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Abstract: Suppose that one can construct a valid (1 − δ)-confidence in-
terval (CI) for each of K parameters of potential interest. If a data analyst
uses an arbitrary data-dependent criterion to select some subset S of pa-
rameters, then the aforementioned CIs for the selected parameters are no
longer valid due to selection bias. We design a new method to adjust the
intervals in order to control the false coverage rate (FCR). The main estab-
lished method is the “BY procedure” by Benjamini and Yekutieli (JASA,
2005). The BY guarantees require certain restrictions on the selection cri-
terion and on the dependence between the CIs. We propose a new simple
method which, in contrast, is valid under any dependence structure be-
tween the original CIs, and any (unknown) selection criterion, but which
only applies to a special, yet broad, class of CIs that we call e-CIs. To
elaborate, our procedure simply reports (1 − δ|S|/K)-CIs for the selected
parameters, and we prove that it controls the FCR at δ for confidence in-
tervals that implicitly invert e-values; examples include those constructed
via supermartingale methods, via universal inference, or via Chernoff-style
bounds, among others. The e-BY procedure is admissible, and recovers the
BY procedure as a special case via a particular calibrator. Our work also
has implications for post-selection inference in sequential settings, since it
applies at stopping times, to continuously-monitored confidence sequences,
and under bandit sampling. We demonstrate the efficacy of our procedure
using numerical simulations and real A/B testing data from Twitter.
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1. Introduction

One of the most classical problems in statistics is the problem of parameter
estimation e.g. estimating the mean of a distribution. The time-tested solution
is to produce a confidence interval (CI) in the parameter space that covers the
true parameter with high probability. However, many scientists are not simply
interested in estimating a single parameter — they may have many potentially
interesting parameters to estimate concurrently.

For example, a scientist might be experimenting with K vaccines for a strain
of virus. She may only be interested in reporting CIs for the vaccines that the
data suggest to be effective. However, she does not know which vaccines may be
effective until after she looks at the data. A reasonable thing she might do is to
report the usual 95% CIs for the vaccines where the CI is positive (i.e., the entire
interval for the treatment effect is above zero). Consequently, she is using the
same data to both select the parameters she wishes to estimate, and construct
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estimates of these parameters. As a result, the reported (uncorrected) CIs do not
provide valid statistical coverage. To see this, consider a scenario where none of
the vaccines reduce mortality. Any reported CI will have a coverage probability
of 0%, since the CI for a vaccine is reported only if it is positive, meaning that
it excludes the true effect of zero.

The above example illustrates the issue of selection bias for post-selection
inference, as prominently noted by Benjamini and Yekutieli [4]. Motivated by
this example, let us quickly introduce the formal problem setup.

Let P denote the universe of all possible distributions for the data. Let ϑ :
P → Θ denote a functional (or parameter) that maps distributions to parameter
values lying in some set Θ. A scientist observes some data, X = (X1, . . . , XK)
that is drawn from an unknown distribution, P

∗, and we are potentially in-
terested in the values of K of its functionals1 ϑ1, . . . , ϑK , but our interest in
them depends on the unknown parameter values θ

∗ := (θ∗
1 , . . . , θ∗

K), where
θ∗

i := ϑi(P
∗).

Let EP and PP denote the expectation and probability under a distribution
P, respectively, although we sometimes suppress the subscript in the case of
P

∗ for simplicity. For each i ∈ [K], we assume that from Xi, the scientist can
construct a marginal (1 − α)-confidence interval for θ∗

i , for any desired level
α ∈ [0, 1], which is a set Ci(α) ⊆ Θ such that P(θ∗

i /∈ Ci(α)) ≤ α, or more
explicitly, for any P ∈ P, we would have PP(ϑi(P) /∈ Ci(α)) ≤ α.

The scientist uses the data X to select a subset of “interesting” parameters,
S ⊆ [K], using some potentially complex data-dependent selection rule S :
X �→ S. The scientist must then devise confidence levels for the CI of each
selected parameter, {αi}i∈S , that can depend on the data X. The false coverage
proportion (FCP) and false coverage rate (FCR) of such a procedure are:

FCP :=

∑
i∈S I {θ∗

i �∈ Ci(αi)}

|S| ∨ 1
, FCR := E [FCP] ,

where a ∨ b = max(a, b). Our goal is to design a method for choosing {αi}i∈S

which guarantees FCR ≤ δ for a predefined level δ ∈ [0, 1] provided by the scien-
tists in advance, regardless of what the selection rule S is, and in particular even
if the rule is unknown and we only observe the selected set S = S(X). Figure 1
illustrates the setup of this post-selection inference problem.

We consider FCR over other error metrics for two main reasons. First, con-
structing a “conditional CI” which provides a coverage probability guarantee
conditional on the selected set, S, requires knowing the selection rule S be-
forehand — while the scientist may sometimes be willing to provide this before
seeing the data (and stick to it after seeing the data), this requirement still
limits the usage of any such method because a scientist may wish to explore
the data informally before deciding on a set S. Our e-BY method will overcome
this limitation. Another option is to obtain a simultaneous coverage guarantee

1Technically these functionals could each lie in different sets Θ but this complicates nota-
tion, and we will anyway not explicitly need these sets later in the paper. Note that each θi

need not be bijective. For example, ϑi could capture the median of a distribution.
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Fig 1. The post-selection inference with confidence intervals (CI) problem. We must choose
corrected confidence levels (1−αi) for the marginal CI constructed for each θ∗

i
that is selected.

The goal is to correct for the bias introduced by the selection rule and still provide a coverage
guarantee for the resulting CIs. The coverage metric that we are interested in is the expected
proportion of selected parameters that are not covered by their respective CIs, that is, the false
coverage rate (FCR). Our corrected confidence level must guarantee that the FCR is below
some fixed level of error δ ∈ [0, 1].

over all parameters, but this usually requires an overly conservative Bonferroni
correction. We discuss these other metrics in more detail in Appendix F. With
that said, we will focus our attention on FCR control in this work.

Our primary point of comparison is the BY procedure that was proposed in
the same aforementioned paper by Benjamini and Yekutieli [4]. The BY pro-
cedure’s choice of {αi}i∈S and resulting guarantees depend upon assumptions
(or knowledge) of the dependence structure in X and the selection algorithm S.
Under certain restrictions (omitted here for brevity) on S, the BY procedure
sets αi = δ|S|/K to ensure that the FCR is controlled at level δ for mutually
independent X1, . . . XK . However, when no such assumptions can be made (i.e.,
under arbitrary dependence and an unknown selection rule) the BY procedure

sets αi = δ|S|/(K�K), where �K :=
∑K

i=1 i−1 ≈ log K is the Kth harmonic
number. Clearly, the BY procedure produces much more conservative CIs when
no assumptions can be made about dependence or selection.

In this paper, we introduce the e-BY procedure, which achieves the best of
both worlds: it requires no restrictions on the dependence structure or selection
rule and produces CIs with larger error levels αi = δ|S|/K (yielding tighter CIs)
and ensures FCR ≤ δ without any requirements on the dependence structure or
selection rule. However, its applicability is restricted to a smaller, but still quite
broad, class of CIs. We refer to this class of intervals as “e-confidence intervals”
(e-CIs) and we introduce them below.
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E-confidence interval (e-CI) A crucial concept to defining an e-CI is the
e-value [30, 24, 12, 21], a concept recently formulated in the hypothesis testing
literature as an alternative to the classical p-value.

Definition 1. A nonnegative random variable E is called an e-value w.r.t. a
set of distributions Q, if supP∈Q EP[E] ≤ 1.

Above, Q represents the null hypothesis being tested and E quantifies evi-
dence against the null (large e-values are more evidence). As a simple example,
we note that if Q = {Q} is a singleton, then the only admissible e-values are
likelihood ratios of the form dR/dQ for some alternative distribution R [21].

Given a particular functional ϑ of interest, let Pθ := {P ∈ P : ϑ(P) = θ}
denote the set of all distributions with functional value θ.

Definition 2. Let {E(θ)}θ∈Θ be a family of e-values such that for each θ ∈ Θ,
E(θ) is an e-value w.r.t. Pθ. For any α ∈ [0, 1], we define the (1−α)-e-confidence
interval (e-CI) as follows:

C(α) =

{
θ ∈ Θ : E(θ) <

1

α

}
. (1)

Proposition 1. Every e-CI is a valid CI.

Proof. For any P ∈ Pθ, we have PP(θ �∈ C(α)) = PP(E(θ) ≥ 1/α) ≤ α, where
the last inequality follows by Markov’s inequality, since EP[E(θ)] ≤ 1 because
E(θ) is an e-value with respect to any P ∈ Pθ.

Our contributions Our key contributions are twofold. First, we study the
aforementioned novel “e-CI” subclass of CIs. We show that a reasonably large
array of existing CIs are already e-CIs. This new categorization sets the stage
for our second main contribution: the e-BY procedure for FCR control (Defi-
nition 6). The e-BY procedure shows that one can attain tighter CIs than the
BY procedure when no assumptions are made on the dependence structure or
selection rule. The e-BY procedure is quite straightforward — it simply sets the
confidence level of the CI for each selected parameter to be 1−δ|S|/K, and this
is sufficient to guarantee FCR ≤ δ.

On the other hand, the BY procedure requires knowledge of all counterfac-
tual selections one would make on different data. The BY procedure relies on
quantities concerning these counterfactual selections (that cannot be derived
without knowing the selection rule beforehand), and has to pay a costly correc-
tion factor (approximately logarithmic in the number of initial parameters, K)
on the confidence levels when the selection rule is unknown. The BY procedure
has such limits even when the data X1, . . . , XK are mutually independent. Thus,
BY has no guarantees when parameters are selected by the scientist in an ad
hoc fashion, which is often the case (e.g., exploratory data analysis, selection
based on domain knowledge). In addition, the BY procedure — even in optimal
conditions of having independent data and a known selection rule — cannot
produce confidence levels that are tighter than those produced by e-BY. As a
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Fig 2. A flowchart for deciding when to use e-BY vs. BY. The only case where the BY
procedure should be employed is when strong assumptions are made upon both the selection
rule and the type of data dependence, while the e-BY procedure is a uniform improvement over
the BY procedure in all other cases. If e-CIs can only be constructed for some parameters, and
standard CIs for others, we can calibrate standard CIs to e-CIs. In fact, calibration reduces
the BY procedure to a special case of e-BY (Section 2.3).

result, the e-BY procedure dominates the BY procedure when e-CIs are avail-
able or when one cannot make assumptions about either the selection rule or
dependence structure. We elaborate on these points below:

D1. Selection rule must be known for the BY procedure to yield the tightest
possible confidence intervals. Under independence (and a more general
condition of PRDS — see Benjamini and Yekutieli [3, Section 1.3]), the
BY procedure guarantees FCR control when the ith CI has a confidence
level of 1−δ|S|/K only when the selection rule satisfies certain properties.
When the selection rule is not guaranteed to satisfy such properties, the
BY procedure can only provide FCR control level δ by yielding CIs at a
confidence level of 1 − δ|S|/(K�K). On the contrary, the e-BY procedure
can provide the same level of FCR control by producing CIs at a confidence
level of 1 − δ|S|/K i.e. the smallest level that can be achieved by the
BY procedure even when the data is independent and the selection rule
satisfies certain conditions.

D2. CIs produced by the BY procedure are larger when the CIs are arbitrarily
dependent. Even if the selection rule S is known, the BY procedure pro-
duces more conservative intervals than the e-BY procedure when the CIs
for each parameter, (C1, . . . , CK), can be arbitrarily dependent. The BY
procedure must correct the confidence levels to be 1 − δ|S|/(K�K) while
the e-BY procedure maintains the same confidence levels of 1 − δ|S|/K.
Arbitrarily dependent data can arise when we make multiple measure-
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ments of a single unit of experimentation, for example, measuring differ-
ent gene expression levels in a single cell. Dependence is also prevalent
in settings where data are collected sequentially — we explore this usage
further in Section 7, where we analyze both procedures using real data col-
lected by an information technology company (Twitter) for the purposes
of product testing.

D3. The e-BY procedure applies to e-CIs. Of course, the e-BY procedure is ben-
eficial solely when e-CIs can be constructed for the parameters of interest.
Although “e-CI” is a new term, many existing CIs are e-CIs. These include
non-asymptotic CIs based on Chernoff-type inequalities such as Hoeffding
(Appendix E), Bernstein, and empirical Bernstein CIs [14, 5, 19], univer-
sal inference CIs [34] (Section 2.1), and CIs formed by stopping confidence
sequences [22, 15, 16, 35, 33] (Section 2.2). Thus, finding powerful e-CIs is
not a major limitation in many applications. Further, we will demonstrate
in Section 2.3 that we can always construct an e-CI from a CI, and one can
use specific calibrators to recover the BY procedure (Section 3.2). Hence,
if one has both CIs and e-CIs, calibrating the CIs to e-CIs and applying
e-BY dominates the BY procedure.

We summarize the tradeoffs between the e-BY and BY procedures in Table 1.

Table 1

Tradeoffs between the e-BY procedure in this paper and the BY procedure [4]. The
confidence levels of the e-BY procedure are not penalized for certain selection rules or for

different types of dependencies between CIs. However, the e-BY procedure only being
applicable to e-CIs, a special class of CIs derived from e-values [30, 24, 12, 21].

