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Abstract— Gene regulatory networks (GRNs) consist of mul-
tiple interacting genes whose activities govern various cellular
processes. The limitations in genomics data and the complexity
of the interactions between components often pose huge uncer-
tainties in the models of these biological systems. Meanwhile,
inferring/estimating the interactions between components of the
GRNs using data acquired from the normal condition of these
biological systems is a challenging or, in some cases, an im-
possible task. Perturbation is a well-known genomics approach
that aims to excite targeted components to gather useful data
from these systems. This paper models GRNs using the Boolean
network with perturbation, where the network uncertainty
appears in terms of unknown interactions between genes. Unlike
the existing heuristics and greedy data-acquiring methods,
this paper provides an optimal Bayesian formulation of the
data-acquiring process in the reinforcement learning context,
where the actions are perturbations, and the reward measures
step-wise improvement in the inference accuracy. We develop
a semi-gradient reinforcement learning method with function
approximation for learning near-optimal data-acquiring policy.
The obtained policy yields near-exact Bayesian optimality with
respect to the entire uncertainty in the regulatory network
model, and allows learning the policy offline through planning.
We demonstrate the performance of the proposed framework
using the well-known p53-Mdm2 negative feedback loop gene
regulatory network.

I. INTRODUCTION

Gene regulatory networks (GRNs) consist of multiple
interacting genes whose activities characterize mechanisms
involved in complex diseases such as cancer [1]-[4]. Knowl-
edge about GRNs could answer fundamental questions in
biology and human health, including how complex GRNs
regulate the response of tissues and cells to stressors, such
as injury and infection [5]. Many efforts have been made to
infer and model GRNs [6], yet it remains a challenging task
to build accurate models, primarily due to the lack of access
to targeted data needed for causal and high-quality inference.

Perturbation is a common procedure for acquiring targeted
data in biological systems [7]-[11]. The perturbations are
often achieved using drug-induced excitations that over-
express or suppress targeted genes over time. The objective
of perturbation is to make targeted changes in the dynamics
of GRNs, and acquire data that reveal the most about the
underlying mechanism of GRNs.

In practice, most biological perturbations are conducted
through a trial-and-error process by biologists, which can
be suboptimal or inefficient for the majority of complex
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biological systems. Some attempts have been previously
made toward systematic dynamic perturbation of GRNs.
These include perturbation strategies for networks mod-
eled by ordinary differential equations (ODE) [12], [13],
static networks [14]-[17], and deterministic dynamical mod-
els [18]-[22]. However, these techniques are built on differ-
ent heuristics or simplified assumption that the network un-
certainty vanishes upon taking any single perturbation [23]—
[27]. Therefore, these methods become inefficient for data-
acquiring in complex regulatory networks with possibly
limited data-acquiring resources. Moreover, in [28], we de-
veloped an optimal finite-horizon perturbation policy for
small regulatory networks with a small number of unknown
interactions and short horizons. In this approach, an exhaus-
tive search is performed over all possible network models and
state transitions. Evidently, this method cannot be general-
ized to larger networks with more unknown interactions and
longer horizons due to its computational complexity; hence,
its applications are limited.

This paper models GRNs through the Boolean network
with perturbation (BNp) [29]-[32]. This BNp model is
capable of properly capturing the stochasticity in GRNs
and benefits from simplicity and interpretability. The state
values of the genes in this model represent the activation and
inactivation of the genes, and their time-varying behavior is
modeled through the Markov decision process (MDP). The
primary objective of this paper is to derive a data-acquiring
policy that can select time-dependent perturbations that lead
to the highest accuracy of the inference process. Since the
unknown parts of GRNs are often the interactions between
different genes, a good data-acquiring policy should help the
causal inference of interacting parameters and, equivalently,
the dynamics of GRNS.

