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Figure 1: Overview of an Image Captioning task. Unlike most of the existing methods that utilize fixed human-designed
architectures as their image encoders and language decoders, Image Understanding by Captioning (IUC) searches for the most
suitable task-specific encoder-decoder architectures in a multi-level optimization (MLO) framework.

ABSTRACT

In deep learning applications, image understanding is a crucial
task, where several techniques such as image captioning and visual
question answering have been widely studied to improve and eval-
uate the performances of deep neural networks (DNN) in this area.
In image captioning, models have encoder-decoder architectures,
where the encoders take the input images, produce embeddings,
and feed them into the decoders to generate textual descriptions.
Designing a proper image captioning encoder-decoder architecture
manually is a difficult challenge due to the complexity of recogniz-
ing the critical objects of the input images and their relationships
to generate caption descriptions. To address this issue, we propose
a three-level optimization method that employs differentiable ar-
chitecture search strategies to seek the most suitable architecture
for image captioning automatically. Our optimization framework
involves three stages, which are performed end-to-end. In the first
stage, an image captioning model learns and updates the weights
of its encoder and decoder to create image captions. At the next
stage, the trained encoder-decoder generates a pseudo image cap-
tioning dataset from unlabeled images, and the predictive model
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trains on the generated dataset to update its weights. Finally, the
trained model validates its performance on the validation set and
updates the encoder-decoder architecture by minimizing the vali-
dation loss. Experiments and studies on the COCO image captions
datasets demonstrate that our method performs significantly better
than the baselines and can achieve state-of-the-art results in image
understanding tasks.
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1 INTRODUCTION

The rapid advancement of deep learning techniques is assisting
with resolving social difficulties in various fields. One of these fields
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that has recently attracted the researchers’ attention is image under-
standing (e.g., image captioning). Image Captioning is a multi-model
task that evaluates the computer’s ability to understand images
by generating the language descriptions of the input images, as
shown in Figure 1. Solving this visual-language problem can be
challenging, considering the complexity of understanding the re-
lationships of recognized critical objects in the images. Since the
architecture design of deep neural networks plays a critical role
in the performance enhancement of the model, researchers have
proposed a significant number of techniques in order to enhance
the performance of their models by designing proper architectures
for the encoder and the decoder modules for various tasks. How-
ever, obtaining high-performance human-designed architectures
for each dataset with different distributions is exhausting and time-
consuming.

Recently, neural architecture search (NAS) has achieved remark-
able progress in obtaining the optimal architectures automatically,
which helps attain better performances in computer vision and
natural language processing applications. Nevertheless, most re-
searchers in this area have focused on applying NAS methods to
language modeling [41], image classification[9, 11, 26, 34, 42, 43],
and adversarial training[12], while image captioning study with
NAS is still largely underexplored. Several works have been inves-
tigated in employing NAS methods on image captioning, such as
[41], where they focus only on searching for the architecture of
the decoder module (i.e., language generation module) by using
Reinforcement Learning [41].

In this paper, we propose a three-stage optimization problem,
called Image Understanding by Captioning (IUC), that applies differ-
entiable architecture search [22] on image captioning tasks. Unlike
the previous related works [41] that apply Reinforcement Learning
based (RL-based) NAS methods only on decoder modules, we utilize
differentiable architecture search based (DARTS-based) approaches
on both encoder and decoder modules to improve our model’s per-
formance and, also, study the effectiveness and importance of each
module. Extensive experiments on COCO datasets [20] explicate
that our proposed methods outperform the existing strategies and
can achieve state-of-the-art performances in image captioning.

The main contributions of this paper include:

e We propose a novel three-level optimization framework for
image captioning that utilizes differentiable architecture
search to obtain the optimal encoder-decoder architecture
automatically. Additionally, our proposed methods can be
applied on top of any differentiable NAS methods for further
improvements.

e We investigate the effectiveness and impact of the architec-
ture design in the encoder modules compared to the decoder
modules. Furthermore, we demonstrate that the design of the
image encoder architecture has a higher effect on the image
captioning performances than the design of the language
decoder.
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e Extensive experiments and studies of both qualitative and
quantitative results on COCO image captions datasets il-
lustrate that our Image Understanding by Captioning (IUC)
method is superior to the existing methods and achieves
state-of-the-art performance in image captioning tasks across
various metrics.