Procedure Type of CI Selection rule Dependence

BY general penalized for unknown S (D1) penalized (D2)
e-BY e-CIs (D3) no penalty no penalty

Outline Since the e-BY procedure applies only to e-CIs, we describe several
useful examples of e-CIs in Section 2. In Section 3, we prove that e-BY controls
FCR under any selection rule and dependence structure, and contrast it with
the BY procedure. To complement our validity results, we also show that the
e-BY procedure is unimprovable in some notions — Section 4 shows that the
e-BY procedure has sharp control of the FCR and Section 5 shows that e-BY
is admissible among a general class of e-CI reporting procedures. Lastly, we
compare the empirical behavior of the e-BY and BY procedures on simulations
in Section 6 and real user metric data from A/B testing experiments at Twitter
in Section 7.

2. Confidence intervals obtained via e-values (e-CIs)

E-CIs are are referred to “warranty sets” by Shafer [24] in the context of game-
theoretic statistics, and Vovk and Wang [31] defined a similar notion under
the name of an e-confidence region, although their version allows for thresh-
olds smaller than 1. Recent work has shown that e-CIs are pertinent to or arise
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naturally in many settings. For example, universal inference [34] allows us to
construct e-CIs for estimation of certain parameters in nonparametric and high-
dimensional settings where the only requirement is having access to the likeli-
hood functions for each null distribution. For sequential testing and estimation
problems, e-processes, the sequential counterpart of e-values, play a central role
in constructing time-uniform versions of CIs, known as confidence sequences
[22, 16, 35, 33]. Further, many classical statistical tools already construct e-CIs,
since they are implicitly using e-values or e-processes under the hood e.g. like-
lihood ratio tests and Chernoff methods [15]. Hence, limiting ourselves to e-CIs
does not restrict the regime we may perform efficient inference in. In some cases,
e-CIs might be the best tool we have for the job. For example, when estimating
the mean of bounded random variables, the e-CIs in Waudby-Smith and Ram-
das [35] are empirically among the tightest known CIs for sequential estimation
of the mean; see also [20]. On the other hand, when we are in a setting where
e-CIs are not the default choice of CI, one can calibrate any CI into an e-CI. In
fact, we can demonstrate that the BY procedure is a special case of the e-BY
procedure through calibration. We elaborate on a couple of the aforementioned
examples below.

2.1. E-CIs from universal inference

A particularly useful method for constructing e-CIs is through universal infer-
ence [34]. Universal inference is a generalization of the standard likelihood ratio
test that allows for testing against composite null hypotheses. Hence, e-CIs
formed through universal inference only require access to likelihood functions
(or a function that upper bounds the likelihood functions) for each possible
distribution.

The simplest form of the universal inference e-CI can be derived from the
split likelihood ratio test of Wasserman, Ramdas and Balakrishnan [34]. Assume
that we are given A1, . . . , A2n i.i.d. samples. We first split this sample into two
datasets D0 and D1 — for simplicity we can assume that the two datasets are of
equal sizes of n samples, although they do not have to be. Let P1 ∈ P be some
distribution that we choose based solely on D1. In essence, P1 is a guess of the
“most likely alternative” and chosen to make the resulting e-value as large as
possible. Consequently, the more accurately P1 models the true distribution, the
tighter the resulting e-CI will be. Let L0(P) denote the likelihood of D0 under
a distribution, P. We define the universal inference e-value as follows:

EUI(θ) :=
L0(P1)

argmaxP0∈Pθ
L0(P0)

. (2)

Proposition 2 (Split universal inference e-CI [34]). For any parameter θ ∈ Θ,
EUI(θ) is an e-value w.r.t. to θ for any choice of procedure that derives P1 from
D1. Consequently, the following set is a valid e-CI associated with EUI:

CUI(α) :=

{
θ :

L0(P1)

argmaxP0∈Pθ
L0(P0)

<
1

α

}
.



2300 Z. Xu et al.

As a result, universal inference ensures that a nontrivial e-CI exists in any
situation where the likelihood (or an upper bound on it) is known. In many
settings, universal inference remains the only method for deriving nontrivial
tests and CIs e.g. estimating the number of mixtures in a Gaussian mixture
model when the dimension is greater than 1.

2.2. E-CIs from stopped confidence sequences

In the sequential setting, we assume that we receive samples of data, A1, A2, . . . ,
in a stream. The goal is to produce a CI that is valid when the number of samples
is data dependent, i.e., the user has the option to continuously monitor the data
and continue or stop sampling based on the values observed so far. A typical
sampling strategy is for a scientist to stop sampling as soon as she has evidence
to reject the null hypothesis. Ramdas et al. [21] showed that any admissible
sequence of CIs that is valid under adaptive sampling must be an e-CI.

Denote the sigma-algebra formed at each time step that contains all the
random samples seen so far as Ft := σ({Ai}i≤t), with (Ft)t∈N being the corre-
sponding filtration. A random variable τ ∈ N is a stopping time if I {τ = t} is
measurable w.r.t. Ft. This means that whether τ “stops” at time t ∈ N can only
depend on (A1, . . . At). Since samples arrive one at a time, we can consider a se-
quence of intervals (Ct(α)), where Ct(α) is the CI we construct after collecting
t samples. However, a sequence of (1 − α)-CIs cannot guarantee that the CI at
a stopping time, Cτ (α), is also a (1 − α)-CI. In fact, Howard et al. [16] provide
simulations showing that the coverage probability can be drastically less than
(1−α). Thus, we want to strengthen the definition of a standard CI by providing
a coverage guarantee at stopping times, as opposed to only fixed sample sizes.

Definition 3. A (1 − α)-confidence sequence for a functional ϑ is a sequence of
intervals (Ct(α))t∈N such that Cτ (α) is an (1 − α)-CI for any stopping time τ .
It also has the following equivalent definition [21, Lemma 2]: for any P ∈ P and
α ∈ [0, 1], we have

PP(ϑ(P) ∈ Ct(α) for all t ∈ N) ≥ 1 − α.

The formulation of a CS in the above definitions emphasizes the time-uniform
coverage a CS provides — a CS ensures the probability θ∗ is in the CS at every
time step is high. One way to construct such an object is using a family of
e-processes, which are the sequential versions of the e-values.

Definition 4. Let the index set I be N or (0, ∞). An e-process w.r.t. to some
filtration (Ft)t∈I and set of distributions Q is defined as a sequence of ran-
dom variables (Et)t∈I which are all nonnegative under any P ∈ Q and satisfy
supP∈Q EP[Eτ ] ≤ 1, i.e., Eτ is an e-value w.r.t. Q, for all stopping times τ w.r.t.
(Ft).

For recent literature relevant to e-processes, see [12, 21, 15, 16]. E-processes
are a superset of nonnegative supermartingales (one can see nonnegative su-
permartingales are e-processes as a result of the optional stopping theorem).
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Thus, a sequence of intervals constructed through applying the formula in (1)
to a family of e-processes (Et(θ))t∈N is a CS. For example, the following is a
Hoeffding-esque e-process for testing the mean of a bounded random variable
[14, 35]:

Et
Hoef(θ) := exp

(
t∑

i=1

λi(Ai − θ) −
λ2

i

8

)
,

where (λt) is predictable w.r.t. (Ft), i.e., λt is measurable w.r.t. Ft−1 for all
t ∈ N. We can define a two-sided e-CI based on (Et

Hoef(θ)) as follows:

Ct
Hoef(α) :=

⎛
⎜⎜⎝

t∑
i=1

λiAi

t∑
i=1

λi

±

log(2/α) + 1
8

t∑
i=1

λ2
i

t∑
i=1

λi

⎞
⎟⎟⎠ .

Notice that setting λt =
√

log(2/α)/n recovers the classic Hoeffding CI [14] for
the specific sample size of n ∈ N and fixed α ∈ [0, 1]. We discuss how to optimize
these parameters in the post-selection inference setting where there are multiple
potential values of α in Appendix E.

Another implication of the above formulation is that the e-process view allows
one to extend the coverage guarantee of existing CIs to be valid sequentially.
This coverage improvement is not only applicable to Hoeffding’s, but also a wide
range of Chernoff type inequalities [15, 16, 33]. Similarly, the universal inference
e-CI formulated in (2) can also be extended to a sequential form, where P1 may
be recomputed at each time step based on the previously observed samples. For
bounded random variables, one can construct e-processes that directly corre-
spond to the wealth process of a sequence of fair gambles [35]. Since e-CIs are
necessary for sequential inference, the e-BY procedure is a strict improvement
over the BY procedure in settings that allow for adaptive sampling and stop-
ping such as in multi-armed bandits and the A/B testing setting we discuss
in Section 7.

2.3. E-CIs constructed from CIs through calibration

Although the definition of an e-CI is much more specific than a general CI, we
will present a method for calibrating arbitrary marginal CIs to e-CIs using a
method for p-value to e-value calibration [29, 23, 26, 25, 30].

Definition 5. A calibrator is a nonincreasing, upper semicontinuous function

f : [0, 1] → [0, ∞] where
∫ 1

0
f(x) dx ≤ 1.

Define f−1 to be the dual of the calibrator f , i.e., f−1(x) := sup{p : f(p) ≥
x}. When f is invertible, f−1 is the inverse of f . Using f−1, we can convert any
CI to an e-CI. Also we define two properties about any set-valued CI function
C : [0, 1] �→ 2Θ. Let C be nonincreasing if, for any α, β ∈ [0, 1], α ≤ β implies
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that C(α) ⊇ C(β). Further, define continuous from below to be the property
that for any α ∈ [0, 1], C(α) =

⋃
β>α

C(β).

Theorem 1. Let C : [0, 1] �→ 2Θ be a nonincreasing function that is continuous
from below such that C(α) produces a (1 − α)-CI, and f be a calibrator (with
dual calibrator f−1). Then, the following set is a (1 − α)-e-CI:

Ccal(α) = C

(
f−1

(
1

α

))
.

We provide a proof of Theorem 1 in Appendix A.1. As a consequence of this
theorem, we can construct a nontrivial e-CI from any nontrivial CI and a dual
calibrator. Of course, this prompts the question: when should one use e-CIs with
the e-BY procedure instead of CIs with the BY procedure? Generally speaking,
the calibrated e-CI will be looser than the original CI, since f(x) = 1/x is not
a calibrator. However, we show in Section 3 that applying e-BY to calibrated
e-CIs is actually equivalent to applying the BY procedure to the original CIs
when the selection rule is unknown or the original CIs are dependent. Thus,
calibrating CIs to e-CIs creates e-CIs across all parameters, in the case where
some parameters initially do not have e-CIs.

3. The e-BY procedure

Now, we formally define the e-BY procedure as follows.

Definition 6. The e-BY procedure at level δ ∈ [0, 1] sets αi = δ|S|/K for each
i ∈ S.

We show that a FCR bound can be proven quite simply given the fact that
e-CIs are constructed for each selected parameter.

Theorem 2. Let Ci(α) be a (1 − α)-e-CI for each i ∈ [K] and α ∈ [0, 1]. Then,
the e-BY procedure in Definition 6 ensures FCR ≤ δ for any δ ∈ (0, 1) under
any dependence structure between X1, . . . , XK , and any selection rule S.

Proof. We directly show an upper bound for the FCR as follows:

FCR = E

[∑
i∈S I {θ∗

i /∈ Ci(δ|S|/K)}

|S| ∨ 1

]

= E

[∑
i∈[K] I {Ei(θ

∗
i )|S|δ/K > 1} · I {i ∈ S}

|S| ∨ 1

]

≤
∑

i∈[K]

E

[
Ei(θ

∗
i )|S|δ

K(|S| ∨ 1)

]
=

∑

i∈[K]

δ

K
E

[
Ei(θ

∗
i ) ·

|S|

|S| ∨ 1

]
≤ δ,

where I {·} is the indicator function. The first inequality is because I {x > 1} ≤ x
for all x ≥ 0. The second inequality is a result of the definition of the e-value
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for θ∗
i having its expectation under P

∗ be upper bounded by 1. This achieves
our desired bound.

Remark 1. FCR control of the e-BY procedure implies FDR control of the e-
BH procedure [32], while the converse is not true. The arbitrary nature of S is
unique to the post-selection inference problem (as e-BH can only reject “self-
consistent” [6] sets of hypotheses), and defining the concept of e-CIs is key to
achieving FCR control. We expand on the relationship between these procedures
in Appendix B and visualize their relationships in Figure 6. We also introduce
a directional variant of e-BH that uses the FCR control of the e-BY procedure
to achieve directional FDR control in Appendix B.3.

False coverage control for data-dependent δ An interesting result of
this proof is that we retain a form of control on the FCP even if δ is chosen
data dependently. Define FCP(δ′) to be the FCP of a post-selection inference
procedure at level δ′.

Corollary 1. The following is always true for the e-BY procedure (regardless
of selection rule or dependence in X):

E

[
sup

δ′∈(0,1]

FCP(δ′)

δ′

]
≤ 1. (3)

Here, FCP(δ′) is FCP of the e-BY procedure at level δ′, i.e., αi = δ′|S|/K for
all i ∈ S.

Satisfying (3) is a stronger condition than FCR control, since (3) implies FCR
control for any fixed δ ∈ [0, 1]. This error guarantee follows from an argument
similar to the proof of Theorem 2. When testing K hypothesis to control the false
discovery rate, we note that a similar result for the false discovery proportion
(FDP) of the e-BH procedure is implied by this corollary:

E

[
sup

δ′∈(0,1]

FDP(δ′)

δ′

]
≤ 1.

