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Online Multiple Hypothesis Testing
David S. Robertson, James M. S. Wason and Aaditya Ramdas

Abstract. Modern data analysis frequently involves large-scale hypothesis
testing, which naturally gives rise to the problem of maintaining control of
a suitable type I error rate, such as the false discovery rate (FDR). In many
biomedical and technological applications, an additional complexity is that
hypotheses are tested in an online manner, one-by-one over time. However,
traditional procedures that control the FDR, such as the Benjamini–Hochberg
procedure, assume that all p-values are available to be tested at a single time
point. To address these challenges, a new field of methodology has devel-
oped over the past 15 years showing how to control error rates for online
multiple hypothesis testing. In this framework, hypotheses arrive in a stream,
and at each time point the analyst decides whether to reject the current hy-
pothesis based both on the evidence against it, and on the previous rejection
decisions. In this paper, we present a comprehensive exposition of the lit-
erature on online error rate control, with a review of key theory as well as
a focus on applied examples. We also provide simulation results comparing
different online testing algorithms and an up-to-date overview of the many
methodological extensions that have been proposed.

Key words and phrases: A/B testing, data repositories, platform trials, type
I error rate.

1. INTRODUCTION

Large-scale hypothesis testing is now ubiquitous in
a variety of biomedical and technological applications.
For example, many major technology companies perform
tens of thousands of randomised controlled experiments
(known as A/B tests) each year to make data-driven de-
cisions about how to improve products (Kohavi et al.,
2020). Meanwhile, in genomics it is now routine to test
hundreds of thousands of genetic variants for an associa-
tion with particular phenotypic trait(s). Even in the setting
of randomised controlled trials (RCTs) in medicine, there
is a growing push towards the use of “overarching” trial
frameworks to allow the efficient testing of multiple ex-
perimental drugs for multiple patient subpopulations.

Performing a large number of hypothesis tests naturally
gives rise to the problem of multiple comparisons (Tukey,
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1953): given a collection of multiple hypotheses to be
tested, the goal is to distinguish which hypotheses are null
and nonnull, while controlling a suitable error rate (see
Section 1.2). This error rate is generally formed around
the probability of incorrectly classifying a null hypothe-
sis as nonnull. Typically, a p-value is calculated for each
hypothesis and is then used to decide whether to reject
the null hypothesis. Multiple hypothesis testing is one of
the core problems in statistical inference, and has led to a
wide range of procedures that can be used to correct for
multiplicity and ensure that a suitable error rate is con-
trolled. In contrast, uncorrected hypothesis testing con-
tributes to serious concerns over reproducibility, publica-
tion bias and ‘p-hacking’ in scientific research (Ioannidis,
2005, Head et al., 2015).

Multiplicity, as broadly understood, is naturally linked
to scientific reproducibility. Goodman, Fanelli and Ioan-
nidis (2016) state that “Multiplicity, combined with in-
complete reporting, might be the single largest contribu-
tor to the phenomenon of nonreproducibility, or falsity,
of published claims” and go on to say that “Scientific
fields that routinely work with multiple hypotheses with-
out correcting for or reporting the occurrence of multi-
plicity run a higher risk of nonreproducibility of results
or inferences”. As an example of this, Zeevi, Astashenko
and Benjamini (2020) recently showed that adjusting for
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multiplicity greatly enhances the reproducibility of results
from psychology experiments. Similarly, in the context of
drug development, Bretz and Westfall (2014) in a paper ti-
tled “Multiplicity and replicability: two sides of the same
coin” showed that there is a close link between between
multiplicity and replicability in terms of the observed ef-
fect sizes of selected subgroups, with further examples
given in Bretz, Maurer and Xi (2019).

Traditionally, multiple hypothesis testing is offline in
nature, in the sense that a procedure for testing N hy-
potheses will receive all of the corresponding p-values
(P1, . . . ,PN ) at once. Step-up and step-down multiple
testing procedures for example, require knowledge about
all p-values in advance. In the offline setting, the semi-
nal Benjamini–Hochberg (BH) procedure is the dominant
method used for FDR control. However, this paradigm
is often incompatible with modern data-driven decision-
making processes, as demonstrated by our motivating ex-
amples in Section 1.1. Once the data is available to make
a decision about a particular hypothesis, it can be desir-
able to take a corresponding action (e.g., to update a tech
product) relatively quickly, and not to wait for the results
of ongoing or future hypothesis tests. Linked with this,
in many application areas it may not even be possible
to know in advance how many tests in total will be per-
formed. Moreover, the repeated application of traditional
offline multiple testing procedures as the family of hy-
potheses grows can lead to repeatedly changing past deci-
sions, which may be undesirable in some contexts.

What is needed therefore are procedures for online mul-
tiple hypothesis testing, which better take into account
the nature of modern data analysis. This is defined as
follows: A stream of hypotheses arrives online. At each
step, the analyst must decide whether to reject the cur-
rent null hypothesis without having access to the num-
ber of hypotheses (potentially infinite) or any future data,
but solely based on the previous decisions and evidence
against the current hypothesis.

Online and sequential testing. Online hypothesis test-
ing has a sequential nature, in the sense that individual
hypotheses (or batches of hypotheses) are tested one af-
ter the other over time. However, this is distinct from
the more traditional concept of sequential testing, which
refers to the testing of a single hypothesis in a sequential
manner with data accumulating over time. In sequential
testing, the sample size for the experiment is not fixed in
advance, and the accumulating data is evaluated as they
are collected to allow the experiment to be stopped adap-
tively, such as when statistical significance is achieved.
The framework of online multiple testing can be expanded
to be “doubly sequential”, where the inner sequential pro-
cess is a single sequential test, and the outer sequential
process refers to the multiple experiments that are per-
formed to test different hypotheses.

For each null hypothesis Ht , an anytime-valid p-value
is a sequence of p-values (Pt,n)n≥1 where n indexes the
sample size in the experiment corresponding to hypothe-
sis Ht , such that Pr(Pt,N ≤ x) ≤ x, for all x ∈ [0,1] and
any data-dependent stopping time N . In other words, the
stopped anytime p-value is a valid p-value in the classical
sense, no matter how the experiment was stopped. In on-
line multiple testing, we typically drop the second index
and focus on the “outer sequential process” (across ex-
periments/hypotheses), which means that we assume that
for each hypothesis Ht , we have a valid p-value Pt , but
we keep in mind that this could have been achieved by
stopping an anytime-valid p-value (the “inner sequential
process”, corresponding to the evidence within a single
experiment).

We also wish to draw a distinction between online hy-
pothesis testing and multi-armed bandit (MAB) testing.
While both frameworks allow the comparison of multiple
experimental arms over time, an MAB can be considered
as a single experiment in which resources are iteratively
allocated to the different arms in order to adaptively trade
off certain costs and benefits, and this allocation depends
on the previously observed outcomes on each arm. Again,
the two testing frameworks can be combined within a
doubly sequential framework where there is a sequence
of MAB problems over time, see Yang et al. (2017).

Figure 1 gives a diagrammatic representation of online
multiple testing, where different hypotheses (correspond-
ing to experiments) are tested over time (corresponding to
the collection of data samples). As discussed above, each
experiment could itself be a sequential experiment or take
the form of an MAB.

Since the framework was first proposed by Foster and
Stine (2008), a variety of procedures that control error
rates for online hypothesis testing have been developed
(Aharoni and Rosset, 2014, Javanmard and Montanari,
2015, Ramdas et al., 2018). Our aim in this paper is to

FIG. 1. An abstract online multiple testing framework. As time

passes (left to right), new experiments testing different hypotheses are

started and stopped, in a possibly indefinite manner. Each horizon-

tal line represents a new experiment/hypothesis, and the length repre-

sents the number of samples collected. Decisions about each hypothe-

sis must be made as soon as the corresponding experiment ends.
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provide an expository overview of this literature on online
error rate control, with a review of the underlying theory,
key methods and applied examples.

The bulk of the literature has focused on the setting
of independent hypothesis tests for provable FDR control
(with slightly weaker conditions allowing for control of
variants of the FDR). Another important feature of many
of the algorithms presented here is that they are adaptive:
when some fraction of the tests actually have the alter-
native hypothesis true (as evidenced by p-values), they
adapt and use less conservative tests.

In the rest of this section, we give motivating exam-
ples for online multiple testing and present formal def-
initions of error rate control. Section 2 describes the key
procedures for online error rate control in detail. Section 3
presents a simulation study of the procedures, while Sec-
tion 4 presents two case studies of applying online error
rate control. We describe further methodological exten-
sions as well as future directions in Section 5. In Sec-
tion 6, we provide a summary and some practical guid-
ance, and conclude with a discussion in Section 7.

1.1 Motivating Examples

We now present three motivating examples from a spec-
trum of ‘easier’ to ‘harder’ settings for currently available
online testing algorithms, in terms of the statistical depen-
dency between hypotheses.

