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Finch, a domain specific language and code generation framework for partial differential equations (PDEs),
is demonstrated here to solve two classical problems: steady-state advection diffusion equation (single PDE)
and the phonon Boltzmann transport equation (coupled PDEs). Both finite volume and finite element methods
are explored. In addition to work presented at the 2022 International Conference on Computational Science
(Heisler et al., 2022), we include recent developments for solving nonlinear equations using both automatic

and symbolic differentiation, and demonstrate the capability for the Bratu (nonlinear Poisson) equation.

1. Introduction

Solving partial differential equations (PDEs) numerically on a large
scale involves a compromise between highly optimized code exploiting
details of the problem or hardware, and extensible code that can be
easily adapted to variations. Rapidly evolving technology and a shift
to heterogeneous systems places a higher value on the latter, prompt-
ing a move away from hand-written code made by experts in high
performance computing, to generated code produced through a high-
level domain specific language (DSL). Another motivating factor is the
realm of medium-scale problems where good performance is needed,
but the cost of developing optimal code may not be justified. At this
scale it is up to domain scientists to develop their own software or piece
it together from more general-purpose libraries. Finally, the choice
of discretization method, like finite element(FE) or finite volume(FV),
is significant in multiphysics systems where different aspects of the
system are better handled by different methods.

In response, numerous DSLs for solving PDEs have been developed.
On one end of the spectrum are high-level options such as Matlab
Toolboxes, Mathematica, and Comsol. They are general-purpose and do
not require a high level of programming skill. As a trade-off, they lack
customizability. The low-level code is often, by design, hidden from the
user and difficult to modify.

At the opposite end are lower-level libraries such as Nektar++[1]
and deal.Il [2] providing customizable components optimized for a
specific purpose. They require more programming input and skill from
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the user. This also makes it harder to modify the code for variations,
resulting in many of the limitations of hand-written code.

This work aims for a middle-ground, where most of the program-
ming input is handled within the scope of a moderately high-level
DSL while allowing low-level customization and, when desired, direct
code modification. Some options in this realm include Fenics [3] and
Firedrake [4] for finite element methods, OpenFOAM [5] for finite
volume methods, Devito [6] for finite difference methods, and many
others focused on a specific type of problem or technique. There are
also tools in Julia including DifferentialEquations.jl [7] which provides
a broad environment of ordinary differential equation solvers with a
Julia interface.

This work introduces Finch, a DSL for solving PDEs. The framework
aims to be discretization agnostic, and currently supports finite element
and finite volume methods. The goal is to enable a domain scientist to
create efficient code for problems ranging from small scale simulations
on a laptop computer, to larger systems requiring scalability on modern
supercomputers. Two key ideas to achieving this goal are a modular
software design and generation for external software frameworks.

Rather than depending on a single, general-purpose code, a set
of modules are used to grant the flexibility to adapt to problem re-
quirements or resources. Some examples include various discretization
methods such as FE, both CG and DG variants, and FV, as well as
numerical tools such as PETSc’s linear solvers, GPU based options,
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or matrix-free methods. The development of new modules opens up
possibilities for optimization and new types of problems.

Another strategy is the generation of code for various external
software targets. This allows FincH to leverage the capabilities of ex-
isting software frameworks that are well suited to a type of problem.
For example, the Denpro library [8-10] provides an adaptive octree
framework that is suitable for very large scale problems using dis-
tributed memory parallel techniques. Manually writing code for this
framework requires high programming proficiency and familiarity with
the software. Fincu provides a simpler interface to this resource while
presenting the generated code to the user for modification or inspec-
tion. Another target is C++ using the aMar library [11] which handles
the mesh and data structure creation in Julia then utilizes a library of
efficient parallel sparse matrix operations to compute the solution in
an independent C++ program. The diversity of code generation targets
allows constructing a set of tools suiting a user’s needs.

FincH is written completely in Julia, which is easy to use and
has speed comparable to low-level languages such as C [12]. Julia is
growing in popularity as a serious scientific computing language. It
allows a simplified, intuitive interface without resorting to external
C/C++/Fortran libraries as is common with Python-based DSLs. The
metaprogramming features and wide selection of libraries also make
Julia a convenient choice.

This paper is an extended version of work presented at the 2022
International Conference on Computational Science [13]. We include
new capabilities for solving nonlinear equations (Sec. 6.3), a new inter-
mediate representation that greatly improves the interface between the
DSL and code generation modules (Sec. 4.2), and we explore a variety
of example problems to demonstrate the range of Finci’s capabilities
(Sec. 8).

2. Related work

DSLs can be found in some form for countless mathematical and
computational tasks. Some examples with a similar purpose and inter-
face include the Unified Form Language(UFL) [14] and FreeFEM [15]
used to write variational forms of PDEs. Components corresponding
to test functions, trial functions, and other values are combined in
expressions representing volume or facet integrals of elements. Since
Finch was originally developed for FE, a similar design was chosen. The
internal representation involves categorizing terms of the expression
depending on type of integral and linear vs. bilinear forms. The Julia-
based DSL MetaFEM [16] also involves writing a variational form
expression, though with a different grammar.

In contrast, Finch is designed to accommodate more general types
of expressions and does not assume a variational form. It also allows
custom operator definitions that act on the symbolic tensor arrays
of entities in the expression. For example, when using a FV method,
specialized flux operators can be defined and included in the PDE
expression.