This can also be observed directly from the proof of e-BH and we include the
details in Appendix B.2 for completeness. When specialized to a single hypoth-
esis test, the latter observation amounts to saying that for any e-value E, we
have

E

[
sup

δ′∈(0,1]

I {E ≥ 1/δ′}

δ′

]
≤ 1,

which is captured in [32, Lemma 1]. One can view the post-hoc type-I safety
discussed by Grünwald [11] and post-hoc validity of Koning [18] as a rephrasing
of this latter result.
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3.1. Comparison with the BY procedure

The FCR guarantee for e-BY in Theorem 2 solely relies on the definition of an
e-CI. Since the expectation property of e-values holds regardless of the type of
dependence, proving FCR control of e-BY does not require fine grained analysis
of how the distribution of an e-value changes when conditioned on other e-
values. On the other hand, the BY procedure does require more detailed analysis
because its proof only uses the marginal coverage property of each CI. Hence, the
BY algorithm requires different levels of corrections based on the dependence
structure and selection rule.

Definition 7. The BY procedure at level δ ∈ [0, 1] sets αi = δRmin
i /K if

X1, . . . XK are independent (or PRDS [4]), Rmin
i , as formulated in (4), is known,

and Rmin
i > |S|/�K . Otherwise, it sets αi = δ|S|/(K�K).

Fact 1 (Theorems 1 and 4 from BY [4]). The BY procedure ensures that FCR ≤
δ.

A key difference in the tightness of CIs between the e-BY and BY procedures
is how the selection rule affects the confidence levels chosen for the CIs. In the
e-BY procedure, the confidence levels are proportional to |S|, the number of
selected parameters. On the other hand, the BY procedure requires knowledge
of Rmin

i , which is formulated as follows for each i ∈ S:

Rmin
i := min {|S(Xi→xi

)| : xi ∈ Xi, i ∈ S(Xi→xi
)}, (4)

where Xi→xi
∈ X is the data X with the ith component set to xi.

Computing Rmin
i requires knowledge and analysis of the selection rule

Clearly, Rmin
i is a quantity that has to be calculated from the selection rule, S. In

practice, however, Rmin
i may be impossible to calculate. The selection rule may

not be fully specified or the counterfactual behavior of the selection rule may
be difficult to analyze. Post-selection inference is often used for exploratory data
analysis in the sense described by Goeman and Solari [10]. Hence, the selection
rule is often not known by the scientist ahead of time — she is developing her
selection plan on the fly as she explores the data! Another common scenario is
that scientist carrying out the experiment, performing analysis, and ultimately
producing the CIs may not be the one deciding upon the selection to report
e.g. the scientist’s manager makes the decision. In either case, the selection
rule is not known. As an aside, the e-BY procedure can also be used by the
manager in the prior example to produce CIs herself, since she does not need
to know the experimental design and dependencies in the data to construct
CIs using the e-BY procedure. Further, even if the selection rule was known
beforehand, it still might be difficult to analyze Rmin

i . For example, the selection
procedure could be iterative: at each iteration, the scientist considers a selection
set, observes some property of the CIs produced by the e-BY procedure for the
candidate selection set and then selects a new candidate selection set based on
her observations. Eventually, the scientist may finalize the selection set based
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on some sort of convergence criteria. In this selection scheme, the full procedure
is not specified, and quite difficult to specify since it requires knowing what the
scientist would do at every iteration if experimental data were different. Thus,
it is often impractical to assume Rmin

i is known.
The other main advantage of the e-BY procedure can be seen when the de-

pendence between CIs is arbitrary — there is a clear gap between the confidence
levels for the BY procedure and the e-BY procedure. The BY procedure requires
an extra correction of �K ≈ log K on the error probability under arbitrary de-
pendence, while the e-BY procedure behaves the same way under any form of
dependence. Thus, if the CIs are e-CIs, the e-BY procedure yields tighter CIs
than the BY procedure when the data is arbitrarily dependent or the selection
rule is unknown or has Rmin

i ≤ |S|/�K .

3.2. BY is special case of e-BY through e-CI calibration

By using a specific calibrator with the method for calibrating CIs into e-CIs
discussed in Section 2.3, we can show that the BY procedure (with no assump-
tions on dependence or selection rule) is a special case of the e-BY procedure.
Define the following calibrator when there are K hypotheses and the desired
FCR control is δ:

fBY(α,K)(x) :=
K

α

(⌈
x

α/(K�K)

⌉
∨ 1

)−1

I {x ≤ α/�K} .

Proposition 3. fBY(δ,K) is an upper semicontinuous calibrator for all δ ∈ (0, 1)
and K ∈ N.

Proof. Clearly, fBY(δ,K) is nonincreasing, and we note that:

∫ 1

0

fBY(δ,K)(x) dx =

K∑

j=1

δ

K�K
·

K

jδ
=

1

�K

K∑

j=1

1

j
= 1.

Hence, we proved that fBY(δ,K) satisfies the properties to be a calibrator.

By our result in Theorem 1, we can now show that the e-BY procedure
with fBY(δ,K) calibrated e-CIs is identical to the BY procedure under arbitrary
dependence.

Corollary 2. For any arbitrary CI constructors, denoted as Ci : [0, 1] �→ 2Θi

for each i ∈ [K], that are continuous from below. The BY procedure produces the
same CIs as the e-BY procedure with e-CI constructors Ccal

i that were calibrated
through fBY(δ,K) for each i ∈ [K].

Note that one take the limit from below at every α ∈ [0, 1] of a nonincreasing
CI constructor C to create a CI constructor C ′ that is continuous from below.
C ′ has valid coverage and is no wider than the original C for every α, so the
continuity from below is only a technical requirement.
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The above corollary follows from the fact that Theorem 1 and the choice of
fBY(δ,K) as calibrator implies the following:

Ci

(
δj

K�K

)
= Ccal

i

(
fBY(δ,K)−1

(
K�K

δj

))
= Ccal

i

(
δj

K

)
for all j ∈ [K].

Thus, the output of the BY procedure is equivalent to the output of the e-BY
procedure with calibrated e-CIs for all possible sizes of the selection set S. As a
result, in a situation where there may be a mix of e-CIs and regular CIs that are
arbitrarily dependent and the regular CIs, one can always calibrate the regular
CIs to e-CIs using fBY(δ,K) and then apply the e-BY procedure to produce CIs
that are as tight as directly applying the BY procedure.

Remark 2. We have not compared other calibrators, mostly because there is
no uniformly best choice of calibrator to use: different ones will perform better
in different settings. We recommend using the BY calibrator by default. The
BY calibrator is a natural choice since it allows the resulting output of the e-
BY procedure on calibrated CI to be no worse than the BY procedure (under
dependence or unknown selection rule). It is also exact, in the sense for the
resulting e-CI, the e-value corresponding to the true value of the parameter,
E(θ∗), will have an expectation exactly equal to 1 if the original CI has exact
coverage.

We have not defined admissibility for CI calibrators, but we conjecture that
for some suitable definition, the BY calibrator we introduce is an admissible
CI calibrator of CIs into e-CIs (since the corresponding p-to-e value calibrator
is admissible). Furthermore, it is well suited to use with the e-BY procedure,
since e-BY only produces CIs with error levels at multiples of δ/K — we also
conjecture that it is admissible among CI calibrators w.r.t. to the tightness
of CIs produced by e-BY. We think it is likely that the BY calibrator is the
only calibrator that allows one to produce CIs that were never worse than BY,
making it a good default choice.

4. FCR control of e-BY is sharp

To complement our upper bound on the FCR, we demonstrate the FCR bound is
indeed sharp for the e-BY procedure by formulating a setting where the FCR is
arbitrarily close to δ. First, let R− and R+

0 denote the negative and nonnegative
reals, respectively. Now, let

Zt
i (θ) = 1 + W t

i − θt for each θ ∈ R−, t ∈ R+
0 , and i ∈ [K],

where (W t
i )t∈R

+
0

is a Brownian motion with drift θ∗
i (unknown to the scientist)

and volatility 1. Define (Et
i (θ))t∈R

+
0

as the process obtained by stopping (Zt
i )t

when it hits 0:

Et
i (θ) = Zt

i (θ) I

{
inf

s∈[0,t]
Zs

i (θ) > 0

}
.

Assume that (W t
i ) are independent across i ∈ [K]. Clearly, (Et

i (θ∗
i )) is a

nonnegative martingale (and an e-process) for θ∗
i , since a Brownian motion is
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a martingale, and stopped martingales are martingales as well. We imagine
the scientist to be interested in estimating parameters whose true value θ∗

i is
positive, and she uses the following experimentation setup and selection rule to
do so. Fix γ ∈ [1, 1/δ) as the threshold for the processes (Et

i (0)) to be seen as
“interesting” (and chosen for further experimentation) but not yet conclusive.

We consider a two-step procedure. In the first step, we stop the i-th experi-
ment at time

τi := inf{t ≥ 0 : W t
i ≥ γ − 1 or W t

i ≤ −1},

and we select S such that i ∈ S if and only if W τi

i (0) ≥ γ − 1 (i.e., Eτi

i (0) ≥ γ).
That is, we select i such that W t

i + 1 = Et
i (0) reaches γ (interesting) before it

reaches 0 (discarded). In other words, the set S contains all interesting exper-
iments in the first screening. If γ = 1 then we simply select all experiments.
Let β = K/(δ|S|) > γ. Note that β is a function of S. (Here the index t of W t

i

does not necessarily represent time, and it does not have to synchronize across
i ∈ [K]. The scientist can finish all step 1 experiments before moving on with
the selected ones for step 2.)

In the second step, define another stopping time for the i-th experiment:

ηi = inf{t ≥ 0 : W t
i ≥ β − 1 or W t

i ≤ −1}.

That is, we will stop the experiment if either Et
i (0) reaches a very high level β

or it is discarded. Note that ηi > τi for i ∈ S and ηi = τi for i �∈ S, meaning
that we only continue those experiments that were deemed as interesting in the
first step. As a result, {Eηi

i (θ)}θ∈Θ forms a family of e-values for each i ∈ S,
and we can define the following one-sided e-CIs:

Ci(α) :=

{
θ ∈ R : Eηi

i (θ) <
1

α

}

=

{
θ ∈ R : 1 + W ηi

i − θηi <
1

α
or inf

s∈[0,ηi]
1 + W s

i − θs ≤ 0

}

=

(
min

(
1 + W ηi

i − 1
α

ηi
, inf

s∈[0,ηi]

1 + W s
i

s

)
, ∞

)
. (5)

Theorem 3. Let e-CIs be specified by (5). Then, lim
θ∗↑0

FCR = δ, i.e., limit of

FCR for the e-BY procedure approaches δ as θ
∗ approaches 0 (all zero vector)

from below.

A full proof of this theorem can be found in Appendix A.2.

Remark 3. The other source of looseness of the FCR bound in Theorem 2 is in
the relationship between selection event of each parameter and the e-value of
the true parameter, i.e., Ei(θ

∗
i ). In this example, we can see that the selection

rule and the true value of θ∗ are conflicting in some sense. The scientist wants
to select parameters with positive values, so when the parameters are actually
all negative values, the CI for a selected parameter will probably not cover the
corresponding true value θ∗

i . We discuss this further in Appendix D and observe
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some small improvements we may make on the e-BY procedure under stronger
assumptions about the e-CIs.

Remark 4. While the Brownian motion data generating process in our setup is
stylized, it does reflect some realistic aspects of sequential data collection. The
early stopping rule that halts as soon as an e-CI shows significance, and the
selection of promising experiments for further testing, are both natural strategies
for sequential experimentation (e.g., two stage designs, follow up studies). Hence,
depending on the relationship between selection rule and the true value of the
parameters (as illustrated in our example), it is plausible that the true FCR
could be close to the FCR bound.

On the other hand, the design of the parameters in this example is highly
adversarial: θ

∗ needs to be very close to 0 from below to approach this upper
FCR bound. Therefore, in practice, we do not always expect the FCR of e-BY
to be close to its upper bound, but the bound is still unimprovable in general.

5. Admissibility of the e-BY procedure

Not only does the e-BY procedure provide sharp error guarantees, it is also
admissible w.r.t. a general class of e-CI post-selection inference methods. We
will formally define the universe of CI reporting procedures that e-BY belongs to,
i.e., procedures which report a CI for the true value of each selected parameter.
We will show that, among CI reporting procedures that control the FCR when
given e-CIs, there exists no other procedure that produces strictly tighter CIs on
selected parameters than e-BY. To prove this, we define a notion of dominance
for FCR controlling CI reporting procedures, and prove that e-BY is indeed
admissible among this set of procedures.

Our notion of admissibility essentially requires that there is no FCR con-
trolling procedure that produces narrower CIs on all the selected parameters
uniformly over all possible inputs of e-CIs (by narrower, we mean at least as
narrow on all instances, but strictly narrower on at least one instance). To de-
velop our formalisms, we will first describe a notion of an e-CI constructor, i.e.,
a function that maps an error level α to its corresponding (1 − α)-e-CI.

5.1. Key properties of all e-CIs

Recall that the (1 − α)-e-CI associated with a family of e-values {E(θ)}θ∈Θ is
given by

C(α) =

{
θ ∈ Θ : E(θ) <

1

α

}
, for each α ∈ [0, 1], (6)

where the convention 1/0 = ∞ is used. Note that it is important to formulate
the e-CI by using the strict inequality E(θ) < 1/α instead of E(θ) ≤ 1/α.
Otherwise all admissibility arguments fail, since one could always improve from
{θ ∈ Θ : E(θ) ≤ 1/α} to {θ ∈ Θ : E(θ) < 1/α}, as smaller CIs are statistically
stronger. We define an e-CI constructor as the collection of e-CIs for each error
level α ∈ [0, 1].
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Definition 8. Let E := {E(θ)}θ∈Θ be a family of e-values for a parameter
that takes values in Θ. The corresponding e-CI constructor is the function CE :
[0, 1] → 2Θ which is defined as:

CE(α) =

{
θ ∈ Θ : E(θ) <

1

α

}
, for each α ∈ [0, 1].