A/B testing in tech companies (independent hypothe-

ses). The development of web applications and services
in the tech industry increasingly relies on the use of
randomised controlled experiments known as A/B tests.
There are a number of widely used platforms now avail-
able that streamline and handle the implementation of
A/B tests. A typical application is in the development of
different versions of webpages. As described in Berman
and Van den Bulte (2021), in this context there are two
webpage variations (A and B). When an online user vis-
its, the platform randomly assigns the visitor to one of the
variations for the duration of the experiment. The plat-
form records the actions that the visitor takes, where the
monitored actions reflect the experimenter’s goal(s), such
as increasing visitor engagement (defined appropriately)
or increasing revenue. One of the variations is designated
as the baseline, and the performance of the other varia-
tion is compared to the baseline using suitable test statis-
tics. If run correctly using anytime-valid p-values (Johari
et al., 2021) and/or confidence sequences (Howard et al.,
2021), the data can be continuously monitored by the ex-
perimenter, and a decision can be made at any stopping
time.

Many tech companies run tens of thousands of A/B tests
per year, as part of a continuous process of designing, de-
livering, monitoring and improving webpages and other
web services. However, there is reason to reduce the num-
ber of false alarms that result in making changes to web

products that do no better (or even perform worse) than
the current iteration, corresponding to an incorrect rejec-
tion of the null, particularly when such changes are poten-
tially costly or disruptive to users. Hence, the framework
of online error rate control provides a framework to do
so while still allowing a large number of A/B tests to be
performed in a flexible manner.

Platform trials (known positive dependence). A plat-
form trial has a single master protocol that evaluates mul-
tiple treatments across one or more patient types, and al-
lows a potentially large number of treatments to be added
during the course of the trial (Saville and Berry, 2016).
A new treatment can be added to the trial (correspond-
ing to testing a new hypothesis) when a new experimen-
tal therapy becomes available, such as when a safe drug
candidate for the disease in question is identified from a
successful phase I clinical trial. Treatments are dropped
from the trial after they have been formally tested for ef-
fectiveness. Such a trial could (in theory) be ‘perpetual’
in that new treatments can continue to enter into the trial
and be tested. Figure 5 in Section 4.2 gives a diagram of
an example platform trial showing what this looks like.

In a platform trial, treatments are introduced at differ-
ent time points by design. However, the trial investiga-
tors will wish to make a decision on whether a treatment
is beneficial as soon as the data are ready, without wait-
ing for results from the other treatment arms. Hence, the
treatment effects are tested in an online manner, where
the number of treatments to be tested in the future may
be unknown. More formally, a platform trial generates a
sequence of null hypotheses (H1,H2,H3, . . .) where hy-
pothesis Hi tests the value of some parameter θi , such as
an estimate of the treatment difference compared to a con-
trol arm.

The p-values generated from the platform trial de-
scribed above will not be independent in general. Depen-
dencies will primarily arise due to the shared control data
that is reused to test multiple hypotheses. A current ex-
ample of a long-running platform trial is the STAMPEDE
trial (James et al., 2008) for patients with locally advanced
or metastatic prostate cancer, which we return to as a case
study in Section 4.2.

Data repositories (unknown arbitrary dependence).
Public databases and shared data resources are becom-
ing increasingly pervasive and important in modern
biomedical research, particularly in the fields of genet-
ics, molecular biology and routinely collected healthcare
records. Some well-known examples include the 1000
Genomes Project (1000 Genomes Project Consortium
et al., 2015) and the Wellcome Trust Case Control Con-
sortium (Wellcome Trust Case Control Consortium et al.,
2007). Another example is the International Mouse Phe-
notyping Consortium database (Koscielny et al., 2013,
Dickinson et al., 2016), which we describe as one of our
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case studies in Section 4. Meanwhile, the increase in rou-
tinely collected healthcare data allows evaluation of dif-
ferent healthcare technologies used in practice through
emulation of target trials (Dickermanet al., 2019).

Multiple testing naturally occurs in this setting in two
ways. First, such databases can be accessed by multiple
independent researchers at different times. When a re-
searcher or research group comes up with a new hypoth-
esis, they can fetch the relevant data from a database and
perform a statistical test. Second, in some databases the
family of hypotheses to be tested grows over time as new
hypotheses are tested (e.g., corresponding to new exper-
iments being performed that measure phenotype expres-
sion for a previously untested gene knockout). In both of
these scenarios, the number of hypotheses being tested
will be unknown and potentially very large, and lead
to concern about overlapping data allowing for arbitrary
correlation patterns between hypothesis tests. The issues
such dependence causes will be considered throughout the
rest of this paper.

In order to control the number or proportion of false dis-
coveries in this context, new procedures are required that
allow a researcher to decide whether to reject a current
hypothesis with minimal information about previous hy-
potheses, and without prior knowledge of even the num-
ber of hypotheses that are going to be tested in the future.
This is precisely the online multiple testing framework de-
scribed earlier.

1.2 Error Rates

We now formally define some error rates of interest.
The basic problem setup is as follows. At each time step
t = 1,2, . . . the experimenter observes a p-value Pt cor-
responding to testing a null hypothesis Ht , and must make
a decision whether to reject Ht before the next time step.
We assume that all p-values are valid, that is, if the
null hypothesis Ht is true, then Pr{Pt ≤ x} ≤ x for all
x ∈ [0,1].1 At time t = 0, the experimenter fixes the level
α at which a suitable error rate is meant to be controlled
at all times.

A general testing procedure provides a sequence of test
levels αt with decision rule

(1) Rt =
{

1 if Pt ≤ αt (reject Ht ),

0 otherwise (accept Ht ).

At any time T , let R(T ) = ∑T
t=1 Rt denote the number

of rejections (also known as discoveries) made so far and

1Note that if violations of this condition are not too large in the sense
that there exists some ε > 0 such that

Pr(Pt ≤ x) ≤ x(1 + ε),

for every x ∈ [0,1] then it is straightforward to check that the FDR
proofs still go through for the online algorithms presented in Sec-
tion 2.2, guaranteeing an FDR of α(1 + ε) instead.

V (T ) denote the total number of falsely rejected hypothe-
ses (also known as false discoveries).

The false discovery proportion (FDP) up to time T is
defined as

FDP(T ) := V (T )

R(T ) ∨ 1
,

where a ∨ b = max(a, b). The false discovery rate (FDR)
is then the expectation of the FDP:

FDR(T ) := E

[
V (T )

R(T ) ∨ 1

]
.

A commonly studied variant is the marginal FDR
(mFDR):

mFDR(T ) := E[V (T )]
E[R(T ) ∨ 1] .

Another related error rate is the false discovery ex-

ceedance (FDX), which is the probability the supremum
of the FDP exceeds a predefined threshold ε:

FDXε(T ) := Pr
[

sup
0≤t≤T

FDP(t) ≥ ε
]
.

We view the FDR as the central metric of interest, given
its long history, widespread use in applied fields such as
genetics, and intuitive interpretation. The mFDR can be a
convenient theoretically tractable proxy for the FDR when
it is not possible to prove FDR control for a particular al-
gorithm and data application, as we highlight in the rest
of the paper. In some settings previously explored in the
literature, it has been shown empirically that the realised
FDR and mFDR of online hypothesis testing algorithms
are very similar (see, e.g., Appendix F of Zrnic, Ram-
das and Jordan, 2021), although this is not true in gen-
eral (see, e.g., the Supplementary Material in Javanmard
and Montanari, 2018). Hence, the FDR would be the de-
fault choice for most users, with the mFDR then being the
pragmatic alternative error rate choice if a suitable algo-
rithm for FDR control is not available for the particular
data application in mind.

In contrast, the FDX gives a stricter guarantee about the
distribution of the FDP: whereas the FDR controls the ex-
pectation of the FDP, the FDX controls the tail probabil-
ity of the FDP (i.e., controlling the (1 − ε)-quantile of the
FDP distribution). Control of the FDX makes most sense
in settings where the FDP can deviate significantly from
its expectation, such as when the number of hypotheses to
be tested is not very large, or there is significant correla-
tion (Javanmard and Montanari, 2018). As for the choice
of ε for the FDX, a default choice of ε = 0.05 or 0.10 is
one option, but a pre-hoc choice of ε may also be moti-
vated on practical grounds, such as choosing ε based on
the required sample size to achieve a desired power given
control of the FDX at level α. Another approach is to use
recently proven post-hoc bounds of the FDXε for online
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testing algorithms under independence, which allows the
user to choose ε (and α) freely by examining the corre-
sponding rejections and seeing what makes most sense
(Katsevich and Ramdas, 2020).

An alternative error rate to those based on the FDP is
the familywise error rate (FWER), which is more com-
monly considered in clinical trial contexts due to the rela-
tively small number of hypotheses and regulatory require-
ments. The FWER is the probability of falsely rejecting
any null hypothesis:

FWER(T ) := Pr
[
V (T ) ≥ 1

]
.

The FWER and hence the FDR can be controlled at level
α in a simple manner by using a Bonferonni-type cor-
rection, also known as alpha-spending. More precisely,
we can choose significance levels αt for Ht , such that∑∞

t=1 αt = α. We reiterate that this corresponds to the set-
ting where each nominal critical value αt corresponds to
testing a single hypothesis Ht , with the possibility of re-
peated testing of the same hypothesis (as in the sequential
testing literature) included implicitly, see our remark in
the Introduction. However, alpha-spending suffers from a
low statistical power, with the probability of the null hy-
pothesis Ht being rejected tending to zero as t increases.
This motivates the development of more sophisticated al-
gorithms for online error rate control.