A relevant FV DSL is used by OpenFOAM [17], which again in-
volves components such as variables and coefficients in an expression
resembling the mathematical notation. This works with a predefined
set of operations and is designed specifically for types of problems that
commonly use FV methods. There is no notion of variational forms.

Table 1 illustrates a rough feature comparison with these similar
DSLs. One feature to note is generation of user-accessible and modifi-
able code to allow inspection and manual tuning, which none of the
others provides.

It is worth noting some modules of Dune [18], such as Dune-fem are
designed for both FE and FV methods, but these are low-level interfaces
that are difficult to compare to the higher-level DSLs described here.

The other aspect is code generation where the internal representa-
tion becomes numerical code. There are many code generation tech-
niques for FE. Some exploit tensor product construction for high or-
der FE [19-21]. Others use the independent nature of Discontinuous
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Fig. 1. Chart illustrating the steps from user input to target-specific code.

Galerkin methods to utilize GPUs [22] or vectorization [23]. The FE
software FEniCS utilizes the set of tools FFC [24] and Dolfin [25]. There
are also options for FV [26] and FD [17], though perhaps less common
than for FE.

The code generation modules used by Fincu are specific to their
target, and employ a variety of techniques accordingly. The modular
design allows selection of ideal techniques either by the user or au-
tomatically depending on the target software, hardware, or problem
details. Fig. 1 outlines the process Finch uses to get from user input to
generated code.

3. Domain specific language

The goal of the DSL is to provide a higher-level coding interface
that closely resembles the form and notation used in a scientific or
mathematical domain, while hiding extraneous programming details
and syntax that is required by the underlying programming language.
Many of the existing DSLs for differential equations accomplish this
in an object-oriented way by creating classes representing symbolic
mathematical objects combined with a set of common operations and
rules [5,6,14-16]. The form of input is often designed to mimic a con-
vention depending on discretization or equation type. We have adopted
a similar strategy in which equations are entered in specific formats.
When using an FE discretization, the equation is input in the weak
form. On the other hand, when using a conservative FV discretization, a
conservation form is used that is set equal to an implicit time derivative
of the unknown variable. The examples below illustrate these types of
input.

3.1. Input expressions

Input for FE discretization is done by writing the weak form of the
equation as a residual expression set equal to zero. The volume integrals
are implicit and surface integrals can be specified by wrapping those
terms in surface(...). Symbols for test functions must also be de-
fined by the user and be present in each term. In general, after defining
a set of variables [u;,u,, ...] and test functions [v,, v, ...], the equation
can be written in terms of these symbols using common arithmetic and
differential operators. Each term of the expression must involve a test
function to be consistent. The residual weak form including linear(F, G)
and bilinear(f, g) terms would be expressed as

F(uy,uy,...;01,0p,...) + f(v1, 09, ...)
+ surface(G(uy, uy, ... ;01 Uy, ...) + g(01,0;,...)) =0

This is illustrated by the following Poisson equation where F(u,v) =
—(aVu,Vv), f(v) = —(k,v), Gu,v) = g(v) = 0, and the convention
(u,v) = [y u-vdx is used.
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Table 1
Feature comparison with similar high-level DSLs.
Finch FEniCS MetaFEM OpenFOAM
Finite element method v v v X
Finite volume method v X X v
Unstructured mesh support v v v v
Can take advantage of structured meshes such as v X X v
trees
Arbitrary equation specification v v v X
Accessible/modifiable generated code v X X X
Modular, swappable backends for linear algebra v v X X
and parallel tools
Can provide complete solution from equation to v v X v
output with no external steps
Original PDE V-(@Vu)—k=0 index=I)

Weak form
Finer input

—(aVu,Vuv) —(k,v) =0
—a*xdot (grad(u) ,grad(v)) - kxv

A conservative FV discretization will take input in a conservation
form in which the expression is assumed equal to a time derivative of
the unknown variable. Integrals over a control volume or its surface
are entered in the same way as in the weak form above. A conservation
equation for variable u will have the form

/@dx:/F(u)dx+/ G(uyds
y dt v v

The following advection-reaction equation illustrates this idea where
F(u) = f(u,x,1) is a source function to be integrated over the volume,
and G(u) = g(u, x, 1) represents a flux to be integrated over the surface
of the control volume.
PDE Jy Sdx = [, fu,x)dx — [, g, x) - nds
fu,x) =ku, gu,x)=ub

Finch input k*u - surface (uxdot (b,normal()))

The building blocks of these input expressions are the variables,
coefficient functions, test functions, and operators. With the exception
of an included set of operators, these components are defined by the
user. Custom operators can also be defined and are discussed further
below.

As an example, the following code creates a vector-valued unknown
variable u, a known scalar coefficient k defined by a function of
spacetime coordinates (x,y,z,7), and a vector test function v which
belongs to the same function space as u.

u = variable("u", type=VECTOR)
coefficient ("k", "sin(pi*x)*y*z")
testSymbol ("v", type=VECTOR)

3.2. Indexed entities

Some problems involve a set of several quantities that share the
same type of equation with different parameters. Similarly, one may
try to solve one equation over a range of parameters. In these cases
indexed variables and coefficients greatly simplify the way the problem
is specified and present an opportunity to reorganize the code for better
performance. As an example, consider a set of unknown quantities u; ;
and a corresponding set of coefficients k; and ¢; that exist in the same
form of equation.

d
Eui'j = kl-Au,-’j +cju;;