It is important to note that CE we define above is a random function. We
have not separated designations for random variables or functions and their
realizations in this paper before, but we emphasize their distinction in this
section. This distinction allows us to define the domain of realizations of e-CI,
which in turn, is used to the notion of a CI reporting procedure.

Denote by the set ECI(Θ) the set of possible realizations of e-CI constructors
for the parameter space Θ, that is, C ∈ ECI(Θ) iff C is a possible realization of
an e-CI constructor CE for some family of e-values E = {E(θ)}θ via (6) under
some probability P ∈ P. We abuse vocabulary in this section and refer to the e-
CI constructor, C, as an “e-CI” as well. ECI(Θ) captures the domain of allowed
input of realized e-CIs, similar to [0, 1]K for input p-values and [0, ∞]K for input
e-values in multiple testing. It is important to formally describe ECI(Θ) as it
will be used as part of the domain of CI reporting procedures that we discuss
later.

Lemma 1. For a set function C : [0, 1] �→ 2Θ, C ∈ ECI(Θ) if and only if C is
nonincreasing and continuous from below.

We provide the proof in Appendix A.3. We see from Lemma 1 that ECI(Θ) is
precisely the set functions from [0, 1] to 2Θ which are decreasing and continuous
from below; note that these properties are common for any CI. In other words,
for a given CI which may be computed with other methods than e-values, we
cannot exclude the possibility that it is an e-CI just by looking at the CI.

Lemma 2. For a given C ∈ ECI(Θ), it is realized by the family of e-values
{E(θ)}θ if and only if E(θ) takes the value E(θ) = t(θ) whenever E(θ) ≥ 1 for
all θ ∈ Θ, where t is given in (10).

This is a direct consequence of (6) and (11). Due to Lemma 2, for any family
of e-values for Θ and θ ∈ Θ, the probability of realizing C ∈ ECI(Θ) is at most
1/t(θ) for t given in (10).

5.2. CI reporting procedures

Next, fix K parameter spaces Θ := (Θ1, . . . , ΘK) of interest. ECIK denotes
the set of all K-tuples of realizations of e-CIs, C = (Ci)i∈[K], for the true
values of these parameters (we omit the parameter spaces in ECIK since they

are fixed from now on). Define 2Θ :=
∏K

i=1 2Θi as the product space of the
power set of each parameter’s range. Using Lemma 1, ECIK is the collection
of C : [0, 1] → 2Θ whose components are nonincreasing and continuous from
below. Now, we define a notion of a CI reporting procedure.
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Definition 9. A CI reporting procedure Φ : [K] × ([0, 1] → 2Θ) → 2Θ takes a
selected set of indices S ⊆ [K] and the collection of e-CIs, C = (C1, . . . , CK) ∈
ECIK , as input and it outputs a vector of intervals, Φ(S, C) ∈ 2Θ, satisfying

(a) Φ(S, C)i = ∅ for all i �∈ S.
(b) Φ(S, C) = Φ(S, C′) if CS = C′

S where CS = (Ci)i∈S ; that is, for a selected
set of indices S, if two input vectors of CIs are identical for indices in S,
then Φ does not distinguish them.

Restriction (a) is a simplifying assumption since the purpose of CI reporting
procedures is to provide CIs for parameters in the selected set S. Hence, we just
report the empty set for unselected parameters. The above restriction (b) does
not seem to be dispensable from the proof of admissibility which we provide
later (see Remark 6 in Appendix A.4). It is a reasonable assumption: all the CIs
that are discarded or uninteresting should not affect how we report the selected
CIs. Both the e-BY and the weighted version of the e-BY procedure (which we
introduce and describe in Appendix C) satisfy this requirement.

In a statistical experiment, let Ei := {Ei(θ)}θ∈Θi
denote the family of e-values

used to construct e-CIs for θ∗
i . C are realizations of the e-CIs corresponding to

the families of e-values E := (Ei)i∈[K] via

CE

i (α) := CEi(α) =

{
θ ∈ Θi : Ei(θ) <

1

α

}
for each α ∈ [0, 1], i ∈ [K].

Let CE := (CE

1 , . . . , CE

K) denote the random vector of e-CIs that arise from
E. Recall that a CI reporting procedure only has access to the realized selected
set and the e-CIs, i.e., S and C, respectively but not the random e-CIs CE

themselves. The FCR of the CI reporting procedure Φ for the selection S, vector
of e-value families E, and true parameters θ∗

1 ∈ Θ1, . . . , θ∗
K ∈ ΘK is given by

FCR(Φ) = E

[∑
i∈S I

{
θ∗

i �∈ Φ(S, CE)i

}

|S| ∨ 1

]
,

where the expectation is taken under the true distribution P
∗.

A CI reporting procedure Φ has FCR level δ ∈ [0, 1] if FCR(Φ) ≤ δ for any
selection S, e-value families E, and true values of parameters θ

∗.

Definition 10 (Dominance). We say that the CI reporting procedure Φ dom-
inates another one Φ′ if Φ(S, C)i ⊆ Φ′(S, C)i for each i ∈ S, i.e., Φ pro-
duces narrower CIs for all parameters in S than the CIs produced by Φ′, for all
S ⊆ [K] and C ∈ ECIK , and strictly dominates if further there exists i ∈ S s.t.
Φ(S, C)i � Φ′(S, C)i for some S ⊆ [K] and C ∈ ECI∗

K where ECI∗
K is the set

of all C ∈ ECIK with strictly decreasing components.

Now, that we have a notion of dominance between e-CI reporting procedures,
we can define admissibility.

Definition 11 (Admissible CI reporting procedure). A CI reporting procedure
with FCR level δ ∈ (0, 1) is admissible if it is not strictly dominated by any CI
reporting procedure with FCR level δ.
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Theorem 4. The e-BY procedure at level δ ∈ (0, 1) is an admissible CI reporting
procedure with FCR level δ.

We defer the proof of this theorem to Appendix A.4. Further, using the same
arguments as in the proof of Theorem 4, we can also show that a weighted
version of the e-BY procedure, defined in Appendix C, is also admissible.

6. Numerical simulations

To understand the practical difference in the precision of the BY procedure and
the e-BY procedure, we conducted simulations in two different data settings.
The first is a nonparametric setting, where we only make the assumption that
the data is bounded. In the second setting, we simulate the sharp FCR scenario
for e-BY described in Section 4, where the data are stopped Brownian motions.

6.1. Bounded setting

We wish to estimate K different means in this setting. For each i ∈ [K], let Xi ∈
[−1, 1] be a bounded random variable of interest, and let Xi = (X1

i , . . . , Xn
i )

represent n i.i.d. draws from the distribution of Xi. Thus, the ith parameter of
interest is θ∗

i = E[Xi]. The distribution of Xi is standard normal distribution
truncated to [−σ, σ] that is normalized to be supported on [−1, 1]. We set σ =
100.

Let our desired level of FCR control be δ = 0.1. The selection rule selects
all parameters with p-values less than δ. Let θ̂i denote the sample mean of
X1

i , . . . , Xn
i for each i ∈ [K]. Our p-value of choice for the ith parameter is

Pi = (2 exp(−θ̂2
i /(2n))) ∧ 1. Such Pi is a two-sided p-value for bounded random

variables derived from Hoeffding’s inequality that tests the null hypothesis Hi :
θ∗

i = 0 for each i ∈ [K].

The CI for the BY procedure, and the e-CI for the e-BY procedure as defined
as follows:

Ci(α) :=

(
θ̂i ±

√
2 log(2/α)

n

)
,

Ci(α) :=

(
θ̂i ±

√
2 log(2/α)

n
·

log(2/α) + log(4/δ)

2
√

log(2/α) log(4/δ)

)
.

These two CIs are equivalent when α = δ/2 — both are derived from Hoeffding’s
inequality. We compare three different post-selection inference methods: the e-
BY procedure, the BY procedure with both an independence and Rmin

i = |S|
assumption (which is satisfied in this setting), and the BY procedure without
any assumptions. We refer to the BY procedure with the assumptions as “BY-
wA”, and the BY procedure without assumptions as “BY-woA”.
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Fig 3. Comparison of the FCR and average CI width for the BY vs. the e-BY procedure in the
bounded setting. We also plot the average number of parameters selected (i.e., |S|) for each
K. “BY-wA” refers to the BY procedure under the assumptions that the CIs are independent
(or PRDS) and Rmin

i
= |S|, while “BY-woA” is with no assumptions. The average CI width

of the e-BY procedure is nearly the same as the BY procedure with assumptions, and both are
vastly tighter than BY with no assumptions.

Results In Figure 3, we see that e-BY and BY-wA have nearly the same
expected width. On the other hand, BY-woA has a much larger expected width
since it is uniformly dominated by BY-wA. This is a setting where one should use
the BY-wA procedure for post-selection inference, since there is no dependence.
However, if the selection rule or dependence is unknown beforehand, one can
safely use the e-BY procedure, and attain CIs that are nearly as tight as the
ones obtained through BY-wA.

6.2. Stopped Brownian motion setting

We also simulate the sharp FCR setting from Section 4 for different true drift
parameters, θ∗

i = θ∗ for all i ∈ [K], and number of parameters, K to compare
the e-BY and BY procedures under a setting where the dependence structure
and selection rule is more complex. In this setting, the assumptions of the BY
procedure are not satisfied — the Xi are neither independent nor PRDS across
i ∈ [K]. Hence, BY-wA does not have guaranteed FCR control in this setting.
We compare the procedures on choices of K ∈ {10, 30, 100, 300, 1000} and θ∗ ∈
{10−1, 10−2, 10−3}. We set δ = 0.05 and γ = 2. The Brownian motion processes,
(W t

i ) for each i ∈ [K], are discretized into time steps of size 10−5. We use the
e-CI formulated in (5) for the e-BY procedure and its running intersection and
for the BY procedure.
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Fig 4. Comparison of the e-BY procedure vs. the BY procedure for the stopped Brownian
motion setting. In this setting, all CIs produced are one-sided, and θ∗ < 0, so we desire
the average lower boundary to be as large as possible. The e-BY procedure and the BY-wA
procedure have tight FCR as θ∗ ↑ 0 and vastly higher average lower boundaries than the the
BY-woA procedure. BY-woA has extremely conservative (nearly 0) FCR control.

Results In Figure 4, we plot the empirical FCR and average CI lower bound
(since the CIs are all one-sided) of each method for different values of the true
parameter θ∗. Although it has no theoretical guarantees, BY-wA has an empir-
ical FCR that is under δ for all experiment parameters. The e-BY procedure,
which does have an FCR guarantee, also has FCR control, and has an average
lower CI endpoint that is nearly as large as BY-wA. On the other hand, BY-
woA has an extremely conservative empirical FCR and produces much smaller
average lower CI endpoint than the other two methods. This reflects the best-
of-both worlds behavior of the e-BY procedure in practice — e-BY has provable
FCR control and CI widths comparable to the tightest possible widths produced
by BY.

Thus, the e-BY procedure provides FCR control and CIs competitive with
the BY procedure while requiring minimal assumptions. We will next show that
this is also the case when using the e-BY procedure on real world data from
A/B testing.

7. Application: Decision making in A/B testing

One natural application of post-selection inference is in A/B testing — A/B
testing is the use of randomized control trials to decide which features (among
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many) have a positive impact on users and should be shipped with the product.
This method is typically used by information technology companies to determine
whether a new version of a software product improves over the current version
on certain user metrics. Each A/B test is run in a sequential fashion, where
users are continually being added to the experiment over time. The goal of an
A/B test is to stop as quickly as possible and allow the data scientist to make
a confident decision about which version of software to ship based on estimates
of the population mean of the user metrics. The e-BY procedure fits the A/B
testing setup well for two key reasons: (1) the measurements of different metrics
have a complex dependence structure since multiple measurements are made
of a single user, and (2) the setup of the A/B testing is already sequential, so
e-CIs, specifically stopped CSes, should already be the default for inference on
each metric.

To simulate the behavior of data scientists choosing metrics to justify ship-
ping decisions, we derive a selection method from the criteria for justifying
shipping decisions of a single team within Twitter, a large information technol-
ogy company. The shipping criteria provides guidelines for which combinations
of metrics for which the difference between the treatment and control versions
need to be statistically significant in a favorable direction, and which metrics
that should not be significant in an unfavorable direction. We implemented a
simplified version of this shipping criteria to be our selection method. Hence,
our selection rule is the same across both procedures, and we are simply testing
how the choice of post-selection inference procedure affects when the shipping
criteria is considered satisfied.

A/B testing dataset from Twitter We compare the e-BY procedure vs.
the BY procedure on a a dataset of actual A/B testing experiments from Twitter
in a 1.5 year period and ran for at least two weeks. There are a total of 263
experiments in this dataset. Each of these experiments kept track of all 15
metrics (K = 30 since we treating the control and treatment versions of each
metric as separate parameters) that were necessary for the shipping criteria at
the daily level.