2. ONLINE ERROR RATE CONTROL METHODOLOGY

2.1 Generalised Alpha-Investing (GAI)

The first proposals for online error rate control were
based on “alpha-investing” by Foster and Stine (2008) and
its generalisation (GAI) (Aharoni and Rosset, 2014). (An
alternative early line of work instead focused on exten-
sions of gatekeeping procedures that allow for online con-
trol of the FWER or FDR for ordered hypotheses (Finos
and Farcomeni, 2011, Farcomeni and Finos, 2013) but
these turn out to be far less powerful in practice, so we
do not discuss them further.) Any GAI rule begins with
an error budget, or alpha-wealth, which is allocated to
the different hypothesis tests over time. That is, there is
a price to be paid each time a hypothesis is tested, which
can be viewed as making an investment in the hypothesis
in question. If the hypothesis is rejected, alpha-wealth is
earned back, which can be viewed as a return or payout on
the alpha-investment. Since the alpha-wealth can increase
in this way, as long as discoveries continue to be made,
hypotheses can be tested indefinitely without the test lev-
els tending towards zero. The intuition behind the alpha-
wealth increasing after a rejection is that the denominator
in the FDP increases, therefore allowing the numerator
(i.e., the number of false rejections) to also increase for
future hypothesis tests while still controlling the FDR.

Formally, a GAI rule produces a series of test levels
(α1, α2, α3, . . .) based on which it uses (1) to produce the

corresponding decisions (R1,R2,R3, . . .). Of course, αt

must be based only on R1, . . . ,Rt−1. At each time point
t , the alpha-wealth W(t) decreases by an amount φt . If
the hypothesis Ht is rejected (Rt = 1), then the alpha-
wealth is increased by ψt . In other words, the price φt

is the amount paid for testing (i.e., investing in) a new hy-
pothesis, and the payout (or return on the investment) ψt

is the amount earned if a discovery is made at that time.
Hence, the initial wealth is W(0) = w0 and it is updated
via:

W(t) = W(t − 1) − φt + Rtψt .

Figure 2 give a diagrammatic summary of how GAI
works. The total wealth W(t) must always be nonnega-
tive, and hence φt ≤ W(t − 1). Additionally, there are re-
strictions on αt , φt , ψt , namely that when a rejection is
made, the payout ψt is capped. This upper bound is there
to ensure control of the FDR (and its variants).

Given these constraints, the user is free to choose the se-
quences αt , φt and ψt . As an example, the alpha-investing
rule explored in Foster and Stine (2008) chooses

αt = φt

1 + φt

, φt ≤ W(t − 1)

and

ψt = φt + α.

The choice of αt , φt and ψt was explored in terms of the
trade-off between the sequences αt and ψt in Aharoni and
Rosset (2014). However, in this paper, we focus on the
more recent ‘statistical’ perspective for constructing on-
line algorithms that control the FDR (see the start of Sec-
tion 2.2), which implicitly give choices for φt and ψt . As
is predominately the case in offline multiple testing, we
often use monotone decision rules for αt considered as a
function of (R1, . . . ,Rt): if R̃i ≥ Ri for all i ≤ t − 1, then
we have αt (R̃1, . . . , R̃t−1) ≥ αt (R1, . . . ,Rt ).

Ramdas et al. (2017) defined a class of improved GAI
algorithms, called GAI++, as follows. Set w0 so that 0 ≤
w0 ≤ α and choose the payout ψt to satisfy

ψt ≤ min
{
φt + bt ,

φt

αt

+ bt − 1
}
,

where bt = α − w01{R(t − 1) = 0}. This upper bound on
the payout is different from the original GAI algorithms
in order to guarantee FDR control while giving the largest
possible payout for rejecting a hypothesis, with the choice
of w0 determining the payout received for the very first re-
jection (see, e.g., the LORD++ algorithm in Section 2.2).
Ramdas et al. (2017) show that any monotone GAI++ rule
comes with the following guarantee:

THEOREM 2.1. If the null p-values (i.e., the subse-

quence of p-values where the null hypothesis is true) are

independent of all other p-values, any monotone GAI++

rule satisfies the bound E[V (t)+W(t)
R(t)∨1 ] ≤ α for all t ≥ 1.

Since W(t) ≥ 0, the FDR is controlled at level α.
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FIG. 2. Diagrammatic representation of generalised alpha-investing (GAI), showing how the wealth W(t) at time t changes depending on whether

the hypothesis Ht is rejected (i.e., whether the corresponding p-value Pt ≤ α) or not. Figure adapted from Xu and Ramdas (2022).

This is in contrast to the GAI rules (including alpha-
investing as proposed by Foster and Stine (2008)), which
only control the mFDR.

We note that the independence assumption refers to in-
dependence between different hypotheses. The important
case of sequential testing of any single hypothesis can
be seamlessly incorporated through the use of anytime-
valid p-values as described in the Introduction. A related
framework is to use ‘asynchronous’ online testing, as dis-
cussed in Section 5, which gives the added flexibility of
allowing hypothesis tests to overlap in time.

2.2 Algorithms for Online FDR Control: LORD,

SAFFRON and ADDIS

Although an “algorithmic perspective” led to the GAI
procedures initially used in the online testing literature,
Ramdas et al. (2017) posited a “statistical perspective” to
construct procedures, which is to keep an estimate of the
FDP less than α. First, the oracle FDP is defined as

FDP∗(t) =
∑

j≤t,j∈H0
αj

R(t) ∨ 1
,

where H0 denotes the set of true null hypotheses. If we
can keep FDP∗(t) ≤ α at all times t , then (depending on
dependence assumption on the p-values), we can prove
that mFDR(t) ≤ α or FDR(t) ≤ α. This technique has
been used to derive the LORD, SAFFRON and ADDIS
algorithms (see below), by designing different estimates
F̂DPLORD(t), F̂DPSAFFRON(t), F̂DPADDIS(t) for FDP∗(t).

2.2.1 LORD. The LORD algorithm was conceptu-
alised by Javanmard and Montanari (2018), and is an in-
stance of a monotone GAI rule. More precisely, given
an infinite nonincreasing sequence of positive constants

{γt }∞t=1 that sums to one, the test levels αt for LORD are
chosen as follows:

αt = w0γt +
∑

j :τj<t,τj �=τ1

γt−τj
b0,

where τj denotes the time of the j th rejection and we
must have w0 + b0 ≤ α for FDR control to hold.

Following this, Ramdas et al. (2017) defined a simple
upper bound of FDP∗(t):

F̂DPLORD(t) = V̂ (t)

R(t) ∨ 1
:=

∑
j≤t αj

R(t) ∨ 1

and showed that LORD can be viewed as an algorithm
that keeps F̂DPLORD(t) ≤ α. Here V̂ (t) corresponds to the
alpha-wealth used for testing while αR(t) corresponds to
the total earned alpha-wealth that can be used for subse-
quent tests. Exploiting this view, they derived a uniform
improvement of LORD, termed LORD++ (presented be-
low). In brief, LORD++ is able to replace b0 = α − w0
with the choice b0 = α while still maintaining FDR con-
trol, with the catch that for the very first rejection only
b0 = α − w0 (see below).

Given an infinite nonincreasing sequence of positive
constants {γt }∞t=1 that sums to one, the test levels αt for
LORD++ are chosen as follows:

αt = w0γt + (α − w0)γt−τ11{τ1 < t}

+ α
∑

j :τj<t,τj �=τ1

γt−τj
.

The above formula may look daunting but it is inter-
pretable. The first term is the fraction of the initial wealth
w0 that is used by the t th test. The other terms are the
fractions of the earnings from rejections before t that are
spent in the t th round: LORD++ awards α − w0 for the



ONLINE MULTIPLE HYPOTHESIS TESTING 563

first rejection and α for every subsequent rejection, and
on receiving this reward, the method immediately allo-
cates that reward to future rounds according to the same
schedule of constants {γt }, shifted to start at the next in-
stant. This rule ensures that LORD++ never spends more
than it has earned, thus keeping F̂DPLORD++(t) ≤ α.

The intuitive reason why LORD++ cannot award α

for the very first rejection can be seen in the definition
FDP(T ) = V (T )

R(T )∨1 . The denominator R(T ) ∨ 1 = 1 when
the number of rejections equals zero or one, and hence
only starts increasing at the second rejection. This means
that the sum of w0 and the first reward must be at most α,
following which α may be rewarded at every rejection. As
for the choice of the sequence γt , this depends on the data
application at hand, with a reasonable default choice given
by γt ∝ log(t∨2)

t exp(
√

log t)
, which has been shown to maximise

power in the Gaussian setting (i.e., where the test statistics
follow a normal distribution) (Javanmard and Montanari,
2018).

The manner in which F̂DPLORD++(t) is a simple upper
bound on FDP∗(t) is reminiscent of the BH procedure for
offline testing, which can be derived in a similar fashion.
More precisely, suppose that one rejects all p-values be-
low some fixed threshold s ∈ (0,1). The BH procedure
overestimates the FDP using the quantity F̂DPBH(s) =

n·s
|R(s)| , where R(s) denotes the set of rejected p-values us-
ing the fixed threshold s. The BH procedure then rejects
the set R(ŝBH) where ŝBH = max{s : F̂DPBH(s) ≤ α}.
This leads us to view LORD++ as the online analog of
the BH procedure.

Guarantees for LORD++ hold under different p-value
dependencies, which we now formalise. Define the fil-
tration at time t as F t = σ(R1, . . . ,Rt ) (representing
the collection of the observed rejections up to time t)
and let αt = ft (R1, . . . ,Rt−1) where ft is a [0,1]-valued
function. The null p-values are said to be conditionally
super-uniform if Pr{Pt ≤ αt |F t−1} ≤ αt for any F t−1-
measurable αt . Armed with this definition, we have the
following theorem from Ramdas et al. (2017).