It would be very cumbersome to individually write out the large
number of equations for different values of i and j. Rather, we can write
one equation using indexed entities.

i=1.20, j=1.40

I =index("T", range=[1,20])

J = index("J", range=[1,40])

u=variable("u", type=VAR_ARRAY, index = [I,J])
k = coefficient ("k",k_values,type=VAR_ARRAY,

c = coefficient("c",c_values,type=VAR_ARRAY,
index=J)
weakForm(u, "Dt (ulI,J]*v) + k[I]*dot(grad(ulIl,J]),
grad(v))

+c[J]*ulI,J]*v")
assemblyLoops(u, [I, J, "elements'])

The generated code when using indexed entities is significantly
different than when writing out a set of distinct equations. Since
the form of the equations is the same, the assembly process can be
described by a loop over indices, which opens up the possibility of more
sophisticated parallel strategies. The last line in the example including
assemblyLoops instructs the code generator to nest the assembly
loops in this order. In some cases it may be more efficient to parallelize
an outer index loop before the elemental loop. The user can arrange this
as desired.

3.3. Symbolic operators

To understand the role of operators in this context, we need to
describe the internal representation of these entities. When they are
created, each of these pieces are assigned corresponding arrays of
symbols. For example, a 3-dimensional vector quantity u would corre-
spond to the array [u,,u,, u3]. Operators take these arrays and generate
new arrays of symbols or subexpressions. dot (u,v) will become the
single-component (scalar) array [u; * v + uy * Uy + u3 * v3].

It is important for the user to understand this because in addi-
tion to standard operators such as *, -, dot and grad used in the
examples above, a user can define new operators to include in these
expressions. For example, the conservation form expression for an
advection equation may look like surface (upwind(b,u). In this
expression, the operator upwind (b,u) will result in [u,,,,s * (b- )]
where u,,,,,, is the value from the side of the face where b - n is
positive. If a user wanted to define a new type of flux approximation
labeled by the operator myFlux (b, u), they could create a function,
myFluxFunction, which would take the arrays represented by u and
b and return some new array with the desired symbolic result. The
command customOperator (¢ ‘myFlux’’, myFluxFunction)
will add this new symbolic operator and allow it to be written in input
expressions.

There are situations in which the desired operation is difficult or
impossible to encode in this kind of symbolic expression. In that case
a numerical callback function can be defined and used in the input
as a symbolic function. During the code generation step, calls to this
function will be created where needed.

3.4. Configuration

Typically a Julia script will be written for a particular problem,
though it is also possible to work interactively. A set of functions or
macros are used to (a) Set up the configuration, (b) Specify the mesh,
entities and equations, and (c) Process data for output.
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As an example, the following commands will configure a 2D un-
structured grid using a fourth-order polynomial function space based
on Lobatto-Gauss nodes, and generate code for a target specified in
the external_target_module. jl file. For a complete listing and
description of available configuration commands, see the documenta-
tion [27].

generateFor ("external_target_module.j1")
domain(2, grid=UNSTRUCTURED)
functionSpace (order=4)

nodeType (LOBATTO)

In contrast to this, a user who is content with the defaults could
provide as little as domain (2). There are a variety of example scripts
included in the repository [28] that explore a range of configurations.

3.5. Mesh

Problem specification should start with a mesh. There are some
simple mesh generation options built in. For example, to construct a
uniform 50 x 20 grid of rectangular elements in a unit square domain,
and create a separate boundary ID for each face, use the command:
mesh (QUADMESH, elsperdim=[50,20] ,bids=4)

For more practical problems, external mesh generating software can
be used to create a mesh file that is then imported into Fincu. Currently
the GMSH(.msh) and MEDIT(.mesh) formats are supported.

Specifying new boundary regions for the purpose of defining bound-
ary conditions can be done with the command addBoundaryID(BID,
onBdry) where BID is a number to be assigned to that region, and
onBdry is a function or expression of (x,y,z) that is true within the
desired region.

For distributed memory parallelism it is necessary to partition
the mesh. This is done internally using METIS via the Julia library
METIS jll. This will be done automatically according to the number of
processes available through MPI, but can also be configured as desired.

3.6. Solve and post processing

After setting up the scenario as above, the command solve (u)
will then either generate the code files for external targets or run the
computation internally to produce a solution. Considering the internal
route, the solution will now be found in the corresponding variable
value arrays such as u.values. These results are available for post-
processing, visualizing, or output in a number of formats such as binary
data or VTK files.

If the target is external, there will be a directory including all code
and build files along with basic instructions. Since one of the goals of
FincH is to generate accessible code, the generated code is designed to
be human readable and even include comments.

4. Intermediate representation
4.1. Symbolic level

After entering the input expressions, they are first transformed into
a symbolic representation. The entity symbols are replaced with arrays
of corresponding components, as discussed above, and the operators are
applied to ultimately create a set of symbolic expressions. These expres-
sions then go through several processing stages to separate known and
unknown terms, identify time dependent terms, separate volume and
surface integrals, and isolate nonlinear terms.

