
E M

1

d d d

 N2 N

k  k2 1

Target normal single-spin asymmetry in inclusive electron-nucleon scattering
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Abstract

We calculate the target normal single-spin asymmetry caused by two-photon exchange in inclusive electron-nucleon scattering in the
resonance region. Our analysis uses the 1=Nc expansion of low-energy QCD and combines N and  intermediate and final states using
the emerging spin-flavor symmetry. The normal spin asymmetry is found to be of the order .  10 2 and has dierent sign in ep and en
scattering. It can be measured in electron scattering at lab energies  1–3 GeV and provides a clean probe of two-photon exchange
dynamics.

1. Introduction

Electron scattering represents a principal tool for exploring
hadron structure and strong interaction dynamics. The process
is traditionally described in leading order of the electromagnetic
coupling (one-photon exchange approximation), where the am-
plitude is proportional to the transition matrix element of the
electromagnetic current operator between the hadronic states.
Recent developments in experiment and theory point to need to
include higher-order interactions between the electron and the
hadronic system (two-photon exchange) in certain observables
[1]. Measurements of the proton form factor ratio Gp =Gp     at
Jeerson Lab using the Rosenbluth separation and polarization
transfer methods show discrepancies that have been associated
with two-photon exchange [2, 3, 4]. A  direct demonstration of
two-photon exchange becomes possible through compari-son
of electron and positron scattering in experiments at DESY  [5, 6]
and Jeerson Lab [7]. Two-photon exchange is also dis-cussed in
connection with muon scattering at MUSE [8]. It also plays
an important role in radiative corrections to observ-ables of
parity-violating electron scattering [9]. Two-photon exchange
has thus become as field of research in its own right.

A  particularly interesting observable is the target spin depen-
dence in inclusive electron-nucleon scattering,

e(k1) +  N(p1) !  e(k2) +  X(p2); (1)

where X denotes the hadronic final states accessible at the in-
cident energy, which are summed over. If the electron is un-
polarized, and the nucleon is polarized with a spin 4-vector a1,
with a2 =   1 for complete polarization, the dependence of the
dierential cross section on the nucleon spin is of the form [10]

d 
=  

dU  (eNa1)
dN (2) 

2 2
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(d 2 denotes the invariant phase space element of the final elec-
tron and will be specified below). Here eN is the normalized
pseudovector formed from the initial and final electron and the
inital nucleon momenta,

eN  p
N

 ; N    p1k2k1; e2 =   1: (3)

In the nucleon rest frame, p1 =  0, the polarization vector is
a1 =  (0; 2S1), with jS1j =  1=2 for complete polarization. The
vector eN is the normal vector to the scattering plane

eN =  (0; eN); eN =  
jk2  k1j

; (4)

and the cross section Eq. (2) depends on the normal component
of the nucleon spin,  (eNa1) =  2eN  S1. [The same form ap-
plies in any frame in which the 3-momenta k1; k2 and p1 lie in a
plane, e.g. the electron-nucleon center-of-mass (CM) frame,
where p1 +  k1 =  0.] The spin-dependent cross section N is zero
in one-photon exchange approximation, as a consequence of the
hermiticity of the electromagnetic current operator [11], and
represents a pure two-photon exchange observable. It is
proportional to the imaginary (absorptive) part of the eN !  eX
two-photon exchange amplitude, which is given by the product
of on-shell matrix elements between the initial, intermediate,
and final electron-hadron states. Unlike the real (dispersive)
part, the imaginary part of the two-photon exchange amplitude
is infrared–finite and can be considered separately from real
photon emission into the final state [10].

Measurements of the normal spin asymmetry (the ratio of the
N and U cross sections) have been performed in deep-inelastic
electron scattering on proton [12] and 3He targets [13]. The-
oretical calculations in this kinematics have employed the par-
ton picture and QCD interactions and produced a wide range
of estimates [10, 14, 15, 16]. Further measurements at few-
GeV energies are planned at Jeerson Lab [17]. Calculations
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in the resonance region need to account for the contributions of
individual hadronic channels to the inclusive cross section, in-
cluding elastic scattering and resonance excitation, and require
appropriate methods.

In this work we analyze the normal spin dependence of in-
clusive eN scattering in the resonance region using the 1=Nc

expansion of QCD. The method organizes low-energy dynam-
ics (hadron masses, couplings, form factors) based on the scal-
ing properties in the limit of a large number of colors in QCD
and has been successfully applied in many areas of hadronic
physics [18, 19, 20, 21, 22, 23, 24]. Low-lying baryon states are
organized in multiplets of the emerging contracted spin-flavor
symmetry, with the baryon masses O(Nc) and the splitting in-
side multiplets O(N 1). The ground-state multiplet contains the
N and , and transitions between them are governed by the
symmetry and can be computed by expanding the transition op-
erators in the group generators. In this way the parameters for
the N– and – transitions are fixed in terms of measurable N-N
transitions.