The maximum a posteriori (MAP) is used in this paper
as a criterion for the inference process. The MAP inference
selects the model with the largest posterior probability as the
GRN model, where the largest posterior probability measures
the confidence about the inferred model (i.e., the probability
of true inference). The maximum posterior probability near
1 represents an accurate inference process, where the true
model is distinguishable from other models. In contrast,
the maximum posterior probability close to 0 represents
scenarios where models cannot be confidently distinct from
each other using the available data. Accurate and confident
inference in GRNs through data acquired from their normal
condition is impossible. GRNs without perturbations often
spend most of their time in a small subset of states (i.e.,
attractor states), which limits access to diverse data required



for accurate inference. Therefore, given the cost and limita-
tion of biological data, it is critical to intelligently perturb
these biological systems and acquire data that helps the most
in the inference of these biological systems.

In this work, we provide optimal Bayesian formulation
for data-acquiring of GRNs. The objective of the data-
acquiring is an accurate causal inference of unknown reg-
ulatory interactions. The optimal data-acquiring is achieved
by defining the belief state, which maps the partially known
Boolean network model to a known MDP in the belief
space. This belief formulation allows reinforcement learning
representation of the data-acquiring process. We develop a
semi-gradient reinforcement learning method with function
approximation for learning near-optimal data-acquiring pol-
icy, which meets the near-exact Bayesian optimality given all
available uncertainty in a GRN model. The high performance
of the proposed method is demonstrated using the p53-Mdm?2
negative feedback loop network.

II. GENE REGULATORY NETWORK MODEL

In this paper, we consider a Boolean network with per-
turbation (BNp) for modeling GRNs [29], [30]. According
to this model, the inactivation and activation of each gene
can be represented through O and 1, and the interactions
between each of the genes govern the GRNs’ dynamics.
Consider a GRN with d genes. The state values of these
genes at time step k can be represented in a single vector
Xy = [xx(1),...,xx(d)]T, where x;(i) € {0,1} denotes the
state value of the ith gene at time step k. The state transition
in BNp is modeled through the Markov process, where the
next state is only dependent on the previous state, and the
input/perturbation as:

xp = f(xp-1) ® wpo1 @ 0y, (D

for k=1,2,..., where nj € {0,1}% is the Boolean transition
noise at time k, u,_; € U = {u',...,u”} c {0,1}¢ is the
perturbation at time step k-1, “@” indicates component-wise
modulo-2 addition, and f represents the network function.
The way that the perturbation impacts the system’s state is
by flipping the value of specific genes’ states. For instance,
uy-1(7) = 1 flips the state value of the ith gene, contrary to
the case with uy_1(i) = 0.

The network function is often expressed through a Boolean
logic or pathway diagram model [22], [33]-[36]. In this
paper, we consider the pathway diagram model as:

f(xp-1) = Rxp-1, (2

where R is the connectivity matrix governing the dynamics
of a GRN, and Vv is a nonlinear operator that maps the
positive elements of vector v to 1 and others to 0. The
element in the ¢th row and jth column of the connectivity
matrix, i.e., (R)ij =134, denotes the type of regulation from
gene j to gene i; it takes +1 and —1 values for positive and
negative regulations, and 0 for no regulation. Each element
of the noise is modeled through an independent Bernoulli
process with parameter p as: ng(i) ~ Bernoulli(p), where

0 <p<0.5, for ¢ =1,..,d A larger p leads to a more
stochastic process.

III. PROBLEM FORMULATION

In modeling GRNS, several unknown interactions often
need to be inferred according to available data. The causal
inference of regulatory parameters is critical for various
genomic analyses, including distinguishing healthy and un-
healthy GRNs and finding effective therapies for chronic
diseases. One of the main challenges in the inference of
GRNs is the non-identifiability issue, which refers to the
scenario where the true underlying interactions between
genes cannot be inferred through data acquired from their
normal conditions. Perturbation is a common approach in
genomics to over-express or suppress some specific genes in
GRNs [7]-[9], [37]. Genetic perturbations are drug-induced
excitations that change the gene-expression profile and help
acquire data that reveal the most about true underlying
regulatory interactions.

