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1 Introduction

In addition to proposing one of the first theories of primordial inflation [1], Starobinsky
was the first to realize that the accelerated expansion of inflation generates a spectrum
of gravitational radiation [2]. The numbers are staggering. If a(η) is the scale factor at
conformal time η, and ∆2

h(k) is the tensor power spectrum, then the number of inflationary
gravitons with co-moving wave number k and each ± polarization is,

N±(η, k) =
π∆2

h(k)

64Gk2
×a2(η) −→

(Ha

2k

)2

. (1)

Notice that the left hand form is valid for a general inflationary background whereas the
right hand form is specialized to the de Sitter geometry,

ds2 ≡ gµνdx
µdxν = a2

[

−dη2 + d~x·d~x
]

, a(η) = − 1

Hη
. (2)

In the distant past, when a ≃ 0, the occupation number (1) is nearly zero. At horizon
crossing it becomes 1

4
, and within a single e-foldings it has exceeded unity. Solving the

horizon problem requires at least 50 e-foldings of inflation, which causes the occupation
number to expand by a factor of e100 ≃ 2.6× 1043. One should bear in mind that this is just
the occupation number of a single wave vector ~k. Of course the 3-volume is expanding like
a3(t). Integrating over all super-horizon modes gives a constant number density of H3

32π2 , or
0.003 distinct super-horizon modes for each Hubble volume.

Loops of these inflationary gravitons change the kinematics and forces exerted by them-
selves and by other particles. One shows this by quantum correcting the effective field
equation of whatever particle is under study using the graviton contribution to its 1PI (one-
particle-irreducible) 2-point function. For example, the 1PI 2-point function of photons is a
bi-vector density known as the vacuum polarization i[µΠν ](x; x′), and was first computed, at
1-graviton loop order, on de Sitter background in 2013 [3] using the simplest graviton gauge
[4, 5]. The quantum-corrected Maxwell equation is,

∂ν

[√−g gνρgµσFρσ

]

+

∫

d4x′
[

µΠν
]

(x; x′)Aν(x
′) = Jµ(x) , (3)

where Fµν ≡ ∂µAν − ∂νAµ is the field strength tensor and Jµ is the current density. When
(3) is solved for a static point charge Q, the resulting Coulomb potential is [6],

Φ(η, r) =
Q

4πar

{

1 +
2G

3πa2r2
+

2GH2

π
× ln(aHr) + O(G2)

}

. (4)

Solving (3) for a dynamical photon shows a similar 1-loop enhancement of the tree order
electric field strength F 0i

0 [7],

F 0i(η, ~x) = F 0i
0 (η, ~x)

{

1 +
2GH2

π
× ln(a) +O(G2)

}

. (5)
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Many similar calculations have been made in recent years. Single graviton loop contribu-
tions on de Sitter background have been evaluated for the 1PI 2-point functions of gravitons
[8], fermions [9, 10], massless, minimally coupled scalars [11] and massless, conformally cou-
pled scalars [12, 13, 14]. Large temporal and spatial logarithms analogous to (4-5) have been
found for the fermion field strength [15], the massless, minimally coupled scalar exchange
potential [16], the graviton mode function [17], and the Newtonian potential of a static point
mass [18].

A fascinating feature of these results is the breakdown of perturbation theory that occurs
when the large logarithms overwhelm the small loop-counting parameter of GH2 <∼ 10−10.
Graviton loop corrections do not necessarily become large at this point because each higher
loop contributes an extra factor of the loop-counting parameter times a large temporal
or spatial logarithm, and they all become of order one at the same time. Understanding
what happens after the breakdown of perturbation theory requires a way of resumming the
series of leading logarithms. Although Starobinsky’s stochastic formalism [19, 20] solves the
analogous problem for the large logarithms of scalar potential models [21, 22], the derivative
interactions of quantum gravity cause it to fail [23]. The renormalization group is another
obvious approach but the simplest realization of it fails even to describe scalar potential
models [24]. This has remained true despite years of effort [25, 26, 27].

Nonlinear sigma models have the same derivative interactions as quantum gravity but
without the indices and the gauge issue. It has long been suspected that they might provide
a simplified venue for working out a procedure to sum the leading logarithms [22], and much
work has been done with them on de Sitter background [28, 29, 30]. These efforts have
recently resulted in a synthesis involving variants of Starobinsky’s stochastic technique with
the renormalization group [31]. What one does is to derive curvature-dependent effective
potentials by integrating derivative interactions out of the field equations in the presence
of a constant scalar background. The resulting equation is that of a scalar potential model
for which Starobinsky’s stochastic procedure applies [19, 20]. This recovers some large log-
arithms; the remaining ones come by employing the renormalization group on the subset
of BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann) counterterms which can be regarded as
curvature-dependent renormalizations of parameters in the original theory.

The purpose of this paper is to complete two parts of the previous analysis [31]. First, we
compute the evolution of the scalar background at two loop order. This permits a nontrivial
check of the stochastic prediction, which really is a prediction because the explicit calculation
had not been done when it was made. The second thing we do here is to compute the 1-loop
beta function, which was not needed to check the 1-loop exchange potentials. Having the
beta function allows us to carry out a full RG analysis.

There are five sections in this paper. In section 2 we define the particular nonlinear
sigma model to be studied and give the stochastic prediction for its background. The 2-loop
expectation value of the background is computed in section 3. In section 4 we work out the
1-loop beta function. Our conclusions comprise section 5.
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2 Feynman Rules

The purpose of this section is to explain how to make perturbative computations in the
model. We begin by giving the bare Lagrangian, the propagators and the vertices. Then we
present those counterterms which are needed for our work. The special counterterms which
can be viewed as curvature-dependent renormalizations of the bare theory are distinguished.
We next using a curvature-dependent effective potential to derive the stochastic prediction
for the 2-loop expectation value which is computed in section 3. The section closes with a
review of what has been shown in previous work, and what will be shown in this paper.