The 1=Nc expansion oers specific advantages for studying
two-photon exchange and the normal spin dependence of inclu-
sive scattering. The method treats N and  states on the same
basis and enables a consistent description of inelastic chan-
nels and inclusive scattering in resonance region. The group-
theoretical techniques permit ecient calculation of the sums
over channels in intermediate and final states. The parametric
ordering of the kinematic variables gives rise to a physical pic-
ture that enables an intuitive understanding of the two-photon
exchange process. Finally, the study of the Nc-scaling of the
two-photon exchange observables can help to connect the res-
onance region with the DIS region and explain the transition
between them.

In this letter we present the leading-order 1=Nc expansion and
describe the calculational techniques and physical picture spe-
cific to this situation. A  full analysis, including 1=Nc correc-
tions and suppressed structures, will be presented elsewhere.

2. Method

2.1. Kinematics and final states

Inclusive electron scattering Eq. (1) is characterized by three
independent kinematic variables, corresponding to the incident
energy, the momentum transfer, and the energy transfer of the
process. They can be chosen as the invariant variables

s  (k1 +  p1)2 =  (k2 +  p2)2;                             (5) t

(k1  k2)2 =  (p2   p1)2 =  q2;                    (6)

m2 =  (q +  p1)2 =  p2: (7)

In the following we use the CM frame, where the 3-momenta
in the initial and final state are p1 =   k1 =  P1 n1; p2 =   k2 =
P2 n2, with n1;2 unit vectors indicating the direction, and (m is
the nucleon mass)

t =   2P2P1(1   n2n1): (9)

When analyzing the process Eq. (1) in the 1=Nc-expansion,
we have to specify the scaling behavior of the kinematic vari-
ables in the parameter 1=Nc. Dierent choices are possible,
leading to dierent types of expansions. Here we consider the
domain where the CM momenta in the initial and final state are

P1 ; P2 =  O(N0); (10)

and final-state masses are such that

mX  m =  O(N 1); m; mX     =  O(Nc): (11)

In this domain the only accessible final states are ground-state
baryon multiplet containing the N and  states,

X =  N; : (12)

Other baryon multiplets, as well as N states, have masses mX

m =  O(N0) and are not accessible as final states. Furthermore,
Eqs. (10) and (11), together with Eq. (8), imply that

2 2

P2  P1 =
2

p
s 

X     =  O(Nc 
1)  P1;2: (13)

In leading order of 1=Nc we can therefore neglect the dierence
between the initial and final CM momenta and write P1 =  P2  P.
For reference we note that, in this domain,

p
s =  O(Nc);

p
s  m =  O(N0); t =  O(N0): (14)

The parametric ordering in 1=Nc gives rise to an interesting
physical picture of the scattering process. The electron with en-
ergy O(N0) scatters from the heavy nucleon with mass O(Nc),
losing a small fraction O(N 1) of its energy. The nucleon re-
mains in ground state or gets excited to a  by absorbing a small
energy O(N 1). The  can be regarded as stable at this order (its
width is negligible), and inelastic scattering consists simply in
the transition from N to . The velocity of the initial/final
baryons is small O(N 1), and their kinetic energy is negligi-
ble compared to the electron energy. However, the momentum
transfer is O(N0), so that the process probes the internal struc-
ture of the baryons. This picture will be further substantiated in
the following calculations.

2.2. Currents and amplitudes
In the group-theoretical formulation of large-Nc QCD, the

N and  are described as states in the multiplet of ground-state
baryons, characterized by the spin/isospin S =  I  =  1=2 and 3=2,
the spin projection S 3, and the isospin projection I3, denoted
collectively by B  fS =  I; S 3; I3g. The electron scattering
process takes the form of a transition between baryon states
hB2j:::jB1i. We denote the electron-baryon scattering amplitude
in the CM frame (with relativistic normalization) by

M(P; n2; n1j; B2; B1)  M21: (15)

P1 =  
s
2

 p
s

 ; P2 =  
s

2
p

s
X ; (8)

 is the electron helicity (i.e., the spin projection on  n1 and
 n2), which is conserved in the scattering process. Note that
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the baryon spins are quantized along a fixed direction (the 3-
direction in the CM frame); in this way the initial and final
states have the same quantization axis, and the spin transitions
can be computed using algebraic identities [23, 24].

