
candidate trigger prefabricated is not a real trigger. It demonstrates that our model can accurately predict
some easily confused events.

5.7 Case Study

As shown in Figure 11, we give the event detection results of EE-GCN, MLBiNet, and MC-TED.
Through the CoreNLP tools, an event “penetration seals” is a “compound” and misrepresented as
an element of the clause. Therefore, it is difficult to detect the trigger word “penetration” based on
the syntactic dependency graph. MC-TED utilizes the type information and makes the node type
and relation type learnable. MC-TED can accurately classify the events corresponding to the trig-
ger “penetration” by introducing node and relation type. It shows that MC-TED can optimize the
representation of nodes and edges with a relation-type-aware graph and node-type-aware graph.
Furthermore, the topological graph is constructed based on a CoreNLP syntactic analysis tool, thus
there are some node type and relation type that are easily to be classified to be the trigger words,
such as the word “prefabricated” where the word type are classified as “VBN”. It demonstrates that
MC-TED introduces nodes type and edges type learnable mechanism, weakening thes misleading
effect of node type.

6 CONCLUSION

In this paper, we proposeMC-TED, a multi-channel GNNwhich utilizes type information for event
detection in power systems. To solve the problems incurred by short texts and professional termi-
nologies in power systems, MC-TED learns representations from topological and semantic chan-
nels to capture richer information. The topological channel generates a relation-type-aware graph
and a word-type-aware graph, learning relation-type- and word-type-constrained features. The
relation type and word type can both be learned in these two graphs to reduce errors generated by
syntactic analysis tools. Furthermore, we build a Chinese event detection dataset in power systems,
called PoE, which is derived from electrical power records. Extensive experimental results demon-
strate that MC-TED achieves state-of-the-art performance on ACE, MAVEN, and PoE datasets.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments and suggestions.

REFERENCES

[1] J. Arrillage, Charles P. Arnold, and B. J. Harker. 1983. Computer modelling of electrical power systems. (1983).

ACM Transactions on the Web, Vol. 17, No. 3, Article 20. Publication date: May 2023.



Type Information Utilized Event Detection via Multi-Channel GNNs 20:23

[2] Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, and Philip S. Yu. 2021. Knowledge-preserving incremental so-

cial event detection via heterogeneous GNNs. InWWW’21: TheWeb Conference 2021, Virtual Event/Ljubljana, Slovenia,

April 19–23, 2021. 3383–3395. https://doi.org/10.1145/3442381.3449834

[3] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi-pooling con-

volutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 167–176.

[4] Xin Cong, Shiyao Cui, Bowen Yu, Tingwen Liu, Yubin Wang, and Bin Wang. 2021. Few-shot event detection with pro-

totypical amortized conditional random field. In Findings of the Association for Computational Linguistics: ACL/IJCNLP

2021, Online Event, August 1–6, 2021 (Findings of ACL, Vol. ACL/IJCNLP 2021). 28–40. https://doi.org/10.18653/v1/2021.

findings-acl.3

[5] Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang, Xuebin Wang, and Jinqiao Shi. 2020. Edge-enhanced graph

convolution networks for event detection with syntactic relation. In Findings of the Association for Computational

Linguistics: EMNLP 2020, Online Event, 16–20 November 2020 (Findings of ACL, Vol. EMNLP 2020). 2329–2339. https:

//doi.org/10.18653/v1/2020.findings-emnlp.211

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,

June 2–7, 2019, Volume 1 (Long and Short Papers). 4171–4186. https://doi.org/10.18653/v1/n19-1423

[7] George R. Doddington, Alexis Mitchell, Mark A. Przybocki, Lance A. Ramshaw, Stephanie M. Strassel, and Ralph M.

Weischedel. 2004. The automatic content extraction (ACE) program - tasks, data, and evaluation. In Proceedings of the

Fourth International Conference on Language Resources and Evaluation, LREC 2004, May 26–28, 2004, Lisbon, Portugal.

http://www.lrec-conf.org/proceedings/lrec2004/summaries/5.htm.

[8] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for

heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Halifax, NS, Canada, August 13–17, 2017. 135–144. https://doi.org/10.1145/3097983.3098036

[9] Sanghamitra Dutta, Liang Ma, Tanay Kumar Saha, Di Lu, Joel R. Tetreault, and Alex Jaimes. 2021. GTN-ED: Event

detection using graph transformer networks. CoRR abs/2104.15104 (2021). arXiv:2104.15104 https://arxiv.org/abs/2104.

15104

[10] Mohamed E. El-Hawary. 1995. Electrical Power Systems: Design and Analysis. Vol. 2.