2.1 The Bare Theory

The Lagrangian we study consists of two scalar fields A(x) and B(x). Their Lagrangian is,

L = −1

2
∂µA∂νAg

µν
√
−g − 1

2

(

1+
1

2
λA

)2

∂µB∂νBgµν
√
−g . (6)

We work on D-dimensional spacetime in order to facilitate the use of dimensional regular-
ization. Our notation exploits the conformal coordinate system evident in the background
geometry (2). Because the metric consists of a scale factor a(η) = − 1

Hη
times the Minkowski

metric, gµν = a2ηµν , its inverse is gµν = 1
a2
ηµν , and the measure factor is

√−g = aD. The
standard partial derivative is denoted as ∂µ, no matter what tensor it acts upon, and its
index is raised and lowered with the Minkowski metric, ∂µ ≡ ηµν∂ν . The Minkowski con-
traction of the partial derivative with itself is written ∂2 ≡ ηµν∂µ∂ν , again no matter what
tensor it acts upon. When more than one coordinate is present we indicate which one is
differentiated by adding a superscript or a subscript, as in ∂y

µ ≡ ∂
∂yµ

and ∂µ
z ≡ ηµν ∂

∂zν
. The

same scheme is sometimes applied to the metric, as in gµνy ≡ gµν(y) and
√−gz ≡

√

−g(z).
It can be employed as well for the scale factor, as in ay ≡ a(y0) and az ≡ a(z0).

The propagators of both fields obey,

∂µ

[√−g gµν∂νi∆(x; x′)
]

= ∂µ
[

aD−2∂µi∆(x; x′)
]

≡ Di∆(x; x′) = iδD(x−x′) . (7)

The homogeneous and isotropic solution is [32, 33],

i∆(x; x′) = F
(

Y(x; x′)
)

+ k ln
(

a(η)a(η′)
)

, k ≡ HD−2

(4π)
D
2

Γ(D−1)

Γ(D
2
)

. (8)

Here Y(x; x′) ≡ a(η)a(η′)H2∆x2(x; x′) ≡ a(η)a(η′)H2(x − x′)µ(x − x′)νηµν is the de Sitter
length function and the first derivative of the function F (Y) is,

F ′(Y) = − HD−2

4(4π)
D
2

{

Γ
(D

2

)( 4

Y
)

D
2

+ Γ
(D

2
+1

)( 4

Y
)

D
2
−1

+

∞
∑

n=0

[

Γ(n+D
2
+2)

Γ(n+3)

(Y
4

)n−D
2
+2

− Γ(n+D)

Γ(n+D
2
+1)

(Y
4

)n

]}

. (9)
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Using dimensional regulariztion, the coincidence limits of the propagator and its first two
derivatives are seen to be,

i∆(x; x) = k
[

−πcot
(Dπ

2

)

+ 2 ln(a)
]

, ∂µi∆(x; x′)
∣

∣

∣

x′=x
= kHaδ0µ , (10)

∂µ∂
′
νi∆(x; x′)

∣

∣

∣

x′=x
= −

(D−1

D

)

kH2gµν , ∂µi∆(x; x) = 2kHaδ0µ . (11)

The bare vertices consist of the λA∂B∂B coupling and the λ2A2∂B∂B coupling. Figure 1
gives a diagrammatic representation of the bare Feynman rules.

12,34
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Figure 1: The bare Feynman rules of (6). A lines are solid and B lines are dashed. Both propagators are
the same and are described by equations (8-9).

2.2 Counterterms

The Lagrangian (6) is not renormalizable so it requires an infinite number of counterterms.
However, this paper only employs the two 1-loop counterterms which are shown in Figure 2.

Figure 2: Diagrammatic representation of the two counterterms we require for this project. The left hand
graph represents expression (12) which renormalize the B self-mass and the right hand graph represents (16)
which renormalize the 3-point vertex. A lines are solid and B lines are dashed.

The first of the counterterms we require renormalizes the B self-mass at 1-loop order,

∆LB2 = −1

2
C1B2 B B

√−g − 1

2
C2B2R∂µB∂νBgµν

√−g . (12)

Absorbing divergences in the B self-mass determines the coefficients C1B2 and C2B2 to be
[31],

C1B2 = −λ2µD−4

16π
D
2

Γ(D
2
−1)

2(D−3)(D−4)
, (13)

C2B2 =
λ2µD−4

4(4π)
D
2

Γ(D−1)

Γ(D
2
)

πcot(Dπ
2
)

D(D−1)
− λ2µD−4

32π
D
2

Γ(D
2
−1)

2(D−3)(D−4)

(D−2

D−1

)

. (14)

The term proportional to C1B2 is a higher derivative counterterm which plays no role de-
scribing in large inflationary logarithms. In contrast, the term proportional to C2B2 can be
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viewed as a curvature-dependent field strength renormalization whose gamma function is,

ZB = 1 + C2B2×R +O(λ4) =⇒ γB ≡ ∂ ln(ZB)

∂ ln(µ2)
= −λ2H2

32π2
+O(λ4) . (15)

The second counterterm renormalizes the 3-point vertex at 1-loop order,

∆LAB2 = −1

2
C1AB2 A∂µB∂νBgµν

√
−g − C2AB2∂µA∂νB Bgµν

√
−g

−1

2
C3AB2A B B

√
−g − 1

2
C4AB2RA∂µB∂νBgµν

√
−g . (16)

The terms involving C1AB2 , C2AB2 and C3AB2 contain higher derivatives and have nothing
to do with large inflationary logarithms. The term proportional to C4AB2 can be viewed as
a curvature-dependent renormalization of the A∂B∂B vertex whose beta function we will
compute at order λ3 in section 5.

δλ = C4AB2×R +O(λ5) =⇒ β ≡ ∂δλ

∂ ln(µ)
. (17)

2.3 Stochastic Prediction for 〈A〉
The Heisenberg operator equation for A(x) is,

δS

δA
= ∂µ

[√
−ggµν∂νA

]

− 1

2
λ
(

1+
1

2
λA

)

∂µB∂νBgµν
√
−g = 0 . (18)

A constant A field merely changes the field strength of B. We can therefore capture the
effect of undifferentiated A fields to all orders by integrating out the differentiated B fields
in equation (18) for constant A,

∂µB∂νB −→ ∂µ∂
′
νi∆(x; x′)|x′→x

(1 + λ
2
A)2

= −(D−1
D

)kH2gµν

(1 + λ
2
A)2

−→ −
3H4

32π2 gµν

(1 + λ
2
A)2

. (19)

Note that we have used expression (11) and the D = 4 limit of k from (8).
Substituting (19) in the A field equation (18) gives a scalar potential model which

Starobinsky’s formalism [19, 20] allows us to describe, at leading logarithm order, by a
stochastic field A obeying the Langevin equation [31],

Ȧ − Ȧ0 =
λH3

16π2

1 + λ
2
A

. (20)

Note that we have converted from conformal time η to the co-moving time t = ln(a)/H , and
dot means derivative with respect to co-moving time.. The stochastic jitter Ȧ0 is provided
by the time derivative of the infrared truncated, free field mode sum,