2 RELATED WORKS
2.1 Image Captioning

Image Captioning is a multi-modal task that generates textual de-
scriptions of input images. In order to perform this vision-language
process, we need an encoder-decoder framework, where the en-
coders take the input images and create embeddings to feed them
into the decoders to generate captions. Various techniques have
been introduced in the past few years to enhance image captioning.
Early works [23] in this area mostly use CNN as the image encoder,
and LSTM [32] and RNN [38] as the language decoder to generate
the captions of the input images. Later on, various attempts [6]
showed performance improvements by applying attention mech-
anisms for more information exchange between the encoder and
decoder modules. In several recent works, significant progress has
been made with transformers [7] architectures. On the other hand,
various approaches have been made to enhance the object detection
task part of the image captioning, such as employing grid feature,
region feature, and relation-aware visual feature. In the most recent
works [18], researchers exhibit that vision-language pre-training
on large image-text datasets can improve image captioning perfor-
mances significantly. Moreover, several other recent works have
been studying the importance of the image-captioning encoder-
decoder architecture [3] by investigating different encoder-decoder
architectures’ performances versus their model sizes. Despite all the
progress that has been made in image captioning tasks over the past
decade, most of the existing image captioning models suffer from
the design of their encoder and decoder architectures, which are
fixed human-designed. Recently, AutoCaption [41] has proposed
applying reinforcement learning-based neural architecture search
(NAS) to image captioning tasks in order to design a better language
decoder on the X-LAN [24]. Since reinforcement learning-based
neural architecture search methods are mainly expensive for com-
puter vision tasks (e.g., image classification), the existing image
captioning methods that utilize NAS are inefficient in searching
for the image encoder architecture. To address this problem, we
propose a novel method that uses differentiable architecture search
techniques to obtain the optimal task-specific image encoder and
language decoder architectures for image captioning tasks.

2.2 Neural Architecture Search (NAS)

Recently, a wide variety of NAS methods have been proposed and
achieved considerable success in automatically identifying highly-
performing architectures of neural networks to reduce reliance
on human experts. Thus, These NAS approaches have attracted
plenty of attention in deep learning applications of computer vision
and natural language processing tasks, such as image classification,
object detection, and language modeling, to automatically design
suitable neural network architectures. Early NAS approaches [26,
42, 43] are mainly based on reinforcement learning (RL) which
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uses a policy network to generate architectures and evaluate these
architectures on the validation set. The validation loss is used as a
reward to optimize the policy network and train it to produce high-
quality architectures. While RL-based approaches achieve the first
wave of success in NAS research, they are computationally costly
since evaluating the architectures requires a heavy-duty training
process. This limitation renders RL-based approaches not applicable
for most users with insufficient computational resources. To address
this issue, differentiable search methods [22] have been proposed,
which parameterize architectures as differentiable functions and
perform a search using efficient gradient-based methods. In these
methods, the search space of architectures is composed of a large set
of building blocks where the output of each block is multiplied with
a smooth variable indicating how important this block is. Under
such a formulation, search solves a mathematical optimization
problem defined on the important variables where the objective is
to find an optimal set of variables that yield the lowest validation
loss. This optimization problem can be solved by gradient-based
methods. Differentiable NAS research is initiated by DARTS [22]
and further improved by subsequent works such as P-DARTS [34],
PC-DARTS [33], DATA [5], etc. P-DARTS [34] grows the depth
of architectures progressively in the search process. PC-DARTS
[33] samples sub-architectures from a super network to reduce
redundancy during the search. DATA [5] proposes using Gumbel-
Softmax to change the weight vectors of the operations to one-hot
or binary code, which reduces the gap between the architectures
in the searching and validating stages. Most recent works [10]
additionally apply topology search to gradient-based methods due
to the high effectiveness of topology on neural networks. Besides
RL-based approaches and differentiable NAS, another paradigm
of NAS methods [21, 28] are based on the evolutionary algorithm.
In these methods, architectures are formulated as individuals in a
population. High-quality architectures produce offspring to replace
low-quality architectures, where the quality is measured using
fitness scores. Similar to RL-based approaches, these methods also
require considerable computing resources.