The amplitude Eq. (15) can be computed as an expansion in
the electromagnetic coupling,

e e e e

1 2 2 1

(a)

N N,D N,D N

M21 =  M(e2) +  M(e4) +  : : : (16) e e e e

The e2 term (one-photon exchange) is given by the product of
the electron and baryon currents, 1 3 2 2 1

M(e2) =   
e2 

( j)21(J)21; 21

( j)21 =  h n2; j jj n1; i;

(J)21 =  hn2; B2jJjn1; B1i;

(b)

(17) N N,D N,D N,D N

(18)
e e e e

(19) g

where all particles have the common CM momentum P  in lead-
ing order of 1=Nc. The minus sign in Eq. (17) comes from
the negative electric charge of the electron. The electron cur-
rent Eq. (18) is the standard current of the spin-1/2 particle; its
explicit form can be derived from the spinors in the CM
frame. The baryon current Eq. (19) can be constructed using
the large-Nc spin-flavor symmetry and expanded in the genera-
tors f1; Ia; S i; Giag [23, 24]. Their matrix elements are

hB2jf1; Ia; S igjB1i =  O(N0); hB2jGiajB1i =  O(Nc): (20)

The full 1=Nc expansion of the current is given in Ref. [25]. In
the present calculation we focus on the leading-order contribu-
tion to the cross sections, which is produced by the isovector
magnetic current proportional to Gi3. This current is given by

(J0)21 =  0; (21)

(Ji)21 =  2mp GV (t21)

 ( i)i jk (n2   n1) j hB2jGk3jB1i: (22)

The factor 2m results from the relativistic normalization of the
baryon states and drops out in final results. Note that Eq. (22)
satisfy the transversality condition q(J)21 =  0 for all transi-
tions between multiplet states, without corrections in 1=Nc.

The function GV (t) in Eq. (22) (dimension mass 1) is the
large-Nc form factor, which describes the dynamical response
of the large-Nc baryon to the momentum transfer t12 =  O(N0).
It can be determined by matching the N !  N matrix element of
the large-Nc current Eq. (22) with the empirical nucleon current
at Nc =  3. At leading order in 1=Nc one obtains

2m GV (t) 
Nc =  GV (t); (23)

Nc =3

where GM(t) is the empirical isovector magnetic form factor,
with GV (0) =  (p  n) (p;n are the magnetic moments of the proton
and neutron). In this way the spin-flavor symmetry fixes the N
!   and  !   form factors in terms of the empirical N !  N form
factor, showing the predictive power of the 1=Nc expansion.

g

(c)

N D N N N

Figure 1: Inclusive eN scattering in the 1=N expansion in the domain Eqs. (10)
and (11). (a) Spin-independent cross section from square of e2 amplitudes. (b)
Spin-dependent cross section from interference of e4 and e2 amplitudes. (c)
Interference of real photon emission from electron and baryon.

The e4 term in the electron-baryon scattering amplitude
Eq. (16) results from two-photon exchange interactions. The
absorptive part arises from on-shell rescattering and can be
computed as the product of two e2 amplitudes, integrated over
the phase space of the intermediate state (see Fig. 1b),

Z

M(e4) =  
8m 4

M(e2) M(e2): (24)
3

We use the shorthand notation Eq. (15) for the amplitudes of the 1
!  3 and 3 !  2 transitions. The integral is over the momen-tum
direction n3 in the intermediate state 3, and the summation over
the full set of baryon quantum numbers B3, including N and
and their spin/isospin projections. The form of Eq. (24) has
been simplified according to the large-Nc limit.

The energies reached in the intermediate states in integral
Eq. (24) extend up to s   m =  O(N0), which is parametri-
cally larger than the mass of the final states considered in our
domain, mX   m =  O(N 1), Eq. (11). In principle therefore ex-
cited bayon states with mass dierence mB   m =  O(N0) (N
states) can contribute to the two-photon exchange amplitude in
our domain. However, the electromagnetic couplings of these
states to the ground state multiplet are suppressed by 1=Nc rel-
ative to those between ground state baryons []. In leading order
of the 1=Nc expansion it is thus justified to retain only ground
state baryons N and  as intermediate states.

The two-photon exchange amplitude Eq. (24) is free of
collinear divergences, because the large-Nc baryon currents in
the 1 !  3 and 3 !  2 amplitudes satisfy the transversality con-
ditions without corrections in 1=Nc [10]

3
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2.3. Cross section
Cross section for inclusive eN scattering Eq. (1) in the 1=Nc

expansion in the domain Eq. (10) and (11) is obtained from the
amplitude Eq. (15) as

d 1 1 X  X
3 30

d
2          642m2 2 30     3

1 1

X 1       1

M21(; B2; B1) M21(; B2; B1): (25)
B2

We write the cross section as dierential in the solid angle of
n2, similar to elastic scattering. The inclusive scattering is
expressed through the summation over the final baryon states
B2 =  N; . The initial baryon is a nucleon, B1 =  f 1 ; S 3; I3g and B0

=  f 1 ; S 30; I3g, with I3 =  1 for proton/neutron. The spin
projections are averaged with the nucleon spin density matrix ,
which is normalized as tr  =  1. It consists of an unpolarized and
a polarized part,  =  U +  N. The unpolarized part is

U =  
2

(S 3; S 30); (26)

In the case of polarization along the unit vector eN, Eq. (3), the
polarized part is (i are the Pauli matrices)