A0(t, ~x) ≡
∫

d3k

(2π)3
θ(k−H)θ(aH−k)H√

2k3

{

α~k
ei
~k·~x + α†

~k
e−i~k·~x

}

. (21)
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Here α†
~k
and α~k are the creation and annihilation operators of the field A,

[

α~k
, α†

~p

]

= (2π)3δ3(~k−~p) , α~k

∣

∣

∣
Ω
〉

= 0 =⇒
〈

Ω
∣

∣

∣
A2

0

∣

∣

∣
Ω
〉

=
H2 ln(a)

4π2
. (22)

Even if the stochastic jitter were absent, A(t, ~x) would roll down the curvature-dependent
effective potential,

Veff(A) = −3H4

8π2
ln
∣

∣

∣
1 +

λ

2
A
∣

∣

∣
. (23)

If one starts from rest at A = 0 the exact solution for this behavior is,

Aclass =
2

λ

[
√

1+
λ2H2 ln(a)

16π2
− 1

]

. (24)

The solution of the Langevin equation (20) consists of (24) plus a series in powers of A0,

A = Aclass +A0 −
λ2H3

32π2

∫ t

0

dt′A0 +
λ3H3

64π2

∫ t

0

dt′A2
0 +O(λ4) . (25)

Taking the expectation value gives,

〈

Ω
∣

∣

∣
A
∣

∣

∣
Ω
〉

=
λH2 ln(a)

24π2
+

λ3H4 ln2(a)

210π4
+O(λ5) . (26)

In the next section we will show that the 2-loop expectation value of the full field A(x) agrees
with this stochastic prediction at leading logarithm order.

2.4 What Has Been and Will Be Shown

The title of this paper mentions “unfinished business” because it completes an initial in-
vestigation of the model (6) [31]. The earlier study computed the 1-loop self-mass for each
field and then used them to quantum-correct the effective field equations to solve for 1-loop
corrections to the plane wave mode functions and to the response to a static point source.
The fields and their squares were also computed at 2-loop order, with the exception of
A(x), whose expectation value was only worked out to 1-loop order. The leading logarithm
contributions to the various results are summarized in Table 1 below.
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Quantity Leading Logarithms

uA(η, k)
{

1−λ2H2

32π2 ln(a) +O(λ4)
}

× H√
2k3

uB(η, k)
{

1 + 0 +O(λ4)
}

× H√
2k3

PA(η, r)
{

1−λ2H2

32π2 ln(a)+λ2H2

32π2 ln(Hr) +O(λ4)
}

× KH
4π

ln(Hr)

PB(η, r)
{

1−λ2H2

32π2 ln(Hr) +O(λ4)
}

× KH
4π

ln(Hr)

〈Ω|A(x)|Ω〉
{

1 +O(λ2)
}

× λH2

16π2 ln(a)

〈Ω|A2(x)|Ω〉ren
{

1−λ2H2

64π2 ln(a) +O(λ4)
}

× H2

4π2 ln(a)

〈Ω|B(x)|Ω〉 0

〈Ω|B2(x)|Ω〉ren
{

1+3λ2H2

32π2 ln(a) +O(λ4)
}

× H2

4π2 ln(a)

Table 1: Color-coded explanations of large logarithms found in studying the 1-loop mode functions
uA,B(η, k), the 1-loop exchange potentials PA,B(η, r) and the 2-loop expectation values of the fields and
their squares [31]. Red denotes logarithms which have a stochastic explanation and green indicates those
explained by the renormalization group.

As Table 1 indicates, the various leading logarithms can all be explained using a variant
of Starobinsky’s stochastic formalism — based on curvature-dependent effective potentials
as explained in section 2.3 — or using a variant of the renormalization group — based on
curvature-dependent renormalizations of the bare theory, as explained in section 2.2. The
goal of this paper is to derive the 2-loop (order λ3) contribution to the expectation value
of A(x) — which will be done in section 3 — and to complete the renormalization group
analysis by deriving the 1-loop beta function — which will be done in section 4. Under the
usual assumption of no significant higher loop contributions, we will be able to solve the
Callan-Symanzik equation.

3 The 2-Loop Expectation Value of A(x)

The point of this section is to compute the expectation value of A(x) at 2-loop order, and
to compare the leading logarithm result for this with the stochastic prediction (26). The
various diagrams are given in Figure 3.
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Figure 3: Diagrams contributing to the 2-loop expectation value of A(x). Solid lines represent the A

propagator whereas dashed lines stand for the B propagators.

For each diagram we give the initial expression. An explicit partial integration reduction is
presented for the first diagram, and the final reductions for each diagram are expressed in
terms of i∆(x; x), [i∆(x; x)]2 and five integrals,

I1 ≡
∫

dDy
√

−g(y)
[

i∆(x; y)
]2

, (27)

I2 ≡
∫

dDy
√

−g(y) i∆(x; y)i∆(y; y) , I3 ≡
∫

dDy
√

−g(y) i∆(x; y) , (28)

I4 ≡
∫

dDy
√

−g(y) i∆(x; y)×I3(y) , I5 ≡
∫

dDy
√

−g(y) i∆(x; y)×İ3(y) . (29)

(Note the co-moving time derivative ∂t ≡ 1/a × ∂0 of I3 in I5.) The proper treatment of
these integrals requires generalizing in-out matrix elements to true expectation values using
the Schwinger-Keldysh formalism [34, 35, 36, 37, 38] and is explained in the Appendix. The
section closes by expressing the leading logarithm contribution from each diagram as a factor
times the 2-loop stochastic result S ≡ λ3H4 ln2(a)/210π4.