3 METHODS

In this section, we propose a novel method called Image Under-
standing by Captioning (IUC), where we apply differentiable ar-
chitecture search techniques to obtain the optimal architectures
for the encoder-decoder model. Inspired by [22], the architecture
cells are directed acyclic graphs (DAG) with N nodes (i.e., latent
representations) and directed edges, representing the operation
between the corresponding nodes. Our three-level optimization
framework contains an encoder-decoder image captioning model
with searchable architecture and a predictive image captioning
(IC) model with fixed human-designed architecture. The searchable
encoder-decoder model learns to take an image and generate text
descriptions of the given image. Then, using the learned encoder-
decoder model, we generate a pseudo image captioning dataset
from the unlabeled dataset, and we train our predictive model on
the new pseudo-IC dataset. Lastly, the trained predictive model
validates its performance on the validation set of the IC dataset
and minimizes its validation loss. To independently investigate the
effectiveness of the image encoder module and language decoder
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Figure 2: Overview of our Image Understanding by Caption-
ing (IUC) optimization framework. Black, red, and green
arrows represent stage 1, stage 2, and stage 3 in our frame-
work, respectively.

module, we perform image encoder and language decoder archi-
tecture searches individually. Figure 2 illustrates our three-level
optimization framework (IUC), where the solid arrows represent
that the predictions are made and training/validation losses are
determined; and the dotted arrows denote that the gradient updates
of network weights and architecture variables are determined and
weights/architecture are updated.

3.1 Proposed Framework (IUC)

In our framework, there are three learning stages. In the first stage,
a model learns to create image captions. The model has an encoder-
decoder architecture. The encoder takes an input image and pro-
duces an embedding. The embedding is fed into the decoder, which
decodes a textual description. We use the image captioning datasets
to train the encoder and decoder by solving the following problem:

E*(A),F*(A) = argmin L(E, A F,D(") 1)
E,F

where F and E denote the network weights of the decoder and
the encoder, respectively, and A represents the architectures of the
encoder and the decoder. D7) is an image captioning dataset.

In the second stage, we use the trained encoder E*(A) and
decoder F*(A) with searchable architectures from the first stage to
generate a pseudo image captioning dataset using unlabeled images
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Algorithm 1: Optimization algorithm for image under-
standing by captioning

while not converged do
1. Update encoder weights:

E « E —neVgL(E,A F, D))
2. Update decoder weights:
F « F—nVEL(E, A F, D))
3. Update predictive model weights:
W — W — 5oV L(W, U, E', F)
4. Update the encoder-decoder architecture:
A — A=naVaL(W’, D@aD)y)

end

U. Then, using this new dataset, we train the network weights W
of the predictive model with a fixed architecture by minimizing the
following training loss:

W*(E*(A), F*(A)) = argmin L(W,U,E*(A),F*(A)) (2)
w

Finally, we evaluate W* (E*(A), F*(A)) in the third stage on the
image captioning validation set and update A by minimizing the
validation loss:

min L(W* (E*(4),F* (A)), D) ®)

The predictive model in our framework assists the initial image
captioning model to obtain the optimal architecture by testing its
caption generating performance. Putting these pieces together, we
get the following optimization problem:

min L(W*(E*(A), F*(4)), D{*%0)

s.t. W*(E*(A), F*(A)) = argmin L(W,U,E*(A), F*(A)) @)

w

E*(A),F*(A) = argmin L(E, A, F,D("))
E,F

The architecture searches for the image encoder and the lan-
guage decoder modules are similar to Conventional Cell Search
and Recurrent Cell Search as proposed in DARTS [22], respectively.
The encoder during the architecture search contains 8 optimal cells,
and the decoder is a single cell. Our proposed IUC framework is
orthogonal to the various differentiable NAS methods, and it can
be employed on any DARTS-based method, including DARTS [22],
P-DARTS [34], PC-DARTS [33], and DATA [5].

Image Encoder Architecture Search. In order to obtain the
optimal image encoder architecture for image captioning on a par-
ticular dataset, we search for convolutional cells similar to DARTS
[22] to optimize the encoder module architecture A using Eq.4. In-
spired by [22], the encoder module is a convolution network built
by stacking the learned cells together. The search spaces for the
encoder architectures include (dilated) separable convolutions with
sizes of 3 X 3 and 5 X 5, max pooling with the size of 3 X 3, average
pooling with the size of 3 X 3, identity, and zero.