Consider m regulatory parameters {r!,..r™} are un-
known. These interactions are elements of the connectivity
matrix R in (2). Since each element takes in values from
{+1,0,-1}, there will be 3™ different possible models (i.e.,
connectivity matrices) denoted by: © = {0, ...,0°" }, where
07 =[67(1),--,67(m)], and ¢’ (i) denotes the type of the ith
unknown interaction under the jth model. Let the prior prob-
ability over the ith interaction be denoted by P(r® = -1),
P(r® = 0), and P(r* = +1). Assuming the independency
of the unknown interactions, the prior probability of all the
possible models can be expressed as:

P(07) = [T|P(r' = -1)1gs ()= + P(r" = 0)1gs (i)=0
- 3)
+ P(r' = +1)16i (iy=11 |,

for j =1,...,3™, where Z?’le P(#7) =1, and Lgi(i)=-1 18 1
if the 7th interacting parameter in the jth model/topology is
—1; otherwise, 1g;(;)-_1 is equal to zero.

Let ugx-1 = {uo,...,ux-1} be the sequence of pertur-
bations and x1. = {x1,...,xx} be the sequence of the
observed states until time step k. The posterior distribution
of models can be expressed as P(6 | xi.x,ugk-1), for
0 € ©. The maximum a posteriori (MAP) inference given
the information up to time step k£ can be expressed as:

O AP = ar%max PO | X1, u0:6-1), 4)
€O
where O%AP is the model in © with the highest posterior

probability. To assess the confidence of the MAP inference or
equivalently the probability that O}AF is the true underlying
model, we define the MAP confidence rate as:

Ci = r‘191€a®XP(9 | X1:%, Wo:k-1), 5

where C), is the maximum posterior probability of models.
The MAP confidence rate takes a value in the range 3%, <

Ci < 1. The closer C} to 1, the higher confidence about
the true inference by the MAP estimator is. By contrast,



a confidence rate close to 3% corresponds to the poorest
performance of the MAP inference (i.e., the models are not
distinguishable using available data).

The confidence of the MAP inference depends on the
selected perturbations (i.e., ug:x—1), which subsequently af-
fect the sequence of states. Therefore, the sequence of
perturbations should be selected so that the inferred model
becomes more distinguishable from other possible models
through the perturbed data. Thus, a better inference under
perturbation is achieved when the posterior probability of
models becomes more peaked around a single model or,
equivalently, when the inferred model has the largest possible
posterior probability. More formally, one needs to select the
sequence of perturbations ug),;,_; to maximize the confidence
rate of MAP inference as:

argmax E [Ck | u0¢k_1]
ug:_1 €Uk

*
Up:-1

(6)

argmax E [max PO | x1:, uO:k—l)] ,
ug:p_1€UF 0<©

where the expectation is with respect to stochasticity in the
state process. Since the true network model is unknown,
finding the optimal sequence of actions in (6) without full
knowledge of the system model or access to large real data
is impossible. In the next paragraphs, our proposed Bayesian
solution for learning optimal perturbation policy through
planning without the need for real data is described.

IV. PROPOSED BAYESIAN REINFORCEMENT LEARNING
DATA-ACQUIRING PoOLICY

A. Bayesian Formulation

Given that (ug:,-1,X1:,) be the sequence of taken pertur-
bations and observed states up to time step k, respectively, we
represent the posterior probability of m unknown interactions
through:

1 1
pe =[P(r" = =1| X1, 00u-1), P(r" = 0| X1:5, Woike-1),
1
P(r' = +1] X1k, ugik-1), -+ P(r"™ = =1 | X1, Woik-1),
P(?”m =0 | Xl;k,uo;k,l), P(T’m =+1 | Xl:kauO:kfl)]
(7
Note that the pj is a vector of size 3m and represents
the entire uncertainty in the network model. The system
uncertainty can also be expressed in terms of the network
models as:

191@:[13(9* = 0" %14, Ug1 ), o, P(O% = 07" Xl:k7u0:k—1)la

(3)
where 9},(7) indicates the posterior probability that model 6°
is the true underlying system model. Note that Zf’i I (i) =
1, and Yo = [Up(1),...,99(3™)] denotes prior probability of
the regulatory network models. The posterior probability of
models in (8) can be represented in terms of posterior of
regulatory interactions py in (7) as:

9 (5) =TT | Los =1 12 (3L = 2) + Lgs (1= i (31 = 1)
=1
)
+ 13 (1y=+1 r(30) |,

for j =1,...,3™, where 1g;(;)-_; is 1 if the Ith interacting
parameter in the jth model/topology is —1 and otherwise it
is zero.