At this point the expressions can be manipulated to simplify or mod-
ify them for, for example, the type of time stepping scheme being used.
This is also where symbolic differentiation can be used for handling
nonlinear problems, as will be discussed further below. The resulting
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collections of symbolic terms are parsed into computational graphs,
based on Julia Expr trees, containing symbolic entity objects.
Here we illustrate the process using the weak form input for a 2D

Poisson equation.
-axdot (grad(u), grad(v)) - f*v
1
-[_a_1]*dot_op(grad_op([_u_11), grad_op([_v_11))-[_f_1]*[_v_1]
1
[-(_a_1*D_1__u_1*D_1__v_1 + _a_1%D_2__u_1*D_2__v_1)]+[-_f_1*_v_1]
!
bilinear:[-_a_1*D_1__u_1*D_1__v_1 - _a_1*D_2__u_1*D_2__v_1]
linear: [-_f_1 * _v_1]
entities:D_1__u_1 = Ly,D_2__u1= fyu,, etc.

An entity in this context is essentially a symbol, like _u_, along
with its component index on the right, 1, and a collection of flags on
the left, D_1_. The flags can have any value and will be interpreted by
the relevant code generation module. For example, the flags CELL1 _
and CELL2_ would be interpreted as values on respective sides of a

face when using FV.
4.2. FincH IR

The symbolic representation produced by the process above is still
very dependent on the discretization choice, time stepping scheme, and
other configuration details. Before passing it to the code generation
step, we want to encode all of that information into a description that
will be independent of both the mathematical configuration and the
code generation target, an Intermediate Representation (IR). The IR
describes the computation at the level of pseudocode. This will make
the creation of new target modules much simpler as they will only need
to translate the pseudocode into their respective languages and in the
context of any external software packages.

To illustrate the level of the IR, we will continue with the 2D Poisson
example from above. Since this is a stationary FE problem, the code will
essentially involve assembling a global linear system one element at a
time and then solving for the unknown vector. For simplicity we will
only look at the bilinear term that computes an elemental matrix.

-_a_1*D_1__u_1*D_1__v_1-_a 1*D_2__u_1*D_2__v_1

Note that this symbolizes

/ —a%d—u —a@@ dK
K dx 0x dy dy

When discretized into polynomial basis functions at Gaussian integra-
tion points, this becomes

Ajpu; = Z uj Z w;J; (_ai * Qi Pirx — a; * ¢fj,y¢fk,y)
J i

Where w; are quadrature weights, J; are geometric factors, ¢;; , are x-

derivatives of the jth basis functions at the ith quadrature points. The

inner i sum can be arranged as a matrix expression.

olwo,+0lwo,

With W being a diagonal matrix combining weights, geometric factors,
and q; for each quadrature point. Q, combines geometric factors with
precomputed matrices Qp that essentially contain the basis function
derivatives, %, at the quadrature points in a reference element, but in
practice it will be more sophisticated as it will include a transformation
from a nodal basis into a modal one to benefit from better properties.
For details on this, please refer to [29].

When building the IR for this computation with a term like

_a_1xD_1__u_1%*D_1__v_1, the three factors are identified as
coefficient, unknown, and test function respectively, with the following
associations.
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The IR builder will also use knowledge of the configuration to opti-
mize the calculation. For example, when using rectangular or simplex
elements the Jacobian matrix can be reduced to a constant value. In
the case of a uniform grid, it only needs to be computed for one
element and Q, can be precomputed. Taking it one step further, if
the coefficients in this term are also constant, the entire QIWQX
matrix can be precomputed rather than doing it for each element.
Other opportunities for optimization may depend on element type. The
symmetry of high order hexahedral elements can be exploited by using
the tensor product of one-dimensional operators. This saves on both
arithmetic and memory costs.

The other optimization that can be done at the symbolic level is
arithmetic manipulation. The symbolic software SymEngine is used to
simplify expressions and combine terms on the where possible before
parsing into the IR. It is important to note that no hardware or target-
specific optimizations can be done at this level because the IR is
intended to be independent of these.

The resulting IR for this part of the calculation will be an abstract
linear algebra operation to construct QT W Q,. Since different targets
will have different ways of optimally evaluating this, such as differing
data layouts and the use of accelerators, the IR is kept at this level and
will need to be lowered when generating code.

5. Code generation

The code generation step is where the process diverges. The details
are specific to the generation target, but they essentially all perform
the same two tasks. They must translate the IR described above into
real code, and they must wrap the calculation in a complete program
that includes setting up the mesh and other data structures, processing
results, and anything required by external software packages. Build
files, instructions, and other documentation will also be generated at
this step. To allow easy addition of new targets, the code generation
process has a modular design with a very simplified interface.

When designing a new target module, there are only two func-
tions that must be provided to Finch. The first one, get_external_
language_elements, provides basic language-specific info such as
comment characters and file extensions to aid with formatting. The
second is generate_external_files, which takes the IR and
some configuration information, and is responsible for creating all of
the code files.

This is also the part of the process where high performance comput-
ing strategies are incorporated. Again, the details of this task may look
completely different depending on the target and in many cases they
are handled by the external software libraries being utilized.

One example of the optimizations performed by the code generation
step is organization of the quadrature loops to take advantage of
vectorization. Since different target languages use different data orga-
nization strategies, such as Julia’s column-major matrices as opposed
to row-major used by C++, the linear algebra operations described
by the IR are translated into different loop structures. However, more
significant optimizations are often handled by target software, such as
the adaptive refinement and load balancing performed by the external
Dendro library

5.1. Modifying generated code

Advanced users may wish to inspect the generated code and make
modifications by hand. In many cases there may be features of the
problem that can be exploited for better performance that are not au-
tomatically included. All generated code files are, of course, accessible
when using external targets, but they must also be written in a way
that can be easily understood by the user. For this purpose the IR also
includes the unusual feature of comment nodes. Rather than simply
storing the computational steps, the IR contains comments that will be
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written into any generated files. This makes the result much easier to
understand, facilitating code modification by hand.

