
Finch: Domain Speci�c Language and Code

Generation for Finite Element and Finite Volume

in Julia

Eric Heisler, Aadesh Deshmukh, and Hari Sundar

School of Computing, University of Utah, Salt Lake City, Utah, USA
eric.heisler@utah.edu, u1369232@utah.edu, hari.sundar@utah.edu

Abstract. We introduce Finch, a Julia-based domain speci�c language
(DSL) for solving partial di�erential equations in a discretization agnos-
tic way, currently including �nite element and �nite volume methods.
A key focus is code generation for various internal or external software
targets. Internal targets use a modular set of tools in Julia providing a
direct solution within the framework. In contrast, external code gener-
ation produces a set of code �les to be compiled and run with external
libraries or frameworks. Examples include a matlab target, for smaller
problems or prototyping, or C++/MPI based targets for larger problems
needing scalability. This allows us to take advantage of their capabilities
without needlessly duplicating them, and provides options tailored to the
needs of the domain scientist. The modular design of Finch allows on-
going development of these target modules resulting in a more extensible
framework and a broader set of applications. The support for multiple
discretizations, including �nite element and �nite volume methods, also
contributes to this goal. Another focus of this project is complex sys-
tems containing a large set of coupled PDEs that could be challenging
to e�ciently code and optimize by hand, but that are relatively simple
to specify using the DSL. In this paper we present the key features of
Finch that set it apart from many other DSL options, and demonstrate
the basic usage and current capabilities through examples.

Keywords: Domain speci�c language · Code generation · Finite element
method · Finite volume method · Parallel computing · Julia.

1 Introduction

Solving partial di�erential equations (PDEs) numerically on a large scale in-
volves a compromise between highly optimized code exploiting details of the
problem or hardware, and extensible code that can be easily adapted to varia-
tions. Rapidly evolving technology and a shift to heterogeneous systems places
a higher value on the latter, prompting a move away from hand-written code
made by experts in high performance computing, to generated code produced
through a high-level domain speci�c language (DSL). Another motivating factor
is the realm of medium-scale problems where good performance is needed, but

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



2 E. Heisler et al.

the cost of developing optimal code may not be justi�ed. At this scale it is up to
domain scientists to develop their own software or piece it together from more
general-purpose libraries. Finally, the choice of discretization method, like �nite
element(FE) or �nite volume(FV), is signi�cant in multiphysics systems where
di�erent aspects of the system are better handled by di�erent methods.

In response, numerous DSLs for solving PDEs have been developed. On one
end of the spectrum are high-level options such as Matlab Toolboxes and Comsol.
They are general-purpose and don't require a high level of programming skill.
As a trade-o�, they lack customizability. The low-level code is often, by design,
hidden from the user and di�cult to modify.

At the opposite end are lower-level libraries such as Nektar++[4] and deal.II[3]
providing customizable components optimized for a speci�c purpose. They re-
quire more programming input and skill from the user. This also makes it harder
to modify the code for variations, resulting in many of the limitations of hand-
written code.

This work aims for a middle-ground, where most of the programming input
is handled within the scope of a moderately high-level DSL while allowing low-
level customization and in some cases direct code modi�cation. Some options in
this realm include Fenics[2] and Firedrake[25] for �nite element methods, Open-
FOAM[10] for �nite volume methods, Devito[20] for �nite di�erence methods,
and many others focused on a speci�c type of problem or technique. There are
also tools in Julia including Di�erentialEquations.jl[24] which provides a broad
environment of ordinary di�erential equation solvers with a Julia interface.

This work introduces Finch, a DSL for solving PDEs. The framework aims
to be discretization agnostic, and currently supports �nite element and �nite
volume methods. The goal is to enable a domain scientist to create e�cient
code for problems ranging from small scale simulations on a laptop computer, to
larger systems requiring scalability on modern supercomputers. Two key ideas
to achieving this goal are a modular software design and generation for external
software frameworks.