[11] Shaohua Fan, Junxiong Zhu, Xiaotian Han, Chuan Shi, Linmei Hu, Biyu Ma, and Yongliang Li. 2019. Metapath-guided

heterogeneous graph neural network for intent recommendation. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4–8, 2019. 2478–2486.

https://doi.org/10.1145/3292500.3330673

[12] Xiaocheng Feng, Lifu Huang, Duyu Tang, Heng Ji, Bing Qin, and Ting Liu. 2016. A language-independent neural

network for event detection. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,

ACL 2016, August 7–12, 2016, Berlin, Germany, Volume 2: Short Papers. https://doi.org/10.18653/v1/p16-2011

[13] Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heterogeneous graph attention networks for semi-

supervised short text classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong,

China, November 3–7, 2019. 4820–4829. https://doi.org/10.18653/v1/D19-1488

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. In WWW’20: The

Web Conference 2020, Taipei, Taiwan, April 20–24, 2020. 2704–2710. https://doi.org/10.1145/3366423.3380027

[15] LifuHuang, Heng Ji, KyunghyunCho, Ido Dagan, Sebastian Riedel, and Clare R. Voss. 2018. Zero-shot transfer learning

for event extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL

2018, Melbourne, Australia, July 15–20, 2018, Volume 1: Long Papers. 2160–2170. https://doi.org/10.18653/v1/P18-1201

[16] Zhichao Huang, Xutao Li, Yunming Ye, and Michael K. Ng. 2020. MR-GCN: Multi-relational graph convolutional

networks based on generalized tensor product. In Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, IJCAI 2020. 1258–1264. https://doi.org/10.24963/ijcai.2020/175

[17] Shahbaz Hussain, Rashid Alammari, Atif Iqbal, and Abdullatif Shikfa. 2020. Application of artificial intelligence in

electrical power systems. In IEEE International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020,

Doha, Qatar, February 2–5, 2020. 13–17. https://doi.org/10.1109/ICIoT48696.2020.9089447

[18] Yazhou Jiang. 2021. Data-driven probabilistic fault location of electric power distribution systems incorporating data

uncertainties. IEEE Trans. Smart Grid 12, 5 (2021), 4522–4534. https://doi.org/10.1109/TSG.2021.3070550

[19] Muhammad Raza Khan and Joshua E. Blumenstock. 2019. Multi-GCN: Graph convolutional networks for multi-view

networks, with applications to global poverty. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,

The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1, 2019. 606–

613. https://doi.org/10.1609/aaai.v33i01.3301606

ACM Transactions on the Web, Vol. 17, No. 3, Article 20. Publication date: May 2023.



20:24 Q. Li et al.

[20] Mahdi Khodayar, Guangyi Liu, Jianhui Wang, and Mohammad E. Khodayar. 2020. Deep learning in power systems

research: A review. CSEE Journal of Power and Energy Systems (2020).

[21] Mahdi Khodayar, Saeed Mohammadi, Mohammad E. Khodayar, Jianhui Wang, and Guangyi Liu. 2019. Convolutional

graph autoencoder: A generative deep neural network for probabilistic spatio-temporal solar irradiance forecasting.

IEEE Transactions on Sustainable Energy 11, 2 (2019), 571–583.

[22] Mahdi Khodayar and Jianhui Wang. 2018. Spatio-temporal graph deep neural network for short-term wind speed

forecasting. IEEE Transactions on Sustainable Energy 10, 2 (2018), 670–681.

[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings. http://arxiv.

org/abs/1412.6980

[24] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. In 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track

Proceedings. https://openreview.net/forum?id=SJU4ayYgl.

[25] Viet Dac Lai,MinhVanNguyen, ThienHuuNguyen, and FranckDernoncourt. 2021. Graph learning regularization and

transfer learning for few-shot event detection. In SIGIR’21: The 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval, Virtual Event, Canada, July 11–15, 2021. 2172–2176. https://doi.org/10.1145/

3404835.3463054

[26] Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu Nguyen. 2020. Event detection: Gate diversity and syntactic im-

portance scores for graph convolution neural networks. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2020, Online, November 16–20, 2020. 5405–5411. https://doi.org/10.18653/v1/

2020.emnlp-main.435

[27] Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu Nguyen. 2020. Event detection: Gate diversity and syntactic impor-

tance scores for graph convolution neural networks. CoRR abs/2010.14123 (2020). arXiv:2010.14123 https://arxiv.org/

abs/2010.14123

[28] Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu, Yiming Hei, Hao Peng, Shu Guo, Lihong Wang, Amin Beheshti,

and Philip S. Yu. 2022. A survey on deep learning event extraction: Approaches and applications. IEEE Transactions

on Neural Networks and Learning Systems (2022), 1–21. https://doi.org/10.1109/TNNLS.2022.3213168

[29] Qian Li, Hao Peng, Jianxin Li, Jia Wu, Yuanxing Ning, Lihong Wang, Philip S. Yu, and Zheng Wang. 2022. Reinforce-

ment learning-based dialogue guided event extraction to exploit argument relations. IEEE ACM Trans. Audio Speech