When using the internal Julia target, the code is typically to be
used immediately rather than being written to a file. If code inspection
or modification are desired, the command exportCode will cause
the generated Julia code for the solve portion of the computation to
be written to a file. Note that this does not represent a stand-alone
program, but simply the code that computes the solution based on
existing data structures and utilities. This allows the exported code to
be relatively compact and easy to understand.

After modifying the Julia code, the command import will read the
code into FiNcH to be used in the solution. Naturally, exporting should
happen after the entire problem has been specified, and importing is
done on a later run before calling solve. Since the imported code can
be freely modified without restriction, it is up to the user to ensure
that the modified code is correct. No verification is performed by Finch
to check correctness against a specified equation because this would
restrict the ability to modify code as desired.

6. Features

6.1. Code generation targets

FincH is intended to provide a complete problem solving environ-
ment, from equation input to solution output. On the other hand, it
is also designed to be used as a code creation tool, which takes a
problem specification and generates a body of code to be run externally,
perhaps in the context of some third-party software framework. There
are significant benefits to both directions. A stand-alone solution makes
model exploration and learning the software much more efficient.
External targets provide flexibility and an array of high performance
tools, without having to reinvent them or design Finca around them.

The default choice is to use the internal tools included in FincH.
This solution will generate Julia code that can either be run directly or
exported and imported as discussed in the previous section. This path
can also make use of multiprocessing based on MPI or multithreading
using Julia’s threading utilities. This is discussed further below in the
section on performance opportunities.

One of our goals is to take advantage of the capabilities of existing
specialized libraries by generating code specifically for them. This
enables the use of various strategies for parallelization, adaptivity, and
efficient data structures to achieve high performance. The relatively
simple, modular design of these external code generation targets allows
adding support for new tools as they are developed or needed.

An example of this is the Denpbro target which offers distributed
memory parallelism through MPI, adaptive mesh refinement, and
proven large-scale scalability. It is ideal for problems that can benefit
from very fine grained adaptive meshing. It is somewhat limiting in the
possible domain geometry as it only uses hexahedral octrees, but since
there are various targets available, a different choice can be selected
when these limitations are unacceptable.

Another target is a C++ implementation using the aMar library
which is essentially a specialized linear algebra library providing very
efficient algorithms for sparse linear systems. It also supports an assort-
ment of parallelization strategies based on MPI, OpenMP, and GPU-
based options. The performance of both of these targets is explored in
the Demonstrations section below.

There is also a simpler C++ target that uses MPI and PETSc, which
is good for users who want to utilize multiprocessing and have access
to the code in its entirety.

Going in a different direction, a Matlab target provides a very
simplified option that is great for quick exploration of smaller-scale
prototypes.
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6.2. Multiple discretizations

In contrast to most of the software packages for solving PDEs, Fincu
aims to support various discretization methods. Since most methods
involve partitioning a domain into small pieces we will refer to as
elements, and assembling a global linear system to solve, a lot of the
machinery can be reused and modified slightly to utilize a different
discretization method. Currently FE and FV are both supported by
FincH. The two methods can even be combined in the same solution
by specifying different discretizations to be used for different variables.
The way these techniques are merged is still a subject of current work.

One challenge is that different methods are designed to handle
equations in different forms. As mentioned previously, the FE input is
assumed to be in a weak form, while the FV input is assumed to be in
a conservation form. Conveniently both of these forms involve a series
of implied volume or surface integrals.

6.3. Nonlinear equations

Many problems of interest involve nonlinear PDEs that require
more complicated techniques to find numerical solutions. Typically this
involves linearizing the equations in some way that involves taking
derivatives of the nonlinear terms. Some other software packages, such
as Fenics [3], include options to easily do this by accepting nonlinear
input equations and using Automatic Differentiation(AD). Another pos-
sibility is to use symbolic differentiation and restructure the equations.
In either case, an iterative method will also need to be employed to
find the solution.

FincH automatically detects nonlinearity while parsing the input
equations, and can employ either AD or symbolic differentiation. The
symbolic option makes use of SymEngine’s tools. The equations are
then restructured in the symbolic layer before building the IR by
applying a first-order Taylor approximation to the nonlinear terms. The
need for an iterative solution method is also signaled to the IR builder.

The input needed from the user is simply to specify the type of
differentiation as well as tolerances for the iteration. As an example,
consider the following weak form equation with a linear differential
term and a second term including a nonlinear function F(u).

—(aVu, Vo) + (F(u),v) =0

The linearized version of this equation below, derived from a first
order Taylor approximation, requires the derivative F’ = Z—f and the
creation of an additional known variable u,.

—(aVu, Vou) + (F(ug),v) + (u — uO)(F’(uO), v)=0

Let us consider F(u) = . The Fincu script might include the
following.

nonlinear (maxIters=100, relativeTol=1e-8,
absoluteTol=1e-8, derivative="symbolic")
weakForm(u, "grad(u)*grad(v) + exp(Cxu)*v")

Note that this specifies symbolic differentiation, F/ = CeC¥. To in-
stead use AD, the derivative parameter would be set to ¢ ‘AD’ ’. There
are currently some limitations on the types of nonlinear equations that
are possible, but we are working to expand the range of supported
problems. Also, although this example illustrates an FE problem, the
process is essentially the same for FV.