Language Decoder Architecture Search. To design the lan-
guage decoder module, we perform the architecture searching for
recurrent cells analogous to DARTS [22]. In this case, The archi-
tecture A in Eq.4 represents the decoder architecture, where the
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Notation | Meaning

E Encoder weights

F Decoder weights

w Network weights of predictive model

A Encoder-Decoder architecture
DU | Image captioning training set
D) | Image captioning validation set

U Unlabeled image dataset

e Learning rate of E

ny Learning rate of F

Nw Learning rate of W

Na Learning rate of A

Table 1: Notations in Image Understanding by Captioning
(IUC).

learned cells are recursively connected in order to build the re-
current network of the language decoder. Our defined primitive
operations in the search space for the recurrent cell of the language
decoder include linear transformations followed by activation func-
tions, the identity mapping, and the zero operation. The activation
functions are chosen from one of the following: relu, tanh, sigmoid,
elu, celu, or gelu.

3.2 Optimization Algorithm

In this section, we develop an optimization algorithm to solve the
problem in Eq.(4) with our defined notations from Table 1. We
approximate E* (A) and F* (A) using one-step gradient descent w.r.t
L(E,A,F,D");

E*(A) ~ E' = E — o VEL(E, A F,D(")) (5)

F*(A) ~ F' =F - ;VpL(E. A, F,D'"") (6)

We plug E’ and F’ into L(W, U, E*(A), F*(A)) and get an ap-
proximated objective. We approximate W*(E*(A), F*(A)) using
one-step gradient descent w.r.t the approximated objective:

W*(E*(A), F*(A)) ~ W =W — 5 VieL(W,U,E",F')  (7)

We plug W’ into L(W*(E*(A), F*(A)), D®4)) and get an ap-
proximated objective. Thus, we update A using gradient descent:

A A—naVaL(W', D), ®)

where by applying chain rule to the approximate architecture gra-
dient Eq. 8, we get:

VAL(W, D(val)) = (a_E’aW, + 3_1:/_3W’
’ 0A OE’  9A OF’

)VW/L(W,, D(ual)) —

(nenwV? gL(E, A F, DY)V, L(W, U E',F') + npnuVe g (9)

L(E, A F,D"))V2,  L(W,U,E',F"))Vy L(W’, D))
The overall algorithm of IUC is shown in Algorithm 1.
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Table 2: Comparison of our methods and the state-of-the-art image captioning models on the COCO “Karpathy” test split

(single-model). Methods with T are using NAS methods.

Cross-Entropy Loss Encoder-Decoder

BLEU-1 | BLEU-4 | METEOR | ROUGE l CIDEr l SPICE Architecture
LSTM [32] - 29.6 25.2 52.6 94.0 - manual
SCST [30] - 30.0 25.9 53.4 99.4 - manual
LSTM-A [37] 75.4 35.2 26.9 55.8 108.8 20.0 manual
RFNet [14] 76.4 35.8 27.4 56.5 112.5 20.5 manual
Up-Down [2] 77.2 36.2 27.0 56.4 113.5 20.3 manual
GCN-LSTM [36] 77.3 36.8 27.9 57.0 116.3 20.9 manual
LBPF [27] 77.8 37.4 28.1 57.5 116.4 21.2 manual
SGAE [35] 77.6 36.9 27.7 57.2 116.7 20.9 manual
AoANet [13] 77.4 37.2 28.4 57.5 119.8 21.3 manual
X-LAN [24] 78.0 38.2 28.8 58.0 122.0 21.9 manual
X-Transformer[24] 77.3 37.0 28.7 57.5 120.0 21.8 manual
OSCAR; [18] - 37.4 30.7 - 1278 | 235 manual
OSCAR+1, w/ VINVL [40] - 38.5 30.4 - 130.8 234 manual
AutoCaption [41]7L 79.4 39.2 29.0 58.6 125.2 22.4 RL
IUC-D (ours) T 79.6 39.5 30.8 58.9 130.6 23.8 gradient-based
IUC-E (ours) T 79.9 40.0 30.9 59.3 131.1 | 237 gradient-based