Rather than depending on a single, general-purpose code, a set of modules
are used to grant the �exibility to adapt to problem requirements or resources.
Some examples include various discretization methods such as FE, both CG and
DG variants, and FV, as well as numerical tools such as PETSc's linear solvers,
GPU based options, or matrix-free methods. The development of new modules
opens up possibilities for optimization and new types of problems

Another strategy is the generation of code for various external software tar-
gets. This allows it to leverage the capabilities of existing software frameworks
that are well suited to a type of problem. For example, the Dendro library[9,
26, 8] provides an adaptive octree framework that is suitable for very large scale
problems using distributed memory parallel techniques. Manually writing code
for this framework requires high programming pro�ciency and familiarity with
the software. Finch provides a simpler interface to this resource while presenting
the generated code to the user for modi�cation or inspection. Another target is
C++ using the aMat[27] library which handles the mesh and data structure cre-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



Finch: DSL and Code Gen. for FEM and FVM in Julia 3

ation in Julia then utilizes a library of e�cient parallel sparse matrix operations
to compute the solution in an independent C++ program. The diversity of code
generation targets allows constructing a set of tools suiting a user's needs.

Finch is written completely in Julia, which is easy to use and has speed
comparable to low-level languages such as C[16]. Julia is growing in popular-
ity as a serious scienti�c computing language. It allows a simpli�ed, intuitive
interface without resorting to external C/C++/Fortran libraries as is common
with Python-based DSLs. The metaprogramming features and wide selection of
libraries also make Julia a convenient choice for Finch.

2 Related Work

DSLs can be found in some form for countless mathematical and computational
tasks. Some examples with a similar purpose and interface include the Uni�ed
Form Language(UFL)[1] and FreeFEM[12] used to write variational forms of
PDEs. Components corresponding to test functions, trial functions, and other
values are combined in expressions representing volume or facet integrals of
elements. Since Finch was originally developed for FE, a similar design was
chosen. The internal representation involves categorizing terms of the expression
depending on type of integral and linear vs. bilinear forms. The Julia-based FE
DSL MetaFEM[29] also involves writing a variational form expression, though
with a very di�erent grammar.

In contrast, Finch is designed to accommodate more general types of ex-
pressions and does not assume a variational form. It also allows custom operator
de�nitions that act on the symbolic tensor arrays of entities in the expression.
For example, when using a FV method, specialized �ux operators can be de�ned
and included in the PDE expression.

A relevant FV DSL is used by OpenFOAM[21], which again involves compo-
nents such as variables and coe�cients in an expression resembling the mathe-
matical notation. This works with a prede�ned set of operations and is designed
speci�cally for types of problems that commonly use FV methods. There is no
notion of variational forms.

It is worth noting some modules of Dune[6], such as Dune-fem are designed
for both FE and FV methods, but these are low-level interfaces that are di�cult
to compare to the higher-level DSLs described here.

The other aspect is code generation where the internal representation be-
comes numerical code. There are many code generation techniques for FE. Some
exploit tensor product construction for high order FE[28][22][15]. Others use the
independent nature of Discontinuous Galerkin methods to utilize GPUs[5] or
vectorization[17]. The FE software FEniCS utilizes the set of tools FFC[18] and
Dol�n[19]. There are also options for FV[23] and FD[21], though perhaps less
common than for FE.

The code generation modules used by Finch are speci�c to their target, and
employ a variety of techniques accordingly. The modular design allows selection

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



4 E. Heisler et al.

of ideal techniques either by the user or automatically depending on the target
software, hardware, or problem details.

3 Domain Speci�c Language

The goal of a mathematical DSL is to provide an interface that closely resem-
bles the notation used by domain scientists while reducing extraneous details and
syntax needed by the underlying programming language. Many DSLs accomplish
this in an object-oriented way by creating classes representing mathematical ob-
jects with a set of intuitive operations. We have adopted a similar strategy in
which the basic components of the equations, such as unknown variables, coe�-
cients and test functions, are very basic objects that include an array of symbolic
components. For example, a 3-dimensional vector quantity u would correspond
to the array [u1, u2, u3]. Common arithmetic and di�erential operations are de-
�ned for these objects, and users can de�ne their own custom operators that
act on these symbolic arrays. It is also possible to use these basic operations to
build packages of specialized operators for a class of problems.

As an example, the following code creates a vector-valued unknown variable
u, a known scalar coe�cient k de�ned by a function of coordinates (x, y, z, t),
and a vector test function v which belongs to the same function space as u.

u = variable("u", type=VECTOR)

coefficient("k", "sin(pi*x)*y*z")

testSymbol("v", type=VECTOR)

The di�erential equations are written in terms of these objects. When using
FE, this is done by writing the weak form of the equation in residual form.
Note that integration over the volume is implied, and surface integrals can be
speci�ed by wrapping those terms in surf(...). Here is an example of specifying
a Poisson equation.

