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Abstract—Power conversion is a significant cost in second-use
battery energy storage systems (2-BESS). 2-BESS is a sustainable
pathway for retired batteries of electrical vehicles (EV) to provide
energy storage for the grid and EV fast charging. We present and
demonstrate the optimization of Lite-Sparse Hierarchical Partial
Power Processing (LS-HiPPP) for battery degradation over the
potential lifetime of the 2-BESS. LS-HiPPP has a significantly
better performance tradeoff with lower power processing than
other partial and full power processing architectures.

Index Terms—battery energy storage systems, LS-HiPPF, hetero-
geneous batteries, partial power processing, second-use batteries.

I. INTRODUCTION

Second-use batteries from electrical vehicles (EV) will be
an environmental problem by 2030 [1]. These batteries still
have 80% capacity remaining when they are retired. Motivated
by the growth of the EV industry, the predicted available
energy capacity from second-use batteries will be 3.6 GWh
by 2030 [2], of which 63% will potentially be wasted [3].
Second-use battery energy storage systems (2-BESS) are a
sustainable tap of the economic potential of these batteries [1]
for a grid with high renewable energy penetration [4] and EV
charging [5], while eliminating greenhouse gases from new
battery production.

Decreasing the cost of power conversion enables the
price-competitiveness of second-use batteries in 2-BESS by
reducing the processed power. Other significant costs include
transportation [6] and inventory [7]. Local production and
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just-in-time manufacturing reduces these costs, but increases
the heterogeneity of supply [8], which can be addressed by
sparse partial power processing [9] together with standardizing
the types of power converters for economies of scale [10].

The heterogeneity of second-use batteries significantly in-
creases with degradation [8] [11]. The conventional way to
deal with battery heterogeneity is to individually process all
the power from each battery. Full power processing (FPP)
can fully access the battery capacity, but processes 100% of
the battery power. Our goal is to maximize the utilization
of battery despite degradation over its second-life, while
minimizing the amount of processed power. Maintenance cost
can be minimized by keeping the battery and converter inter-
connections through the 2-BESS lifetime and fewer converter
types increase the economies of scale [10].

In this paper, we present a new dynamic optimization
method for Lite-Sparse Hierarchical Partial Power Process-
ing (LS-HiPPP) [5], [9], [12], which is an optimization
over battery degradation, with results demonstrated in hard-
ware. Compared with other power processing architectures,
LS-HiPPP demonstrates high utilization despite high battery
heterogeneity [5], [9], [12] for the same converter ratings. We
use a stochastic model of a statistical distribution’s parametric
evolution, which is estimated from battery data to model
the degradation process. The paper is organized as follows.
Section II discusses the modeling and integration of battery
degradation in the LS-HiPPP optimization; Section III presents
and discusses the simulation results; Section III demonstrates
the hardware testbed and the corresponding hardware results;
Section V summarizes and concludes the paper.
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Fig. 1. Model data for battery degradation: (a) Data extrapolated from [13]
using quadratic models [14]. (b) Expected value with heterogeneity (standard
deviation) bars.

II. MODELING AND INTEGRATION OF DEGRADATION IN
LS-HIPPP

Although LS-HiPPP architecture has demonstrated strong
performance with heterogeneity of battery supply, previous
works [5], [9], [12] used statistical models rather than actual
data. The data set by [13] is used in this paper as a large public
data set for degradation of cycled Li-ion batteries. As shown
in Fig. 1(a), the statistical characteristics of the batteries’ ca-
pacity evolve over time. The capacity heterogeneity manifests
as increasing deviations over charge/discharge cycles while
the decreasing average discharge capacity is modeled as a
decreasing expected value as illustrated in Fig. 1(b).

Note that, although this data is for battery capacity degra-
dation over time, we can use it to determine the battery power
capability as it decreases from degradation. In this paper, we
choose the power capability so that the operational C-rate is
relative to the battery’s full capacity at the time of operation.
For example, if the battery’s capacity reduces by 20 % because
of degradation, then its power capability also reduces by 20 %.