3.1 Computation of the Diagrams

The first 2-loop diagram in Figure 3 has a symmetry factor of 1
4
, and a combination of 3-point

and 4-point vertices,

A2a ≡
1

4
(−iλ)(− i

2
λ2)

∫

dDy
√

−g(y) gαβ(y)i∆(x; y)

×
∫

dDz
√

−g(z) gµν(z) ∂y
α∂

z
µi∆(y; z) ∂y

β∂
z
ν i∆(y; z) i∆(z; z) . (30)

To conserve space in subsequent expressions we will use the Latin letters as superscripts or
subscripts to indicate the spacetime arguments of the metric, for example,

√
gy ≡

√

−g(y)

and gµνz ≡ gµν(z). Also, we use ∂y
µ ≡ ∂

∂yµ
for partial derivatives. We reduce A2a, and

all the other contributions, by partially integrating derivatives and then using either the
propagator equation (7) or else one of the coincidence limits (10-11). The first step is to
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partially integrate the factor of ∂′
α on the last line of (30),

A2a =
λ3

8

∫

dDyi∆(x; y)

∫

dDz
√−gzg

µν
z ∂z

µi∆(y; z)∂z
νDyi∆(y; z)i∆(z; z)

+
λ3

8

∫

dDy
√

−gyg
αβ
y ∂y

αi∆(x; y)

∫

dDz
√
−gzg

µν
z ∂z

µi∆(y; z)∂y
β∂

z
ν i∆(y; z)i∆(z; z) . (31)

Recall that Dy ≡ ∂y
α[
√−gy g

αβ
y ∂y

β].
We can use the propagator equation (7) to replace Dyi∆(y; z) on the first line of (31)

with iδD(y − z). This permits the integration over y to be performed,

A2a1 ≡
λ3

8

∫

dDyi∆(x; y)

∫

dDz
√
−gzgz

µν∂z
µi∆(y; z)∂z

ν iδ
D(y−z)i∆(z; z)

=
iλ3

8

∫

dDz
√−gzgz

µν∂y
ν

[

i∆(x; y)∂z
µi∆(y; z)

]

y=z
i∆(z; z) . (32)

The differentiated square bracket can be evaluated using (10-11),

∂y
ν

[

i∆(x; y)∂z
µi∆(y; z)

]

y=z

= ∂z
ν i∆(x; z)∂z

µi∆(y; z)
∣

∣

∣

y=z
+i∆(x; z)∂y

ν∂
z
µi∆(y; z)

∣

∣

∣

y=z
, (33)

= ∂z
ν i∆(x; z)×kHazδ

0
µ + i∆(x; z)×−

(D−1

D

)

kH2gzµν . (34)

Substituting (34) in (32) with
√−gZ gµνz = aD−2

z ηµν , partially integrating, and then making
use of (11) completes the reduction of A2a1,

A2a1 = −iλ3

8
kH

∫

dDzaD−1
z ∂z

0 i∆(x; z)i∆(z; z)

−iλ3

8
(D−1)kH2

∫

dDz
√
−gz i∆(x; z)i∆(z; z) , (35)

=
iλ3

8
kH

∫

dDzaD−1
z i∆(x; z)∂z

0 i∆(z; z) , (36)

=
iλ3

4
k2H2

∫

dDz
√−gz i∆(x; z) −→ iλ3

4
k2H2×I3 . (37)

The reduction of the term on the last line of (31) begins by exploiting symmetry to write,

√−gz g
µν
z ∂z

µi∆(y; z)∂y
β∂

z
ν i∆(y; z) =

1

2
∂y
β

[√−gz g
µν
z ∂z

µi∆(y; z)∂z
ν i∆(y; z)

]

. (38)

We then partially integrate the ∂y
β and use the propagator equation (7),

A2a2 ≡ −λ3

16

∫

dDy
√

−gy Dyi∆(x; y)

∫

dDz
√
−gz gz

µν∂z
µi∆(y; z)∂z

ν i∆(y; z) i∆(z; z)

= −iλ3

16

∫

dDz
√
−gz gµνz ∂z

µi∆(x; z)∂z
ν i∆(x; z) i∆(z; z) . (39)

9



Partially integrating the ∂z
µ and exploiting relations (7) and (11) gives,

A2a2 =
iλ3

16

∫

dDz i∆(x; z)Dzi∆(x; z) i∆(z; z)

+
iλ3

16

∫

dDz
√
−gz g

µν
z i∆(x; z)∂z

ν i∆(x; z)∂z
µi∆(z; z) , (40)

= −λ3

16

[

i∆(x; x)
]2

− iλ3

8
kH

∫

dDzaD−1
z i∆(x; z)∂z

0 i∆(x; z) . (41)

Now note that,

i∆(x; z)∂z
0 i∆(x; z) =

1

2
∂z
0

[

i∆(x; z)
]2

, (42)

and partially integrate to reach the form,

A2a2 = −λ3

16

[

i∆(x; x)
]2

+
iλ3

16
(D−1)kH2×I1 . (43)

Combining relations (37) and (43) gives the total for the first diagram,

A2a = −λ3

16

[

i∆(x; x)
]2

+
iλ3

16
(D−1)kH2×I1 +

iλ3

4
k2H2×I3 . (44)

For the 2nd diagram of Figure 3 from left, it has a symmetry factor of 1
2
, and three

3-point vertices,

A2b ≡
1

2
(−iλ)3

∫

dDy
√

−gy g
αβ
y i∆(x; y)

∫

dDz
√
−gz g

µν
z ∂y

α∂
y
µi∆(y; z)

×
∫

dDw
√−gw ∂y

β∂
z
µi∆(y;w)×∂z

ν∂
w
σ i∆(z; z) i∆(z;w) . (45)

Applying the same sorts of reductions as for A2a we at length reach the form,

A2b =
3λ3

16

[

i∆(x; x)
]2

− iλ3

8
(D−1)kH2×I1 −

3iλ3

4
k2H2×I3 . (46)

Now, we have the 3rd diagram of Figure 3 next. It has a symmetry factor of 1
2
and combines

a 3-point vertex with and an insertion of the 2-point counterterm (12),

A2c ≡
1

2
(−iλ)(−iC2B2)

∫

dDy
√

−gy g
αβ
y i∆(x; y)

×
∫

dDz
√−gz g

µν
z ∂y

α∂
z
µi∆(y; z)∂y

β∂
z
ν i∆(y; z)R . (47)

Note that the counterterm proportional to C1B2 vanishes in dimensional regularization. Note
also that the Ricci scalar R = D(D− 1)H2 is constant on de Sitter background. After some
straightforward reductions we reach the form,

A2c = −λC2B2

4
R i∆(x; x) . (48)
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The 4th diagram of Figure 3 has a symmetry factor of 1
2
and combines 4-point and 3-point

vertices,

A2d ≡
1

2
(−iλ2

2
)(−iλ)

∫

dDy
√

−gy g
αβ
y i∆(x; y)

×
∫

dDz
√
−gz g

µν
z ∂y

α∂
z
µi∆(y; z)∂y

β∂
z
ν i∆(y; z) i∆(y; z) . (49)

After many reductions we find,

A2d = −iλ3

4
(D−1)kH2×I2 −

iλ3

8
k2H2×I3 . (50)

The 5th of the diagrams in Figure 3 has a symmetry factor of 1
4
and also involves 4-point

and 3-point vertices,

A2e ≡
1

4
(−iλ2

2
)(−iλ)