N =  
1

eN(S 1; S 30); (27)

such that the expectation value of the spin operator in the state
is

X  
NhS 30jSjS 3i =  

1
eN: (28)

30     3
1       1

The spin-independent cross section in Eq. (2) is obtained
from the product of e2 amplitudes in Eq. (25) and given by (see
Fig. 1a)

d

=  
642m2 2 

X  

2 

X  X  
M(e2)M(e2); (29)

1 2

the expression will be evaluated further below. For the spin-
dependent cross section, one can easily verify that it is zero
at the same order in e2, because the e2 amplitude is real and
the average with the density matrix eN   =  y requires an
imaginary part in one of the amplitudes (this is how the Christ-
Lee theorem [11] is realized in our formulation). The spin-
dependent cross section appears instead from the product of e2

and e4 amplitudes, i.e., the interference of one- and two-photon
exchange (see Fig. 1b)

dN 1 1 X  X  d
2              64m2 2 30     3       

N

1       1

M(e2)M(e4) +  M(e4)M(e2) : (30)
B2

With the e4 amplitude given by Eq. (24), the spin-dependent
cross section is completely expressed in terms of the e2 ampli-
tude Eq. (17), and thus in terms of the large-Nc baryon current
matrix elements.

3. Results

3.1. Spin-dependent cross section and asymmetry
We now extract the leading 1=Nc term of the spin-dependent

cross section. It results from the isovector magnetic current
Eq. (22) proportional to spin-flavor generator Gi3. The e2 am-
plitude Eq. (17) produced by this current is

2     V

M(e2) =  
2P2(1   n2n1) 

ai 
1hB2jGi3jB1i;                   (31)

a21  a21(n2; n1; )  ( i)(n2   n1)  j21;          (32)

where j21 is the spatial part of the electron current Eq. (18). The
product of e2 and e4 amplitudes in Eq. (30) then becomes

(e2)       (e4) ( i)P 
Z  

d
3      V V V k     j      i
21 21 8m 4 M21      M23      M31 21 23 31

 
X X

h B 0  jGk3jB2ihB2jG j3jB3ihB3jGi3jB1i: (33)
B2        B3

It represents a sequence of isovector magnetic transitions, with a
tensor structure governed by the electron current and the tran-
sition geometry. We evaluate it using algebraic methods based
on t-channel angular momentum considerations []. For the in-
termediate states in the e4 amplitude, we sum over B3 =  N;
using the completeness relation in ground state representation

X
jB3ihB3j =  1; (34)

B3

and the product on the last line of Eq. (33) becomes
X

h B 0  jGk3jB2ihB2jG j3Gi3jB1i: (35)
B2

For the final states, we distinguish two cases:
(i) Nucleon final state, B =  N. In this case the matrix ele-

ment of Gi3G j3 in Eq. (35) is a 1 !  1 spin transition, and the
tensor formed by the operator product can only have t-channel
angular momentum J  =  0 or 1. The J  =  1 part, antisymmet-ric
in i j, is suppressed in 1=Nc because the commutator of the
operators is [Gi3; G j3] =  O(N0). The tensor can therefore be
projected on J  =  0 (we show only leading term in 1=Nc)

G j3Gi3 !  
3 

ji Gl3Gl3 =  
3 

ji 
16 

; (36)

and Eq. (35) becomes

3
ji 

16 
hB0 jGk3jB1i: (37)

(ii) Sum of nucleon and Delta final states, B2 =  N + . In this
case the summation over B2 can be performed with the com-
pleteness relation [see Eq. (34)], and Eq. (35) becomes

hB1jGk3G j3Gi3jB1i  T k ji: (38)

Because the commutator of the G operators is suppressed in
1=Nc, see above, the tensor T k ji can be regarded as completely

4
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M

symmetric in leading order. As such it can be projected on over-
all J  =  1 using

T k ji !  
5

(k jT i +  kiT j +  jiT k);                   (39) T k

T kll =  
16 

hB0 jGk3jB1i:                      (40)

The two cases thus lead to similar contractions of the tensor
Eq. (35). The remaining matrix element of Gk3 in Eqs. (37) and
(40) is proportional to the initial nucleon spin and and isospin
and evaluates to (in leading order of 1=Nc)

0.010

Solid: Final N +

Dashed: Final N

0.005

0.000

p = .4 GeV

p = .6 GeV

p = .8 GeV

hB0 jGk3jB1i =  
6 

hS 30jS kjS 3i (2I3); (41)

which can be averaged with the spin density matrix in Eq. (33).
Altogether, we obtain the spin-dependent cross section in lead-
ing order of 1=Nc

0.005
0.0 0.5 1.0

/

dN (2I3) 3 N3 P GM21

d
2  96(1
n2n1)3=2(1 +  n2n1)1=2 Z  

d
3 GM23GM31

4 (1   n2n3)(1   n3n1)