THEOREM 2.2. (a) If the null p-values are condition-

ally super-uniform, then the condition F̂DPLORD(t) ≤ α

for all t ≥ 1 implies that mFDR(t) ≤ α for all t ≥ 1.
(b) If the null p-values are independent of each other

and of the p-values corresponding to the nonnull hypothe-

ses, and {αt } is chosen to be a monotone function of past

rejections, then the condition F̂DPLORD(t) ≤ α for all

t ≥ 1 implies that FDR(t) ≤ α for all t ≥ 1.

Finally, in terms of theoretical power guarantees for
LORD, Chen and Arias-Castro (2021) considered the set-
ting of a (generalised) Gaussian model (see reference for
further details) and showed that LORD is asymptotically
optimal, in particular by being as powerful as BH to first
asymptotic order.

2.2.2 SAFFRON. Ramdas et al. (2018) derived an
adaptive version of LORD++ called SAFFRON, which
is based on an estimate of the proportion of true null hy-
potheses. By not wasting its earnings on attempting to
reject weaker signals (i.e., larger p-values), SAFFRON
preserves alpha-wealth and hence can have a higher power
than LORD++. To this end, we choose λ ∈ (0,1) and de-
fine the candidate p-values as those that satisfy Pt ≤ λ,
since SAFFRON will never reject a p-value larger than λ.
We also choose an infinite nonincreasing sequence of pos-
itive constants {γt }∞t=1 that sums to one. Reasonable de-
fault choices for these hyper-parameters are λ = 0.5 and
γt ∝ t−1.6 (Ramdas et al., 2018). The formulae for the test
levels αt for SAFFRON are given in Appendix A.

SAFFRON starts off with alpha-wealth (1 − λ)w0 and
does not lose any of this wealth when testing candidate p-
values. Of course, this has to be done in a principled way
and is accounted for in the formulation of the test levels
αt , which intuitively helps explain the (1 − λ) multiplica-
tive factor (see Appendix A). It gains an alpha-wealth of
(1 −λ)α for each discovery after the first. SAFFRON can
make more rejections than LORD++ if there is a substan-
tial fraction of nonnulls and the signals are strong.

Similar to LORD++, SAFFRON provably controls the
mFDR at all times if the null p-values are conditionally
super-uniform. Also, SAFFRON controls the FDR at all
times if the null p-values are independent of each other
and of the nonnulls, and {αt } is chosen to be a monotone
function of (R1, . . . ,Rt−1,C1, . . . ,Ct−1), where Ct =
1{Pt ≤ λ}; see Ramdas et al. (2018) for details.

2.2.3 ADDIS. stands for an ADaptive algorithm that
DIScards conservative nulls, and was proposed by Tian
and Ramdas (2019). ADDIS can invest alpha-wealth more
effectively than LORD++ or SAFFRON by explicitly dis-
carding the weakest signals (i.e., the largest p-values) in
a principled way, which can lead to a higher power. More
formally, in practice it is common to encounter conser-

vative nulls, where a null p-value P is conservative if
Pr{P ≤ x} < x for all x ∈ [0,1]. Often nulls are uniformly

conservative, which means that under the null,

Pr{P/c ≤ x|P ≤ c} ≤ x for all x, c ∈ (0,1).

For example, for a one-dimensional exponential family
with parameter θ , when the true parameter θ is strictly
smaller than θ0, the uniformly most powerful test of H0 :
θ ≤ θ0 versus H1 : θ > θ0 will give uniformly conserva-
tive nulls (Zhao, Small and Su, 2019). Another setting is
using always-valid p-values (Johari et al., 2021) in the
context of continuous monitoring for A/B testing, which
will always be conservative.

In general, adaptivity (used by both SAFFRON and
ADDIS) helps when there is a substantial fraction of non-
nulls (like 10% or 20%). Discarding (used only by AD-
DIS) helps when the nulls are conservative, meaning that
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instead of being exactly uniform, they are stochastically
larger than uniform. Discarding helps even without adap-
tivity, and adaptivity helps without discarding. The key
idea behind discarding is intuitive: if you see a p-value
larger than (say) 0.5, throw it away, but if you see a p-
value smaller than 0.5, then double it (to condition on se-
lection) and pass it onto the multiple testing procedure.
Roughly, if there are mostly nulls and these are uniformly
distributed, this doesn’t do much at all—the tested p-
values are doubled, but only about half the p-values are
tested so the multiplicity correction is halved, cancelling
the effects. However, if the nulls are stochastically much
larger than uniform, then we may throw away most of the
nulls in this step, eventually testing only a much smaller
number of p-values (which have been doubled).

In terms of formal definitions, with λ and the corre-
sponding candidate p-values defined as for SAFFRON,
we let St = 1{Pt ≤ η} be the indicator of Ht being se-
lected for testing (i.e., not discarded). Hence, η is the
discarding threshold and must be greater than λ. We
also choose an infinite nonincreasing sequence of positive
constants {γt }∞t=0 that sums to one. Reasonable default
choices for these hyper-parameters are λ = 0.25, η = 0.5
and γt ∝ (t + 1)−1.6, as justified empirically in Tian and
Ramdas (2019). The formulae for the test levels αt for
ADDIS are given in Appendix B. As can be seen, AD-
DIS starts off with an alpha-wealth of (η−λ)w0 and (like
SAFFRON) does not lose any of this wealth when testing
candidate p-values. The p-values that are greater than η

do not affect the test levels for ADDIS at all, that is, as if
they did not exist in the sequence of p-values at all (re-
flecting the term ‘discarding’). It gains an alpha-wealth of
(η − λ)α for each rejection after the first.

Like for LORD++ and SAFFRON, ADDIS provably
controls the mFDR at all times if the null p-values are
conditionally uniformly conservative. ADDIS provably
controls the FDR at all times if the null p-values are in-
dependent of each other and of the nonnulls, and {αt }∞t=1
is a monotone function of the past; see Tian and Ramdas
(2019) for full details.

2.2.4 Monotone AI. As a comparator to the above al-
gorithms, we also consider a version of the original AI
algorithm of Foster and Stine (2008), as modified by
Ramdas et al. (2017) to ensure it is a monotone rule and
hence that FDR control holds. We will refer to this rule as
‘monotone AI’.

3. SIMULATION STUDIES

In this section, we compare the performance of the
LORD++, SAFFRON and ADDIS algorithms in terms of
the FDR and statistical power. We do not aim to present
an exhaustive simulation of all the algorithms currently
available in the literature, but rather select a representa-
tive set of algorithms to demonstrate some key general

features for the core problem of online FDR control. To
this end, we use LORD++ as a representative ‘basic’ on-
line algorithm, given that it is the natural online analog
of the BH procedure. We then use SAFFRON as a repre-
sentative of an adaptive online algorithm, while ADDIS is
a representative of an adaptive online algorithm that also
incorporates discarding. As an additional comparison, we
also include the ‘monotone AI’ rule. In Section 3.3, we re-
fer the reader to further simulation studies that have been
published in the literature. First though, we briefly de-
scribe software implementation of algorithms for online
error rate control.

3.1 Software: onlineFDR Package

The onlineFDR package is an open-source R pack-
age that aims to provide a comprehensive and up-to-date
implementation of algorithms for online error rate con-
trol. It is freely available via Bioconductor (Robertson
et al., 2021). The package implements the LORD++,
SAFFRON and ADDIS algorithms, as well as almost all
of the algorithms corresponding to the further extensions
of online error rate control methodology (see Section 5.1).
In particular, it also provides functions for algorithms for
online FWER and online FDX control. The package doc-
umentation provides a user-friendly introduction to the
use of the package, and there is also a Shiny app avail-
able (Liou and Robertson, 2021) to allow users to explore
algorithms for online FDR control in an interactive way
without having to program. All results for the simulation
and case studies in this paper were calculated using the
package.

3.2 Testing with Gaussian Observations

In order to examine the relative performance of the
online FDR algorithms, we use a simple experimental
setup of testing Gaussian means, with a total of T hy-
potheses. Note that although T is fixed in the simula-
tions, all the methods do not use this knowledge of T to
normalise the sequence γt . The null hypotheses take the
form Ht : μt ≤ 0 which are tested against the alternative
H ′

t : μt > 0 for t = 1, . . . , T . We observe independent ob-
servations Zt ∼ N(μt ,1) which are transformed to one-
sided p-values Pt = �(−Zt ), where � denotes the stan-
dard Gaussian CDF. The motivation for using one-sided
p-values is from A/B testing, where one wishes to detect
larger effects, not smaller. The means μt are set according
to the following mixture model:

μt =
{
F0 with probability 1 − π1,

F1 with probability π1,

where F1 ∼ N(3,1) and F0 is defined as below.
We use the default settings for LORD++, SAFFRON

and ADDIS that are implemented in the onlineFDR

package (following suggestions in the literature). For
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LORD++, we use the default choice of γt ∝ log(t∨2)

t exp(
√

log t)
.