Original PDE ∇ · (a∇u)− f = 0
Weak form −(a∇u,∇v)− (f, v) = 0

Finch input -a*dot(grad(u),grad(v)) - f*v

When using FV, it is assumed that the equations are in a conservation form.
The source and �ux terms are given as input, and the time derivative of the
variables is implied as shown in the following advection-reaction equation

PDE
∫
V
du
dt dx =

∫
V
g(u, x)dx−

∫
∂V

f(u, x) · nds
Source g(u, x) = ku
Flux f(u, x) = ub

Finch input source(k*u)
flux(u*b)

In addition to the standard operators such as ∗, −, dot and grad used above,
a user can de�ne new operators to put in these expressions. For example, the �ux
shown will result in a central �ux approximation. To use a custom �ux, one could
de�ne the operator myFlux(u,b), and substitute that for u*b in the expression

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



Finch: DSL and Code Gen. for FEM and FVM in Julia 5

above. Note that this de�nition could be either a symbolic manipulation of the
array for u ∗ b or a numerical callback function when needed.

3.1 User Input

Typically a Julia script will be written for a particular problem, but it is also
possible to work interactively. A set of functions or macros are used to a) Set up
the con�guration, b) Specify the mesh, entities and equations, and c) Process
data for output. A variety of example scripts are in the repository[13].

As an example, the following commands will con�gure a 2D unstructured grid
using a fourth-order polynomial function space based on Lobatto-Gauss nodes,
and generate code for a target speci�ed in the external_target_module.jl �le.

generateFor("external_target_module.jl")

domain(2, grid=UNSTRUCTURED)

functionSpace(space=LEGENDRE, order=4)

nodeType(LOBATTO)

In contrast to this, a user who is content with the defaults could provide as little
as domain(2).

Problem speci�cation should start with a mesh. There are some simple mesh
generation options built in. For example, to construct a uniform 50× 20 grid of
quadrilateral elements in a unit square domain with a separate boundary ID for
each face, use the command: mesh(QUADMESH,elsperdim=[50,20],bids=4)

For more practical problems, external mesh generating software can be used
to create a mesh �le that is then imported into Finch. Currently the GMSH(.msh)
and MEDIT(.mesh) formats are supported.

Separating boundary regions for additional boundary conditions is done with
the command addBoundaryID(BID, onBdry) where BID is a number to be as-
signed to that region, and onBdry is a function or expression of (x, y, z) that is
true within the desired region.

For distributed memory parallelism it is necessary to partition the mesh.
This is done internally using METIS via the Julia library METIS_jll. This will
be done automatically according to the number of processes available through
MPI, but can be con�gured as desired.

After setting up the scenario, entities such as variables and coe�cients are
de�ned and expressions for the equations are input as described above. Using the
command solve(u) will then either generate the code �les for external targets
or run the internal solver to produce a solution. Considering the internal route,
the solution will now be found in the u.values array, and is available for post-
processing, visualizing, or output in a number of formats such as binary data or
VTK �les.

Indexed Entities - Some problems involve a set of several quantities that
share the same type of equation with di�erent parameters. Similarly, one may try
to solve an equation over a range of parameters. In these cases indexed variables
and coe�cients greatly simplify the way the problem is speci�ed and present

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



6 E. Heisler et al.

an opportunity to reorganize the code in a more optimal way. As an example,
consider a set of unknown quantities ui,j and a corresponding set of coe�cients ki
belonging to the same type of di�usion equation. For brevity the dependence on j
is omitted, but could correspond, for example, to di�erent boundary conditions.

d

dt
ui,j = ki∆ui,j i = 1...20 , j = 1...40

It is cumbersome to individually write out the equations if there are many values
of i and j. Rather, we can write one equation using indexed entities.

I = index("I", range=[1,20])

J = index("J", range=[1,40])

u = variable("u", type=VAR_ARRAY, location=NODAL, index = [I,J])

k = coefficient("k",k_array,type=VAR_ARRAY,location=NODAL,index=I)

weakForm(u, "Dt(u[I,J]*v) + k[I]*dot(grad(u[I,J]),grad(v))")

assemblyLoops(u, [I, J, "elements"])

The last line describing assembly loops instructs the code generator to nest
the assembly loops in this order. In some cases it may be more e�cient to
parallelize an outer index loop before the elemental loop. The user can arrange
this as desired.