 =  [::]
1 X

eN (a21 a23 a31 +  C.C.)     [final N]; (43)

 =  [::]
1 X

e k  (aka23a31 +  al a23a31

+  a21a23a31 +  C.C.)     [final N +  ]: (44)

Here   e2=4 is the fine structure constant. The angular func-tions
can be evaluated using the specific form Eq. (32) of the axial
vectors ai ; ai , and ai ; explicit formulas will be pre-sented
elsewhere. The spin-dependent cross section Eq. (42) is
proportional to initial nucleon isospin (2I3) =  1 and has
dierent sign for ep and en scattering

dN =  dN[ep] =   dN[en]: (45)

We can also compute spin asymmetry
,

AN      d
2       d

2 
; (46)

by dividing by the unpolarized cross section computed in the
same approximation. In leading order of 1=Nc, the unpolarized
cross section Eq. (29) arises from the isovector magnetic cur-
rent in the e2 amplitude. In the case of summation over N and
final states, B2 =  N; , the result is

2       2 V 2

d

2      
=  

192 P2 (1   n
1

n1)2 2      
a21a21 (47)

2 N2 (3   n2n1) (GM21)2

48 (1   n2n1)

The spin-independent cross section Eq. (48) is independent of
the initial nucleon isospin; the asymmetry Eq. (46) therefore

Figure 2: Transverse normal single-spin asymmetry in inclusive eN scattering,
Eq. (46), in leading order of the 1=Nc expansion, for several CM energies P, as a
function of . Dashed lines: AN with N final state in N in the numerator. Solid lines:
AN with N +   final states in N . In both cases, U in the denominator is the sum N +
.

has the same isospin dependence as the spin-dependent cross
section in the numerator,

AN =  AN[ep] =   AN[en]: (49)

Some comments on these result from the perspective of the
1=Nc expansion. First, the spin-dependent cross section is para-
metrically large in Nc, as it appears from the maximal prod-
uct of isovector magnetic currents with matrix elements O(Nc).
Second, our calculation provides an example of the “I =  J  rule”
of large-Nc QCD, according to which leading structures appear
with t-channel quantum numbers I  =  J . The spin-dependent
cross section (as a matrix element between the nucleon states
1) is a structure with overall J  =  1, and its leading large-Nc

result has I  =  1. It arises as the product of an e2 amplitude
with I  =  J  =  1 (for both final N and ) with an e4 amplitude that
is either projected on total I  =  J  =  0 (for final N) or on I  =
J  =  2 (for final ), as can be observed in the algebraic
calculation above.

3.2. Numerical results
We now evaluate the asymmetry numerically and study its

kinematic dependence using the leading-order 1=Nc expan-
sion results, Eqs. (42)–(44) and Eq. (48). The large-Nc form
factors GV (t) appearing in the expressions are fixed by the
matching condition Eq. (23), and we use the standard dipole
1=(1  t=0:71 GeV2)2 to model the empirical t-dependence.

Figure 2 shows AN for several values of P  .  1 GeV as a
function of  =  angle(n2n1). Results are shown for the cases of
N and N +   final states in N in the numerator; U in the
denominator is always for N +  final states; in this way one can
add/subtract the results for AN in the graph and see the contri-
butions of the various channels to N. (The intermediate states in
the two-photon exchange amplitude in N are always N + .)

5



p

c

c

c

c

~ ~

+

One observes: (i) AN vanishes at  =  0 and , which is nat-ural,
as at these angles the normal vector n2  n1 vanishes. (ii) The
contribution of  final states (the dierence of the results for N +
and N final states) is small at small  but becomes sig-nificant at
=2, causing the AN for final N +   to be several times larger than
that for final N. (iii) AN reaches values of the order  10 2 at   =2
and P   1 GeV and has definite sign.

Some comments on the region of applicability of the large-
Nc expressions. First, the present 1=Nc expansion refers to the
parametric domain Eq. (11) and assumes that the  channel
is open; the expressions should therefore be applied at CM
energies above the empirical  threshold, s   m  P  >
(m   m)[empirical] =  0:3 GeV. Second, the leading-order re-
sults for N and AN arise entirely from magnetic transitions,
which are proportional to the momentum transfer at the ver-
tices. They are not expected to be accurate at small   =2 and P
1 GeV, where the momentum transfer is kinematically sup-
pressed, and corrections from electric currents are large (those
can be computed as part of the 1=Nc corrections). Altogether,
we expect the leading 1=Nc expansion to be a fair approxima-
tion at large angles   =2 and momenta P   0.5–1 GeV. The
accuracy in this domain can be expected to be of the typical
accuracy of the 1=Nc expansion in hadronic observables [].