We also use this choice of γt for alpha-spending, where
{αt }∞t=1 is simply given by αt = αγt . For SAFFRON we
set λ = 0.5 and γt ∝ 1

t1.6 . Finally, for ADDIS we set

λ = 0.25, η = 0.5 and γt ∝ 1
(t+1)1.6 . We use the expo-

nent 1.6 in the denominator for γt because this was found
empirically to work well in a range of different simula-
tion studies in the original papers. More precisely, the se-
quence γt satisfies

∑∞
t=1 γt = 1.

Figure 3 shows how the test levels {αt }∞t=1 (displayed
on the log10 scale) evolve over time for LORD++, SAF-
FRON, ADDIS and monotone AI compared with uncor-
rected testing (where αt ≡ α) and alpha-spending. Here,
T = 300, α = 0.05, π1 = 0.5 and we choose F0 ≡ 0.

All of the online FDR algorithms have higher test levels
than alpha-spending (apart from LORD++ briefly early on
in this particular experiment). The relative difference in-
creases with t as the online algorithms ‘earn back’ wealth
over time, which alpha-spending cannot do. SAFFRON,
ADDIS and monotone AI have higher test levels than
LORD++, reflecting how they can more efficiently invest
the alpha-wealth. In this setting, since μt = 0 under the
null, the nulls are exactly uniform and so ADDIS can-
not take advantage of conservative nulls. Hence the test-
ing levels of ADDIS are similar or slightly lower than
those for SAFFRON and monotone AI. Finally, we see
that SAFFRON has similar test levels as uncorrected test-
ing, and SAFFRON, ADDIS and monotone AI can even
have test levels above the nominal α.

Figure 4 compares the statistical power of LORD++,
SAFFRON, ADDIS and monotone AI compared with un-
corrected testing and alpha-spending, as π1 varies from
0.01 to 0.9. Here, we define power as

power(T ) = E

[ ∑
t∈H1

Rt

(
∑T

t=1 1{t ∈ H1}) ∨ 1

]
,

where H1 denotes the index set of the nonnull hypothe-
ses. We also include the standard Benjamini–Hochberg
(BH) procedure as an additional comparison. We stress
that BH is an offline procedure and so could not be used
for online testing in practice. In our simulation, we set
T = 1000, α = 0.05 and F0 ∼ N(−0.5,0.1). Results are
based on averaging 104 simulation replicates (which im-
plies a Monte Carlo standard error when power = 0.5 of
0.005).

Starting with alpha-spending, as expected the power
is very low (<0.2) for all π1. LORD++ has substantial
power gains compared with alpha-spending (as long as
π1 is not close to zero) and this advantage increases with
π1. However, LORD++ has substantially lower power
than BH for all values of π1. As expected, SAFFRON
performs better as the fraction of nonnulls π1 increases,
with a higher power than LORD++ for π1 > 0.05, BH

FIG. 3. Test levels for LORD++, SAFFRON, ADDIS and mono-

tone AI compared with uncorrected testing and alpha-spending. We

set T = 300, α = 0.05 and the proportion of nonnulls π1 = 0.5.

for π1 > 0.5 and even uncorrected testing for π1 > 0.7.
Since F0 ∼ N(−0.5,0.1), almost all the means for the
null hypotheses will be negative, that is, we are in a setting
with conservative nulls. Hence, as expected, ADDIS out-
performs SAFFRON in terms of power (except for very
high values of π1). ADDIS also has a higher power than
BH for π1 > 0.2 and uncorrected testing for π1 > 0.6. Fi-
nally, in this setting, SAFFRON performs very similarly
to the monotone AI algorithm in terms of power.

In Appendix C (Figure 6) we show the corresponding
FDR for all of the algorithms considered. We see that
uncorrected testing can have substantial inflation of the
FDR, with the FDR inflated above the nominal α = 0.05
level for π1 < 0.3. The FDR reaches as high as 0.65 when
π1 = 0.01. All other algorithms control the FDR below
the nominal 0.05 level, as expected.

FIG. 4. Power of LORD++, SAFFRON, ADDIS and monotone

AI compared with uncorrected testing, the BH procedure and al-

pha-spending as the proportion of nonnulls π1 varies. We set T = 1000
and α = 0.05. Results are based on 104 simulation replicates.
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3.3 Observations from Other Simulations

Here, we summarise a few take-home messages for
LORD, SAFFRON and ADDIS from simulation results
already found in the literature. Javanmard and Monta-
nari (2018) investigated the effect of the ordering of the
hypotheses for online testing rules, including LORD. In
some applications, hypotheses can be ordered using side
information, such that those that are most likely to be re-
jected come first. With this favourable ordering, the sta-
tistical power of LORD can substantially increase as long
as π1 is not too large (since ordering is less relevant in
that case). Similar findings for LORD++, SAFFRON and
ADDIS in the context of platform trials can be found in
Robertson et al. (2023), which also looked at the adver-
sarial setting where hypotheses happen to be ordered so
that those most likely to be rejected come last, resulting
in lower power.

Ramdas et al. (2018) considered the impact on
LORD++ and SAFFRON of choosing sequences of the
form γt ∝ t−s , where the parameter s > 1 controls the
‘aggressiveness’ of the procedure (since the larger the
value of s, the more the alpha-wealth is concentrated at
small values of t). For Gaussian alternatives, the simula-
tion results suggested that less aggressive sequences are
to be preferred in terms of increased power for SAFFRON
and LORD++. Meanwhile, Tian and Ramdas (2019)
showed that ADDIS can match the power of SAFFRON
when the nulls are not conservative (i.e., uniform nulls).
The power advantage of ADDIS over LORD++ and SAF-
FRON increases the more conservative the nulls are, that
is, the more negative the means for the null hypotheses
are (in the Gaussian setting).

The theory presented in Section 2 for provable FDR
control requires null p-values to be independent of one
another (with a weaker condition sufficing for mFDR con-
trol). Robertson et al. (2023) explored the performance of
online testing rules, including LORD++, SAFFRON and
ADDIS, in the setting of platform trials with a common
control, which induces positive correlations between the
p-values for testing concurrent arms. There was no evi-
dence of FDR inflation for these algorithms under a range
of assumed treatment effects and overlap of control data.
Robertson and Wason (2018) considered the setting where
the test statistics are assumed to come from a multivari-
ate normal distribution where the covariance matrix has
ones along the diagonals and off-diagonal entries equal to
±0.5. There was no evidence of FDR inflation when using
LORD++ under a range of nonnull distributions. How-
ever, with a two-sided test under a Gaussian alternative,
the SAFFRON procedure had an inflated FDR for smaller
values of π1. This inflation persisted and even increased
as T increased from 100 to 1000. For further discussion
handling dependent p-values, we refer the reader to the
end of Section 5.2.

The simulation studies in Robertson and Wason (2018)
also highlighted the value of using ‘bounded’ versions
of online testing algorithms. This requires setting an a-

priori upper bound M on the number of hypotheses to be
tested, so that the γt ≡ 0 for t > M , which allows set-
ting γt ≡ 1/M for t ≤ M for example (in general, we can
set

∑M
t=1 γt = 1). The bounded versions have a uniformly

higher power than the versions presented in Sections 2
(with the default choices of γt given in Section 3.2) which
assume no upper bound on T , and empirically a substan-
tial gain can be observed for small T (i.e., T < 100). Fi-
nally, another general observation is that the power advan-
tages of online testing algorithms compared with alpha-
spending increase as T increases. Indeed, when T is small
and π1 is low, online testing algorithms may no longer be
competitive in terms of power. We return to this issue in
Section 5.2.

4. CASE STUDIES

4.1 IMPC Dataset

Our first case study uses high-throughput phenotypic
data from the International Mouse Phenotyping Consor-
tium (IMPC) data repository, which aims to generate and
phenotypically characterize knockout mutant strains for
every protein-coding gene in the mouse (Koscielny et al.,
2013). The IMPC database is an example of a growing
dataset mentioned in Section 1.1, since the family of hy-
potheses is constantly growing as new knockout mice
lines are generated and phenotyping data is uploaded to
the data repository.

We focus on the analysis of IMPC data performed by
Karp et al. (2017), who looked at the influence of sex in
mammalian phenotypic traits in both wildtype and mu-
tants. As part of their analysis, Karp et al. analysed the
role of sex as a modifier of the genotype effect (for con-
tinuous traits) using a two stage pipeline. Stage 1 tested
the role of genotype using a likelihood ratio test compar-
ing models (a) and (c). Similarly, stage 2 tested the role of
sex using a likelihood ratio test comparing models (a) and
(b).

(a) Y ∼ Genotype + Sex + Genotype ∗ Sex + Weight

+ (1|Batch),

(b) Y ∼ Genotype + Sex + Weight + (1|Batch),

(c) Y ∼ Sex + Weight + (1|Batch).

The above procedure resulted in two sets of N =
172,328 distinct p-values, ordered by the date of the cor-
responding genomic assay. Note that these p-values will
not be independent, due to positive and negative associa-
tions between different genes (caused for instance by link-
age disequilibrium). In addition, multiple variables are be-
ing measured for the same gene, and these can be aspects
of the same phenotype or be biologically correlated.
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TABLE 1
Number of rejections made by online FDR algorithms and various

comparators using the IMPC datasets. SD = Sexual Dimorphism

Genotype SD

Uncorrected 35,575 20,887
BH 12,907 2084
ADDIS 12,558 1713
SAFFRON 14,268 1705
LORD++ 8517 1193
Monotone AI 9906 985
Fixed Threshold 4158 969
Alpha-spending 795 60

Table 1 shows the number of traits that had a statisti-
cally significant genotype effect or were classed as having
a statistically significant sexual dimorphism (SD) using
LORD++, SAFFRON, ADDIS and monotone AI. As a
comparison, we include the results from alpha-spending,
BH and uncorrected testing. The ‘Fixed Threshold’ pro-
cedure is the fixed significance threshold of 0.0001 used
in practice for the IMPC pipeline.