A. Modeling of Degradation

Discretization in time, which is a typical method for
dynamic programming [15], is used in this paper for the
modeling of degradation. This procedure is illustrated in Fig. 2
and is described as follows.
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Fig. 2. Procedure for time discretization of the degradation.

First, as depicted in Fig.2(a), the expected value of the
battery capacity/power capability over time is discretized
into three intervals of equal area, i.e., S; = S = S3. Then,
indicator cycles cq1, cq2, and cg3 are chosen such that
S1 =54, So =55, and S3 = 5%, as shown in Fig.2(b). Fi-
nally, as in Fig.2(c), the battery energy/power utilization for
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Fig. 3. Interconnection architectures for energy storage and power processing: (a) Full Power Processing (FPP). (b) Conventional Partial Power Processing

(C-PPP). (c) Lite-Sparse Hierarchical Partial Power Processing (LS-HiPPP).

interval ¢ is defined to be
Sy
U, =—=+ 1
7 SZ‘ ) ( )
where S!’ refers to the energy/power utilized by the 2-BESS
during interval ¢, and S; refers to the overall intrinsic en-
ergy/power of batteries during interval ¢ in the 2-BESS. In
Fig. 1(b), the red error bars correspond to the resulting cq1,
cq2, and cg3 of the discretization procedure.

B. Integration of Degradation in LS-HiPPP

The series LS-HiPPP architecture in Fig.3(c) is composed
of two layers of bidirectional, isolated power converters [9].
The Sparse Layer 1 processes the larger expected power
mismatch while the Lite Layer 2 processes the much lower
remaining power mismatch variation. The optimization goal
is to maximize the overall battery power utilization,

ST+ S5+ 5y
S+ S+ S5

The two-step optimization uses [9] to solve the subproblems
over future time intervals using predicted degradation data.

Separating the design optimization of Layer 1 and Layer 2
power processing allows the design space to conform to
the structure of the heterogeneity. LS-HiPPP optimally spans
the technology gap between FPP, shown in Fig.3(a), and
conventional partial power processing (C-PPP) architecture,
shown in Fig. 3(b), through the use of statistical decomposition
and hierarchy [5], [9], [12].

2

For each interval, a Weibull distribution is fit to the sta-
tistical data of the corresponding indicator cycle. The fitted
Weibull distribution at the indicator cycle is then mapped to the
batteries in Fig.3(c) to initiate the optimization as described
in [5], [9].

The design of Layer 1 can be formulated as a linear
optimization problem over all indicator cycles,

oy fax Z (L Z Dusilized, j) (3a)
P’ Plitized,j 1<i<I  1<j<J
subject to : — ]5]? < péutput,j < pj?, (3b)
i — (1) j
Poutput,j = Z Pr + Pulized ;> (o)

(1)
keK;

% _ 7t i
putilized,j - Istrinngj ’ (3d)

forall 1 <i<I,1 <5< J1<m< M,

where J is the number of batteries, M is the number of
Layer 1 converters (set by the user), I is the number of
intervals (in our case I = 3), the decision variable pfmlized,j
is the 2-BESS’s output power contributed by the j" terminal
during the i interval, the decision variable pg)’i is the power
processed by the m™ Layer 1 converter during the i interval,
Phuput,; 18 the output power of the j™ battery during the i

interval, [; denotes the length of the i™ interval, and K j(.l)
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is the j™ column of the interconnection matrix for Layer 1
converters that indicates the connections with the j® battery in
the architecture. Constraint (3b) enforces the battery input and
output power limits, while constraint (3c) denotes the power
conservation law for each battery. Constraint (3d) states that
the power delivered at the j terminal during interval i is the
product of the interval string current Isitring and the individual
battery’s voltage; in other words, the battery determines the
terminal voltage.

Note that the topology matrix K1) is the same thoughout
the second-life of the batteries. After Layer 1 optimization,
we obtain the optimal interconnection for Layer 1 converters,
KW+ and also the power processed by Layer 1 for each of the
different time intervals. The Layer 1 converter power rating
p(M* is chosen according to the highest required processed
power for economies of scale.