7. Performance opportunities

The performance benefit of utilizing external tools has been dis-
cussed in the sections above. This section will focus on features of the
internal FincH target aimed at achieving good performance. There is a
rich ecosystem of Julia packages providing high-performance tools that
FincHcan take advantage of.
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The internal Julia targets make use of distributed and shared mem-
ory parallelism as well as efficient data organization options. Also,
when assembling and solving linear systems, the user can select a
variety of tools beyond the defaults provided by Julia’s LinearAlgebra
package.

The simplest technique to take advantage of is multithreading.
FincH automatically detects how many threads are available to the
Julia instance and uses the native Julia package Threads to use
this throughout the computation. To enable this feature a user simply
needs to specify the number of threads when launching Julia. This is
done with the argument —t n or ——threads n to use n threads, or
substitute auto in place of n to use the number of local CPU threads.

Distributed memory parallelism is provided by the Julia package
MPI. jl which makes use of the system’s available MPI implementa-
tion. Again, this is specified at launch using the system’s MPI execution
command. Fincu will detect how many processes are available and
arrange the computation accordingly. This does require a little more
care in the part of the user when modifying generated code. Although
one may be used to having direct access to solutions and variable
values, when multiprocessing these resources will be distributed and
may require extra communication to retrieve.

Partitioning is needed when using a distributed parallel strategy,
and the most straightforward method is to partition the mesh evenly
among the processes. This is accomplished using Metis through the
METIS_jll package. However, more complex sets of indexed equa-
tions may benefit from different partitioning schemes that partition
among variable indices rather than, or in addition to, the mesh. This
type of index partitioning was used to solve the phonon Boltzmann
transport equation in [30].

When using FV with higher order flux reconstructions, several
neighboring elements may be needed. This could potentially complicate
the partitioning process because an irregular number of ghost elements
would need to be maintained. To address this issue, partitioning is done
on the initial course mesh with only nearest neighbor ghosts. Then the
elements are refined in a consistent way depending on the flux order
desired. The resulting finer mesh will include the needed number of
ghosts in an efficient and reliable way. This extra refinement should be
considered when planning a mesh utilizing this feature.

There are several choices when it comes to solving large, sparse
linear systems. The default in Finch is provided by the LinearAlgebra
package which utilizes BLAS and LAPACK. Another option is PETSc,
interfaced through PETSC. j1, which provides better performance in
distributed parallel environments as demonstrated below. There is also
a matrix-free option for certain targets that is particularly useful for
large-scale problems where the cost of assembling a global matrix is
prohibitive.

7.1. Cache optimization

In addition to parallel techniques, the organization of data struc-
tures and the elemental loop ordering can improve performance
through more efficient cache use. A number of data organization op-
tions are available in FincaFor example, a mesh from the built-in mesh
generation utility provides elements that are ordered lexicographically.
In order to improve spatial locality, the elements can be rearranged
either into a space-filling curve, such as a Hilbert or Morton curve, or
into tiles.

To aid with this development and potentially provide a means for
automated tuning, Finca employs a simple cache simulator. CacheSim.jl
[31], which is our Julia port of Pycachesim [32], was chosen for this
because it is light-weight and is written natively in Julia allowing direct
utilization by Finch. It can roughly characterize the cache performance
of a particular problem setup on a specified cache hierarchy.

The cache simulator is essentially another target for code gen-
eration. Rather than performing the mathematical computation, the
approximate sequence of memory accesses is fed into the simulator.
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At the end of the computation the cache statistics are recorded and
analyzed. This presents Finca with a tool for tuning and measuring
the effectiveness of changes in configuration. At present, the cache
simulator is used to inform the user of cache performance impacts to
aid with tuning, but future work involves automatic tuning performed
by FincH.

8. Demonstration

The following example applications demonstrate some of the capa-
bilities of Fincu and illustrate the performance aspects of the various
tools and code generation targets. Since external targets rely on the
performance capabilities of the target framework, please refer to their
respective documentation for a more rigorous analysis. For example,
the Denpro framework has shown competitive scalability for large scale
simulations [10,33]. Also note that these performance measurements
are intended as a way to compare characteristics of different generation
targets. Optimization of internal targets is ongoing and is not yet
competitive with other mature DSLs, so at this time they are more
suitable for small to medium scale problems.

The first two examples use the finite element method with the
following configuration input. Note that many of these are default
values that are not explicitly set in the input files.

floatDataType (Float64) # double precision
functionSpace (space=LEGENDRE, order=1)
nodeType (LOBATTO) # GLL nodes,
interpolated for Gaussian integration

The third example uses the finite volume method with the following
configuration input.

finiteVolumeOrder (1) # linear flux reconstruction
timeStepper (EULER_EXPLICIT)

Other input parameters that are specific to the example are provided
below. The full input code for these examples, as well as many others,
can be found in the code repository [28]. The generated code for certain
configurations are also provided.

8.1. Steady-state advection—diffusion-reaction equation

The following Eq. (1) is used to demonstrate a FE problem. We use
several different sets of tools and compare them in terms of perfor-
mance.