3.2 Symbolic Representation

After entering the expressions for the equations, they are transformed into an
intermediate symbolic representation. The entity symbols are replaced with ar-
rays of corresponding tensor components, as discussed above, and the operators
are applied to ultimately create a set of symbolic expressions. These expressions
go through processing stages to separate known and unknown terms, simplify
them, and identify time dependent terms. The resulting symbolic terms are in
the form of computational graphs, based on Julia Expr trees, containing sym-
bolic entity objects. These graphs are what is eventually passed to the code
generation utilities.

This simple chart illustrates the process using the weak form input for a 2D
Poisson equation. The input expression starts at the top, symbols are substi-
tuted, operators are applied, the terms are partitioned into groups and compu-
tational graphs are built with symbolic entities.

-a*dot(grad(u), grad(v)) - f*v

↓
-[_a_1]*dot_op(grad_op([_u_1]), grad_op([_v_1]))-[_f_1]*[_v_1]

↓
[-(_a_1*D_1__u_1*D_1__v_1 + _a_1*D_2__u_1*D_2__v_1)]+[-_f_1*_v_1]

↓
bilinear: [-_a_1*D_1__u_1*D_1__v_1 - _a_1*D_2__u_1*D_2__v_1]

linear: [-_f_1 * _v_1]

entities: D_1__u_1 = d
dxu1 , D_2__u_1 = d

dyu1 , etc.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



Finch: DSL and Code Gen. for FEM and FVM in Julia 7

The entity is essentially a symbol, like _u_, along with it's component index
on the right, 1, and a collection of �ags on the left, D_1_. The �ags can have any
value and will be interpreted by the relevant code generation module. For exam-
ple, the �ags CELL1_ and CELL2_ would be interpreted as values on respective
sides of a face in a �nite volume context.

4 Code Generation

The code generation step is where the process diverges. The details are speci�c to
the generation target, but they essentially all perform the same two tasks. They
must interpret the computational graph containing symbolic entities described
above, generating their mathematical equivalent, and they must collect these
calculations in a functional piece of code that performs the overall computation.

When designing a new target module, there are only three functions that
must be provided. The �rst one, get_external_language_elements, provides
basic language-speci�c info such as comment characters to aid with formatting.
The second is generate_external_code_layer, which interprets the compu-
tational graph of the symbolic representation and generates code to perform
the elemental calculations. The third function, generate_external_files, is
responsible for creating all of the code �les. It takes the elemental calculation
from the second function and wraps it in the rest of the code to create a complete
program including build �les and instructions.

4.1 Elemental Computation

The elemental computation varies signi�cantly with di�erent targets, but to
illustrate the process the 2D Poisson example from above will used as input. This
type of problem will essentially need code for assembling elemental matrices and
vectors embedded in an elemental loop. The elemental matrix will correspond
to the bilinear terms,
-_a_1 * D_1__u_1 * D_1__v_1 - _a_1 * D_2__u_1 * D_2__v_1

Note that this symbolizes∫
K

(
−a∂u

∂x

∂v

∂x
− a

∂u

∂y

∂v

∂y

)
dK

When discretized into polynomial basis functions at Gaussian integration points,
this becomes

Ajkuj =
∑
j

uj
∑
i

wiJi (−ai ∗ φij,xφik,x − ai ∗ φij,yφik,y)

Where wi are quadrature weights, Ji are geometric factors, φij,x are x-derivatives
of the jth basis functions at the ith quadrature points. The inner i sum can be
arranged as a matrix expression.

QT
xWQx +QT

yWQy

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



8 E. Heisler et al.

With W being a diagonal matrix combining weights, geometric factors, and ai
for each quadrature point. Qx combines geometric factors with precomputed
matrices QR that essentially contain the basis function derivatives, ∂φ∂R , at the
quadrature points in a reference element, but in practice it will be more sophis-
ticated as it will include a transformation from a nodal basis into a modal one
to bene�t from better properties. For details on this, please refer to [14].

When the code generator encounters a term like
_a_1 * D_1__u_1 * D_1__v_1 it will recognize the three factors as coe�cient,
unknown, and test function respectively and make the associations

D_1__v_1→ QT
x

D_1__u_1→ Qx

_a_1→ ai
and create code to perform those matrix operations. The way this calculation
is implemented is up to the code generator, which provides opportunities for
optimization. For example, when using uniform elements the Jacobian matrix
only needs to be computed for one element and Qx can be fully precomputed.
Taking it one step further, if the coe�cients in this term are also constant, the
entire QT

xWQx matrix can be precomputed.
Another opportunity for optimization depends on element type. For exam-

ple, the Dendro target exclusively uses hexahedral elements and exploits their
symmetry by using the tensor product of one-dimensional operators. This saves
on both arithmetic and memory costs.