Since the user data is collected sequentially in these experiments, we use the
following CS from Waudby-Smith et al. [36] for the e-BY procedure:

Ci
t(α) =

(
μ̂t

i ± 1.7

√
σ̂2

i,t ·
log log(2t) + 0.72 log(5.2/α)

t

)
,

where μ̂t
i and σ̂2

i,t are the empirical mean and variance, respectively, of ith metric
for the first t users. This is an asymptotic CS, i.e., the boundaries approach that
of a true CS as the sample size increases under similar conditions as the central
limit theorem for a traditional fixed-time asymptotic CI [36]. Since the sample
size in these experiments are on the order of 106 users even on the first day, this
asymptotic CS is very close to the true CS boundary. We use C̄i

t = ∩t
i=1Ci

t , i.e.,
the intersection of all intervals so far for the BY procedure.
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Fig 5. Results of the e-BY procedure vs. the BY procedure on the real Twitter A/B testing data
across different levels of δ ∈ [0, 1] for each procedure. The left figure depicts the total number
of experiments where each procedure satisfied shipping criterion. The right figure depicts the
average number of days an experiment ran before the procedure satisfied the shipping criteria.
The set of experiments where the e-BY procedure satisfies shipping criteria is a strict superset
of the set where the BY procedure satisfies shipping criteria (since e-BY dominates BY under
dependence). Hence, the average number of days to satisfying the criteria is calculated over
only the experiments for which the BY (and e-BY) procedure satisfied the shipping criteria.

Results The results of our analysis in Figure 5 show that the e-BY procedure
is better than the BY procedure in both number of experiments where a shipping
decision can be justified, and the average time within each experiment to have
sufficient evidence to satisfy the shipping criteria. For example, for a reasonable
level of FCR control of δ = 0.1, the e-BY procedure justified shipping decisions
for 127 experiments — 5 more than 122 for the BY procedure. Note that the set
of experiments where shipping was justified by the e-BY procedure is a superset
of the experiments that the BY procedure justified shipping for. Consequently,
we can also compare the average number of days before a shipping decision
is justified for the e-BY and BY procedures, by taking the average over the
experiments that the BY procedure justified shipping decisions on. We see that
the the e-BY procedure took 1.2 days on average to satisfy the shipping criteria
— 0.3 days less than the BY procedure which took on average 1.5 days. Clearly,
the tightness of the e-BY procedure makes a practical impact on the efficiency
of A/B testing.

8. Conclusion

We have shown that the e-BY procedure is a versatile method for controlling
FCR in post-selection inference and improves inference in a broad class of set-
tings. While e-BY is restricted use only on e-CIs, universal inference and stopped
confidence sequences [34, 15, 16] are already e-CIs. Further, the e-BY procedure
maintains FCR control with no assumptions on the dependence structure or
selection rule, and produces CIs with widths that are never larger (and usually
smaller) than those of the BY procedure. In addition, we demonstrated that
the e-BY procedure is optimal for e-CIs in some sense, as the FCR bound it
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guarantees is sharp, and that it is admissible in the domain of e-CI reporting
procedures.

With respect to the utility of e-CIs, we observe that most of the tightest CIs
we can construct in nonparametric and sequential settings are already e-CIs. In
the sequential setting, we showed that the e-BY procedure produces practically
useful CIs for justifying shipping decisions on data from real A/B tests. In
addition, we discuss how to construct nontrivial e-CIs in any settings where CIs
exist in Section 2.3: we extend the p-to-e calibration methods introduced by
Vovk [29] to calibrating arbitrary CIs into e-CIs.

In this vein, an important direction for future study is to understand in
what settings are the effectively tightest CIs also e-CIs. In many settings (e.g.
Gaussian) where the exact (often asymptotic) distribution of a statistic under
each parameter is known and identical across parameters, the tightest CIs (e.g.
CI based on Gaussian CDF) are not e-CIs. On the other hand, e-CIs are often
the only kind of CI we can construct when we are testing complicated composite
nulls. Particularly in sequential settings where we desire an anytime-valid e-CI,
Ramdas et al. [21] have shown that e-CIs are nearly admissible. Hence, further
study of e-CIs would improve the utility of the e-BY procedure.

Appendix

The appendix is organized as follows. We provide all the proofs we had omitted
in the body of the main paper in Appendix A, in order of their mention in the
paper. Appendix B describes explicit connections between the post-selection
inference procedures described in this paper for FCR control with FDR con-
trolling procedures for multiple testing. We then present a weighted version of
the e-BY procedure in Appendix C. To complement our previous discussion of
admissibility, we also describe an improvement we can make to the e-BY proce-
dure in Appendix D if we discard some of the restrictions made on CI-reporting
procedures. We highlight the difference between conventional Chernoff based
CIs and Chernoff e-CIs in Appendix E by introducing a notion of generalized
e-CIs — this notion was applied in our simulations in the bounded setting in Sec-
tion 6.1. Lastly, we discuss the advantages of FCR and how FCR relates to other
error metrics that could be considered for the post-selection inference problem
in Appendix F.

Appendix A: Proofs

We produce the proofs that we had omitted in the main body of the paper in
this section.

A.1. Proof of Theorem 1

We first note that Definition 5 implies that f(P ) is an e-value for any calibrator
f and p-value P — even if P is uniformly distributed.
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To connect this idea with CIs, observe that the “dual” form of a CI is a
p-value — a CI represents a collection of hypothesis tests for a fixed type I
error (i.e., confidence level) across a set of hypotheses. In essence, it is the set
of hypotheses that would not be rejected at some fixed level α with the current
realization of the sampled data. In contrast, a p-value represents a collection of
hypothesis tests for a fixed hypothesis, but across different rejection levels α.
Here, the p-value itself is the type I error of the test with the smallest rejection
level that rejects the fixed null hypothesis.

Definition 12. A p-value P for a set of distributions Q is a random variable
supported on [0, 1] that satisfies the following:

sup
P∈Q

PP(P ≤ α) ≤ α for all α ∈ [0, 1].

Thus, we can calibrate the implicit p-value associated with every CI con-
structing procedure to an e-value, and then produce the e-CI associated with
the e-value to calibrate from a CI to an e-CI.

Let C(α) produce a (1 − α) CI for any α ∈ [0, 1]. Consequently, for a fixed
parameter θ ∈ Θ, the following is a p-value for the set Qθ := {P ∈ P : T (P) = θ}:

P dual(θ) := inf {α ∈ [0, 1] : θ �∈ C(α)} .

Consequently,
Ecal(θ) := f(P dual(θ))

forms a family of e-values. Hence,

Ccal(α) :=

{
θ ∈ Θ : Ecal(θ) <

1

α

}

is a (1−α)-e-CI. To show the equality between Ccal and C, we make the following
observations.

Ccal(α) =

{
θ ∈ Θ : Ecal(θ) <

1

α

}
=

{
θ ∈ Θ : f(P dual(θ)) <

1

α

}

(i)

=

{
θ : P dual(θ) > max

{
p : f(p) ≥

1

α

}}

=

{
θ : P dual(θ) > f−1

(
1

α

)}

(ii)

= C

(
f−1

(
1

α

))
.

The equality at (i) is a result of f being nonincreasing and upper semicontinuous
at 1/α. Hence the supremum is achieved and the equality holds. Similarly, the
equality at (ii) is because C is nonincreasing and continuous from below at
f−1 (1/α). If P dual(θ) = f−1 (1/α), then θ �∈ Ci(P

dual(θ)) by C being continuous
from below.
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A.2. Proof of Theorem 3

To prove the sharpness of the above situation, we require the following fact
about Brownian motions.

Fact 2 (Borodin and Salminen 9, p.223, equation 2.1.2). Let (Wt)t∈R
+
0

be a
Brownian motion with drift μ and initial value x. Define stopping times τa :=
inf{t ≥ 0 : Wt ≥ x + a}, and τ b := inf{t ≥ 0 : Wt ≤ x − b}, where a, b > 0.
Then,

P
(
τa < τ b

)
= f(μ, a, b) := 1 − e−μb sinh(|μ|a)

sinh(|μ|(a + b))
.

We note that f(μ, a, b) is increasing in μ since the larger the drift term, the
more likely that the Brownian motion hits the upper boundary x+a. Moreover,

lim
μ↑0

f(μ, a, b) = 1 − lim
μ↑0

e−μb e|μ|a − e−|μ|a

e|μ|(a+b) − e−|μ|(a+b)
= 1 −

a

a + b
=

b

a + b
, (7)

which recovers the simple case in which μ = 0 (i.e., the case that the Brownian
motion is a martingale). Only the above properties of f (not its precise formula)
will be used in the result below.

Using Fact 2, for i ∈ [K], the probability that Wi hits γ − 1 before hitting
−1 is given by

P (W τi

i = γ − 1) = f(θ∗
i , γ − 1, 1).

We can compute the mean of |S| as

E[|S|] = E

⎡
⎣ ∑

i∈[K]

I {W τi

i = γ − 1}

⎤
⎦

=
∑

i∈[K]

P(W τi

i = γ − 1) =
∑

i∈[K]

f(θ∗
i , γ − 1, 1). (8)

For i ∈ S, using Fact 2 again and noting that W τi

i = γ − 1, we have

P (W τi

i = β − 1 | S) = f(θ∗
i , β − γ, γ). (9)

Let us suppose that θ∗
i < 0 for each i ∈ [K] (but this is not known to the

scientist); that is, Xi(0) is a strict supermartingale. In this case, Ei(0) = β only
if Ei(θ

∗
i ) > β.

Recall that Ci(α) = {θ ∈ Θ : Ei(θ) < 1/α}. We can now compute FCR,
using (9), as

FCR = E

[∑
i∈S I {θ∗

i �∈ Ci(1/β)}

|S| ∨ 1

]

= E

[
E

[∑
i∈S I {Ei(θ

∗
i ) ≥ β}

|S| ∨ 1
| S

]]
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= E

[
∑

i∈S

P (Ei(θ
∗
i ) ≥ β | S)

|S| ∨ 1

]

≥ E

[
∑

i∈S

P (Ei(0) = β | S)

|S| ∨ 1

]
= E

[∑
i∈S f(θ∗

i , β − γ, γ)

|S| ∨ 1

]
.

Obviously, FCR is a function of θ
∗ := (θ1, . . . , θK). We consider the situation

where θ∗
i ↑ 0 (i.e., θ∗

i approaches 0) for each i ∈ [K], denoted by θ
∗ ↑ 0. By

applying (7), we get

f(θ∗
i , β − γ, γ) ↑

γ

β
=

δ|S|γ

K
,

as θ∗
i ↑ 0. Moreover, when θ

∗ ↑ 0, (7) and (8) together yield

Eθ∗ [|S|] ↑
K

γ
,

where we emphasize that the expectation is taken with respect to θ
∗ (which

varies). Using the above results and the monotone convergence theorem, we get

lim
θ∗↑0

Eθ∗

[∑
i∈S f(θ∗

i , β − γ, γ)

|S| ∨ 1

]
= lim

θ∗↑0

Eθ∗

[
δ|S|γ

K
I {|S| > 0}

]

= lim
θ∗↑0

Eθ∗

[
δ|S|γ

K

]
= δ.

Since the FCR is upper bounded by δ as a result of using the e-BY procedure
(Theorem 2), we have shown our desired statement.

Remark 5. From the analysis above, we can see that the value δ of FCR of e-
BY is sharp when θ

∗ approaches 0 from below. Since both convergences in the
above computation are monotone in θ

∗, we have, in general, that FCR ≤ δ for
θ

∗ ≤ 0. On the other hand, if some θ∗
i > 0, then Ei(θ

∗
i ) < Ei(0) ≤ β, and hence

P (Ei(θ
∗
i ) > β) = 0, leading also to a smaller FCR for the above procedure. (If

one chooses a sightly larger threshold β > K/(δ|S|), then the scenario θ
∗ ≈ 0

with θ
∗ ≥ 0 also has an FCR close to δ.)

The independence of the e-processes is only used in (9) in the second step.
This condition can be weakened to the independence between the e-processes in
step 1 and their increment processes in step 2. The independence assumption
does not reduce the FCR, at least not in an obvious way.

A.3. Proof of Lemma 1

We first show the “only if” statement. Suppose that C ∈ ECI(Θ) with associated
e-value E. It is clear that C is nonincreasing. To show its continuity from above,
note that E(θ) < 1/α if and only if E(θ) < 1/β for some β > α. Therefore, we
have

⋃
β>α C(β) = C(α), and thus C is continuous from below.
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We next show the “if” statement. Let the function t : Θ → [0, ∞] be given by

t(θ) = sup

{
1

α
: α ∈ [0, 1), θ �∈ C(α)

}
, (10)

where the convention is sup ∅ = 1 (because we can always set C(1) = ∅ so that
θ �∈ C(1) In the two extreme cases, if C(α) is Θ on [0, 1), then t(θ) = 1 for each
θ, and if C(α) is ∅ on [0, 1), then t(θ) = ∞ for each θ.

Since C is nonincreasing and continuous from below, (10) implies θ �∈ C(t(θ)).
Thus, we get the following equivalence:

t(θ) <
1

α
⇐⇒ θ ∈ C(α). (11)

Let U be a standard uniform random variable under each of the parameter
θ ∈ Θ, and define

E(θ) = t(θ)I

{
U <

1

t(θ)

}
, θ ∈ Θ.

It is clear that E(θ) ≥ 0 and Eθ[E(θ)] = 1, and (6) holds if E(θ) = t(θ) for each
θ ∈ Θ, which is a possible realization of E.

A.4. Proof of Theorem 4

We fix a universal probability space P and parameter ranges Θ1, . . . , ΘK .
We will proceed to prove Theorem 4 by contradiction. Suppose that there

exists a CI reporting procedure Φ which strictly dominates the e-BY procedure.
That means for all S ⊆ [K] and C ∈ ECIK , Φ(S, C)i ⊆ Ci(δ|S|/K), and

there exists some S ⊆ [K], C ∈ ECIK and i∗ ∈ S

s.t. Φ(S, C)i∗ � Ci∗(δ|S|/K).