The MAP inference defined in (4) can be expressed
according to (9) as:

OMAP = argmax  Ur(4),
g 03:j¢{1,...,3m} (10)
with the confidence of MAP inference being:
Cr = max Jy(5). (11)
B. Belief State and MDP Formulation
Let (x!,...,x2") be an arbitrary enumeration of all possi-

ble Boolean state vectors. We define the belief state at time
step k as the vector of joint system’s state (i.e., xj) and
posterior probability of unknown regulations fu:

by, =[xk, px]”, (12)

where by, is a vector of size d + 3m, and by = [x, to]”
is the initial belief state. x;, consists of d discrete values of
0Os and 1s, and uy, includes m 3-block elements, where each
element takes continuous values between 0 and 1, and sum of
elements in each block is 1. Thus, the space of belief state in
(12) is B = {0, 1} x (A3)™, which consists of joint Boolean
space of size 2¢ and m 3-simplexes. Thus, the belief space
is infinite-dimensional due to the continuity of the simplex.

Using the definition of belief state in (12), the evolution
of the regulatory network’s state and posterior distribution
of regulatory parameters can be represented as steps of a
Markov decision process in the belief space. Given that b is
the current belief state, and u is the selected perturbation at
the current time, the belief state transition can be expressed
as:

P(b | bu) If b= b} = [x!, 4]
, :

p(B"|byu) P(bl, |byu) I b =bl, =[x 15,17

0 Otherwise
(13)
where /(35 -2) = P(r’7 = -1 | x’ =x",b,u), pi(3j-1) =
P(r7 =0 | x = x'b,u) and p(3j) = P(r? = +1 | x' =

x!,b,u), for j=1,...mand i=1,...,29

It can be seen from (13) that there are 2¢ possible next

belief states. The probability of the ith belief state bl =
[x%, u]" can be expressed as:

P(by =b} | bg_1 =b,ui_1 =u)
= P(xp = X',y = 1, | br_1 = b, ug_; = u)
= P(xp = X' | Xp_1 = X, flh—1 = 4y Up_1 = 1)
x Pk = i | Xp = X', Xp-1 = X, jtk-1 = 1, Ug1 = 1)

= P(xg = X" | Xg-1 = X, flg-1 = {4, Up_1 = U).
(14
The last line of (14) is obtained given that uj, can only take
a single value g with probability 1 given xj = x', x;_1 =
X, [lk-1 = i, Ux—1 = U (described below).



Further simplification of the last expression in (14) leads
to the following probability of ith next belief state as:

P(bk = b; | bk—l = b,uk_l = u)

Sm . . .
=Y P(xp =x"| Xp-1 =X, W1 = 0, 07 ) P(0 |y = 1)
j=1

3m X X
_ (1 _ p)d—||x7’@f9j (x)ﬂ?qupHx”@fgj (x)®ul Oper (]),

j=1
(15)
where according to (9)

Dra(5)=] 1ef(z)=1#(31—2)+10j(z):o#(?)l—l)ﬂei(z)=+1u(3l)]-
=1

The value of ) in b/ = [x?, /] can also be expressed as:
3’777.
i (31=2) = > 1gi1y=—195(4),
j=1

3m

pi(3L=1) = > 1gi1y=09; (4), (16)
j=1

g
15 (31) = " 1gi 1y=r195(4),
j=1

where
9i(5)=P(6" | xp = X', Xp-1 = X, k-1 = [1, U1 = 1)
P(xp =x" | X1 = X, 01 = 0, 07031 (4)