When designing a new target or when taking advantage of some new hard-
ware, these elemental calculations can be optimized in a modular way that makes
the transition easy.

4.2 Global computation

After handling the elemental computation, the next task is to combine these
results into a global system. This is mainly where parallel strategies come into
play. Since this typically involves looping over elements to assemble and solve
a global linear system, the process can be parallelized using multithreading,
distributed memory multiprocessing, and GPU techniques. Again, the details of
this task may look completely di�erent depending on the target and in many
cases it is handled by the external software framework.

Note that when using FV the mathematics will be substantially di�erent,
but the overall structure of the computation is similar.

4.3 Modifying Generated Code

Advanced users may wish to inspect the generated code and make modi�ca-
tions by hand. In many cases there may be features of the problem that can be
exploited for better performance that are not automatically included. For this
purpose the elemental assembly code can be exported to a code �le, modi�ed
as desired, and imported again to either run the calculation or generate the full
code package for external targets. The commands for this are exportCode and

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



Finch: DSL and Code Gen. for FEM and FVM in Julia 9

importCode. Naturally, exporting should happen after the equations have been
entered, and importing is done on a later run before solving.

Note that this code typically only contains the elemental assembly function.
For even more control it is possible to also export and import the full assem-
bly loop code for internal targets, but a good familiarity with the Finch data
structures is needed to take advantage of this. Similarly, since external targets
are fully accessible as code �les they can be modi�ed as desired depending on
the user's knowledge of the target software.

5 Performance Opportunities

Since one of the goals of Finch is to take advantage of the capabilities of special-
ized external software, there are various strategies for parallelization, adaptivity,
and e�cient data structures available to achieve high performance. One exam-
ple of this is the Dendro target which o�ers distributed memory parallelism
through MPI, adaptive mesh re�nement, and proven large-scale scalability. It is
ideal for problems that can bene�t from very �ne grained adaptive meshing, but
is limiting in the possible domain geometry.

Another target is aMat which is essentially a specialized linear algebra li-
brary providing very e�cient algorithms for sparse linear systems. It also sup-
ports an assortment of parallelization strategies based on MPI, OpenMP, and GPU
options.

The performance of both of these targets is explored in the Demonstrations
section below.

5.1 Performance Within Finch

The performance focus is not limited to external tools. The internal Julia tar-
gets can also make use of distributed and shared memory parallelism as well as
e�cient data organization options. When solving linear systems, the user can
select a variety of tools beyond the defaults provided by Julia's LinearAlgebra
package.

The simplest way to take advantage of these tools is with multithreading.
Finch automatically detects how many threads are available to the Julia in-
stance and uses the native Julia package Threads to take advantage of this
throughout the computation. To enable this feature a user simply needs to spec-
ify the number of threads when launching Julia. This is done with the argument
-t n or --threads n to use n threads, or substitute auto in place of n to use
the number of local CPU threads.

Distributed memory parallelism is provided by the Julia package MPI.jl

which makes use of the system's available MPI implementation. Again, this is
speci�ed at launch using the system's MPI execution command. Finch will de-
tect how many processes are available and arrange the computation accordingly.

Partitioning is needed when using a distributed parallel strategy, and the
most straightforward method is to partition the mesh evenly among the pro-
cesses. This is accomplished using Metis through the METIS_jll package.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



10 E. Heisler et al.

When using FV with higher order �ux reconstructions several neighboring
elements may be needed. This could potentially complicate the partitioning pro-
cess because an irregular number of ghost elements would need to be maintained.
To address this issue, partitioning is done on the initial course mesh with only
nearest neighbor ghosts. Then the elements are re�ned in a consistent way de-
pending on the �ux order desired. The resulting �ner mesh will include the
needed number of ghosts in an e�cient and reliable way. The re�nement should
be considered when planning a mesh utilizing this feature.

There are several choices when it comes to solving large, sparse linear sys-
tems. The default in Finch is provided by the LinearAlgebra package which
utilizes BLAS and LAPACK. Another option is PETSc, interfaced through
PETSC.jl, which provides better performance in distributed parallel environ-
ments as demonstrated below. There is also a matrix-free option for certain
targets that is particularly useful for large-scale problems where the cost of as-
sembling a global matrix is prohibitive.