From now on, fix the above (S, C, i∗) — these values will be key components for
our construction, which will result in a contradiction. Clearly, S is not empty.

We assume that there exists random variables BS and U in each P ∈ P (the
existence is guaranteed by enlarging the probability space if needed) that are
distributed as follows:

BS ∼ Bern(|S|/K) and U ∼ Uniform[0, 1],

and we let BS and U be independent of each other.
We will show that FCR(Φ) > δ for some random selection S, vector of families

of e-values E = ({E1(θ)}θ∈Θ1
, . . . , {EK(θ)}θ∈ΘK

) and true values of parameters
θ

∗ = (θ∗
1 , . . . , θ∗

K). The main work is to construct such a setting.
First, we define the distribution of our selection rule S. Let T := [K] \ S

be the complement of S. We specify S = S if BS = 1 and S = T otherwise.
Hence, under all vectors of possible parameter values in Θ1 × · · · × ΘK , S has
the following distribution:

P(S = S) = P(BS = 1) = |S|/K, and P(S = T ) = P(BS = 0) = |T |/K,
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In the following, statements for i ∈ T can be ignored if T is empty.
We briefly explain the main idea behind our construction. We first note that

any construction of E and θ
∗, if the i-th component of Φ is equal to that of

e-BY for all i �= i∗. Then, for i ∈ S \ {i∗},

P
(
θi �∈ Φ(S, CE)i, S = S

)
= P

(
θi �∈ CE

i

(
δ|S|

K

)
, S = S

)

≤ P

(
Ei(θi) ≥

K

δ|S|

)
≤

δ|S|

K
,

and for i ∈ T ,

P
(
θi �∈ Φ(T, CE)i, S = T

)
= P

(
θi �∈ CE

i

(
δ|T |

K

)
, S = T

)

≤ P

(
Ei(θi) ≥

K

δ|T |

)
≤

δ|T |

K
.

We will need to construct suitable E and θ
∗ such that all above inequalities

hold as equalities approximately by taking a limit, and for the index i∗ we have

P
(
θi∗ �∈ Φ(S, CE)i∗ , S = S

)
>

δ|S|

K
+ c.

where c > 0 is a constant that does not shrink to 0 when we take a limit. If we
are able to achieve the above, then the FCR of Φ will be close to δ + c/|S|.

Let us specify our choice of θ
∗. First, take a small number ε ∈ (0, 1) which

will later shrink to 0.

(a) We take θ∗
i∗ ∈ Ci∗ (δ|S|/K)\Φ(S, C)i∗ which is possible since Φ(S, C)i∗ �

Ci∗ (δ|S|/K).
(b) For i ∈ S \ {i∗}, we take θ∗

i ∈ Ci ((1 − ε)δ|S|/K) \ Ci (δ|S|/K), which is
possible since C is strictly decreasing.

(c) For i ∈ T , we take θ∗
i ∈ Ci ((1 − ε)δ|T |/K) \ Ci (δ|T |/K).

Note that by this construction, we have θ∗
i �∈ Φ(S, C)i for each i ∈ [K]. Further,

we can arbitrarily select the true values for each parameter, θ
∗, with the follow-

ing construction of our universe of probabilities P. We can let our universe of
distributions contain joint distributions over ((U, BS , Y1), . . . (U, BS , YK)) where
Yi is some random variable whose distribution determines θ∗

i for each i ∈ [K].
Let PYi

denote the marginal distribution of Yi in P. We define ϑi(P) = ϑYi
(PYi

),
where ϑYi

: PYi
→ Θi is a functional that maps from the universe marginal

distributions of Yi, PYi
, to the parameter value space Θi. Since the distribu-

tion of BS and U are identical across any P ∈ P, we can simply select some θ

and let P
∗ = Pθ, where Pθ is some distribution in P with true values θ for its

parameters.
For i ∈ [K], similarly to (10)-(11), define

ti(θ) = sup

{
1

α
: α ∈ [0, 1), θ �∈ Ci(α)

}
;
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this gives ti(θ) <
1

α
⇐⇒ θ ∈ Ci(α). (12)

Next, we define some quantities concerning the true parameter θ
∗ = (θ∗

1 , . . . , θ∗
K).

r∗
S =

K

δ|S|
, tS := max

i∈S
ti(θ

∗
i ) ∈

[
r∗

S ,
r∗

S

1 − ε

)
,

t∗
S := ti∗(θ∗

i∗) < r∗
S , �S :=

tS − t∗
S

r∗
S

.

The variables marked with an asterisk (∗) are not dependent on ε — only tS

and �S depend on ε.
Let U be a random variable that is standard uniform and independent of

S under all Pθ′ , and the existence of such may be achieved by enlarging the
probability space. Define the random variables US and UT indexed by θ

′ as
follows.

US(θ′) :=
|S|

K
UI {S = S}

(
I

{
U ≥

K

|S|tS

}
∨ I

{
θ

′ �= θ
∗
})

+

(
|T |

K
U +

|S|

K

)
I {S = T}

UT :=
|T |

K
UI {S = T} +

(
|S|

K
U +

|T |

K

)
I {S = S} .

Note that US(θ′) is 0 with probability 1/tS and uniformly distributed between
[1/tS , 1] under Pθ′ otherwise if and only if θ

′ = θ
∗. If θ

′ �= θ
∗, then under Pθ′ ,

US(θ′) and UT are both uniform random variables over [0, 1].
We are ready to define our e-values. We first define Ei∗ , which is the most

sophisticated object:

Ei∗(θ) = ti∗(θ)I

{
US <

1

ti∗(θ) ∨ tS

}

+ r∗
SI

{
1

tS
≤ US <

1 + �(θ)

tS

}
I {ti∗(θ) < tS} ,

for all each θ ∈ Θi∗ , where

�(θ) :=
tS − ti∗(θ)

r∗
S

.

Clearly Ei∗ ≥ 0. It remains to show that, for each θ ∈ Θi∗ , the expectation is
bounded as Eθ[Ei∗(θ)] ≤ 1. We proceed casewise on ti∗(θ). If ti∗(θ) ≥ tS , then

Eθ[Ei∗(θ)] ≤ Eθ

[
ti∗(θ)I

{
US <

1

ti∗(θ)

}]
= 1.

The inequality is simply by construction of US — US is uniform if θ is the
true parameter and ti∗(θ) > tS . When ti∗(θ) = tS , the following is still true:
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P (US < 1/tS) = 1/tS . If ti∗(θ) < tS , then

Eθ [Ei∗(θ)] =
ti∗(θ)

tS
+

r∗
S�(θ)

tS
=

ti∗(θ)

tS
+

tS − ti∗(θ)

tS
= 1.

Note that the first equality is true again because US always satisfies

P (US < 1/tS) = 1/tS

and is otherwise uniformly distributed among values greater than 1/tS . There-
fore, Ei∗ is an e-value for Θi∗ . Note that in our choice of true parameters θ

∗,
we are always in the ti∗(θ∗

i∗) = t∗
S < tS case.

The other e-values are defined as

Ei(θ) = ti(θ)I

{
US <

1

ti(θ)

}
, θ ∈ Θi, i ∈ S \ {i∗},

and

Ei(θ) = ti(θ)I

{
UT <

1

ti(θ)

}
, θ ∈ Θi, i ∈ T.

It is straightforward to check that each Ei(θ) above is an e-value for θ ∈ Θi.
Now that we have defined our e-values, we will show there exists a distribution

where the FCR under CI-reporting procedure Φ will be strictly larger than δ.
Note that by construction of US and UT , we know the following:

{
US ≤

|S|

K

}
= {S = S} and

{
UT ≤

|T |

K

}
= {S = T}. (13)

By (12) and the construction of (θ∗
i )i∈[K], we have ti∗(θ∗

i∗) < K/(δ|S|) as well
as

K

δ|S|
≤ ti(θ

∗
i ) <

K

(1 − ε)δ|S|
for i ∈ S \ {i∗}

and
K

δ|T |
≤ ti(θ

∗
i ) <

K

(1 − ε)δ|T |
for i ∈ T . (14)

Putting the above ranges of ti(θ
∗
i ) together, using (13), we get

{
US <

1

ti(θ∗
i )

}
⊆ {S = S} for all i ∈ S \ {i∗}

and

{
UT <

1

ti(θ∗
i )

}
⊆ {S = T} for all i ∈ T . (15)

Moreover, As ε ↓ 0, we have tS ↓ r∗
S , and

�S → �∗
S := 1 −

t∗
S

r∗
S

> 0.
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The above construction of e-values leads to the important condition under
true parameters θ

∗, via (12),

US <
1

tS
=⇒ Ei(θ

∗
i ) = ti(θ

∗
i ) for all i ∈ S =⇒ CE

S = CS . (16)

Recall that by construction, we have θ∗
i �∈ Φ(S, C)i for each i ∈ S. Therefore,

by using (15) and (16), for i ∈ S \ {i∗},

P
(
θ∗

i �∈ Φ(S, CE)i, S = S
)

≥ P
(
CE

S = CS , S = S
)

≥ P

(
US <

1

tS
, S = S

)
=

1

tS
. (17)

Further, by construction, we know that t∗
S < tS , so we have

P
(
θ∗

i∗ �∈ Φ(S, CE)i∗ , S = S
)

≥ P
(
CE

S = CS , S = S
)

+ P
(
Ei∗(θ) ≥ r∗

S , CE

S �= CS , S = S
)

≥
1

tS
+ P

(
1

tS
≤ US <

1 + �S

tS

)
=

1 + �S

tS
. (18)

Write

r∗
T :=

K

|T |δ
, and tT := max

i∈T
ti(θ

∗
i ) ∈

[
r∗

T ,
1

1 − ε
r∗

T

)
.

In case |T | = 0 the above quantities are set to ∞.

For i ∈ T , using Φ(S, CE)i ⊆ CE

i ( δ|S|
K ) and (14)-(15), we have

P
(
θ∗

i �∈ Φ(T, CE)i, S = T
)

≥ P

(
θ∗

i �∈ CE

i

(
δ|T |

K

)
, S = T

)

= P (Ei(θ
∗
i ) ≥ r∗

T , S = T )

≥ P

(
Ei(θ

∗
i ) ≥ r∗

T , UT <
1

tT
, S = T

)

= P

(
UT <

1

tT

)
=

1

tT
. (19)

Putting (17), (18) and (19), together, we obtain

E

[∑
i∈S I

{
θ∗

i �∈ Φ(S, CE)i

}

|S| ∨ 1

]

= E

[∑
i∈S I

{
θ∗

i �∈ Φ(S, CE)i

}

|S| ∨ 1
I {S = S}

]

+ E

[∑
i∈T I

{
θ∗

i �∈ Φ(T, CE)i

}

|T | ∨ 1
I {S = T}

]

≥
1

|S|

(
1 + �S

tS

)
+

1

|S|

∑

i∈S\{i∗}

1

tS
+

1

|T | ∨ 1

∑

i∈T

1

tT
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=
�S

|S|tS
+

1

tS
+

1

tT
.

Note that as ε ↓ 0, tS → r∗
S , tT → r∗

T , and �S → �∗
S > 0 by t∗

S < r∗
S . Therefore,

lim
ε↓0

�S

|S|tS
+

1

tS
+

1

tT
=

�∗
S

|S|r∗
S

+
1

r∗
S

+
1

r∗
T

>
δ|S|

K
+

|T |δ

K
= δ.

Thus, the FCR of the procedure Φ for our constructed setting is large than δ.
This shows that the e-BY procedure is admissible.

Remark 6. From the proof of Theorem 4, we can see that the restriction (b)
that Φ(S, C) = Φ(S, C′) if CS = C′

S is important, because on the event S = S,
we only require CE

S = CS , but not CE = C. In our construction, we actually
have Ei(θ

∗
i ) = 0 for i ∈ T on the event {S = S}. Recall that we need many

inequalities in the FCR formula to be approximately equalities. The only way
to produce precisely the event {CE = C, S = S} is through the event {Ei =
ti for all i ∈ [K] and S = S}, but for the approximation we need E[EiI {S = T}]
for t ∈ T to be arbitrarily close to 1, so it does not seem to be possible if we
“waste” Ei, i ∈ T to take positive values on the event S = S.

Remark 7. The proof of Theorem 4 also justifies that e-BY has sharp FCR. To
see this, for Φ being e-BY and the setting constructed in the proof of Theorem 4
(omitting the special treatment for i∗), using (17) and (19), we get

P
(
θ∗

i �∈ Φ(S, CE)i, S = S
)

≥ 1/tS for i ∈ S,

P
(
θ∗

j �∈ Φ(S, CE)j , S = T
)

≥ 1/tT for j ∈ T.

The rest is taking a limit, and we see that the e-BY procedure has an FCR
arbitrarily close to δ for this setting.

Appendix B: Multiple testing procedures based on e-BY

We can derive procedures for the multiple testing problem directly from post-
selection inference procedures. We will discuss how that can be accomplished,
and provide explicit examples of such derivations. In the multiple testing prob-
lem, we wish to identify as many parameters that lie outside of a fixed null
hypothesis as possible. Formally, the goal is to determine whether θ∗

i ∈ Θ0
i

where Θ0
i ⊆ Θi is the null hypothesis (as opposed to directly estimating θ∗

i ).
Thus, for each i ∈ [K], we must output a decision of whether we reject the null
hypothesis H0

i : θ∗
i ∈ Θ0

i or not. We denote set of indices where the null hypoth-
esis is rejected as R. The null hypotheses in the rejection set (i ∈ R and H0

i

is true) are called false discoveries. Analogous to the FCR, we wish to control
the false discovery rate (FDR), which is the expectation of the false discovery
proportion (FDP):

FDP :=

∑
i∈R

I
{

θ∗
i ∈ Θ0

i

}

|R|
, FDR := E[FDP].
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Fig 6. A diagram depicting the relationships between different procedures and their guarantees
for FCR control in post-selection inference, and FDR control in multiple testing. The solid
arrows signify that the target result is a special case of the source result. The dashed line
signifies that the part of the target result that assumes arbitrary dependence between data is
implied by the source result. This diagram illustrates how multiple testing procedures with
FDR guarantees are downstream consequence of procedures for the post-selection inference
problem with FCR guarantees.