4. Extensions

We have computed the target normal single-spin asymme-
try in inclusive eN scattering in leading order of the 1=Nc ex-
pansion, in the parametric domain where the energy transfer is
O(N 1) and allows for excitation of N and  final states, and the
momentum transfer is O(N0) and probes the internal structure
of the baryons. The results of the present study can be extended
and applied in several ways.

The method developed here, particularly algebraic approach
in Sec. 3, can be used to compute 1=Nc corrections to leading-
order result in the same parametric domain. These corrections
will quantify the numerical accuracy of the leading-order result
for the isovector N, and provide estimates of the isoscalar N ,
which appears only at subleading order.

The cross section for inclusive eN scattering includes also
real photon emission into the final state (Fig. 1c). The process
can be analyzed in 1=Nc expansion in the same manner as two-
photon exchange (Fig. 1b). Preliminary analysis suggests that
the emission cross section is suppressed in 1=Nc, because the
emitted photon is soft, p =  O(N 1), and the emission through the
leading magnetic vertex is suppressed. A  full analysis of the real
emission process will be presented elsewhere.

The 1=Nc expansion can also be performed in dierent para-
metric domains than Eqs. (10) and (11). For example, the
choice P  =  O(N 1) leads to a “low-energy expansion” in which
the electric currents enter in the same order as the magnetic
ones, giving rise to dierent physical picture.

The results of the present study can be used to study the tran-
sition between the resonance and DIS regions and the realiza-
tion of quark-hadron duality in the target normal single-spin
asymmetry. Theoretical estimates of AN dier by up to 1-2 or-

ders of magnitude between the resonance and DIS regions, be-
cause of large eects of anomalous magnetic moment that are
present in the resonance region but disappear in the DIS region.
The Nc scaling behavior and the “mean field picture” emerging
in the large-Nc limit may help to explain the transition. (For ap-
plications of the 1=Nc expansion to DIS and partonic structure,
see Refs. [26, 27].)

The methods developed here could also be applied to the
beam spin asymmetry in electron-nucleon scattering, an eect
proportional to the electron mass, which is being studied in its
own right and as a background to parity-violating electron scat-
tering [28, 29, 30]; and to other observables in electron-nucleon
scattering.

This material is based upon work supported by the U.S. De-
partment of Energy, Oce of Science, Oce of Nuclear
Physics under contract DE-AC05-06OR23177.

References

References

[1] C. E. Carlson, M. Vanderhaeghen, Two-Photon Physics in Hadronic Pro-
cesses, Ann. Rev. Nucl. Part. Sci. 57 (2007) 171–204. arXiv:hep- ph/
0701272, doi:10.1146/annurev.nucl.57.090506.123116.

[2] M. K .  Jones, et al., GE p=GM p ratio by polarization transfer in ep !  ep,
Phys. Rev. Lett. 84 (2000) 1398–1402.     arXiv:nucl- ex/9910005,
doi:10.1103/PhysRevLett.84.1398.

[3] P. A. M. Guichon, M. Vanderhaeghen, How to reconcile the Rosenbluth
and the polarization transfer method in the measurement of the pro-
ton form-factors, Phys. Rev. Lett. 91 (2003) 142303. arXiv:hep- ph/
0306007, doi:10.1103/PhysRevLett.91.142303.

[4] P. G. Blunden, W. Melnitchouk, J. A. Tjon, Two photon exchange and
elastic electron proton scattering, Phys. Rev. Lett. 91 (2003) 142304.
arXiv:nucl- th/0306076, doi:10.1103/PhysRevLett.
91.142304.

[5] B. S. Henderson, et al., Hard Two-Photon Contribution to Elastic Lepton-
Proton Scattering: Determined by the OLYMPUS Experiment, Phys.
Rev. Lett. 118 (9) (2017) 092501. arXiv:1611.04685, doi:10.1103/
PhysRevLett.118.092501.

[6] J. C. Bernauer, et al., Measurement of the Charge-Averaged Elastic
Lepton-Proton Scattering Cross Section by the OLYMPUS Experiment,
Phys. Rev. Lett. 126 (16) (2021) 162501. arXiv:2008.05349, d o i :
10.1103/PhysRevLett.126.162501.

[7] A. Accardi, et al., An experimental program with high duty-cycle po-
larized and unpolarized positron beams at Jeerson Lab, Eur. Phys. J.
A  57 (8) (2021) 261.     arXiv:2007.15081, doi:10.1140/epja/
s10050-021-00564-y.

[8] E. Cline, et al., Characterization of Muon and Electron Beams in the Paul
Scherrer Institute PiM1 Channel for the MUSE Experiment (9 2021).
arXiv:2109.09508.

[9] A. V. Afanasev, C. E. Carlson, Two-photon-exchange correction to parity-
violating elastic electron-proton scattering, Phys. Rev. Lett. 94 (2005)
212301. arXiv:hep-ph/0502128, doi:10.1103/PhysRevLett.94.
212301.