5.2 Cache Optimization

In addition to parallel techniques, the organization of data structures and the
elemental loop ordering can improve performance through more e�cient cache
use. A number of data organization options are available in Finch 
For example,
a mesh from the built-in mesh generation utility provides elements that are
ordered lexicographically. In order to improve spatial locality, the elements can
be rearranged either into a space-�lling curve, such as a Hilbert or Morton curve,
or into tiles.

To aid with this development and potentially provide a means for automated
tuning, Finch employs a cache simulator. Pycachesim[11] was chosen for this
because it is light-weight and although it was developed for use in Python, the
backend is written in C. The C library can be utilized directly by Finch to
roughly characterize the cache performance of a particular problem setup on a
speci�ed cache hierarchy.

The cache simulator is essentially another target for code generation. Rather
than performing the mathematical computation, the approximate sequence of
memory accesses is fed into the simulator. At the end of the computation the
cache statistics are recorded and analyzed. This presents Finch with a tool for
tuning and measuring the e�ectiveness of changes in con�guration.

6 Demonstration

The following example applications demonstrate some of the capabilities of
Finch and illustrate the performance aspects of the various tools and code
generation targets. Since external targets rely on the performance capabilities of
the target framework, please refer to their respective documentation for a more
rigorous analysis. For example, the Dendro framework has shown competitive
scalability for large scale simulations[8][7].

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



Finch: DSL and Code Gen. for FEM and FVM in Julia 11

6.1 Steady-state Advection-di�usion-reaction Equation

The following equation(1) is used to demonstrate a FE problem. We use several
di�erent sets of tools and compare them in terms of performance.

∇ · (D∇u) + s · ∇u− cu = f (1)

u(x ∈ ∂Ω) = 0

Ω = [0, 1]3, D = 1.1, c = 0.1, s = (0.1, 0.1, 0.1)

Here all of the coe�cients are given constant value, but we have intentionally
generated them as functions of (x, y, z) to increase computational complexity.
The motivation for this is to demonstrate the performance for a more practical
problem while simplifying analysis with an exact solution. The function f was
constructed such that u satis�es (2).

u(x, y, z) = sin(3πx) sin(2πy) sin(πz) (2)

The weak form expression provided to Finch is

weakForm(u,

"-D*dot(grad(u), grad(v)) + dot(s, grad(u))*v - c*u*v - f*v")

The discretization is continuous Galerkin with quadratic hexahedral elements.
Internal targetWith appropriate choice of mesh this is suitable for running

on a typical computer, but for these tests we are using the Frontera supercom-
puter with dual socket Intel Xeon Platinum 8280 nodes having 56 cores. The
execution time of di�erent code generation targets and linear solvers were com-
pared for a range of processor counts as shown in �gure 1. For smaller problems
running on only a few cores, the default Julia tools are an easy and viable option,
though PETSc may be more e�cient. The default method does not scale well
in a distributed memory parallel context. For larger problems and many proces-
sors, PETSc and matrix-free are both good options. The �gure shows that the
matrix-free method is better when many processors are available. On the other
hand, PETSc performed better for small process counts.

aMat target The same problem was solved using the aMat target. Code
�les, partitioned mesh data, reference element, and geometric factors were set
up and exported from Julia. The code was compiled and run with the aMat

library using the precomputed data. aMat provides options for assembling and
solving the system including a direct PETSc solve or a hybrid matrix technique.
MPI, OpenMP, and GPU tools are available. Figure 1(bottom left) compares
the PETSc and hybrid versions based on MPI with the same hardware as above.
Note that this execution time does not include the mesh creation and other setup.
A comprehensive total would also include the compilation and �le management
time when using an external target, but they are omitted here.