In Figure 6, we depict how the e-BY and BY procedures subsume results
about FDR controlling multiple testing procedures as a special case. The multi-
ple testing analog of the BY procedure is the Benjamini-Hochberg (BH) proce-
dure [2, 3], and BY showed that FCR control of the BY procedure implies FDR
control of the BH procedure. The same implication between the e-BY proce-
dure and the e-BH procedure [32]. Further, the e-BY procedure is not a naive
application of the e-BH procedure to the post-selection inference problem. In
fact, the e-BY procedure is a more powerful result than the e-BH procedure in
the sense that Theorem 2 implies FDR control for the e-BH procedure while
the converse is not true.

B.1. Benjamini-Hochberg (BH) is a special case of BY

BY showed that their procedure can be used to demonstrate FDR validity (i.e.
provably controls FDR under some fixed level δ) of the BH procedure. However,
the BH procedure does not directly operate on CIs — instead it takes as input
p-values i.e. Pi denotes the p-value for the ith null hypothesis for each i ∈ [K].
Pi the superuniformity property under the null: P (Pi ≤ α) ≤ α for all α ∈ (0, 1)
if θ∗

i∗ ∈ Θ0
i .

The BH algorithm proceeds as follows. Let P1, . . . , PK be the set of p-values
computed from X1, . . . , XK for each hypothesis, and let P(1), P(2), . . . , P(K) de-
note these p-values ordered from smallest to largest. Define a quantity D(K) :=
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K if the p-values corresponding to true null hypotheses are independent, or
satisfy a positive dependence condition (see [3]) and D(K) := K�K otherwise.

kBH := max
{

k ∈ [K] : P(k) ≤ δk/D(K)
}

∪ {0},

RBH := {i ∈ [K] : Pi ≤ δkBH/D(K)} .

Fact 3 (BH procedure controls FDR [2, 3]). The BH procedure, which rejects
the hypotheses indexed by RBH, ensures FDR ≤ δ.

BY observed that the BH procedure can actually be formulated completely
in terms of CIs and the BY procedure in the following fashion.

Fact 4 (Corollary 2 of BY). Let S = RBH, and define the CIs as follows:

Ci(α) =

{
Θi \ Θ0

i if Pi ≤ α

Θi if Pi > α
.

Recall that, by definition of RBH, Pi ≤ δkBH/D(K) for all i ∈ RBH. When
we apply the BY procedure, we construct exactly Ci(δkBH/D(K)) = Θi \ Θ0

i for
each i ∈ RBH. As a result, a false discovery is made for the ith null hypothesis
(θ∗

i∗ ∈ Θ0) if and only if θ∗
i∗ �∈ Ci(δkBH/K). Hence FDP = FCP and FDR =

FCR. Consequently, the FCR guarantee of the BY procedure in Fact 1 implies
the BH guarantee of FDR ≤ δ in Fact 3.

Clearly, the BY procedure is a more powerful and general technique than
the BH procedure, which is essentially the BY procedure for a specific choice
of CI and selection rule. Hence, a guarantee on FDR by the BH procedure
does not imply any guarantee on the FCR the BY procedure, while the reverse
implication does hold. We will see this paradigm also play out between the e-BY
procedure and its multiple testing analog, the e-BH procedure.

B.2. e-BH is a special case of e-BY

We will show this implication by reducing the multiple testing problem to an
instance of the post-selection inference problem. The e-BH procedure takes e-
values E := (E1, . . . , EK) as input, where Ei is an e-value w.r.t. Θ0

i for each
i ∈ [K]. Note that both e-BH and e-BY impose no requirements about the
dependence between the e-values and e-CIs, respectively. Hence, E1, . . . , EK

may be arbitrarily dependent.
Wang and Ramdas [32] show that FDR is controlled not only for e-BH, but for

an entire class of “self-consistent” procedures. For a multiple testing procedure
D : [0, ∞)K �→ 2[K] that takes e-values and outputs a rejection set R, D is
self-consistent [6] if and only if it satisfies the following property:

For any realization of e-values E ∈ [0, ∞)K , Ei ≥
K

δ|D(E)|
for every i ∈ D(E).

(20)
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The e-BH procedure outputs the largest self-consistent set — consequently, any
other self-consistent set will be a subset of the rejection set output by the e-BH
procedure.

Fact 5 (FDR control of self-consistent procedures [32]). Any self-consistent
procedure D that operates on e-values, i.e., that satisfies (20), ensures FDR ≤ δ.

Corollary 3 (FCR control for e-BY implies FDR control for any self-consistent
procedure). Let D be a self-consistent multiple testing procedure, and define the
selected parameters to correspond to the rejection set: S = R = D(E). Define a
family of e-values Eind

i (θ) := Ei · I
{

θ ∈ Θ0
i

}
and let the e-CIs corresponding to

this family be:

C ind
i (α) :=

{
θ ∈ Θi : Eind

i (θ) ≤
1

α

}
=

{
Θi \ Θ0

i if Ei > 1/α

Θi if Ei ≤ 1/α
.

The e-BY procedure outputs C ind
i (δ|D(E)|/K) = Θi \ Θ0

i for each i ∈ D(E).
Thus, the e-BH procedure makes a false discovery if and only if the e-BY pro-
cedure does not cover a CI in S. Hence, we have FDR control of the e-BH
procedure through Theorem 2.

Evidently, the e-BY procedure is more general than the e-BH procedure. We
show in Appendix B.3 that we can use the e-BY procedure to also get control
on a directional form of FDR that requires the procedure to output a sign or
direction along with each rejection.

B.3. Controlling the directional false discovery rate dFDR

We can also use the the e-BY procedure to provide guarantees beyond FDR
for e-BH. Consider a specialized case of the multiple testing problem, where a
scientist is performing only two-sided hypothesis tests e.g. discovering how the
presence of certain genotypes have a significant effect on the baseline level of a
certain hormone. The scientist may not have an a priori idea of which direction
(positive or negative) the effect on a hormone a genotype could have. Thus,
when rejecting the null hypothesis and making a discovery for some genotype-
hormone interaction, it would also be invaluable to produce an estimate of the
direction of the effect. This problem of determining the direction along with
significance was initiated by Bohrer [7], Bohrer and Schervish [8], and Hochberg
[13]. Building on this, BY showed that the BH procedure could ensure control of
a directional version of the FDR when the operating on p-values for two-sided
hypothesis tests through their FCR result for the BY procedure.

In this section, we describe how we can use e-BY to develop a direction de-
termining version of e-BH, and also ensure control of a directional version of the
FDR. For a notion of direction to be well-defined, we consider only parameter
spaces where Θi ⊆ R, and for each parameter θ∗

i , we are testing the null hy-
pothesis H0

i : θ∗
i = 0. In addition to outputting a rejection set, we also require
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the multiple testing procedure to also assign a direction Di ∈ {±1} for each
i ∈ R. Thus, we can define the directional FDR (dFDR):

dFDR := E

⎡
⎣

∑
i∈R

I {Di = 1, θ∗
i ≤ 0} + I {Di = −1, θ∗

i ≥ 0}

|R|

⎤
⎦ .

This definition of dFDR coincides with the definition of mixed directional FDR
defined in BY. The dFDR is also nearly the same as the false sign rate (FSR)
that is analyzed in Stephens [27], Weinstein and Ramdas [38] and the “pure di-
rectional FDR” discussed in BY. However, we will only consider the dFDR since
it is always larger than the other two directional error metrics. Consequently,
these all of these metrics are equivalent when no θ∗

i is exactly 0 — Tukey [28]
argues happens this occurs in most realistic scenarios as many parameters can
be off from 0 by an imperceptible amount so the distinction between these met-
rics may not be practically critical. We will also require that the input e-values
are “two-sided” e-values. Specifically, let Ei := (E+

i ∨ E−
i )/2, where E+

i is an
e-value w.r.t. [0, ∞) and E−

i is an e-value w.r.t. (−∞, 0], and two constituent
e-values are inverses of each other E+

i = (E−
i )−1.

Corollary 4 (e-BH with two-sided e-values controls dFDR). Let the selection
set still be the output of the e-BH procedure, i.e., S = ReBH. In addition, define
the following direction decisions for each i ∈ S:

Di :=

{
−1 if E+

i ≥ 2K/(δkeBH)

1 else.

Define a family of e-values as so: Edir(θ) := E+
i I {θ ≥ 0} + E−

i I {θ ≤ 0}. We
derive the following e-CI procedure from this family:

Cdir
i (α) :=

⎧
⎪⎨
⎪⎩

(−∞, 0) if E+
i ≥ 2/α

(0, ∞) if E−
i ≥ 2/α

R else.

Consequently, miscoverage occurs if and only if the direction of θ∗
i for each i ∈ S.

Thus, the FCR guarantee from Theorem 2 ensures that dFDR ≤ δ.

As a result, we have shown that e-BY procedure can be used to provide results
for more general problems than just e-BH in the multiple testing scenario — e-
BY also provides dFDR control in this directional variant of the multiple testing
problem. Thus, the FCR control provided by e-BY allows it to be useful, general
tool for providing error control guarantees in a variety of problems.

Appendix C: Weighted e-BY: Weights for individual control of the
size of each e-CI

The e-BY procedure in Definition 6 assigns a equal confidence level to the CI
constructed for each θ∗

i , but there may be cases where the user would desire
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Algorithm 1: The weighted e-BY procedure for constructing post-
selection CIs with FCR control. Let w1, . . . , wK be nonnegative weights
that sum to K. The resulting constructed CIs have FCR ≤ δ, where
δ ∈ (0, 1) is a predetermined level of error.

1 Sample data X := (X1, . . . , XK) for each parameter being estimated — these may be
dependent.

2 Let Ci produce marginal e-CIs at confidence level (1 − α) for any α ∈ (0, 1) for each
i ∈ [K].

3 Select a subset of parameters based on the data for CI construction: S := S(X).
4 Set αi := wiδ|S|/K for each i ∈ S.
5 Construct the CI Ci(αi) for θ∗

i
for each i ∈ S.

tighter CIs for some parameters, and looser CIs for others. For example, the
parameters we are estimating may be the severity of different side effects caused
by a drug candidate. In that situation, we want to estimate more precisely
the side effects that are life threatening or severely injurious to the recipient
of the drug, and be willing to have larger CIs for estimating side effects that
only cause minor ailments. We present a simple version of the weighted e-BY
procedure where the weights are fixed beforehand. However, Ignatiadis, Wang
and Ramdas [17] study the weighted e-BY procedure much more deeply and
show that, surprisingly, the weights do not need to be normalized to sum to K
— one may require the weights to be e-values themselves and still achieve valid
FCR control. Further, they show that this approach of using e-values as weights
is applicable to a weighted form of the BY procedure as well.

Let w1, . . . , wK be nonnnegative weights assigned to each of the K parameters
and let their sum be bounded by K. We can now prove a FCR guarantee about
a weighted version of e-BY where the confidence level corresponding to the CI
constructed for each θ∗

i is 1 − wiδ|S|/K.

Theorem 5 (Weighted e-BY controls FCR). Let w1, . . . , wK be a set of nonneg-
ative weights that sum to at most K. The weighted e-BY procedure formulated
in Algorithm 1 ensures FCR ≤ δ.

Proof. The proof follows similarly to that of Theorem 2.

FCR = E

[∑
i∈S I {θ∗

i /∈ Ci (wiδ|S|/K)}

|S| ∨ 1

]

= E

[∑
i∈[K] I {Ei(θ

∗
i )wiδ|S|/K > 1} · I {i ∈ S}

|S| ∨ 1

]

≤
∑

i∈[K]

E

[
Ei(θ

∗
i )wiδ|S|

K(|S| ∨ 1)

]
=

∑

i∈[K]

wiδ

K
E

[
Ei(θ

∗
i ) ·

|S|

|S| ∨ 1

]
≤ δ.

Here, the last inequality is a consequence of
K∑

i=1

wi ≤ K.
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Appendix D: Improving e-BY when a CI-reporting condition is
relaxed

We briefly explain the reason requiring strictly decreasing components of C ∈
ECI∗

K for strict domination in Section 5.2. Suppose that K = 2, S = {1, 2}
and C1(0) = C1(1) (i.e., we are certain about θ1 in a subset of Θ1, but no
further information), and C2 is strictly decreasing. The e-BY procedure reports
(C1(δ), C2(δ)). Consider another procedure Φ which reports (C1(0), C2(δ+ε)) �
(C1(δ), C2(δ)) for this specific (C1, C2) and behaves as e-BY for all other CIs.
Clearly, this procedure strictly dominates e-BY. Intuitively, it should be possible
to choose ε > 0 small enough so that the FCR of Φ is less than or equal to δ
(but we did not find a proof). Generally, having a constant Ci(α) for α in
an interval leads to the above situation. This situation is not interesting for
practice as often an e-CI is strictly decreasing. but it becomes relevant in case
the parameter θ∗

i takes finitely many values. We discuss how we could improve
on the e-BY procedure if the CIs are not strictly decreasing (and restriction (b)
is lifted) in Appendix D.