V-(DVu)+s-Vu—cu=f (€]
ux€0d)=0

2=[0,17D=11,¢=0.1,s=(0.1,0.1,0.1)

Here all of the coefficients are given constant value, but we have
intentionally generated them as functions of (x,y, z) to increase com-
putational complexity. The motivation for this is to demonstrate the
performance for a more practical problem while simplifying analysis
with an exact solution. The function f was constructed such that u
satisfies (2).

u(x, y, z) = sin(3zx) sin(2zy) sin(x z) 2
The weak form expression provided to FincH is
weakForm(u,

"-Dxdot (grad(u), grad(v)) + dot(s, grad(u))*v
- cxuxv - £*v")
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The discretization is continuous Galerkin with quadratic hexahedral
elements.

Internal target With appropriate choice of mesh this is suitable
for running on a typical computer, but for these tests we are using
the Frontera supercomputer with dual socket Intel Xeon Platinum 8280
nodes having 56 cores. The execution time of different code generation
targets and linear solvers were compared for a range of processor
counts as shown in Fig. 1. For smaller problems running on only a
few cores, the default Julia tools are an easy and viable option, though
PETSc may be more efficient. The default method does not scale well in
a distributed memory parallel context. For larger problems and many
processors, PETSc and matrix-free are both good options. The figure
shows that the matrix-free method is better when many processors are
available. On the other hand, PETSc performed better for small process
counts.

AMar target The same problem was solved using the aMar target.
Code files, partitioned mesh data, reference element, and geometric
factors were set up and exported from Julia. The code was compiled
and run with the aMar library using the precomputed data. AMat
provides options for assembling and solving the system including a
direct PETSc solve or a hybrid matrix technique. MPI, OpenMP, and
GPU tools are available. Fig. 2(bottom left) compares the PETSc and
hybrid versions based on MPI with the same hardware as above. Note
that this execution time does not include the mesh creation and other
setup. A comprehensive total would also include the compilation and
file management time when using an external target, but they are
omitted here.

Denpro target Finally, the same problem was solved using the
Denpro target. Code files were generated in Julia then compiled using
the Denbro library. The resulting adaptively refined mesh produced by
Denpro contained between 0.21 million and 10.6 million nodes depend-
ing on input parameters. It was tested on the Notchpeak cluster at the
University of Utah using two-socket Intel XeonSP Skylake nodes with
32 cores each. Fig. 2(bottom right) demonstrates that the computation
scales well for this problem on a fine mesh up to 256 processes.

This ability to quickly test a model in Julia before seamlessly
transitioning to a more specialized external target is a key feature of
FincH that can significantly speed up development time for complex
multiphysics problems.

8.2. Bratu equation (a nonlinear Poisson equation)

The Liouville-Bratu-Gelfand equation, or commonly Bratu Eq. (3),
is a nonlinear equation that is relatively simple to analyze, yet exhibits
interesting behavior. We use it here to demonstrate the use of Fincu’s
nonlinear capabilities as well as the convenience of indexed entities.

Au+Ceé =0 3)

u(0)=u(l)=0, C €[0,3.5]

The interesting behavior of this problem is best seen by examining
the solution for varying values of C and also using different initial
guesses. The solution can converge to one of two distinct branches
for a given value of C. Typically this would require rerunning the
computation for each scenario separately, but using Fincu’s indexed
variables and coefficients allows the problem to be easily defined for
the whole set of configurations and the computation can be run in
parallel.

We will define an indexed coefficient for C with 20 different values
between 0 and 3.5 placed in the array cvals.

coefficient ('C", cvals, type=VAR_ARRAY)

Since we want both upper and lower branch solutions for each C,
we will create two indexed variables, u and w. They could be combined
into a single variable indexed over both upper and lower values, but for
simplicity we separate them here.
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Fig. 2. Top row: Internal target execution time on a coarse(top left) and fine mesh(top right) with different options. “Setup only” excludes assembly/solve time. Bottom left: AMAT’s
time on the fine mesh using PETSc and hybrid methods. Only assembly and solve time is included as setup is done separately within Fincu. Bottom right: Dendro’s execution time
for several mesh sizes. Black dashed lines show interpolated weak scaling contours. The blue dotted line is an ideal scaling based on the blue curve.

ind = index("ind", range = [1,20])
u=variable("u", type=VAR_ARRAY, index=ind)
w=variable("w", type=VAR_ARRAY, index=ind)

Although Fincu will automatically detect the nonlinearity and re-
structure the computation to linearize the equations, we still need to
specify details for the iteration and the type of derivatives to use.

nonlinear (maxIters=100, relativeTol=1e-8,
absoluteTol=1e-8,
derivative="symbolic")

After setting up the boundary conditions and initial guesses, the
weak form expressions provided to Finch are

weakForm(u, "-dot(grad(ulind]), grad(v)) + C[ind]
* exp(ulind]) * v")
weakForm(w, "-dot(grad(w[ind]), grad(v)) + C[ind]
* exp(w[ind]) * v")

Solving this set of equations produces the result shown in Fig. 3. The
characteristic behavior of the Bratu equation is correctly reproduced.

8.3. Phonon Boltzmann transport equation

The phonon Boltzmann Transport Equation(BTE) is used to model
heat conduction in sub-micron scale semiconductor material [34], such

as silicon. We use it here to demonstrate FV discretization and using
indexed variables to explore different parallel strategies. When formu-
lated in terms of phonon intensity, I, the BTE can be written as the
following conservation equation:
ar = Tt -v, - VI

ot T 8

with group velocity v,, scattering time scale 7 and equilibrium intensity
I,,. The intensity also depends on wavevector direction and frequency.
Using the FV method with control volume V and discretizing the
directions and bands so that we are solving for I, , for direction ¢ and
frequency band b, results in the following equation:

4

Aap =/ Tor = Tab gy / I4484 - ndA
y ot ) Eb Jov @

We have adopted the formulation and relation to temperature used
in [35,36]. Please refer to those for more detailed descriptions of the
model.