CIDEr Score Optimization Encoder-Decoder

BLEU-1 | BLEU-4 | METEOR | ROUGE l CIDEr l SPICE Architecture
LSTM [32] - 31.9 255 543 | 1063 - manual
SCST [30] - 34.2 26.7 55.7 114.0 - manual
LSTM-A [37] 78.6 355 27.3 56.8 118.3 20.8 manual
RFNet [14] 79.1 36.5 27.7 57.3 121.9 21.2 manual
Up-Down [2] 79.8 36.3 27.7 56.9 120.1 214 manual
GCN-LSTM [36] 80.5 38.2 28.5 58.3 127.6 22.0 manual
LBPF [27] 80.5 38.3 28.5 58.4 127.6 22.0 manual
SGAE [35] 80.8 38.4 28.4 58.6 127.8 22.1 manual
AoANet [13] 80.2 38.9 29.2 58.8 129.8 224 manual
X-LAN [24] 80.8 39.5 29.5 59.2 132.0 23.4 manual
X-Transformer[24] 80.9 39.7 29.5 59.1 132.8 23.4 manual
Meshed-Memory Transformer [7] 80.8 39.1 29.2 58.6 131.2 22.6 manual
X-Transformer+PPO [39] 81.1 39.7 29.6 59.2 133.3 23.4 manual
OSCARy, [18] - 41.7 30.6 - 140.0 24.5 manual
OSCAR+p w/ VINVL [40] - 41.0 31.1 - 140.9 25.2 manual
AutoCaption [41] T 815 40.2 29.9 595 | 135.8 | 238 RL
IUC-D (ours) T 81.8 40.9 31.0 59.5 140.6 25.3 gradient-based
IUC-E (ours) 82.3 42.1 31.4 60.1 1419 | 25.8 gradient-based

4 EXPERIMENTS

In this section, we apply our proposed IUC methods to perform
image encoder and language decoder architecture searches. Each
experiment consists of two steps: architecture search and architec-
ture evaluation. The optimal cell is obtained in the search process,
and it will be evaluated in the evaluation stage based on the formed
large network from the optimal cell. The large network will be
retrained from scratch for the architecture evaluation.

4.1 Datasets

We perform experiments on the COCO captions dataset [20] to
evaluate and compare our proposed methods. The COCO captions

dataset contains 82,783 and 40, 504 images in the training and
validation sets, respectively. We conduct thorough experiments
by analyzing our models on the offline and the online evaluations.
Each image in the dataset holds five captions, which were annotated
by humans. During the offline evaluation, we utilize the ‘Karpathy’
splits setting [15], which has 113, 287 images and 5000 images in
the training set and test set, respectively. At the second stage of
the architecture search, we use the 123K unlabeled images of the
COCO dataset, which has a similar class distribution as the labeled
images, and we use our trained encoder-decoder model from the
first stage to generate a textual description of the images. Then
the pre-trained predictive IC model will be trained based on the
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generated pseudo-dataset. Finally, we update the architecture of the
encoder-decoder by minimizing the validation loss of the predictive
model on the validation set.

4.2 Experimental Settings

Recall that our proposed framework IUC is a comprehensive dif-
ferentiable method, which can be applied with any differentiable
architecture search approach. With that being said, we employ
DARTS-2nd [22] in the conducted experiments that are exhibited in
Table 2, 4, and 5, and DARTS [22], PC-DARTS [33], and DATA [5]
in Table 6 of the Ablation 4.4, which is shown in Table 6. We intro-
duce two variants of our IUC method: 1) IUC with image encoder
architecture search (IUC-E); and 2) IUC with language decoder
architecture search (IUC-D). Moreover, we simultaneously apply
IUC architecture searching on both the image encoder and the lan-
guage decoder in Ablation 4.4. Note that the common operations
in differentiable architecture searches usually do not contain some
practical operations such as: attention, top-down, or Rol pooling.
To address this issue, we modify our image encoder and language
decoder inspired by some SoTA methods such as Faster R-CNN [29]
and X-LAN [24] techniques.

Architecture Search Details. During the search stage, we use
Faster R-CNN [29] and X-LAN [24] as our image encoder and sen-
tence decoder of the image captioning model, respectively. In IUC-E,
we switch their human-designed architecture network with 8 convo-
lutional cells (each holding 7 nodes), while during the IUC-D search
we replace their LSTMs with our recurrent cell, which consists of
12 nodes. In IUC-D, ResNeXt-152 is adopted as the CNN in the
Faster R-CNN. In addition, the initial convolutional architectures of
the image encoder in IUC-E are pre-trained on ImageNet [8], and
Visual Genome [17] datasets prior to the search for improving the
object feature extractions. Following the settings in DARTS [22],
we use SGD for the IUC-E architecture searching with a batch size
of 128, an initial learning rate of 0.025, weight decay of 3e-4, and
a momentum of 0.9 for 50 epochs. More detailed hyperparameter
settings are exhibited in the Appendix. Due to high-performance
achievements of OSCAR [18], we use pre-trained OSCARy [18] as
our predictive model to help us obtain the optimal encoder-decoder
architecture. At the second stage of architecture search, the trained
encoder-decoder from the first stage generates a textual descrip-
tion of the input image. Then, the predictive model learns from
the generated pseudo dataset and validates its performance on the
validation set to update the architecture of our encoder-decoder. In
this paper, we constructed our experiments with similar settings as
OSCARy [18] for a fair comparison.