Dendro target Finally, the same problem was solved using the Dendro
target. Code �les were generated in Julia then compiled using the Dendro

library. The resulting adaptively re�ned mesh produced by Dendro contained

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



12 E. Heisler et al.

1 2 4 8 16 32 64 128

number of processes

100

101

102

ex
ec

ut
io

n 
tim

e(
se

c)

226,981 node mesh

Julia default
PETSc
matrix-free
setup only
ideal scaling

assembly/solve option

4 8 16 32 64 128 256

number of processes

101

102

103

ex
ec

ut
io

n 
tim

e(
se

c)

1,771,561 node mesh

PETSc
matrix-free
setup only
ideal scaling

assembly/solve option

8 16 32 64 128 256 512

number of processes

10-1

100

101

ex
ec

ut
io

n 
tim

e(
se

c)

aMat assemble/solve time(fine mesh)

aMat+PETSc
aMat hybrid
ideal scaling

aMat solver type

1 2 4 8 16 32 64 128 256

number of processes

101

102
ex

ec
ut

io
n 

tim
e(

se
c)

Dendro(adaptive mesh)

0.210e6
1.13e6
2.72e6
7.37e6
10.6e6

node count

Fig. 1. Top row: Internal target execution time on a coarse(top left) and �ne mesh(top
right) with di�erent options. �Setup only� excludes assembly/solve time. Bottom left:

aMat's time on the �ne mesh using PETSc and hybrid methods. Only assembly and
solve time is included as setup is done separately within Finch. Bottom right: Dendro's
execution time for several mesh sizes. Black dashed lines show interpolated weak scaling
contours. The blue dotted line is an ideal scaling based on the blue curve.

between 0.21 million and 10.6 million nodes depending on input parameters.
It was tested on the Notchpeak cluster at the University of Utah using two-
socket Intel XeonSP Skylake nodes with 32 cores each. Figure 1(bottom right)
demonstrates that the computation scales well for this problem on a �ne mesh
up to 256 processes.

This ability to quickly test a model in Julia before seamlessly transitioning to
a more specialized external target is a key feature of Finch that can signi�cantly
speed up development time for complex multiphysics problems.

7 Conclusion

This paper presents Finch, a new DSL and code generation framework for PDEs.
The modular design and support for external code generation targets provides

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



Finch: DSL and Code Gen. for FEM and FVM in Julia 13

versatility and allows the user to take advantage of evolving technology in terms
of high performance software packages such as Dendro, and hardware resources
supporting multithreading, MPI, and GPUs. The discretization agnostic concept,
currently including �nite element and �nite volume techniques, further expands
the range of applications for which it is well suited. We demonstrate and compare
the performance capability of several code generation targets and con�gurations.

Acknowledgements This work was funded by National Science Foundation
grants 1808652 and 2008772. The computing resources on Frontera were through
an allocation by the Texas Advanced Computing Center PHY20033.

References

1. Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Uni-
�ed form language: A domain-speci�c language for weak formulations of
partial di�erential equations. ACM Trans. Math. Softw. 40(2) (mar 2014).
https://doi.org/10.1145/2566630

2. Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg,
A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The fenics
project version 1.5. Archive of Numerical Software. 3(100), 9�23 (2015).
https://doi.org/10.11588/ans.2015.100.20553

3. Arndt, D., Bangerth, W., Blais, B., Clevenger, T.C., Fehling, M., Grayver, A.V.,
Heister, T., Heltai, L., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.P.,
Rastak, R., Thomas, I., Turcksin, B., Wang, Z., Wells, D.: The deal.II li-
brary, version 9.2. Journal of Numerical Mathematics 28(3), 131�146 (2020).
https://doi.org/10.1515/jnma-2020-0043, https://dealii.org/deal92-preprint.pdf

4. Cantwell, C., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De
Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mo-
hamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R., Sherwin,
S.: Nektar++: An open-source spectral/hp element framework. Computer Physics
Communications 192, 205�219 (2015). https://doi.org/10.1016/j.cpc.2015.02.008

5. Dorozhinskii, R., Bader, M.: Seissol on distributed multi-gpu systems: Cuda
code generation for the modal discontinuous galerkin method. In: The In-
ternational Conference on High Performance Computing in Asia-Paci�c Re-
gion. pp. 69�82. HPC Asia 2021, ACM Press, New York, NY (2021).
https://doi.org/10.1145/3432261.3436753

6. Dune: Dune (2022), https://www.dune-project.org
7. Fernando, M., Neilsen, D., Lim, H., Hirschmann, E., Sundar, H.: Massively parallel

simulations of binary black hole intermediate-mass-ratio inspirals. SIAM J. Sci.
Comput. 42(2), 97�138 (Apr 2019). https://doi.org/10.1137/18M1196972

8. Fernando, M., Neilsen, D., Sundar, H.: A scalable framework for adaptive compu-
tational general relativity on heterogeneous clusters. In: Proceedings of the ACM
International Conference on Supercomputing. pp. 1�12. ICS'19, ACM Press, New
York, NY (2019). https://doi.org/10.1145/3330345.3330346