Starting first with the results for the genotype data, the
online testing algorithms make two to three times as many
rejections as fixed testing. ADDIS and SAFFRON in turn
make substantially more rejections than LORD++, with
an increase of almost 50% and 70%, respectively. ADDIS
makes a similar number of rejections to BH, but SAF-
FRON makes noticeably more rejections than both BH
and ADDIS for these data. For the SD data, again the on-
line testing algorithms make substantially more rejections
than fixed testing, but the relative increase is much less.
ADDIS and SAFFRON make a very similar number of
rejections, about 50% more than the number of rejections
for LORD++. Finally, for these data we see that mono-
tone AI makes substantially fewer rejections then either
ADDIS or SAFFRON.

TABLE 2
Reported p-values for the STAMPEDE platform trial. SOC =

Standard-of-care

Trial arm p-value

B: SOC + zoledronic acid 0.450
C: SOC + docetaxel 0.006
E: SOC + zoledronic acid + docetaxel 0.022

D: SOC + celecoxib 0.847
F: SOC + zoledronic acid + celecoxib 0.130

G: SOC + abiraterone 0.001

H: SOC + radiotherapy 0.266

4.2 Platform Trial: STAMPEDE

Our second case study is the ongoing STAMPEDE
(Systemic Therapy for Advancing or Metastatic Prostate
Cancer) platform trial, which evaluates the effect of sys-
temic therapies for prostate cancer on overall survival
(James et al., 2008). The trial started with 5 experimen-
tal treatment arms (B–F), and compared these with the
control arm A, which was standard-of-care (SOC) hor-
mone therapy. Figure 5 shows a schematic of the treat-
ment comparisons that have already been reported from
STAMPEDE. Two additional experimental arms (G and
H) were added to the trial in 2011 and 2013, respectively.

Table 2 shows the reported p-values (unadjusted for
multiplicity) when comparing the experimental arms with
the control (arm A), as given in James et al. (2016, 2017),
Mason et al. (2017), Parker et al. (2018). The dashed lines
denote the four ‘batches’ present in the trial, where a batch
corresponds to multiple hypotheses being available to be
tested at the same time, as reflected in Figure 5.

Following Robertson et al. (2023), we apply the online
testing algorithms to these observed p-values, keeping
the alphabetical ordering of p-values within the batches.
We set the upper bound on the number of treatments

FIG. 5. Schematic of the completed treatment arms in the STAMPEDE platform trial. ab = abiraterone, rt = radiotherapy.
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TABLE 3
Hypotheses rejected and current significance level α8 of different

algorithms using the results of the STAMPEDE trial, with the

ordering as in Table 2

Algorithm Rejections α8

Uncorrected C, E, G 0.0500
Alpha-spending G 0.0025
BH C, G –
ADDIS G 0.0016
SAFFRON C, G 0.0165
LORD++ – 0.0002

M = 20 (i.e., twice as many arms that have already en-
tered the STAMPEDE trial as of the end of 2021), and
use the bounded versions of alpha-spending (i.e., a Bon-
ferroni correction at level α/M), LORD++, SAFFRON
and ADDIS. Table 3 shows which of the hypotheses cor-
responding to each experimental arm can be rejected at
level α = 0.05, as well as the current significance level α8
that would be used to test the next experimental treatment
after the 7 already evaluated in the trial.

Uncorrected testing rejects the hypotheses correspond-
ing to three experimental arms (C, E, G), and has by far
the highest value of α8. Both SAFFRON and the BH pro-
cedure reject hypotheses C and G, and SAFFRON has a
substantially higher value of α8 than for the other online
testing algorithms. ADDIS and alpha-spending only re-
ject hypothesis G, and have similar α8. Finally, LORD++
does not reject any hypotheses and the value of α8 is sub-
stantially lower than any of the other algorithms. For fur-
ther discussion and results, see Robertson et al. (2023).

5. EXTENSIONS AND FUTURE DIRECTIONS

5.1 Further Extensions

5.1.1 Prior weights, penalty weights and decaying

memory. Ramdas et al. (2017) proposed a number of
extensions that apply to the class of GAI++ algorithms,
including LORD++. Firstly, they showed how to incor-
porate certain types of prior information about the dif-
ferent hypotheses as expressed through prior weights wt

and penalty weights ut . Prior weights allow the exper-
imenter to exploit domain knowledge about which hy-
potheses are more likely to be nonnull. By assigning a
higher prior weight wt > 1 to a hypothesis, the algorithm
will have a higher chance of rejecting Ht . Meanwhile,
penalty weights express the different importance attached
to the hypotheses being tested, with ut > 1 indicating a
more impactful or important test. Crucially, both wt and
ut are allowed to depend on past rejections in this frame-
work. Ramdas et al. (2017) proposed doubly-weighted
GAI++ rules that provably control the penalty-weighted

FDR when using both prior and penalty weights under in-
dependence. Recently, Chen and Kasiviswanathan (2020)

showed how to exploit contextual information associated
with each hypothesis to re-weight the testing levels in an
online manner, leading to increased power while control-
ling the FDR.

The second proposal of Ramdas et al. (2017) dealt with
problems of ‘piggybacking’ and ‘alpha-death’. Piggy-
backing happens when a substantial number of rejections
are made so that the online testing algorithms earn and
accumulate enough alpha-wealth to reject later hypothe-
ses at much less stringent thresholds (hence the later tests
‘piggyback’ on the success of earlier tests). This can lead
to a spike in the FDR locally in time, even though the FDR
over all time is controlled. Meanwhile, alpha-death occurs
when there is a long stretch of null hypotheses, so that
online testing algorithms make (almost) no rejections and
lose nearly all of their alpha-wealth. Subsequently, the al-
gorithm may have essentially no power, unless a nonnull
hypotheses with extremely strong signal (small p-value)
is observed. Ramdas et al. (2017) proposed the decaying

memory FDR (mem-FDR), which pays more attention to
recent discoveries through a user-defined discount factor
δ ∈ (0,1] and thus smoothly forgets the past. They then
proposed GAI++ rules that control the mem-FDR (which
can also include penalty weights) under independence. In
addition, they showed how to allow the algorithm to ab-

stain from testing in order to recover from alpha-death.

5.1.2 Local dependence—asynchronous and batched

testing. In most of the literature mentioned so far, an im-
plicit assumption is that each hypothesis test can only
start when the previous test has finished (the synchronous

setting, where synchronous refers to synchronising the
start and end time of hypothesis tests). In reality, exper-
imentation is “doubly sequential” like in Figure 1, where
it is common to have hypothesis tests that overlap in
time, where each test may itself be run sequentially (the
asynchronous setting). One natural adjustment for asyn-
chronous testing is to use an online FDR algorithm when-
ever each test finishes (that is, whichever test is the t th
one to finish, test it at level αt ). However, this would only
assign αt at the end of a hypothesis test, which would not
be appropriate for sequential hypothesis testing and multi-
arm bandit approaches that typically require specification
of the target type I error level in advance because it is an
important component of their stopping rule. Hence, the
testing levels must be specified at the start of a hypothe-
sis test. The asynchronous setting also means that poten-
tially arbitrary dependence between some p-values must
be considered. Indeed, hypothesis tests that are being con-
ducted concurrently are often likely to be dependent, since
they may use the same or highly correlated data during
their overlap.

To address these challenges of asynchronous testing,
Zrnic, Ramdas and Jordan (2021) derived asynchronous
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versions of LORD++ and SAFFRON that output test lev-
els αt dynamically at the beginning of the t th test, such
that, despite arbitrary local dependence and regardless of
the decision times for each hypothesis, the mFDR is con-
trolled at level α. These procedures achieve this goal both
at all fixed times t , as well as certain adaptively cho-
sen stopping times. Tian and Ramdas (2019) also showed
how to derive asynchronous versions of ADDIS. Note that
in order to account for the uncertainty about the tests in
progress, the test levels assigned by asynchronous online
procedures will often be more conservative. Thus, there is
a trade-off in that although asynchronous procedures take
less time to perform a given number of tests, they can be
less powerful than their synchronous counterparts.

Zrnic et al. (2020) considered the related setting of on-
line batched testing, where a potentially infinite number
of batches of hypotheses are tested over time (see Sec-
tion 4.2 for an example). To this end, they introduced on-
line, FDR-preserving versions of the most widely used of-
fline algorithms, namely the BH procedure and Storey’s
improvement of the BH method (Storey, 2002). These
online “mini-batched” testing algorithms interpolate be-
tween online and offline methodology, thus trading off the
best of both worlds. When there is only one batch, the al-
gorithms recover the BH (or Storey-BH) procedure. On
the other hand, when all batches are of size one, the algo-
rithms recover the LORD++ (or SAFFRON) procedure.
These algorithms control the FDR under independence
(an algorithm valid under positive dependence was also
derived), and have a higher power than the fully online
testing algorithms. Further, since they consist of composi-
tions of offline FDR algorithms, they imply FDR control
over each constituent batch, and not just over the whole
sequence of tests.