Architecture Evaluation Details. For a fair comparison, we
adopt X-LAN [24] method as our language decoder and Faster
R-CNN [29] as the image decoder. In IUC-E, we replace the con-
volution neural network architecture of Faster R-CNN [29] with
our obtained image encoder architecture, designed by stacking 14
searched optimal convolution cells. Later, we pre-train the model
on ImageNet [8] and Visual Genome [17] to extract the object tags
and image region features. Similarly, in IUC-D, we use Faster R-
CNN [29] with ResNeXt-152 pre-trained on ImageNet and Visual
Genome dataset datasets, and we change the LSTMs of the X-LAN
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with our optimal architecture that was obtained during the archi-
tecture search. Then, we train our constructed large network with
cross-entropy loss for 100 epochs and 10000 warmup steps. Next,
we choose the model that achieves the highest CIDEr score, and
we CIDEr score optimization with the learning rate of 0.00001 for
another 100 epochs. During the validation, we utilize the beam
search with the beam size of 3 and our models are trained with
Adam optimizer [16].

Metrics. We adopt the official evaluation metrics - including
BLEU-N[25], METEOR [4], ROUGE[19], CIDEr [31], and SPICE[1] -
to analyze and compare our proposed methods’ performances with
the other existing approaches in image captioning tasks.

4.3 Results

We evaluate the image captioning results of our proposed methods
on the COCO "Karpathy" test split [15] to compare with the recent
proposals in this area, which have achieved noteworthy perfor-
mances. Our primary baselines include: LSTM [32] and LSTM-A[37],
which are non-attention based; SCST[30] that proposes employing
attention over the grid of features; RFNet[14] merges CNN features
by adopting recurrent fusion networks; Up-Down[2] uses atten-
tion over regions; GCN-LSTM[36] uses visual relations between
image regions; SGAE[35] utilizes auto-encoding scene graphs for
sentence generation; AoANet[13] applies attention on attention
and LSTM as the image encoder and language decoder, respectively;
Meshed-Memory Transformer[7] constructs mesh-like transformer
connectivity between the encoder and the decoder; X-LAN[24]
plugs unified attention blocks, called X-Linear attention blocks,
into the encoder-decoder architecture, and further uses such blocks
in the Transformer-based encoder-decoder architecture, which is
called X-Transformer[24]; OSCAR[18] adopts object tags as anchor
points to enhance the learning of the image-text semantic align-
ments; OSCAR+ with VINVL[40] shows that visual features are
crucial in image understanding tasks by improving object detec-
tion model of OSCAR+; X-Transformer+PPO[39] applies proximal
policy optimization to X-Transformer; and AutoCaption [41] that
applies neural architecture search on the language decoder with a
similar structure as X-LAN.

Table 2 reports the performance comparisons of our proposed
methods (IUC-D and IUC-E) and the state-of-the-art models on
the offline COCO "Karpathy" test split for both cross-entropy loss
and CIDEr score optimization. It is shown that our method IUC-E
outperforms the baselines and elevates the state-of-the-art in most
of the metrics, while IUC-D frequently exhibits the second-best
performances among the other methods. IUC-D performs slightly
better than IUC-E in SPICE. Our proposed IUC-E model can achieve
141.9 on CIDEr using CIDEr score optimization, which indicates an
improvement of 1 CIDEr point compared to OSCAR+ with VINVL,
and 6.1 points improvement in comparison to AutoCaption. This
performance enhancement verifies the critical advantage of em-
ploying architecture search to design the encoder and the decoder
architectures. Additionally, the better performances of [UC-E com-
pared to IUC-D in the evaluation results demonstrate the urgency
of the architecture design of the image encoder, which has not been
investigated relatively. Finally, we ensemble our IUC-E and IUC-D
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Table 3: Comparison of our methods and the state-of-the-art image captioning models on the COCO “Karpathy” test split with
multiple models (Ensemble/Fusion). Methods with T are using NAS methods.