B Zijl P(Xk = X,L ‘ Xg-1 = X, u/f—l =u, an)ﬂk—l(n)
(1 = p)i-li'ety (Oeuli ety (Deuli g, ()

S0, (1 = p)T ot el o (Iouli gy ()’
a7

C. Reinforcement Learning Formulation of Data-Acquiring
Process

Using the concept of belief state, the data-acquiring
process can be seen as steps of an MDP in the belief
space. As described in the following paragraphs, the MDP
representation enables reinforcement learning formulation of
the perturbation process and consequently finding the near-
optimal Bayesian perturbation policy. The immediate reward
function R : BxU xB can be expressed in terms of enhancing
the inference accuracy, where R(b,u,b’) represents the
change in the confidence of the MAP inference when system
moves from belief state b to belief state b’ upon taking the
perturbation u. The reward function can be represented as:

R(b,u,b’) =] [max{b’(d+3[-2),b’(d+3l-1),b’(d+3l)}
=1

~ [Imax{b(d+31-2),b(d+31-1),b(d+31)}.

=1

(18)
The above reward function quantifies a single-step change
in the confidence of the MAP inference, e.g., Cy — Ci_1.
The positive values of the reward correspond to cases with
more peaked posterior distribution upon the last perturbation,
whereas negative values represent cases with less peaked pos-
terior probability after taking the last perturbation. Note that

as an alternative, a more complicated and time-dependent
reward function can be incorporated into the proposed policy.
For instance, in domains with the varied cost of pertur-
bations, the cost of perturbations can also be incorporated
into the reward function. Meanwhile, if the objective is to
accurately infer a single or a subset of unknown interactions
(as opposed to all unknown interactions), this can also be
incorporated into the reward function.

Let 7 : B — U be a deterministic policy, which associates a
perturbation to each sample in the belief space. The expected
discounted reward function at belief state b € B after taking
perturbation u € U and following policy 7 afterward is
defined as:

Qﬂ(bvu) = E[Z rth(btautabt+1) | bO = b;uo = u,7r:|,

=0

19)
where 0 < v <1 is the discount factor, and the expectation
is taken with respect to the uncertainty in the belief transi-
tion. The optimal Q-function, denoted by Q*, provides the
maximum expected return, where Q™ (b, u) indicates the
expected discounted reward after taking perturbation u in
belief state b and following optimal policy 7* afterward. An
optimal stationary policy 7* attains the maximum expected
return for all states as: 7*(b) = argmax,q, Q" (b,u). It
should be noted that 7*(b) makes a decision according to
the current belief state, which includes the current state of
the system (i.e., x;) as well as the posterior probability of
unknown regulations (i.e., uy). Therefore, the policy in the
belief state is the optimal Bayesian perturbation policy. This
Bayesian policy guarantees optimal perturbation of regula-
tory networks given all available information and uncertainty
reflected in the belief state.

D. Linear Q-Function Approximations in Belief Space

The exact computation of Q* and consequently 7* is not
possible since the belief space has an infinite dimension. In
this paper, we propose a function approximation for repre-
senting the Q-function in (19), and an efficient approximation
of the optimal policy. Let ¢(b,u) be a set of basis function
defined according to the belief state b € B and perturbation
u € U. The Q-function can be approximated as:

Q(b,u) ~ Q(b,u) = ¢" (b,u) w, (20)

where w is a column weight vector of the same size as the
basis function. The basis function could contain a nonlinear
combination of the belief state and perturbation. This repre-
sentation of the Q-function allows learning the policy in a
large and continuous belief space. More information about
the choice of basis function is provided in our numerical
experiments in Section V.