5.1.3 A Bayesian approach. Gang, Sun and Wang
(2021) developed a new class of structure-adaptive se-
quential testing (SAST) rules for online FDR control,
which instead of being based on p-values, are based upon
estimates of the conditional local FDR (Clfdr; Cai and
Sun (2009)), which can optimally adapt to important lo-
cal structures in the data stream. This results in a novel
alpha-investing framework that more precisely charac-
terises the effects of rejection of hypotheses: rather than
viewing each rejection as a gain of alpha-wealth, the Clfdr
characterisation does not view all rejections as equal. Re-
jections with small Clfdr will lead to increased alpha-
wealth whereas rejections with large Clfdr will lead to
decreased alpha-wealth. SAST learns the optimal rejec-
tion thresholds adaptively and optimises the alpha-wealth
allocation across different time periods. Gang, Sun and
Wang (2021) showed that SAST can achieve substantial
power gain over existing methods, but it comes at the cost
of only asymptotically controlling the FDR and requiring
the underlying Bayesian model to be well-specified.

5.1.4 Online FWER control. Tian and Ramdas (2021)
focused on developing methods for online control of the
FWER (see Section 1.2). Starting with the observation
that only alpha-spending had previously been proposed
for online FWER control, the authors first extended ex-
isting offline algorithms for FWER control, namely the
Sidak method (Šidák, 1967) and the fallback procedure
(Burman, Sonesson and Guilbaud, 2009). Given T hy-
potheses and FWER level α, the offline Sidak method
uses the testing level 1 − (1 − α)1/T for each hypothesis.
The online Sidak method analogously tests hypothesis Ht

at level αt = 1−(1−α)γt . Meanwhile, the offline fallback
procedure partitions the overall α between the hypotheses
and allows the significance levels to be ‘recycled’ from
rejected hypotheses.

The online Sidak and online fallback procedures con-
trol the FWER at all times t under independence and ar-
bitrary dependence, respectively. However, although these
online FWER control methods are guaranteed to be uni-
formly more powerful than alpha-spending, the improve-
ments are usually minor in practice, except for extreme
cases. Hence, Tian and Ramdas (2021) proposed the
ADDIS-spending algorithm for online FWER control,
which (like ADDIS does for online FDR control) bene-
fits from adaptivity to the fraction of nulls, but also gains
power by discarding conservative nulls (if they exist).
ADDIS-spending controls the FWER when null p-values
are uniformly conservative, and independent of each other
and of the nonnulls. Fischer, Roig and Brannath (2023a)
showed how to extend the ADDIS-spending procedure to
the setting of ‘graphical’ testing procedures while main-
taining control of the FWER (known as ADDIS-graph).
In graphical testing procedures, vertices represent the null
hypotheses and weights represent the local significance
levels, which are ‘recycled’ through weighted, directed
edges. They also showed how to improve the power of the
ADDIS-spending procedure under local dependence. Fi-
nally, Fischer, Roig and Brannath (2023b) showed how to
uniformly improve ADDIS-spending and ADDIS-graph
by fully exhausting the signficance level.

5.1.5 Online FDX control and FDR at stopping times.
Xu and Ramdas (2022) focused on online control of the
FDX (see Section 1.2). Prior to this work, the only on-
line procedure that controlled the FDX was proposed by
Javanmard and Montanari (2018), but this had very low
power (no better than alpha-spending). Xu and Ramdas
(2022) proposed the supLORD algorithm, which has a
higher power and provably controls the FDX when the
null p-values are conditionally superuniform. One fea-
ture of this algorithm is that it allows the user to choose
the number of rejections after which FDX control begins,
in exchange for more power. The supLORD algorithm is
based on the GAI framework, and the authors also show
how to dynamically choose larger test levels αt when the
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wealth is large, allowing the algorithm to fully utilise its
wealth and increase its power as a result. Finally, the au-
thors show that supLORD also controls the mFDR and
FDR at both fixed times and stopping times. Hence, su-
pLORD provides the first guarantee for online FDR con-
trol at stopping times (LORD++, SAFFRON and AD-
DIS only control the mFDR at stopping times and not the
FDR).

5.1.6 Retesting of hypotheses. One feature of online
testing algorithms that has not been explicitly pointed out
in the literature is the option of retesting hypotheses (i.e.,
using the same p-value again later in the testing sequence,
when the alpha-wealth may be higher). Crucially how-
ever, the choice of whether to retest must be made without
using knowledge of the p-value itself, but only that it was
not rejected (e.g., that it is greater 0.01). In this example,
under the null the p-value will still be conditionally uni-
form in [0.01,1]. Since this implies that the assumption
of conditional super-uniformity under the null still holds,
the same p-value can be used for retesting. In practice,
retesting could happen within an automated testing set-
ting for example, perhaps with additional prior informa-
tion. Meanwhile, Fisher (2022) proposed a framework for
online testing where each hypothesis requires an immedi-
ate preliminary decision, which allows the analyst to up-
date that decision until a preset deadline while controlling
the FDR.

5.1.7 Discrete test statistics. Döhler, Meah and Ro-
quain (2021) focused on the setting where the null p-
values are conservative due to the discreteness of the
test statistics, that is, where the individual tests are
based on counts or contingency tables. The authors pro-
posed uniform improvements of LORD++, SAFFRON
and ADDIS-spending, and showed that the power gains
can be substantial when the discreteness is high (e.g., the
counts in the contingency are moderate).

5.1.8 Incorporating experimental costs. Cook et al.
(2022) considered the setting of online multiple hypoth-
esis testing where the cost of data collection (i.e., the cost
of conducting an experiment) is not negligible. They pro-
posed an extension of the GAI framework to take into
account the cost of data collection, the choice of sample
size for each experiment, as well as prior beliefs about
the probability of rejection. The proposed methods en-
sure control of the mFDR and performs particularly well
in settings where the aim is to maximise a limited budget
of tests to achieve the highest possible power.

5.1.9 Post-hoc FDP bounds. Katsevich and Ramdas
(2020) proposed a class of simultaneous FDP bounds that
apply to a variety of settings, including online testing.
These bounds are finite-sample and have a simple closed
form. The results can be used as a diagnostic tool for FDR
procedures: after running an FDR procedure, one can ob-

tain a valid 1 − α confidence bound on the FDP of the
resulting rejection set. Since the guarantees are post hoc,
they apply to any sequence of rejections produced by any
online algorithm, that may or may not have been designed
for FDR or FDP control.

5.1.10 Online control of the false coverage rate. Fi-
nally, Weinstein and Ramdas (2020) considered the prob-
lem of constructing confidence intervals (CIs) that are
valid for online hypothesis testing. In particular, they fo-
cus on control of the false coverage rate (FCR), which is
the expected ratio of the number of constructed CIs that
fail to include their respective parameters to the total num-
ber of constructed CIs. In the online hypothesis testing
framework they considered, at each step the investigator
observes independent data that are informative about the
parameter of interest θt , and must immediately make a
decision whether to report a CI for θt or not. If a CI is re-
ported for θt , then the aim is to ensure that that the CI for
θt has FCR ≤ α at all times T . For further details of the
proposed algorithms and their theoretical guarantees, see
Weinstein and Ramdas (2020).

5.2 Current Shortcomings and Future Directions

Online testing for small numbers of hypotheses. Online
testing algorithms are most powerful in settings where
there are a large number (i.e., T > 1000) of hypotheses
that will eventually be tested. Thus the biggest advantage
will likely be in settings such as A/B testing in large tech
companies or in large-scale biological data repositories.
However, while platform trials provide a framework for
a trial to continue indefinitely in theory, in practice they
will typically evaluate a maximum number of interven-
tions in the low tens. Hence, there is a need for investiga-
tion of optimal online testing procedures when the maxi-
mum number of hypotheses to be tested is relatively low
and when the correlation between hypotheses is known
(e.g., because of a shared control arm). Separately, there
is scope to further improve the power of online testing
algorithms when combined with sequential testing of the
individual hypotheses, for example, by exploiting the fact
that pre-specified group-sequential stopping boundaries
may be used in a platform trial setting (see Zehetmayer,
Posch and Koenig (2021) for a recent proposal along these
lines).

Managing incentives across sponsors or products.
There are some additional challenges in using online con-
trol methods in platform trials or in the IT industry. If dif-
ferent sponsors (e.g., pharmaceutical companies) are sup-
porting a platform trial, they might be reluctant to have
their intervention be tested at a notably more stringent
level than other sponsors: it may be difficult to recon-
cile the most powerful overall procedure not being ac-
ceptable to individual sponsors. Similarly, if a large IT
company imposes that experiments run across various
products must all be subjected to oversight in the form
of a common online FDR controlling procedure that acts
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across products, then it may be hard to convince individ-
ual product teams that their tests must be subject to a level
determined by the results of experiments by other groups.

Optimal choices of parameters for online algorithms.
As seen in Section 2, LORD++, SAFFRON and ADDIS
depend on the choice of the initial wealth w0 as well as
the sequence {γt }∞t=1. Further work could look at optimal
choices of these parameters, given assumptions about the
distribution of nonnull p-values. Exploring data-adaptive
choices of time varying sequences {λt }∞t=1 (for SAFFRON
and ADDIS) and {ηt }∞t=1 (for ADDIS) with provable
power increase would be another fruitful area of research.
Future work could also look at optimal choices for the pa-
rameters for the other algorithms in Section 5.1.