Lang. Process. 30 (2022), 520–533. https://doi.org/10.1109/TASLP.2021.3138670

[30] Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, and Lifang He. 2022. A survey

on text classification: From traditional to deep learning. ACM Trans. Intell. Syst. Technol. 13, 2, Article 31 (Apr. 2022),

41 pages. https://doi.org/10.1145/3495162

[31] Xueting Liao, Danyang Zheng, and Xiaojun Cao. 2021. Coronavirus pandemic analysis through tripartite graph clus-

tering in online social networks. Big DataMin. Anal. 4, 4 (2021), 242–251. https://doi.org/10.26599/BDMA.2021.9020010

[32] Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 2018. Nugget proposal networks for Chinese event detection. In

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia,

July 15–20, 2018, Volume 1: Long Papers. 1565–1574. https://doi.org/10.18653/v1/P18-1145

[33] Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018. Event detection via gated multilingual attention mechanism. In

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications

of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-

18), New Orleans, Louisiana, USA, February 2–7, 2018. 4865–4872. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/16371.

[34] Shengyuan Liu, Yuxuan Zhao, Zhenzhi Lin, Yilu Liu, Yi Ding, Li Yang, and Shimin Yi. 2020. Data-driven event detection

of power systems based on unequal-interval reduction of PMU data and local outlier factor. IEEE Trans. Smart Grid

11, 2 (2020), 1630–1643. https://doi.org/10.1109/TSG.2019.2941565

[35] Yaopeng Liu, Hao Peng, Jianxin Li, Yangqiu Song, and Xiong Li. 2020. Event detection and evolution in multi-lingual

social streams. Frontiers Comput. Sci. 14, 5 (2020), 145612. https://doi.org/10.1007/s11704-019-8201-6

[36] Dongfang Lou, Zhilin Liao, Shumin Deng, Ningyu Zhang, and Huajun Chen. 2021. MLBiNet: A cross-sentence collec-

tive event detection network. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),

Virtual Event, August 1–6, 2021. 4829–4839. https://doi.org/10.18653/v1/2021.acl-long.373

[37] YaoMa, SuhangWang, Charu C. Aggarwal, Dawei Yin, and Jiliang Tang. 2019. Multi-dimensional graph convolutional

networks. In Proceedings of the 2019 SIAM International Conference onDataMining, SDM 2019, Calgary, Alberta, Canada,

May 2–4, 2019. 657–665. https://doi.org/10.1137/1.9781611975673.74

[38] Qianren Mao, Xi Li, Hao Peng, Jianxin Li, Dongxiao He, Shu Guo, Min He, and Lihong Wang. 2021. Event prediction

based on evolutionary event ontology knowledge. Future Gener. Comput. Syst. 115 (2021), 76–89. https://doi.org/10.

1016/j.future.2020.07.041

ACM Transactions on the Web, Vol. 17, No. 3, Article 20. Publication date: May 2023.



Type Information Utilized Event Detection via Multi-Channel GNNs 20:25

[39] Thien HuuNguyen and Ralph Grishman. 2018. Graph convolutional networks with argument-aware pooling for event

detection. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative

Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. 5900–5907. https://www.aaai.org/ocs/index.

php/AAAI/AAAI18/paper/view/16329.

[40] Asiye K. Ozcanli, Fatma Yaprakdal, and Mustafa Baysal. 2020. Deep learning methods and applications for electrical

power systems: A comprehensive review. International Journal of Energy Research 44, 9 (2020), 7136–7157.

[41] Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, and Philip S. Yu. 2019. Fine-grained

event categorization with heterogeneous graph convolutional networks. In Proceedings of the Twenty-Eighth Inter-

national Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019. 3238–3245. https:

//doi.org/10.24963/ijcai.2019/449

[42] Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv Ranjan, Philip S. Yu, and Lifang He. 2021. Streaming social

event detection and evolution discovery in heterogeneous information networks. ACM Trans. Knowl. Discov. Data 15,

5 (2021), 89:1–89:33. https://doi.org/10.1145/3447585

[43] Hao Peng, Jianxin Li, SenzhangWang, LihongWang, Qiran Gong, Renyu Yang, Bo Li, Philip S. Yu, and Lifang He. 2021.

Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scalemulti-label text classification. IEEE

Trans. Knowl. Data Eng. 33, 6 (2021), 2505–2519. https://doi.org/10.1109/TKDE.2019.2959991

[44] Hao Peng, Ruitong Zhang, Shaoning Li, Yuwei Cao, Shirui Pan, and Philip Yu. 2022. Reinforced, incremental and

cross-lingual event detection from social messages. IEEE Transactions on Pattern Analysis and Machine Intelligence

(2022).