Learning the near-optimal data-acquiring policy, in this
case, consists of finding the weight vector w* that can
approximate Q™ (.,.). We employ the semi-gradient SARSA
algorithm for learning the weights [38]. Given that the
perturbation space is & = {u!,...,ul}, the epsilon-greedy



policy at belief state b, can be defined as:

argmax¢ (b, u)Tw wp. 1-¢
7T;—/é,vreedy(bt): %eb{ d)( t ) p

;2D
random{u!, ..., ul}

w.p. €

where 0 < € <1 controls the level of exploration during the
learning process.

At any given episode, we start from an initial belief state
bg = [xo0, po]T. If the initial belief is not known, the initial
belief can be selected randomly from the belief space, i.e.,
by € B. Let w~ be the current weights, and b, and u; be
the belief and perturbation at step ¢. A realization of the
next belief state b;,; can be obtained according to the belief
transition probabilities in (13). The next perturbation, u;,1, at
belief state b;.; can be calculated according to the epsilon-
greedy policy with w™ as:

gy ~ Y (byyr). (22)

The reward value for this transition can be obtained ac-
cording to (18) as ry1 = R(bg,ug,beyr). The created
(by,ug, byy1, uge1,7441) at each step of episode can be used
for updating the weight vector. This can be achieved by
minimizing the temporal difference error using the following
stochastic gradient descent procedure [38]:

wi=w +a [Tt+1 + 790" (bea1, up1)W =@ (b, ug)w]

¢(bt7 llt),

where « is the learning rate. The process starts with the
weights being zero, then the weights are iteratively updated
according to the belief transitions and perturbation obtained
according to the epsilon-greedy policy. The process consists
of multiple episodes of fixed length, where the learning stops
when the average accumulated reward in the last episodes
meets the desired inference performance, or when changes in
the weights over consecutive episodes become insignificant.

Upon termination of the learning process and finding final
weights w*, the near-optimal Bayesian perturbation policy
at any given belief state b can be computed using the greedy
form of the e-greedy policy in (22) as:

7*(b) = argmax Quw+ (b, u) = argmax ¢(b,u) w*. (24)
ueld ueld

The belief transitions can be created through planning with-
out the need for any real data, and the weight updates
(i.e., learning process) in (23) can be achieved efficiently
and sequentially, without requiring any gradient computa-
tions. Therefore, the proposed method can be employed
for learning data-acquiring policy of GRNs with a possibly
large number of unknowns (i.e., large belief or perturbation
spaces).

V. NUMERICAL EXPERIMENTS

The numerical experiments in this section evaluate the
performance of the proposed framework using an example of
GRNs with unknown regulations. At first, we will investigate
the performance of our approach on a GRN with four genes
and two unknown regulations. We will further show the

effectiveness of our obtained perturbation policy on the same
network, but in a case where we have four unknown interac-
tions. All the results provided in the numerical experiments
are averaged over 1000 trials.

The well-known p53-Mdm?2 negative-feedback gene reg-
ulatory network [39] is considered for assessing the perfor-
mance of the proposed framework. This regulatory network
is responsible for coding the tumor suppressor protein p53
in human bodies. The p53 gene activation has a vital role in
cellular responses to different stress signals that might lead to
genome instability. The pathway diagram of the p53-Mdm?2
network is shown in Figure 1. The blunt and normal arrows
define suppressive and activating regulations, respectively.
This gene regulatory network consists of four genes, rep-
resented in a state vector x;, = [ATM, p53, Wipl, MDMZ]T.
Since each of these four genes can take values of 0 or 1, there
will be a total of 2* = 16 possible states. The connectivity
matrix for this GRN can be extracted from the pathway
diagram in Figure 1 as:

0O 0 -1 0
+1 0 -1 -1

R = 0 +1 O 0 (25)
-1 +1 +1 O

>
2D

Fig. 1: Activation/repression pathway diagram for the p53-
Mdm?2 negative feedback loop Boolean network model.