Cross-Entropy Loss

Encoder-Decoder

BLEU-1 | BLEU-4 | METEOR | ROUGE | CIDEr | SPICE ||  Architecture
SCST* [30] - 32.8 26.7 55.1 106.5 - manual
RFNet> [14] 77.4 37.0 27.9 57.3 116.3 20.8 manual
GCN-LSTMZ [36] 77.4 37.1 28.1 572 | 1171 | 211 manual
SGAE” [35] - - - - - - manual
AoANet® [13] 78.7 38.1 28.5 58.2 122.7 21.7 manual
X-LANZ [24] 78.8 39.1 29.1 58.5 124.5 22.2 manual
X-Transformer>[24] 77.8 37.7 29.0 58.0 122.1 21.9 manual
AutoCaption”> [41] T || 79.8 40.3 29.6 59.2 | 1285 | 228 RL
IUC (ours) 80.0 40.6 31.2 59.4 132.8 | 239 gradient-based

CIDEr Score Optimization

Encoder-Decoder

BLEU-1 | BLEU-4 [ METEOR [ ROUGE | CIDEr | SPICE ||  Architecture
SCST” [30] - 35.4 27.1 56.6 | 117.5 - manual
RFNet® [14] 80.4 37.9 28.3 58.3 125.7 21.7 manual
GCN-LSTM? [36] 80.9 38.3 28.6 58.5 1287 | 221 manual
SGAE [35] 81.0 39.0 28.4 589 | 1291 | 222 manual
AoANet” [13] 81.6 40.2 29.3 59.4 132.0 | 22.8 manual
X-LAN” [24] 81.6 403 29.8 59.6 | 1337 | 236 manual
X-Transformer>[24] 81.7 40.7 29.9 59.7 135.3 23.8 manual
AutoCaption” [41] T || 829 42.1 30.4 60.4 | 1395 | 243 RL
IUC (ours) ¥ 824 42.5 31.8 60.4 142.7 | 25.9 gradient-based

models, called IUC, for further improvement. In Table 3, we evalu-
ate and compare the performance of IUC and the existing works
by utilizing ensemble models. Our extensive experiments show
that TUC can outperform the existing image captioning models in
single and ensemble model settings with both Cross-Entropy loss
optimization and CIDEr Score optimization.

Figure 3 showcases different exemplar of generated captions
by our IUC and our baseline (AutoCaption® [41]) along with the
human-annotated ground truth (GT) captions. As it is shown, our
model generates more accurate, clear, and detailed textual descrip-
tions in challenging image cases, since our encoder-decoder archi-
tecture in IUC is task-specific designed, while AutoCaption [41]
aims only to design the language decoder using NAS. This im-
plies that the architecture design of the image encoder has more
impact on the model’s performance than the language decoder’s
architecture design.

4.4 Ablation Studies

Ablation 1. We are interested in verifying the critical advantage
of employing architecture search in image captioning tasks. In this
study, we employ architecture search and random sampling for
the architecture designs of the image encoder and the language
decoder.

Similar to Section 4.2; first, we perform an architecture search or
random sampling to obtain the optimal cells, then we construct
the large network by using the optimal cells, and finally, we train
and evaluate the large network. To get a deeper understanding of
the impact that each module’s architecture (i.e., image encoder and
language decoder) has on the image captioning performance, we
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Table 4: Comparison of searched (S) and randomly sampled
(R) encoder and decoder architectures on COCO “Karpathy”
test split (single-model with Cross-Entropy Loss).

| Encoder | Decoder || BLEU-4 | METEOR | CIDEr | SPICE |

R R 37.7 28.0 117.9 21.7
R S 37.9 28.7 122.1 21.9
S R 38.3 29.4 127.3 22.6

do not use the OSCAR pre-training during this study - unlike the
experiments in Table 2 - to reduce the constraints and dependencies
of our investigation. Similar to DARTS [22], image encoder and
language decoder architectures are searched or randomly sampled
from convolutional or recurrent cells, respectively. Table 4 shows
that architecture search can significantly enhance the image cap-
tioning models” performance, and the architecture design of the
image encoder is more crucial for achieving higher performance
than the architecture design of the language decoder.