∫

dDy
√

−gy g
αβ
y i∆(x; y)×∂y

α∂
z
βi∆(y; z)

∣

∣

∣

z=y

×
∫

dDw
√−gw gµνw i∆(y; z)×∂w

µ ∂
v
ν i∆(w; v)

∣

∣

∣

v=w
. (51)

Two applications of (11) reduce this diagram to,

A2e = −λ3

8
(D−1)2k2H4×I4 . (52)

The penultimate diagram from Figure 3 has a symmetry factor of 1
4
and involves three

3-point vertices,

A2f ≡ 1

4
(−iλ)3

∫

dDy
√

−gy g
αβ
y i∆(x; y)

∫

dDz
√−gz g

µν
z ∂y

α∂
z
µi∆(y; z)∂y

β∂
z
ν i∆(y; z)

×
∫

dDw
√−gw gρσw i∆(z;w)×∂w

ρ ∂
v
σi∆(w; v)

∣

∣

∣

v=w
. (53)

A long series of reductions yields the form,

A2f =
iλ3

16
(D−1)kH2×I1 −

iλ3

8
(D−1)kH2×i∆(x; x)×I3 −

λ3

4
(D−1)k2H3×I5 . (54)

Lastly, we have the last diagram of Figure 3. It has a symmetry factor of 1
2
and involves the

3-point counterterm (16),

A2g =
1

2
(−iC1AB2)

∫

dDyDyi∆(x; y)×gαβy ∂y
α∂

z
βi∆(y; z)

∣

∣

∣

z=y
+0 + 0

+
1

2
(−iC4AB2)

∫

dDy
√

−gyg
αβ
y i∆(x; y)×R∂y

α∂
z
βi∆(y; z)

∣

∣

∣

z=y
. (55)

Application of (7) and (11) gives,

A2g = −C1AB2

2
(D−1)kH2 +

iC4AB2

2
(D−1)kH2×I3 . (56)
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We now extract the leading logarithm contributions from each diagram (44), (46), (48),
(50), (52), (54) and (56). Of course the coincidence limit of the propagator and its square
are,

i∆(x; x) −→ H2

4π2
×ln(a) ,

[

i∆(x; x)
]2

−→ H4

16π4
×ln2(a) . (57)

In the Appendix we show that the leading logarithm contributions from the five integrals
(27-29) are,

I1 −→ − i

12π2
×ln2(a) , (58)

I2 −→ − i

24π2
×ln2(a) , I3 −→ − i

3H2
×ln(a) , (59)

I4 −→ − 1

18H4
×ln2(a) , I5 −→ − 1

9H3
×ln(a) . (60)

Using relations (57) and (58-60) we can express the leading logarithm contribution from
each of the seven diagrams in Figure 3 as a number times the stochastic prediction of S =
λ3H4 ln2(a)/210π4,

A2a −→ −2×S , A2b −→ +8×S , (61)

A2c −→ +0×S , A2d −→ −4×S , (62)

A2e −→ +1×S , A2f −→ −2×S , (63)

A2g −→ +0×S . (64)

Even if we discount the counterterm diagrams A2c and A2g, which cannot contribute at
leading logarithm order, the fact that the remaining five diagrams contrive to add up to
+1× S represents an impressive confirmation of the stochastic prediction (26).

3.2 Implications

The obvious implication is that the stochastic prediction of section 2.3 is correct to all
orders. Because this prediction consists of a “classical” evolution (24), which is accelerated
by stochastic jitter, we know that the background rolls down its effective potential (23)
for all time, reaching arbitrarily large values. Note that this model provides an explicit
contradiction to the view which is sometimes expressed that large inflationary logarithms
must always sum up to produce a static, de Sitter invariant result at late times.

4 The 1-Loop Beta Function

The purpose of this section is to compute the 1-loop beta function (17). This requires
renormalizing the AB2 vertex −iV (x; y; z), the diagrams for which are shown in Figure 4.
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Figure 4: Diagrams contributing to the AB2 vertex −iV (x; y; z) at tree and 1-loop orders. Recall that A
lines are solid whereas B lines are dashed.

We first use partial integration to reduce each diagram as much as possible. Then derivatives
are extracted from products of propagators so as to make the result integrable in D = 4
dimensions,

∫

dDy F (y)

∫

dDz G(z)×−iV (x; y; z) , (65)

where F (y) and G(z) are smooth functions. Actually obtaining a finite result requires adding
zero in the form,

∂2
[ 1

∆xD−2

]

− 4π
D
2 iδD(∆x)

Γ(D
2
−1)

= 0 , (66)

where ∆xµ is either (x− y)µ or (x− z)µ. This localizes the divergences so that they can be
removed by the counterterm (16). We then compute the 1-loop beta function, and employ
the renormalization group to solve the Callan-Symanzik equation to all orders.

4.1 Partial Integration Reductions

We start with the first diagrams of Figure 4. It is the tree order vertex,

−iV0(x; y; z) = −iλ
√−gx g

µν
x ∂µδ

D(x−y)∂νδ
D(x−z) . (67)

The 2nd diagram of Figure 4 gives the most complicated of the 1-loop contributions,

−iV1a(x; y; z) = (−iλ)3
(

− ∂

∂yσ

)(

− ∂

∂zβ

)

[

√
−gx g

µν
x

√

−gy g
ρσ
y ∂x

µ∂
y
ρ i∆(x; y)

×
√
−gz g

αβ
z ∂x

ν∂
z
αi∆(x; z) i∆(y; z)

]

. (68)

Note that the derivatives on the external yσ and zβ legs are partially integrated to act back
on the entire diagram. By applying the same partial integration techniques we used in the
previous section, and recalling that D ≡ ∂µ[

√−g gµν∂ν ], one can reduce −iV1a to the form,

−iV1a(x; y; z) =
iλ3

2
Dx∂

y
σ∂

z
β

{

√

−gy g
ρσ
y ∂y

ρ i∆(x; y)
√−gz g

αβ
z ∂z

αi∆(x; z) i∆(y; z)

}

+
λ3

4
DyDz

{

[

i∆(y; z)
]2[

δD(x−y) + δD(x−z)
]

}

−λ3

2
∂y
σ∂

z
β

{

√

−gy g
ρσ
y ∂y

ρ i∆(y; z)
√−gz g

αβ
z ∂z

αi∆(y; z)
[

δD(x−y) + δD(x−z)
]