Online batched testing. A number of open questions re-
main regarding the proposals of Zrnic et al. (2020) for
online batched testing. First, the framework could be ex-
tended to allow for asynchronous online batch testing,
using the ideas of Zrnic, Ramdas and Jordan (2021).
Second, it should be possible to derive online batched ver-
sions based on the offline counterpart of ADDIS, which
would gain power in the presence of conservative nulls.
Third, an open question is determining the trade off
between the chosen batch size versus power in online
batched testing.

Online error rate control under dependence. One ma-
jor shortcoming with almost all of the proposed online
testing algorithms is their reliance on the assumption of
independence of the null p-values for provable FDR con-
trol, which is unlikely to always be case in real data appli-
cations. However, in terms of online FDR control under
dependence, there have only been limited proposals in the
literature. Zrnic, Ramdas and Jordan (2021) showed that
the LOND algorithm by Javanmard and Montanari (2015)
controls the FDR under positive dependence. In the online
setting, arbitrary dependence of p-values across all time is
a rather pessimistic and unrealistic assumption, and thus
in the asynchronous setting, Zrnic, Ramdas and Jordan
(2021) introduced the concept of arbitrary local depen-
dence and showed that online algorithms can be modi-
fied to control the FDR even with such dependence. See
also Fisher (2021), who showed further results for control
of the FDR under positive dependence in the minibatch
setting. Finally, Zrnic et al. (2020) showed how to con-
trol the FDR in the online batched setting under positive
dependence. Future work could explore how to construct
more powerful online algorithms under different forms of
dependence, including when the correlation structure is
known or estimated.

6. SUMMARY AND PRACTICAL GUIDANCE

Table 4 gives a summary of the leading online testing
methods discussed in this paper, comparing their assump-

tions as well as general pros and cons. In terms of practi-
cal guidance, we offer the following general suggestions:

• A fundamental consideration is which type I error rate
is most suitable to control given the experimental con-
text and goals. As alluded to in Section 1.2, this choice
may be driven by the anticipated number of hypotheses
to be tested, data dependencies and/or regulatory con-
cerns.

• Given the type I error rate that the user wishes to con-
trol, there may be a variety of online testing algorithms
to choose from. A key consideration is the assumptions
around the p-value dependencies, as shown in Table 3.
Algorithms that make stronger assumptions (i.e., as-
suming independence) will be more powerful, but this
can come at the cost of inflated type I error rates if these
assumptions do not hold. In practice, it may be difficult
to anticipate or estimate the data dependencies in an ex-
periment. In some settings, such as a platform trial with
a common control, the correlation structure can be de-
rived analytically. Otherwise, with enough data one can
try to estimate the correlation empirically.

• The planned timing of hypothesis tests combined with
the use of sequential testing may motivate the use of
asynchronous or batched versions of online testing al-
gorithms, as discussed in Section 5.1. This links with
the issue of the ordering of the hypothesis tests them-
selves: in some settings the ordering will be out of the
analyst’s control, while in others it may be possible to
use prior information about the probability of rejec-
tion to potentially gain power either implicitly by or-
dering the hypotheses (so that those that are a-priori
more likely to be rejected are tested first) or by using
prior weights (see Section 5.1). In the batch setting (i.e.,
where the multiple hypotheses are available to be tested
simultaneously) then the batched algorithms presented
in Section 5 are recommended to achieve the best of
both worlds of offline and online testing.

• As mentioned above, the setting of a small number
of hypotheses (<1000) is a challenging one for on-
line testing. Thus, the biggest advantage in terms of
power will be seen in settings with large-scale hypoth-
esis testing, such as A/B testing. If at some point it be-
comes known that the number of hypothesis tests will
be bounded by a finite number M then it would make
sense to maximise power by ensuring that the alpha-
wealth is completely used up by the end of the M th
hypothesis test.

• In general, simulation studies remain valuable for as-
sessing the performance of an online testing algorithm
given the experimental context and goals, particularly
for evaluating power, as well as type I error rate con-
siderations under departures from independence. We
note that in terms of computational scalability, the al-
gorithms presented in this paper all scale linearly with
the number of hypotheses tested.



572 D. S. ROBERTSON, J. M. S. WASON AND A. RAMDAS

TABLE 4
Summary of leading methods for online error rate control, giving dependence assumptions and pros & cons

Error rate Algorithm Dependence assumptions Pros & Cons

FDR or mFDR LORD++
[An online analogue of
the BH procedure]

Independence of null p-values
for FDR control, conditional
super-uniformity of null
p-values for mFDR control

+ Extensions for prior weights, penalty weights, decaying
memory, as well as local dependence (asynchronous and
batch testing)

+ Empirically robust to positive dependence of p-values
– Not robust to arbitrary dependence of p-values
– Typically lower power than SAFFRON or ADDIS

SAFFRON
[Adaptive algorithm
based on an estimate of
the proportion of true
null hypotheses]

As above + Higher power than LORD++ if there is a significant
fraction of nonnulls and the signals are strong

+ Extensions for local dependence (asynchronous and batch
testing)

– Not robust to dependence of p-values

ADDIS
[Combines adaptivity
with discarding of
conservative nulls]

As above + Higher power than SAFFRON when there are conservative
nulls

+ Extensions for local dependence (asynchronous testing)
– Not robust to dependence of p-values

LOND Controls FDR under positive
dependence of p-values

+ Provable FDR control for positive dependence (the
‘PRDS’ assumption)

– Substantially lower power than the algorithms above

FDX supLORD Null p-values are conditionally
super-uniform

+ Also controls the mFDR and FDR at both fixed times and
stopping times

+ User may choose the number of rejections after which we
begin controlling FDX in exchange for more power

– Unclear how robust to departures from conditional
superuniformity

FWER Alpha-spending — + Robust to arbitrary dependence of p-values
– Very low power, rejects only a few hypotheses before

becoming unable to reject any more hypotheses

ADDIS-spending
[Combines adaptivity
with discarding of
conservative nulls]

Null p-values are uniformly
conservative and independent

+ Higher power than Alpha-spending
+ Extensions for local dependence
– Unclear how robust to departures from independence

7. DISCUSSION

Online error rate control methodology provides a pow-
erful and flexible framework for large-scale hypothesis
testing that takes into account the temporal nature of mod-
ern data analysis. Over the past 15 years since this frame-
work was first introduced, there have been many proposed
improvements and extensions, which better reflect the na-
ture of real-world data and expand the scope of potential
applications. In particular, continuous progress has been
made towards increasing the statistical power of online
testing algorithms, so that they can match (and in some
cases even exceed) the power of traditional offline algo-
rithms. The issue of accounting for dependent p-values
remains open, although progress has been made here too.

As the methodology becomes increasingly mature, the
next natural step is to see application of online testing al-
gorithms in practice. To this end, and as seen in Section 4,
there have been a number of papers that are specifically

focused on application examples, including in the con-
text of growing data repositories (Robertson et al., 2019),
anomaly detection in time series (Rebjock et al., 2021),
platform trials (Robertson et al., 2023) and RNAseq data
(Liou, Hornburg and Robertson, 2023). Further work may
be required to explore and solve practical challenges that
may arise in different application settings. Finally, the
provision of software and training will also be key to pro-
moting the use of online error rate control in practice. The
onlineFDR package we described earlier is a key step
in that regard, but software tuned to specific applications
may also be desirable.

APPENDIX A: TEST LEVELS FOR SAFFRON

After choosing w0 < α, the test levels for SAFFRON
with λt ≡ λ being constant are defined as follows:
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1. At each time t , define the number of candidates af-
ter the j th rejection as Cj+ = Cj+(t) = ∑t−1

i=τj+1 Ci ,
where Ct = 1{Pt ≤ λ}.

2. SAFFRON starts with α1 = min{(1−λ)γ1w0, λ}. Sub-
sequent levels are chosen as αt = min{λ, α̃t }, where

α̃t = (1 − λ)

[
w0γt−C0+ + (α − w0)γt−τ1−C1+

+ α
∑

j≥2

γt−τj−Cj+

]
.

Formulae for nonconstant λt are in Ramdas et al. (2018).

APPENDIX B: TEST LEVELS FOR ADDIS

The testing levels for ADDIS are given by αt =
min{λ, α̂t }, where

α̂t = (η − λ)

[
w0γSt−C0+ + (α − w0)γSt−τ∗

1 −C1+

+ α
∑

j≥2

γSt−τ∗
j −Cj+

]

and St = ∑
i<t 1{Pi ≤ η}, τ ∗

j = ∑
i≤τj

1{Pi ≤ η}. See
Tian and Ramdas (2019) for an alternative formulation
of ADDIS where p-values greater than η are explicitly
discarded, and the extension to a sequence {ηt }∞t=1.

APPENDIX C: SIMULATION STUDY

Figure 6 shows the FDR of LORD++, SAFFRON, AD-
DIS and monotone AI compared with uncorrected testing,
the BH procedure and alpha-spending, using the simula-
tion set-up described in Section 3.2.

FIG. 6. FDR of LORD++, SAFFRON, ADDIS and monotone

AI compared with uncorrected testing, the BH procedure and al-

pha-spending as the proportion of nonnulls π1 varies. The solid red

horizontal line gives the target level of α = 0.05. We set T = 1000 and

results are based on 104 simulation replicates.
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