[45] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word representation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25–29,

2014, Doha, Qatar. 1532–1543. https://doi.org/10.3115/v1/d14-1162

[46] Jiaqian Ren, Lei Jiang, Hao Peng, Zhiwei Liu, Jia Wu, and Philip S. Yu. 2022. Evidential temporal-aware graph-based

social event detection via Dempster-Shafer theory. IEEE ICWS (2022).

[47] Sophia Boing Righetto, Marcos Aurelio Izumida Martins, Edgar Gerevini Carvalho, Leandro Takeshi Hattori, and

Silvia de Francisci. 2021. Predictive maintenance 4.0 applied in electrical power systems. In IEEE Power & Energy

Society Innovative Smart Grid Technologies Conference, ISGT 2021, Washington, DC, USA, February 16–18, 2021. 1–5.

https://doi.org/10.1109/ISGT49243.2021.9372230

[48] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and GabrieleMonfardini. 2009. The graph neural

network model. IEEE Trans. Neural Networks 20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[49] Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45,

11 (1997), 2673–2681. https://doi.org/10.1109/78.650093

[50] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and Philip S. Yu. 2019. Heterogeneous information network embedding for

recommendation. IEEE Trans. Knowl. Data Eng. 31, 2 (2019), 357–370. https://doi.org/10.1109/TKDE.2018.2833443

[51] Michael J. Smith and KevinWedeward. 2009. Event detection and location in electric power systems using constrained

optimization. In 2009 IEEE Power & Energy Society General Meeting. IEEE, 1–6.

[52] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE: Predictive text embedding through large-scale heterogeneous text

networks. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

Sydney, NSW, Australia, August 10–13, 2015. 1165–1174. https://doi.org/10.1145/2783258.2783307

[53] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. 2020. Composition-based multi-relational

graph convolutional networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26–30, 2020. https://openreview.net/forum?id=BylA_C4tPr.

[54] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph

attention networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,

April 30–May 3, 2018, Conference Track Proceedings. https://openreview.net/forum?id=rJXMpikCZ.

[55] Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun, and Peng Li. 2019. Adversarial training for weakly supervised

event detection. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1

(Long and Short Papers). 998–1008. https://doi.org/10.18653/v1/n19-1105

[56] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. 2019. Heterogeneous graph

attention network. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13–17, 2019. 2022–

2032. https://doi.org/10.1145/3308558.3313562

[57] XiaozhiWang, Ziqi Wang, Xu Han,Wangyi Jiang, Rong Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin, and Jie Zhou.

2020. MAVEN: A massive general domain event detection dataset. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2020, Online, November 16–20, 2020. 1652–1671. https://doi.org/10.

18653/v1/2020.emnlp-main.129

ACM Transactions on the Web, Vol. 17, No. 3, Article 20. Publication date: May 2023.



20:26 Q. Li et al.

[58] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2021. A comprehensive

survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24. https://doi.org/10.1109/

TNNLS.2020.2978386

[59] Jianye Xie, Haotong Sun, Junsheng Zhou, Weiguang Qu, and Xinyu Dai. 2021. Event detection as graph parsing. In

Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1–6, 2021 (Findings

of ACL, Vol. ACL/IJCNLP 2021). 1630–1640. https://doi.org/10.18653/v1/2021.findings-acl.142

[60] Haoran Yan, Xiaolong Jin, Xiangbin Meng, Jiafeng Guo, and Xueqi Cheng. 2019. Event detection with multi-order

graph convolution and aggregated attention. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,

Hong Kong, China, November 3–7, 2019. 5765–5769. https://doi.org/10.18653/v1/D19-1582

[61] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. 2019. Graph transformer networks.

(2019), 11960–11970. https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.

html.

[62] Jintao Zhang and Quan Xu. 2021. Attention-aware heterogeneous graph neural network. Big Data Min. Anal. 4,

4 (2021), 233–241. https://doi.org/10.26599/BDMA.2021.9020008

[63] Jianming Zheng, Fei Cai, Wanyu Chen, Wengqiang Lei, and Honghui Chen. 2021. Taxonomy-aware learning for few-

shot event detection. InWWW’21: The Web Conference 2021, Virtual Event/Ljubljana, Slovenia, April 19–23, 2021. 3546–

3557. https://doi.org/10.1145/3442381.3449949

[64] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

and Maosong Sun. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020), 57–81.

https://doi.org/10.1016/j.aiopen.2021.01.001

[65] Yuxun Zhou, Reza Arghandeh, and Costas J. Spanos. 2018. Partial knowledge data-driven event detection for power

distribution networks. IEEE Trans. Smart Grid 9, 5 (2018), 5152–5162. https://doi.org/10.1109/TSG.2017.2681962

Received 18 January 2022; revised 10 July 2022; accepted 20 October 2022

ACM Transactions on the Web, Vol. 17, No. 3, Article 20. Publication date: May 2023.