}

. (69)
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The 3rd and 4th diagrams of Figure 4 are the next ones that we reduce. The 3rd diagram
has a 4-point vertex at x and a 3-point vertex at y, with the external derivative with respect
to yσ partially integrated back on the whole diagram,

−iV1b(x; y; z) = −iλ
(

−iλ2

2

)(

− ∂

∂yσ

)

[

√−gx g
µν
x

√

−gy g
ρσ
y ∂x

µ∂
y
ρ i∆(x; y)

×i∆(x; y)∂νδ
D(x−z)

]

. (70)

Partial integration reduces this to,

−iV1b(x; y; z) =
λ3

4
Dy

{

√
−gx g

µν
x ∂x

µ

[

i∆(x; y)
]2

∂νδ
D(x−z)

}

−λ3

2
∂y
σ

{

√
−gx g

µν
x ∂x

µi∆(x; y)
√

−gy g
ρσ
y ∂y

ρ i∆(x; y)∂νδ
D(x−z)

}

. (71)

The 4th diagram has a 4-point vertex at x and a 3-point vertex at z, with the external
derivative with respect to zβ acted back on everything,

−iV1c(x; y; z) = −iλ
(

−iλ2

2

)(

− ∂

∂zβ

)

[

√
−gx g

µν
x

√
−gz g

αβ
z ∂x

µ∂
z
αi∆(x; z)

×i∆(x; z)∂νδ
D(x−y)

]

. (72)

The same partial integrations give,

−iV1c(x; y; z) =
λ3

4
Dz

{

√−gx g
µν
x ∂x

µ

[

i∆(x; z)
]2

∂νδ
D(x−y)

}

−λ3

2
∂z
β

{

√−gx g
µν
x ∂x

µi∆(x; z)
√−gz g

αβ
z ∂z

αi∆(x; z)∂νδ
D(x−y)

}

. (73)

It turns out that the last lines of expressions (69), (71) and (73) cancel. To see this,
use the delta function on the last line of (73) to flip the x derivative to a y derivative, then
extract the derivative and use the delta function to convert x to y,

−λ3

2
∂z
β

{

√−gx g
µν
x ∂x

µi∆(x; z)
√−gz g

αβ
z ∂z

αi∆(x; z)∂νδ
D(x−y)

}

=
λ3

2
∂y
ν∂

z
β

{

√−gx g
µν
x ∂x

µi∆(x; z)
√−gz g

αβ
z ∂z

αi∆(x; z)δD(x−y)

}

, (74)

=
λ3

2
∂y
σ∂

z
β

{

√

−gy g
ρσ
y ∂y

ρ i∆(y; z)
√−gz g

αβ
z ∂z

αi∆(y; z)δD(x−y)

}

. (75)
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Similar manipulations result in partial cancellations between the first lines of (71) and (73)
and the second line of (69). The resulting sum of all 1-loop primitive contributions to the
vertex is,

−iV1prim =
iλ3

2
Dx∂

ρ
y∂

α
z

{

(ayaz)
D−2i∆(y; z)∂y

ρ i∆(x; y)∂z
αi∆(x; z)

}

+
λ3

4
Dy∂

α
z

{

aD−2
z

[

i∆(y; z)
]2

∂z
αδ

D(x−z)
}

+
λ3

4
Dz∂

ρ
y

{

aD−2
y

[

i∆(y; z)
]2

∂y
σδ

D(x−y)
}

. (76)

4.2 Extracting Divergences

The three curly bracketed expressions of the primitive contribution (76) are each logarith-
mically divergent. This means that divergences derive entirely from the first term in the
expansion (8-9) of the propagator,

i∆(y; z) =
Γ(D

2
−1)

4π
D
2

1

[ayaz(y−z)2]
D
2
−1

+ . . . (77)

For example, the second and third terms of (76) involve the propagator squared,

[

i∆(y; z)
]2

=
Γ2(D

2
−1)

16πD

1

[ayaz(y−z)2]D−2
+UV Finite , (78)

−→ Γ(D
2
−1)

4π
D
2

µD−4

2(D−3)(D−4)

iδD(y−z)

(ayaz)D−2
− ∂2

64π4(ayaz)2

[

ln[µ2(y−z)2]

(y−z)2

]

+UV Finite . (79)

The key to extracting the divergence of the first term in (76) is noting that it must be
proportional to the Minkowski metric,

(ayaz)
D−2i∆(y; z)∂y

ρ i∆(x; y)∂z
αi∆(x; z)

=
Γ3(D

2
−1)

64π
3D
2

1

aD−2
x (y−z)D−2

∂

∂yρ

[ 1

(x−y)D−2

] ∂

∂zα

[ 1

(x−z)D−2

]

+UV Finite , (80)

=
Γ3(D

2
−1)

64π
3D
2

1
D
ηραη

µν

aD−2
x (y−z)D−2

∂

∂xµ

[ 1

(x−y)D−2

] ∂

∂xν

[ 1

(x−z)D−2

]

+UV Finite . (81)

It is simple to extract a d’Alembertian from the contracted derivatives,

∂µ
[ 1

(x−y)D−2

]

∂µ

[ 1

(x−z)D−2

]

=
∂2

2

[ 1

(x−y)D−2

1

(x−z)D−2

]

−∂2

2

[ 1

(x−y)D−2

] 1

(x−z)D−2
− 1

(x−y)D−2

∂2

2

[ 1

(x−z)D−2

]

, (82)

=
∂2

2

[ 1

(x−y)D−2

1

(x−z)D−2

]

− 2π
D
2 iδD(x−y)

Γ(D
2
−1)(x−z)D−2

− 2π
D
2 iδD(x−z)

Γ(D
2
−1)(x−y)D−2

. (83)

15



Substituting (83) into (81) allows us to isolate and localize the divergence,

(ayaz)
D−2i∆(y; z)∂y

ρ i∆(x; y)∂z
αi∆(x; z)

= −Γ2(D
2
−1)

32πD

1
D
ηρα

aD−2
x

{

iδD(x−y)

(x−z)2D−4
+

iδD(x−z)

(x−y)2D−4

}

+UV Finite , (84)

=
Γ(D

2
−1)

8π
D
2

µD−4ηρα
D(D−3)(D−4)

δD(x−y)δD(x−z)

aD−2
x

+UV Finite . (85)

The total divergent part of the primitive contribution to −iV1(x; y; z) comes from sub-
stituting expressions (79) and (85) in (76),

−iV1div =
iλ3

2
Dx∂

ρ
y∂

α
z

{

Γ(D
2
−1)

8π
D
2

µD−4ηρα
D(D−3)(D−4)