Ablation 2. In this setting, we investigate how the IUC-E model’s
performance varies as the tradeoff parameters A and y change in
Eq.(10).

min AL(W" (" (A), F*(A)), D) + yL(E" (4), F* (4), D**"))
s.t. W*(E*(A), F*(A)) = argmin L(W,U,E*(A), F*(A)) (10)
w

E*(A), F*(A) = argmin L(E, A, F,D")
E,F
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AutoCaption: Some food is on a
white plate.

IUC: A white plate of fish and broc-
coli is sitting on a table

GT: The meal of fish has a side of broc-
coli.

tree.
green street signs above it.

green street sign.

AutoCaption: A street sign next to a
IUC: A red do not enter sign with two

GT: A red do not enter sign under a

AutoCaption: A young man is stand- AutoCaption: A white refrigerator in
ing next to a bed.
IUC: A man with a leopard robe is IUC: A dirty refrigerator and some
standing next to a white bed.
GT: A man dressed in leopard robe GT: An abandoned refrigerator next
next to a bed.

the patio.
garbage on the floor next to a building.

to a building with a window.

Figure 3: Exemplar captions generated by IUC and AutoCaption” [41] as well as their corresponding ground truth sentences

generated by humans.

Table 5: Image captioning evaluation with different tradeoff
parameters (1 and y) on COCO “Karpathy” test split (single-
model with Cross-Entropy Loss).

Table 6: Comparison of utilizing various differentiable ar-
chitecture search based methods with ITUC on the COCO
“Karpathy” test split (single-model with Cross-Entropy Loss).

[ Lambda A | Gamma y || BLEU-4 | METEOR | CIDEr [ SPICE | | Methods [ BLEU-4 | METEOR | CIDEr | SPICE |
1 0 39.7 309 [ 1311 238 IUC-E + DARTS 39.7 30.9 131.1 | 2338
0 1 39.1 29.7 129.9 | 229 IUC-E + PC-DARTS | 39.8 31.2 1316 | 24.1
1 1 39.5 30.4 130.6 | 23.1 IUC-E + DATA 40.1 313 | 1319 | 239

Table 5 demonstrates the performance of IUC-E in three different
cases: 1) A = 1 and y = 0, the encoder-decoder model updates its ar-
chitecture by minimizing the validation loss of the predictive model
only, without considering the validation loss of itself - similar to
Eq.(4) - and this model achieves the best performance on all four
metrics. 2) A = 0 and y = 1. Unlike the first case, we have a bi-level
optimization problem since the encoder-decoder model updates
its architecture by minimizing its validation loss without going
through the second stage. This model exhibits the lowest perfor-
mance. 3) When A = 1 and y = 1, we are combining the validation
loss of the predictive model and encoder-decoder model. In this sce-
nario, we can achieve higher performance than in the second case
since the predictive model provides more useful feedback, which
assists in better learning. The achievement of these three cases im-
plies the significant impact of L(W*(E*(A), F*(A)), D@l in the
validation loss, which helps the model to improve its understanding
of the images.

Ablation 3. In spite of the high achievements of DARTS [22],
some of the newer variations of differentiable NAS methods were
able to enhance the performance of DARTS and reduce its memory
cost by utilizing different techniques on DARTS.

To study some of these methods for additional enhancements, we
evaluate our proposed models in image captioning by applying
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various DARTS-based methods, including DARTS, PC-DARTS, and
DATA to search for the image encoder architecture of the IUC-
E model. Evaluation results in Table 6 show that utilizing more
advanced DARTS-based methods, such as DATA, can be applied
for further improvements on top of IUC.

5 CONCLUSION

In mission-critical applications (e.g., disease diagnosis), if the textual
descriptions generated by image captioning models are incorrect,
they may mislead human decision-makers and have potential nega-
tive social impacts. Thus, it is crucial to minimize the prediction
error in such tasks. To tackle this issue, we presented a novel ap-
proach for image captioning tasks by utilizing differentiable NAS
techniques to obtain the high-performance encoder-decoder model
architectures. We introduced a three-level optimization problem
by formulating IUC and provided efficient solutions to this specific
framework. Furthermore, our investigations show the effective-
ness of the encoder and decoder modules individually in image
understanding. We applied our proposed methods on COCO im-
age captions dataset to verify IUC can outperform the existing
state-of-the-art methods in the image captioning tasks.
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