We assume the unknown parts of regulatory networks
are regulatory interactions in the connectivity matrix R in
(25). A uniform prior probability is considered for each
interaction, where the probability of taking -1, 0, or +1
is % The process noise p = 0.001 is used for our nu-
merical experiments. The perturbation space includes U =
{u'=11,0,0,0]%, u®=[0,1,0,0]%, u® = [0,0,1,0]%, u* =
[0,0,0,1]7'}, which each flips the value of a single gene at a
time. This type of perturbation takes place in practice using
drugs often designed to alter the activity of a single gene.
For our proposed method, a maximum of 50 perturbations
is assumed for the horizon length while performing the
testing. Therefore, a larger episode length of 100 is used
for our experiments during training/planning to account for
discounted rewards in the last perturbation steps. The other
hyperparameters used in our experiments are as follows:
a = 1073, v = 0.9, and ¢ = 0.1. The performance of the
proposed policy is compared with the random perturbation
policy and no-perturbation case. To the best of the authors’
knowledge, most practical perturbations are performed using
a trial-and-error process according to biologists’ knowl-
edge. Therefore, currently, there is no existing approach
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Fig. 2: Average results for the p53-Mdm?2 network with two +1 unknown interactions: (a) performance comparison of
different policies ; (b) progress of posterior probability of unknown regulations (u).

for systematically perturbing regulatory networks to enhance
inference performance. We also consider the no-perturbation
case to demonstrate the non-identifiability of the regulatory
networks under no perturbation and, moreover, to show the
gain achieved through systematic perturbation.

In the first experiment, we consider two +1 unknown
interactions from the true model as: r3o = +1 and r43 = +1.
Two unknown interactions lead to 3% = 9 possible network
models. The belief state for this scenario is by, = [x, p]7
which is a vector of size 4+ 3 x2 = 10, and with belief space
B ={0,1}*x (A3)?. This means that at each time step, each
gene’s state can be either O or 1, and the first and second 3-
block elements of 1, can take any continuous value between
0 and 1, summing up to 1. Thus, one can understand the large
space of the belief state in this scenario.

We consider the following basis function for our first
experiment:

’

~ ¢(b,u)
~ |o(b,u) @ ¢(b,u)]
[¢(b,u) ® p(b,u) ® (b, u)]

¢(b,u) = (26)

where ¢(b,u) = [b, ¥, 1, w]7, ® is the outer product,
and |.], denotes the vectorized representation of a matrix.
Note that this basis function contains all the combinations
of linear, quadratic, and cubic terms of belief state and
perturbation. This nonlinear basis function, along with the
weights are used to approximate the Q-function over the
belief and perturbation space. The weights are then sequen-
tially adjusted using semi-gradient reinforcement learning to
represent near-optimal data-acquiring policy.

In the first scenario, the proposed perturbation policy
is trained over 3500 episodes. Figure 2(a) represents the
average results and their 95% confidence bounds for all
methods during the perturbation of the true model over

20 time steps. The y-axis shows the average maximum
posterior probability obtained over all the possible models.
We can see that the regulatory network models under no
perturbation are not distinguishable from each other, as the
maximum posterior probability stays very small independent
of the number of data. For the system under the random
perturbation policy, one can see the increase in the max-
imum posterior probability with respect to the number of
data. The reason is that random perturbation (which is not
systematically/optimally assigned) helps the system to come
out of attractor states and helps the causal inference of the
unknown regulatory parameters. Finally, the best results are
achieved by the proposed policy, where the maximum poste-
rior has significantly increased even with a small number of
data. This clearly illustrates the superiority of the proposed
framework in selecting the perturbation sequence, especially
for small data sizes.

The average posterior probability of unknown interactions
with respect to the number of data (i.e., number of perturba-
tions) is also visualized in Figure 2 (b). The two columns
in the subplots correspond to two unknown interactions.
Further, the subplots in the first, second, and third rows are
associated with our proposed perturbation policy, random
perturbation policy, and no-perturbation case, respectively.
Moreover, the posterior probability that unknown interactions
are +1, 0, and -1 are indicated by red, blue and black curves,
respectively. For instance, the subplot in the first row and sec-
ond column represents the posterior probability of interaction
r43(+1) under the proposed perturbation policy. In subplots
of the first row, one can see that the average posterior
probability of the true interaction has quickly approached
1. However, a slower increase in the curves can be seen
in the middle row subplots under the random perturbation
policy. In this specific case, one can see that the average
posterior probability of 743 has a slower increase relative
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Fig. 3: Average results for the p53-Mdm?2 network with three +1 and one -1 unknown interactions: (a) performance
comparison of different policies ; (b) progress of posterior probability of unknown regulations ().