[10] A. Afanasev, M. Strikman, C. Weiss, Transverse target spin asymmetry in
inclusive DIS with two-photon exchange, Phys. Rev. D 77 (2008) 014028.
arXiv:0709.0901, doi:10.1103/PhysRevD.77.014028.

[11] N. Christ, T. D. Lee, Possible Tests of C st and Tst Invariances in l +  N !
l +    and A !  B +  e +  e , Phys. Rev. 143 (1966) 1310–1321.
doi:10.1103/PhysRev.143.1310.

[12] A. Airapetian, et al., Search for a Two-Photon Exchange Contribution to
Inclusive Deep-Inelastic Scattering, Phys. Lett. B  682 (2010) 351–354.
arXiv:0907.5369, doi:10.1016/j.physletb.2009.11.041.

[13] J. Katich, et al., Measurement of the Target-Normal Single-Spin Asym-
metry in Deep-Inelastic Scattering from the Reaction 3He"(e; e0)X, Phys.
Rev. Lett. 113 (2) (2014) 022502. arXiv:1311.0197, doi:10.1103/
PhysRevLett.113.022502.

6

http://arxiv.org/abs/hep-ph/0701272
http://arxiv.org/abs/hep-ph/0701272
https://doi.org/10.1146/annurev.nucl.57.090506.123116
http://arxiv.org/abs/nucl-ex/9910005
https://doi.org/10.1103/PhysRevLett.84.1398
http://arxiv.org/abs/hep-ph/0306007
http://arxiv.org/abs/hep-ph/0306007
https://doi.org/10.1103/PhysRevLett.91.142303
http://arxiv.org/abs/nucl-th/0306076
https://doi.org/10.1103/PhysRevLett.91.142304
https://doi.org/10.1103/PhysRevLett.91.142304
http://arxiv.org/abs/1611.04685
https://doi.org/10.1103/PhysRevLett.118.092501
https://doi.org/10.1103/PhysRevLett.118.092501
http://arxiv.org/abs/2008.05349
https://doi.org/10.1103/PhysRevLett.126.162501
https://doi.org/10.1103/PhysRevLett.126.162501
http://arxiv.org/abs/2007.15081
https://doi.org/10.1140/epja/s10050-021-00564-y
https://doi.org/10.1140/epja/s10050-021-00564-y
http://arxiv.org/abs/2109.09508
http://arxiv.org/abs/hep-ph/0502128
https://doi.org/10.1103/PhysRevLett.94.212301
https://doi.org/10.1103/PhysRevLett.94.212301
http://arxiv.org/abs/0709.0901
https://doi.org/10.1103/PhysRevD.77.014028
https://doi.org/10.1103/PhysRev.143.1310
http://arxiv.org/abs/0907.5369
https://doi.org/10.1016/j.physletb.2009.11.041
http://arxiv.org/abs/1311.0197
https://doi.org/10.1103/PhysRevLett.113.022502
https://doi.org/10.1103/PhysRevLett.113.022502


[14] A. Metz, M. Schlegel, K .  Goeke, Transverse single spin asymmetries
in inclusive deep-inelastic scattering, Phys. Lett. B  643 (2006) 319–
324.     arXiv:hep-ph/0610112, doi :10.1016/j .physletb.2006.
11.009.

[15] A. Metz, D. Pitonyak, A. Schafer, M. Schlegel, W. Vogelsang, J. Zhou,
Single-spin asymmetries in inclusive deep inelastic scattering and mul-
tiparton correlations in the nucleon, Phys. Rev. D 86 (2012) 094039.
arXiv:1209.3138, doi:10.1103/PhysRevD.86.094039.

[16] M. Schlegel, Partonic description of the transverse target single-spin
asymmetry in inclusive deep-inelastic scattering, Phys. Rev. D 87 (3)
(2013) 034006.      arXiv:1211.3579, doi:10.1103/PhysRevD.87.
034006.

[17] G. N. Grauvogel, T. Kutz, A. Schmidt, Target-normal single spin asym-
metries measured with positrons, Eur. Phys. J. A  57 (6) (2021) 213.
arXiv:2103.05205, doi:10.1140/epja/s10050-021- 00531-7.

[18] G. ’t Hooft, A  Planar Diagram Theory for Strong Interactions, Nucl. Phys.
B  72 (1974) 461. doi:10.1016/0550-3213(74)90154-0.

[19] E. Witten, Baryons in the 1=N Expansion, Nucl. Phys. B  160 (1979) 57–
115. doi:10.1016/0550-3213(79)90232-3.

[20] J.-L. Gervais, B. Sakita, Large-N QCD Baryon Dynamics: Exact Results
from Its Relation to the Static Strong Coupling Theory, Phys. Rev. Lett.
52 (1984) 87. doi:10.1103/PhysRevLett.52.87.

[21] J.-L. Gervais, B. Sakita, Large-N Baryonic Soliton and Quarks, Phys.
Rev. D 30 (1984) 1795. doi:10.1103/PhysRevD.30.1795.