δD(x−y)δD(x−z)

aD−2
x

}

+
λ3

4
Dy∂

α
z

{

aD−2
z

Γ(D
2
−1)

4π
D
2

µD−4

2(D−3)(D−4)

iδD(y−z)

(ayaz)D−2
∂z
αδ

D(x−z)

}

+
λ3

4
Dz∂

ρ
y

{

aD−2
y

Γ(D
2
−1)

4π
D
2

µD−4

2(D−3)(D−4)

iδD(y−z)

(ayaz)D−2
∂y
ρδ

D(x−y)

}

. (86)

This expression can be simplified considerably by using the delta functions to reflect deriva-
tives and to evaluate the free scale factors at x. The final result is,

−iV1div =
iλ3µD−4

16π
D
2

Γ(D
2
−1)

2(D−3)(D−4)

{

2

D
Dx

[

∂µδD(x−y)∂µδ
D(x−z)

aD−2
x

]

+Dy∂
µ
x

[

δD(x−y)∂µδ
D(x−z)

aD−2
x

]

+Dz∂
µ
x

[

∂µδ
D(x−y)δD(x−z)

aD−2
x

]}

. (87)

4.3 The Beta Function

Figure 5: The final diagram on Figure 4 which represents an insertion of the counterterm (16).
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The primitive divergence (87) is canceled using the general 1-loop counterterm (16). Varying
the counter-action gives,

iδ3SAB2 [A,B]

δA(x)δB(y)δB(z)
= −iC1AB2Dx

[

∂µδD(x−y)∂µδ
D(x−z)

a2x

]

+iC2AB2Dy∂
µ
x

[

δD(x−y)∂µδ
D(x−z)

a2x

]

+ iC2AB2Dz∂
µ
x

[

∂µδ
D(x−y)δD(x−z)

a2x

]

−iC3AB2DyDz

[

δD(x−y)δD(x−z)

aDx

]

− iC4AB2RaD−2
x ∂µδD(x−y)∂µδ

D(x−z) . (88)

Comparison of expressions (87) and (88) shows that the four coefficients are,

C1AB2 =
λ3µD−4

16π
D
2

Γ(D
2
−1)

D(D−3)(D−4)
, (89)

C2AB2 = −λ3µD−4

16π
D
2

Γ(D
2
−1)

2(D−3)(D−4)
, (90)

C3AB2 = 0 , (91)

C4AB2 = 0 . (92)

Hence there is no curvature-dependent coupling constant renormalization at 1-loop and the
beta function is zero at order λ3,

δλ = C4AB2×R +O(λ5) =⇒ β =
∂δλ

∂ ln(µ)
= O(λ5) . (93)

4.4 Implications

Previous work determined the 1-loop γ function for A [31]. We now have the 1-loop β
function, so we can use the Callan-Symanzik equation to study how the n-point Green’s
functions vary with respect to changes in the renormalization scale µ,

[

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

]

Gn

(

x1; . . . ; xn;λ, µ
)

= 0 . (94)

(The equation for a 1PI n-point function is the same, with the +nγ term changed to −nγ.)
One solves (94) by the method of characteristics. First, find a running coupling constant
λ(µ) such that,

µ
dλ

∂µ
= −β

(

λ(µ)
)

, λ(µ0) = λ =⇒ β(λ)
∂λ

∂λ
= β(λ) . (95)

Then the Green’s function at scale µ can be expressed in terms of its value at scale µ0,

Gn

(

x1; . . . ; xn;λ;µ
)

= Gn

(

x1; . . . ; xn;λ(µ);µ0

)

×exp
[

−n

∫ µ

µ0

dµ′

µ′ γ
(

λ(µ′)
)]

. (96)
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Our result (93) for the curvature-dependent beta function is zero at order λ3. If we make the
usual assumption that 1-loop results dominate, this means that the coupling constant fails
to run, that is, λ(µ) = λ. This implies that the perturbative factors of ln(µ) exponentiate
to give a power,

Gn

(

x1; . . . ; xn;λ;µ
)

= Gn

(

x1; . . . ; xn;λ;µ0

)[µ0

µ

]nγ(λ)

. (97)

Scaling is more complicated in cosmology because the Hubble parameter gives an additional
dimensionful parameter, even for massless theories. However, if it is valid for the exchange
potential to replace µ by either r or 1/r, expression (97) provides a highly nontrivial resum-
mation.

5 Conclusions

We have revisited the 2-field model (6) which was analyzed in a recent study of nonlinear
sigma models as a paradigm for how to re-sum large inflationary logarithms from fields with
derivative interactions like those of quantum gravity [31]. After reviewing the model in
section 2, we derived a 2-loop result for the evolution of the background in section 3, and
computed the 1-loop beta function in section 4. Our purpose was to check the stochastic
prediction (26) for the 2-loop background which was derived in the previous study [31], and
to extend the renormalization group analysis of the exchange potentials to all orders.

The seven diagrams of Figure 3 contribute to the 2-loop background, and can be reduced
to exact analytic expressions (44), (46), (48), (50), (52), (54) and (56). When the Schwinger-
Keldysh formalism is used to extract their leading logarithm contributions (61-64), the total
agrees exactly with the stochastic prediction (26). Even if one discounts the counterterm
insertions (50) and (56), this still leaves five intricate, 2-loop diagrams which conspire to
confirm the stochastic prediction. That must be recognized as a highly nontrivial check of
the stochastic formalism.

The implications of our results were discussed at the end of sections 3 and 4. Briefly,
these are that we can now sum the leading logarithms to all orders as long as the de Sitter
background persists. The scalar background evolves to arbitrarily large values, and this
evolution continues to late times. The factors of ln(Hr) in the exchange potentials sum up
to give powers of Hr.

Finally, we again note that it would be interesting to generalize this analysis from de
Sitter to a general cosmological background which has undergone primordial inflation. Good
analytic approximations for the key correlators (10-11) of the stochastic analysis have re-
cently been derived [39], so it should be possible to work out what happens on a general
background. Because these correlators transmit the high scales of primordial inflation to late
times [39], it seems as if there may be significant late time effects. It should also be possible
to generalize the renormalization group analysis to a general cosmological geometry because
the coefficients of counterterms are universal, independent of the background [40].
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6 Appendix: Schwinger-Keldysh Evaluation of (27-29)

Section 3 saw the various 2-loop contributions to the in-out matrix element of A(x) reduced
to five integrals (27-29). It turns out that none of these integrals is real, nor do they even
converge owing to the vast volume of the infinite future. Both embarrassments are due to
the fact that inflationary particle production results in differences between in-out matrix
elements and true expectation values. The Schwinger-Keldysh formalism [34, 35, 36, 37, 38]
is a diagrammatic technique for giving the true expectation value we want. Fortunately, it
is simple to convert in-out matrix elements such as (27-29) to the true expectation values.