to the other unknown interaction r3; under the proposed
policy and the random perturbation policy. Finally, as it can
be seen in the last row of the subplots, the average posterior
probability for all interactions stays around %, similar to their
prior probabilities. This indicates the poor performance of
inference, and difficulty of distinguishing the true topology
using the data from no-perturbation case.

In the second part of our experiments, we consider a
more complex scenario with three +1 and one -1 unknown
interactions as: 743 = +1, ro1 = +1, r40 = +1, and 794 = —1.
This scenario is considered to be more challenging due to
the following two reasons: 1) On one hand, this scenario
has four unknown interactions, which leads to 3* = 81
possible network models; 2) On the other hand, including
-1 interactions makes the causal inference of regulatory
networks more challenging, primarily due to the attractor
structure of GRNSs, and the fact that most genes spend their
time at rest (inactivated state) under no-perturbation.

In this case, we used the following basis function for Q-
function approximation:

1 Lycut
— &)(b7 u) 11.1:112

¢(b; u) = ) l‘%(b7 1;1) ® (}(b, INI)J ® 1u:u3 ,
qu(b, u) ® ¢(b7 u)® ¢(b7 u)J Lycus
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where ¢(b = [x,u],u) = [2x - 1,,1.1 — max9]”, and
¥ is the posterior probability of models corresponding to
1 computable using (9). This basis function is much more
complex than the previous one, and has been shown to be
an effective choice for this complex scenario.

The proposed perturbation policy in this case is trained
over 17,500 episodes. Figure 3 (a) represents the average
results of all methods over 50 time steps. Similar to the
previous case, the maximum posterior probability of models

under no perturbation stays very small even with larger
data. For the random perturbation policy, the average max-
imum posterior probability stays smaller than the previous
experiment. From Figure 3 (a), one can see that the average
maximum posterior probability does not get to 1 even after
50 randomly perturbed data. In contrast, much larger perfor-
mance is achieved under the proposed perturbation policy.
The average maximum posterior probability under the pro-
posed policy is increased to 0.6 after about 6 perturbations,
and it has increased to almost 1 after only 11 perturbations.
This demonstrates the capability of the proposed framework
in systematically choosing the perturbation sequence and
increasing the performance of the inference process.
Finally, Figure 3 (b) shows the average posterior probabil-
ity of the four unknown interactions. We can observe that
in the subplots of the first row, which correspond to the
proposed policy, the average posterior probabilities of the
true interactions have quickly reached 1. By comparing these
results with the ones in the second and the third row, one
can see how effective the proposed approach is, especially
with fewer data. In particular, the subplot in the first row
and fourth column, which shows the posterior probability of
interaction r54(—1) under the proposed perturbation policy,
gets to 1 in only 11 time steps. However, as can be seen, it
takes about 50 data for the random policy to get close to 1.

VI. CONCLUSION

This paper developed a reinforcement learning data-
acquiring policy for causal inference of gene regulatory
networks (GRNs) under uncertainty. A Boolean network
with perturbation (BNp) model is considered for representing
the GRNs. The unknown interactions between genes repre-
sent partial knowledge about the model of GRNs. We use
maximum a posteriori (MAP) as a criterion for inference
of unknown regulatory interactions in GRN models. The



data-acquiring is used for selecting the best perturbations
for flipping the state value of targeted genes at any given
time to maximize the confidence of the MAP inference. We
introduced a semi-gradient reinforcement learning method
with function approximation for learning near-optimal data-
acquiring policy through planning without the need for real
data. Eventually, we demonstrated the high performance of
the proposed policy through a set of numerical experiments.
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