Layer 2 converters that process the remaining battery
mismatch are determined from a power flow optimization
embedded in Monte-Carlo. The design of Layer 2 can be
formulated as a linear optimization problem over all indicator
cycles,

i
. max E (i E putilized,j) (4a)
W),i  (2),0 - -
Pm’ 5Pn’ Puilized,; 1<i<I  1<5<J

subject 0 : —(P} + 0P}) < Phupu; < (P} +3P;), (4b)

Pouputj = Z pl(cl)’i"‘ Z pg)’i‘f'Pﬁmized,ja (40)
keK (M keK

Puitized,; = LawingV» (4d)

P < P, (de)

it <M, @

forall1<i<I,1<j<J1<m<M,1<n<N,

where N is the number of Layer 2 converters (N = J — 1),
the decision variable pﬁf)” is the power processed by the n"
Layer 2 converter during the i interval, 5sz' is the power
uncertainty of the j battery during the i interval, K 7(-1)* and
K ](2) are the j™ column of the interconnection matrices for
Layer 1 and Layer 2, respectively. Note that constraint (4e)
enforces that the power ratings for all Layer 2 converters are
identically equal to p%?m Also, constraint (4f) enforces the
power rating of the Layer 1 converters which was determined
by the result of Layer 1 optimization.

III. MONTE-CARLO SIMULATION RESULTS

We use Monte-Carlo methods to validate the performance
of LS-HiPPP over optimal solutions on tradeoff curves. The
average performance of 2-BESS over degradation is evaluated
through a large number of samples and the results (for 9
batteries, 8 Layer 2 converters, and 3 Layer 1 converters)
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Fig. 4. Comparison of LS-HiPPP, C-PPP, and FPP performance: (a) Battery

utilization as a function of aggregate converter rating. (b) System efficiency
as a function of aggregate converter rating.

are illustrated in Fig.4. In Fig.4, the normalized aggregate
converter rating is

Y pWr Y pie

1<m<M 1<n<N
2 ; &)
>, P
1<5<J
and the system efficiency is
Poutput,BAT - ]Dloss
Nsystem = —
P, output,BAT
o P output, BAT — (1 - nconverter)P processed ( 6)
- )

P output, BAT

where all the converters are assumed to have individual
efficiencies of Neonyerer = 85 %.

Economic outcome in a 2-BESS is proportional to the
utilization of the battery power. LS-HiPPP performs better than
the other two architectures (C-PPP and FPP), as shown by the
optimal utilization tradeoff frontiers between battery power
utilization over degradation and aggregate power converter
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Fig. 5. Battery energy storage testbed.

rating in Fig. 4(a). When the aggregate power converter rating
is 0.2, the average battery power utilization of LS-HiPPP over
degradation is 0.92, as opposed to 0.72 for C-PPP and 0.22
for FPP. LS-HiPPP utilizes approximately 20 % more battery
power than C-PPP when using converters with a low aggre-
gate power rating. The power utilization difference between
LS-HiPPP and FPP is 60-70 % at low power converter rating.
LS-HiPPP is significantly more tolerant to lower aggregate
power converter rating. As the converter rating decreases from
1 to 0.2, the power utilization reduces by less than 0.1,
compared to approximate 0.25 for C-PPP and 0.7 for FPP.

High efficiency is essential in decreasing the cost of ther-
mal management for 2-BESS. As is indicated by Fig.4(b),
LS-HiPPP has the best average efficiency over degradation
among the three architectures for different converter ratings.
Moreover, LS-HiPPP maintains system efficiency over the
choice of converter ratings. The efficiency decreases by 1.4 %
when the aggregate power converter rating increases from 0.2
to 1 for LS-HiPPP, as opposed to 6.4 % for C-PPP.