There are some excellent review articles on the Schwinger-Keldysh formalism [41, 42, 43].
We confine ourselves here to summarizing the rules and showing how they allow us to convert
in-out matrix elements to expectation values [44]. The rules are:

• The diagram topology is identical to that of in-out matrix elements.

• The endpoint of every line (internal and external) carries a ± polarity, with + standing
for a field which evolves forward in time and − corresponding to a field which evolves
backwards.

• Vertices (including counterterms) are either all + or all −. The + vertices are the same
as those of in-out matrix elements, whereas − vertices are complex conjugated.

• Because propagators have two endpoints, each with its own ± polarity, there are four
propagators. They are related to the Feynman propagator i∆(x; y) as follows,

i∆++(x; y) = i∆(x; y) , i∆−−(x; y) = [i∆(x; y)]∗ , (98)

i∆+−(x; y) = θ(η−ηy)[i∆(x; y)]∗ + θ(ηy−η)i∆(x; y) , (99)

i∆−+(x; y) = θ(η−ηy)i∆(x; y) + θ(ηy−η)[i∆(x; y)]∗ , (100)

where ηy is the conformal time in y-coordinates.

• If D is the kinetic operator, the various propagators obey,

Di∆++(x; z) = iδD(x−z) , Di∆±∓(x; z) = 0 , Di∆−−(x; z) = −iδD(x−z) . (101)

Two important consequences of these rules are (1) that the expectation value of a Hermitian
operator such as A(x) is real; and (2) that the only net contribution from interaction vertices
comes from the past light-cone of external points.
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Because the external A line can be viewed as +, we see that the Schwinger-Keldysh
generalizations of the first three integrals (27-28) are,

I1(t) −→
∫

dDz
√

−g(z)
{[

i∆++(x; z)
]2

−
[

i∆+−(x; z)
]2}

, (102)

I2(t) −→
∫

dDz
√

−g(z)
{

i∆++(x; z)i∆++(z; z)− i∆+−(x; z)i∆−−(z; z)
}

, (103)

I3(t) −→
∫

dDz
√

−g(z)
{

i∆++(x; z)− i∆+−(x; z)
}

. (104)

Because I3(t) is imaginary, the last two integrals become,

I4(t) −→
∫

dDz
√

−g(z)
{

i∆++(x; z)− i∆+−(x; z)
}

×I3(tz) , (105)

I5(t) −→
∫

dDz
√

−g(z)
{

i∆++(x; z)− i∆+−(x; z)
}

×İ3(tz) , (106)

The ++ and +− propagators in these expressions are obtained from (8-9) by replacing the
Minkowski interval ∆x2 in the de Sitter length function y(x; z) = aa′H2∆x2 with,

∆x2
++

=
∥

∥

∥
~x−~z

∥

∥

∥

2

−
(

|η−ηz|−iǫ
)2

, (107)

∆x2
+−

=
∥

∥

∥
~x−~z

∥

∥

∥

2

−
(

η−ηz+iǫ
)2

. (108)

Note that ∆x2
+− and ∆x2

++
agree for ηz > η, and are complex conjugates for ηz < η. This

guarantees that the integrals over zµ in expressions (102-106) only contribute when zµ is in
the past light-cone of xµ, and that ++ and +− differences are purely imaginary.

The key to evaluating (102-106) is understanding that I1(t) is logarithmically divergent,
and the divergent part of I2 is a constant times I3 through the relation,

i∆++(z; z) = −kπ cot
(Dπ

2

)

+
H2

4π2
ln(az) = i∆−−(z; z) . (109)

The remaining integrals are finite. This means that we can exploit the D = 4 form of the
propagator,

i∆(x; z) =
Γ(D

2
−1)

4π
D
2

1

(aaz∆x2)
D
2
−1

− H2

8π2
ln
(1

4
H2∆x2

)

+O(D−4) . (110)

The square of the leading term has the reduction,

1

∆x2D−4
++

=
µD−4

2(D−3)(D−4)

4π
D
2 iδD(x−z)

Γ(D
2
−1)

− ∂2

4

[

ln(µ2∆x2
++
)

∆x2
++

]

+O(D−4) , (111)

1

∆x2D−4
+−

= −∂2

4

[

ln(µ2∆x2
+−
)

∆x2
+−

]

+O(D−4) . (112)
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Derivatives can be extracted from the integration to express inverse powers of ∆x2
+± in terms

of logarithms,

1

∆x2
+±

=
∂2

4

[

ln(µ2∆x2
+±)

]

,
ln(µ2∆x2

+±
)

∆x2
+±

=
∂2

8

[

ln2(µ2∆x2
+±)− 2 ln(µ2∆x2

+±)
]

. (113)

Differences of these logarithms give,

ln(µ2∆x2
++
)− ln(µ2∆x2

+−) = 2πi θ(∆η−∆r) , (114)

ln2(µ2∆x2
++
)− ln2(µ2∆x2

+−
) = 4πi θ(∆η−∆r) ln[µ2(∆η2−∆r2)] , (115)

where ∆η ≡ η − ηz and ∆r ≡ ‖~x− ~z‖.
Exploiting relations (110-115) allows us to evaluate I1,

I1 =
i4HD−4

(4π)
D
2

{

Γ(D
2
−1)

2(D−3)(D−4)
− 1

3
ln2(a)− 2

3
ln(a) +

79

54
+O

(1

a

)

}

. (116)

For the remaining integrals it is useful to note,

∫

d4z a4z

[

i∆++(x; z)− i∆+−(x; z)
]

×f(az) = − i

3H2

∫ a

1

daz
az

[

1− az
3

a3

]

×f(az) . (117)

Using (117) with different choices of f(az) gives the leading logarithms results for the other
four integrals,

f(az) =
H2 ln(az)

4π2
=⇒ I2 −→ − i

24π2
×ln2(a) , (118)

f(az) = 1 =⇒ I3 −→ − i

3H2
×ln(a) , (119)

f(az) = −i ln(a′)

3H2
=⇒ I4 −→ − 1

18H4
×ln2(a) , (120)

f(az) = − i

3H
=⇒ I5 −→ − 1

9H3
×ln(a) . (121)
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