9. Fernando, M., Sundar, H.: Dendro home page, 2020. URL https://octree.org
10. Foundation, T.O.: Openfoam (2022), https://openfoam.org
11. Hammer, J.: pycachesim: Python cache hierarchy simulator (2001),

https://github.com/RRZE-HPC/pycachesim

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9



14 E. Heisler et al.

12. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3-4), 251�265
(2012), https://freefem.org/

13. Heisler, E., Deshmukh, A., Sundar, H.: Finch code repository (2022),
https://github.com/paralab/Finch

14. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications. Springer Verlag (2008)

15. Homolya, M., Kirby, R.C., Ham, D.A.: Exposing and exploiting struc-
ture: optimal code generation for high-order �nite element methods (2017),
https://arxiv.org/abs/1711.02473

16. JuliaLang.org: Julia benchmarks (2021), https://julialang.org/benchmarks
17. Kempf, D., Heÿ, R., Müthing, S., Bastian, P.: Automatic code generation for high-

performance discontinuous galerkin methods on modern architectures. ACM Trans.
Math. Software 47(1), 1�31 (Dec 2020). https://doi.org/10.1145/3424144

18. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw.
32(3), 417�444 (sep 2006). https://doi.org/10.1145/1163641.1163644

19. Logg, A., Wells, G.N.: Dol�n: Automated �nite element computing. ACM Trans.
Math. Softw. 37(2) (apr 2010). https://doi.org/10.1145/1731022.1731030

20. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann, F.J.,
Velesko, P., Gorman, G.J.: Devito (v3.1.0): an embedded domain-speci�c language
for �nite di�erences and geophysical exploration. Geoscienti�c Model Development
12(3), 1165�1187 (2019). https://doi.org/10.5194/gmd-12-1165-2019

21. Macià, S., Martínez-Ferrer, P.J., Mateo, S., Beltran, V., Ayguadé, E.: Assembling
a high-productivity dsl for computational �uid dynamics. In: Proceedings of the
Platform for Advanced Scienti�c Computing Conference. pp. 1�11. PASC '19, ACM
Press, New York, NY (2019). https://doi.org/10.1145/3324989.3325721

22. McRae, A.T.T., Bercea, G.T., Mitchell, L., Ham, D.A., Cotter, C.J.: Automated
generation and symbolic manipulation of tensor product �nite elements. SIAM J.
Sci. Comput. 38(5), 25�47 (Oct 2016). https://doi.org/10.1137/15M1021167

23. Pietro, D.A.D., Gratien, J.M., Häberlein, F., Michel, A., Prud'homme, C.: Ba-
sic concepts to design a dsl for parallel �nite volume applications: extended ab-
stract. In: Proceedings of the 8th workshop on Parallel/High-Performance Object-
Oriented Scienti�c Computing. pp. 1�12. POOSC '09, ACM Press, New York, NY
(2009). https://doi.org/10.1145/1595655.1595658

24. Rackauckas, C., Nie, Q.: Di�erentialequations.jl�a performant and feature-rich
ecosystem for solving di�erential equations in julia. Journal of Open Research
Software 5(1), 15 (2017)

25. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.T.T.,
Bercea, G.T., Markall, G.R., , Kelly, P.H.J.: Firedrake: automating the �nite ele-
ment method by composing abstractions. ACM Trans. Math. Softw. 43(3), 1�27
(2016). https://doi.org/10.1145/2998441

26. Sundar, H., Sampath, R., Biros, G.: Bottom-Up construction and 2:1 balance re-
�nement of linear octrees in parallel. SIAM J. Sci. Comput. 30(5), 2675�2708 (Jan
2008)

27. Tran, H., Sundar, H.: A scalable adaptive-matrix spmv for heterogeneous architec-
tures. In: Proceedings of the IEEE International Parallel and Distributed Process-
ing Symposium. IPDPS'22, accepted for publication (2022)

28. Upho�, C., Bader, M.: Yet another tensor toolbox for discontinuous galerkin meth-
ods and other applications. ACM Trans. Math. Software 46(4), 1�40 (Oct 2020).
https://doi.org/10.1145/3406835

29. Xie, J., Ehmann, K., Cao, J.: Metafem: A generic fem solver by meta-expressions
(2021)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_9