IV. HARDWARE DEMONSTRATION
A. Hardware Setup

A 1 kW energy storage testbed, as shown in Fig.5, was
used for hardware demonstration. The testbed is universally
configurable, consisting of nominally 5 Ah NMC and 2.5 Ah
LFP batteries, and bidirectional/isolated power converters for
the Layer 1 and Layer 2 converters. All power converters
and battery monitoring boards are controlled through Texas
Instruments LAUNCHXL-F28379D kits and networked over
Controlled Area Network (CAN) bus to a PC as a central

Battery 1 =

Battery 2 —

Battery 3 —

Battery 4 —

Battery 5 -

Battery 1 =
il m
Battery 2 — T
RN
Ly y
Battery 3 — T il { Y <¢>
IRAN.
Battery 4 = 7] —
i
Battery 5 == T —

|

Fig. 6. Testbed configuration for: (a) Conventional Partial Power Processing
(C-PPP). (b) Lite-Sparse Hierarchical Partial Power Processing (LS-HiPPP).

controller. Both centralized and distributed fault handling and
protection are implemented for scalability to megawatt-level
systems.

For the hardware demonstration five 2.5 Ah LFP batteries, 4
Layer 2 converters, and 2 Layer 1 converters were used. The
instantiation of the 2-BESS from the data of the first indicator
cycle in Fig. 1(b), resulted in Battery 1, Battery 2, Battery 3,
Battery 4, and Battery 5 modules with capacity of 2.5 Ah,
2.175 Ah, 1.975 Ah, 1.725 Ah, and 1.325 Ah, respectively. The
placement and power flow of the Layer 1 converters, and the
power flow of the Layer 2 converters are optimized using
the methods outlined in Section II. For both LS-HiPPP and
C-PPP, the load was a constant current sink of 1 A and the load
voltage was regulated with a bus voltage regulator converter
to approximately 72 V. In other words, the performance of
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excluding bus voltage regulator.

LS-HiPPP and C-PPP were compared using identical output
power and power utilization. This means that the power
processed by each converter and hence the aggregate converter
ratings are the metrics of performance. The configurations
of the energy storage testbed for hardware demonstration are
shown in Fig. 6.

B. Hardware Results

The hardware demonstration shows a snapshot of the opera-
tion of a particular 2-BESS at the beginning of its second-life
use when the power converter interconnection and ratings are
optimized for the entire 2-BESS lifetime. The battery ratings
for this 2-BESS are supplied from the family of evolving
distributions described in Section II.

In both LS-HiPPP and C-PPP, the processed power is much
lower than the BESS output power because of partial power
processing as shown in Figs. 7(a) and 7(b), respectively.
Because of identical output power, the bus voltage regulator,
which maintains the bus voltage, also processes the same
power in both. In Figs. 7(c) and 7(d), LS-HiPPP allows more
power to be drawn from the battery with the largest capability
(Battery 1) and less from the battery with the least capability
(Battery 5); the power outputs from each battery in LS-HiPPP
are better optimized. The charge distribution among batteries
is narrower for LS-HiPPP than C-PPP as illustrated in Figs.
7(e) and 7(f), respectively.

Ultimately, the processed power using LS-HiPPP (16.3 %)
is lower than C-PPP (25.3 %), which results in higher system
efficiency and power converters with significantly lower power
ratings, as illustrated in Fig. 8.

V. CONCLUSION

In this paper, we have presented a new stochastic method for
Lite-Sparse Hierarchical Partial Power Processing to optimize
2-BESS power processing over lifetime degradation. We opti-
mize the power processing by determining the best tradeoff
between converter ratings and battery power utilization by

selecting the optimal power converter interconnections and
power flow. We show in simulation that LS-HiPPP over
2-BESS lifetime has an expected battery power utilization of
92 % using only 20 % aggregate converter power rating as op-
posed to conventional partial power processing at 72 %. When
using low-cost power converters with individual efficiencies of
85 %, LS-HiPPP has an estimated system efficiency of 98 %
as opposed to C-PPP at 96 %, which means half the thermal
management is needed for LS-HiPPP. We demonstrated in
hardware a comparison in the operation between a 2-BESS
using LS-HiPPP versus C-PPP.
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