[22] R. F. Dashen, A. V. Manohar, Baryon-pion couplings from large-Nc QCD,
Phys. Lett. B  315 (1993) 425–430. arXiv:hep-ph/9307241, d o i : 10 .
1016/0370-2693(93)91635-Z.

[23] R. F. Dashen, E. E. Jenkins, A. V. Manohar, 1=Nc expansion for baryons,
Phys. Rev. D 49 (1994) 4713, [Erratum: Phys.Rev.D 51, 2489 (1995)].
arXiv:hep-ph/9310379, doi:10.1103/PhysRevD.51.2489.

[24] R. F. Dashen, E. E. Jenkins, A. V. Manohar, Spin flavor structure of
large Nc baryons, Phys. Rev. D 51 (1995) 3697–3727. arXiv:hep- ph/
9411234, doi:10.1103/PhysRevD.51.3697.

[25] I. P. Fernando, J. L .  Goity, S U(3) vector currents in baryon chiral pertur-
bation theory combined with the 1=Nc expansion, Phys. Rev. D 101 (5)
(2020) 054026. arXiv:1911.00987, doi:10.1103/PhysRevD.101.
054026.

[26] D. Diakonov, V. Petrov, P. Pobylitsa, M. V. Polyakov, C. Weiss, Nu-
cleon parton distributions at low normalization point in the large-Nc
limit, Nucl. Phys. B  480 (1996) 341–380. arXiv:hep-ph/9606314,
doi:10.1016/S0550-3213(96)00486- 5.

[27] P. Schweitzer, D. Urbano, M. V. Polyakov, C. Weiss, P. V. Pobyl-
itsa, K .  Goeke, Transversity distributions in the nucleon in the large-
Nc limit, Phys. Rev. D 64 (2001) 034013. arXiv:hep-ph/0101300,
doi:10.1103/PhysRevD.64.034013.

[28] A. V. Afanasev, N. P. Merenkov, Collinear photon exchange in the
beam normal polarization asymmetry of elastic electron-proton scatter-
ing, Phys. Lett. B  599 (2004) 48.     arXiv:hep-ph/0407167, d o i :
10.1016/j.physletb.2004.08.023.

[29] C. E. Carlson, B. Pasquini, V. Pauk, M. Vanderhaeghen, Beam normal
spin asymmetry for the ep !  e(1232) process, Phys. Rev. D 96 (11)
(2017) 113010.     arXiv:1708.05316, doi:10.1103/PhysRevD.96.
113010.

[30] O. Koshchii, A. Afanasev, Lepton mass eects for beam-normal single-spin
asymmetry in elastic muon-proton scattering, Phys. Rev. D 100 (9) (2019)
096020. arXiv:1905.10217, doi:10.1103/PhysRevD.100.
096020.

7

http://arxiv.org/abs/hep-ph/0610112
https://doi.org/10.1016/j.physletb.2006.11.009
https://doi.org/10.1016/j.physletb.2006.11.009
http://arxiv.org/abs/1209.3138
https://doi.org/10.1103/PhysRevD.86.094039
http://arxiv.org/abs/1211.3579
https://doi.org/10.1103/PhysRevD.87.034006
https://doi.org/10.1103/PhysRevD.87.034006
http://arxiv.org/abs/2103.05205
https://doi.org/10.1140/epja/s10050-021-00531-7
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1103/PhysRevLett.52.87
https://doi.org/10.1103/PhysRevD.30.1795
http://arxiv.org/abs/hep-ph/9307241
https://doi.org/10.1016/0370-2693(93)91635-Z
https://doi.org/10.1016/0370-2693(93)91635-Z
http://arxiv.org/abs/hep-ph/9310379
https://doi.org/10.1103/PhysRevD.51.2489
http://arxiv.org/abs/hep-ph/9411234
http://arxiv.org/abs/hep-ph/9411234
https://doi.org/10.1103/PhysRevD.51.3697
http://arxiv.org/abs/1911.00987
https://doi.org/10.1103/PhysRevD.101.054026
https://doi.org/10.1103/PhysRevD.101.054026
http://arxiv.org/abs/hep-ph/9606314
https://doi.org/10.1016/S0550-3213(96)00486-5
http://arxiv.org/abs/hep-ph/0101300
https://doi.org/10.1103/PhysRevD.64.034013
http://arxiv.org/abs/hep-ph/0407167
https://doi.org/10.1016/j.physletb.2004.08.023
https://doi.org/10.1016/j.physletb.2004.08.023
http://arxiv.org/abs/1708.05316
https://doi.org/10.1103/PhysRevD.96.113010
https://doi.org/10.1103/PhysRevD.96.113010
http://arxiv.org/abs/1905.10217
https://doi.org/10.1103/PhysRevD.100.096020
https://doi.org/10.1103/PhysRevD.100.096020