In this section we explore a minor improvement of e-BY by relaxing the
restriction (b) in Section 5.2 in the formulation of a CI reporting procedure, as
well as the strict decreasing condition of the e-CIs.

For (S, C) ∈ 2[K] × ECIK where S �= ∅, [K], we define

γ(S, C) :=
∑

i∈S

sup
θ∈Θi

ti(θ),

λ(S, C) :=
∑

i∈[K]\S

inf
θ∈Θi

(ti(θ)I {ti(θ) > 1}) ,

v(S, C) := 1 +
λ(S, C)

γ(S, C)
,

where ti is given in (12), and we set ∞/∞ = 0. Note that γ(S, C) < ∞ if
and only if for each i ∈ S there exists αi > 0 such that C(αi) = Θi; similarly,
λ(S, C) > 0 if and only if there exists i ∈ [K] \ S such that Ci(αi) = ∅ for
some αi ∈ (0, 1). The condition v(S, C) > 1 is equivalent to γ(S, C) < ∞ and
λ(S, C) > 0. (Admittedly, this is an uncommon situation.)

For a level w ∈ (1, ∞), we denote by

Σ(w) := {(S, C) ∈ 2[K] × ECIK : v(S, C) ≥ w}.

One can check that the set Σ(w) is not empty. In particular, if S = {1} and C
is the constant CI of Θ1 × ∅K−1 (i.e., no information for the first one, and sure
false coverage for all others), then t1(θ) = 1 for all θ ∈ Θ, and ti(θ) = ∞ for all
θ ∈ Θi and i �= 1. In this case, γ(S, C) = 1, λ(S, C) = ∞, and v(S, C) = ∞.

For a given level w ∈ (1, ∞), define a CI reporting procedure Φ by

1. if the input (S, C) is in Σ(w), then report e-BY at level wδ;
2. otherwise, report e-BY at level δ.
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Clearly, the above procedure dominates e-BY at level δ, and the domination is
strict noting that Σ(w) is not empty. If we allow w = 1, then it is precisely the
e-BY procedure.

Proposition 4. The above procedure Φ has FCR at most δ.

Proof. Let S be a random selection, E be the vector of e-values, and θ
∗ be

the true parameter. Denote by A = {(S, CE) ∈ Σ(w)}, that is, the event that
v(S, CE) ≥ w. Note that by Lemma 2, if CE = C occurs, then Ei(θ) = ti(θ) for
all θ ∈ Θi and i ∈ [K] whenever Ei(θ) > 1, where ti is given by (12), that is,

ti(θ) = sup

{
1

α
: α ∈ [0, 1), θ �∈ Ci(α)

}
.

In case (S, CE) = (S, C) ∈ Σ(w), we have
∑

i∈S

(w − 1)Ei(θi) −
∑

i∈[K]\S

Ei(θi)

≤
∑

i∈S

(w − 1) sup
θi∈Θi

ti(θi) −
∑

i∈[K]\S

inf
θi∈Θi

ti(θi)I {ti(θi) > 1} ≤ 0.

Therefore, we have
⎛
⎝∑

i∈S

(w − 1)Ei(θi) −
∑

i∈[K]\S

Ei(θi)

⎞
⎠ I {A} ≤ 0. (21)

Using the above facts, we can compute the following upper bound on the FCR:

FCR(Φ)

= E

[∑
i∈S I

{
θi �∈ Φ(S, CE)

}

|S| ∨ 1

]

= E

[∑
i∈S I {Ei(θi) ≥ K/(wδ|S|)}

|S| ∨ 1
I {A}

]

+ E

[∑
i∈S I {Ei(θi) ≥ K/(δ|S|)}

|S| ∨ 1
(1 − I {A})

]

≤ E

[
1

|S| ∨ 1

∑

i∈S

wδ|S|Ei(θi)

K
I {A}

]
+ E

[
1

|S| ∨ 1

∑

i∈S

δ|S|Ei(θi)

K
(1 − I {A})

]

≤ E

[
1

K

∑

i∈S

wδEi(θi)I {A}

]
+

δ

K
E

⎡
⎣ ∑

i∈[K]

Ei(θi)(1 − I {A})

⎤
⎦ .

Now, we can group the terms that involve I {A} together to simplify our
bound on the FCR, and piece together the term we see in (21).

FCR(Φ) ≤
δ

K

∑

i∈[K]

E [Ei(θi)] +
δ

K
E

⎡
⎣
⎛
⎝∑

i∈S

wEi(θi) −
∑

i∈[K]

Ei(θi)

⎞
⎠ I {A}

⎤
⎦
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≤ δ +
δ

K
E

⎡
⎣
⎛
⎝∑

i∈S

(w − 1)Ei(θi) −
∑

i∈[K]\S

Ei(θi)

⎞
⎠ I {A}

⎤
⎦ ≤ δ,

where in the last inequality we used (21). Therefore, FCR(Φ) ≤ δ.

We note that this improvement is not very useful as v(S, C) > w is a strong
requirement and it is only satisfied by limited choices of the input.

Moreover, we clearly see how this procedure uses the information of Ci for
i �∈ S, which is used to compute λ(S, C), thus violating the requirement (b) in
Section 5.2. Moreover, all input CIs in Σ(w) are not strictly decreasing since we
need Ci(αi) = Θi for some αi > 0.

Appendix E: Generalized e-CIs and deriving Chernoff CIs

Extending the notion of e-CI, we can also define a generalized e-CI from a
family of e-values that are not only parameterized by a parameter, θ, but also
α′ ∈ (0, 1) indicating the desired level at which the e-CI is most tight at. Thus,
for a family of e-values E(θ, α′) for θ ∈ Θ and α′ ∈ (0, 1), we can define the
following generalized e-CI:

Cα′

(α) :=

{
θ ∈ Θ : E(θ, α′) <

1

α

}
.

Note that α′ is fixed for the e-CI across all choices of α ∈ (0, 1). Generalized
e-CIs are particularly useful in situations where we have a collection of e-CIs
for the same parameter space Θ, but may be tighter or looser at different values
of α. Hence, it is a way of grouping such e-CIs together in one object, and also
clarifying that α′ is a fixed parameter for each e-CI in the generalized e-CI and
does not change with the confidence level 1 − α.

Such a situation arises in the case where our e-values are derived from Cher-
noff bounds. Consider the case where we draw n i.i.d. samples X1, . . . , Xn from
a distribution that is bounded in [0, 1]. Let μ := E[Xi] — we can derive the
following inequality using Hoeffding’s lemma:

E[exp(λ(Xi − μ)] ≤ exp

(
λ2

8

)
.

Let μ̂n denote the sample mean. Consequently, we can construct the following
generalized e-CI from this bound:

Cα′-Hoef(α) :=

(
μ̂n ±

√
log(2/α)

2n
·

log(2/α) + log(2/α′)

2
√

log(2/α′) log(2/α)

)
.

In contrast, the typical CI constructed from inverting Hoeffding’s inequality is
as follows:

CHoef(α) :=

(
μ̂n ±

√
log(2/α)

2n

)
= Cα-Hoef(α).
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Consider the use of Cα′-Hoef and CHoef in the e-BY and BY procedures,
respectively. As a heuristic, we set α′ = δ. For the selection set S, and the same
desired level of FCR control δ, we get the following intervals:

Cδ-Hoef

(
δ|S|

K

)
=

⎛
⎜⎜⎝μ̂n ±

√√√√ log
(

2K
δ|S|

)

2n
·

log
(

2
δ

)
+ log

(
2K
δ|S|

)

2

√
log

(
2
δ

)
log

(
2K
δ|S|

)

⎞
⎟⎟⎠ ,

CHoef

(
δ|S|

K�K

)
=

⎛
⎜⎜⎝μ̂n ±

√√√√ log
(

2K	K

δ|S|

)

2n

⎞
⎟⎟⎠ .

This results in the following result about S.

Proposition 5. Cδ-Hoef (δ|S|/K) is as tight as CHoef (δ|S|/(K�K)) when

|S| ≥
K

exp
(

2
√

log
(

2
δ

)
log �K

) .

Proof. We note that Cδ-Hoef
(

δ|S|
K

)
is tighter than CHoef

(
δ|S|
K	K

)
when:

log

(
2

δ

)
+ log

(
2K

δ|S|

)
≤ 2

√
log

(
2

δ

)
log

(
2K�K

δ|S|

)
.

This is an inequality on a quadratic expression w.r.t. log |S|. Hence, we can
rearrange and solve by quadratic formula. This gets us the following interval for
log |S| where the above inequality holds:

log |S| ∈

[
log K ± 2

√
log

(
2

δ

)
log �K

]
.

Since we know |S| ≤ K, we are only interested in the lower bound on this
interval, and we get our desired result from the lower bound.

In Proposition 5, we see that the lower bound for |S|, as a proportion of K, de-
creases as K increases. Thus, Cδ-Hoef (δ|S|/K) is tighter than CHoef (δ|S|/(K�K))
for an increasing proportion of possible values of |S| as K grows. We see this
advantage of the e-BY procedure over the BY procedure reflected in our simu-
lation results in Section 6 — the CIs output by the e-BY procedure are tighter
than the CIs of the BY procedure (under no assumptions on selection rule or
dependence) as K grows.

Appendix F: FCR and other measures of statistical validity

We will elaborate on the points made in Section 1 about the other error metrics
one may consider applicable to the post-selection inference problem.
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Conditional coverage requires knowing about selection rule a priori
Before discussing FCR control, we can first consider if a coverage guarantee
is possible when we condition on a parameter being selected. In the majority
of this paper, we have assumed that each Ci is a marginal CI, i.e., for each
i ∈ [K], P (θ∗

i ∈ Ci(α)) ≥ 1 − α for every α ∈ (0, 1). For conditional coverage,
we want a confidence level (1 − αi), for each i ∈ [K], such that the resulting
CI, Ci(αi), ensures P (θ∗

i ∈ Ci(αi) | i ∈ S) ≥ 1 − δ. However, BY noted that no
such correction can be made without knowing the selection rule. To illustrate
this, consider the following toy example. Assume that the parameters being
estimated are means, and the data distribution for each parameter is Gaussian
with variance 1, i.e., Xi ∼ N (θ∗

i , 1). Then, the CI for the ith parameter is
Ci(α) = [Xi − zαi/2, Xi + zαi/2] where zα is the (1 − α)-quantile of the standard
normal distribution. Now, select the ith parameter only if Ci(αi), the corrected
CI, covers solely positive values. If θ∗

i ≤ 0, the conditional coverage is 0. Thus,
no guarantees can be made about conditional coverage without knowing or
constraining the selection rule.

Note that if we consider a constraint on the joint probability of a parameter
being selected and miscovered instead, i.e., P (θ∗

i /∈ Ci(αi), i ∈ S) ≤ α, then the
CI guarantee itself ensures that this constraint is satisfied, i.e., P (θ∗

i /∈ Ci(αi)) ≤
α. The fact that we may bound this joint probability is what motivates the
possibility of the use of FCR as a error metric we can control.

In addition, the refutation of conditional coverage guarantees is intended for
the general setting, where there is no limitation of the choice of the selection rule.
Thus, methods that do provide conditional coverage guarantees must depend on
the specific selection rule being used. Zhong and Prentice [40] and Weinstein,
Fithian and Benjamini [37] follow this line of inquiry and derive explicit CIs
that have the conditional coverage guarantee under specific selection rules and
assumptions on the families of parameters. The difficulty in this approach is
that the results provided are narrowly applicable to the predetermined selec-
tion rule and data distribution families — it requires the user to derive new
conditional CIs for different combinations of selection rules and family of dis-
tributions. Weinstein and Ramdas [38] come to a similar conclusion about the
difficulty of using conditional CIs in an online version of the post-selection in-
ference problem, and also recommend the marginal CI approach used in both
BY and e-BY. Further, they note that an additional deficit of the conditional
coverage approach is that the conditionally valid CIs are not necessarily “consis-
tent” with the selection procedure. To refer to the toy example, the conditional
CIs for a selection rule that aims to only select parameters that have CIs that
are completely positive must also include negatives (otherwise the toy example
still holds). In this sense, the produced conditional CIs are inconsistent with the
goal of the selection rule. Hence, FCR control circumvents these challenges, at
the cost of providing a less powerful error guarantee.

FCR control results in smaller CIs than simultaneous coverage An-
other type of error control to consider is a simultaneous guarantee over the CIs
of all selected parameters, i.e., P (∀i ∈ S : θ∗

i ∈ Ci(αi)) ≥ 1 − δ, for some choices
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of αi ∈ [0, 1] for each i ∈ S. This error is called the simultaneous over selected
(SoS) criterion in Benjamini, Hechtlinger and Stark [1] — they provide meth-
ods for controlling the SoS for a few, specific selection rules. Note that control
of the SoS criterion implies control of the FCR, but not necessarily the other
way around. Hence, SoS control is strictly stronger than FCR control. The only
known way to achieve this simultaneous coverage for arbitrary selection rules,
however, is to make a Bonferroni correction and ensure simultaneous coverage of
all the CIs, i.e., for both selected and non-selected parameters. If all confidence
levels are equivalent, this implies αi = δ/K. This is a much more conservative
level of correction than the BY and e-BY procedures.
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Supplementary Material

Code for simulations and figures
(doi: 10.1214/24-EJS2253SUPP; .zip). The ZIP file in Xu et al. [39] contains all
the code for the methods in this paper, as well as the code to run the simulations
and generate the plots.
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