To input this problem in Finc, first the indices b for band and d
for direction are defined, along with the indexed coefficients. Then the
conservation form is entered as

()

conservationForm(I, "(Io[b] - I[d,b]l) / betal[b] +
surface(vg[b] * upwind ([Sx[d];Sy[d]], I[d,b]1))"™

Note that an upwind approximation is used for the flux with direc-
tion vector S = [Sx; Sy].
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u(x) for varying C

X
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cross section

Fig. 3. Left: u(x) for different values of C € [0,3.5]. Note the upper and lower regions of similar color representing the upper and lower branches. The branch depends on the
initial guess for u. Right: A cross section through the central maximum showing the upper (black) and lower (red) branches for varying C.

Heat source at T=300

Cold wall at T=100

temperature
1.0e+02 110 115 120 125 130 135 140 145  1.5e+02

s e—

Fig. 4. Temperature in a 4 pm by 1 pm thin film after 5 ns. The hot and cold wall
conditions are illustrated.

We consider a 2-dimensional domain with one long wall held at a
low temperature and a small portion of the opposing wall held at a
high temperature. The remaining boundaries are assigned symmetry
conditions and the initial temperature everywhere is equal to the
cold wall. Fig. 4 illustrates the scenario and shows the temperature
distribution after 5 ns.

Due to indirect coupling of frequency bands this is particularly well
suited to parallelization of the band index. Recall that Fincu allows a re-
structuring of the assembly loops when using indexed variables with the
command
assemblyLoops (I, [band, ¢ ‘elements’’,direction])
where band and direction refer to their indices. Both band-based and
cell-based strategies were compared and the scaling results are shown
in Fig. 5. These computations were performed on the Notchpeak cluster
at the University of Utah’s Center for High Performance Computing
using two-socket Intel XeonSP Cascadelake nodes with 40 cores each
and 192 GB of memory. The discretization includes 16 directions and
40 frequency bands on a 60 x 15 uniform mesh of rectangular cells.

9. Conclusion

This paper presents Finc, a DSL and code generation framework
for PDEs. One of the key features is the ability to generate code for
various targets including an internal Julia target and several external

104 ; ; ; ; ; ; ;
—S— parallel bands
—A— parallel cells
/g ------------- ideal scaling
@2
[
E 0% -
c
Re)
5
o
(7]
X
[0
102 | ]

1 2 5 10 20 40 80 160
number of processes

Fig. 5. Scaling for the BTE comparing band-based and cell-based parallel strategies.
Note that 40 bands were used, which limits the band-based strategy to 40 processes.

targets. The modular design and support for external code generation
targets provides versatility and allows the user to take advantage of
evolving technology in terms of high performance software packages
such as Denpro, and hardware resources supporting multithreading,
MPI, and GPUs. The aim to support different discretization methods,
currently including finite element and finite volume techniques, further
expands the range of applications for which it is well suited. We have
demonstrated and compared the performance capability of several code
generation targets and configurations.

Future work on Fincu will involve (1)expanding the range of prob-
lems that can be solved, (2)developing new code generation targets
as well as improving efficiency of existing ones, and (3)working with
domain scientists to solve challenging and practical problems on a
large scale. For the first point we are implementing robust methods for
nonlinear problems and investigating the addition of new discretization
methods. For the second point we are particularly interested in better
utilizing different hardware resources such as GPUs and high perfor-
mance architectures. This will involve developing targets that employ
libraries that are both well suited to the problem type and hardware
resources.



E. Heisler et al.
CRediT authorship contribution statement

Eric Heisler: Conceptualization, Software, Methodology, Investiga-
tion, Writing — original draft, Visualization. Aadesh Deshmukh: Soft-
ware, Methodology. Sandip Mazumder: Conceptualization, Methodol-
ogy, Writing — original draft. Ponnuswamy Sadayappan: Conceptual-
ization, Methodology. Hari Sundar: Conceptualization, Methodology,
Resources, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

A link to the publicly available code repository is included in the
paper.

Acknowledgments

This work was funded by National Science Foundation, United
States grants 1808652, 2004236 and 2008772. The computing re-
sources on Frontera were through an allocation by the Texas Advanced
Computing Center PHY20033.

References

[1] C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De
Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied,
C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. Kirby, S. Sherwin, Nektar++: An
open-source spectral/hp element framework, Comput. Phys. Comm. 192 (2015)
205-219, http://dx.doi.org/10.1016/j.cpc.2015.02.008.

D. Arndt, W. Bangerth, B. Blais, T.C. Clevenger, M. Fehling, A.V. Grayver, T.
Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak,
1. Thomas, B. Turcksin, Z. Wang, D. Wells, The deal.II library, version 9.2,
J. Numer. Math. 28 (3) (2020) 131-146, http://dx.doi.org/10.1515/jnma-2020-
0043, URL https://dealii.org/deal92-preprint.pdf.

M.S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M.E. Rognes, G.N. Wells, The FEniCS project version 1.5, Arch. Numer.
Softw. 3 (100) (2015) 9-23, http://dx.doi.org/10.11588/ans.2015.100.20553.
F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. Mcrae, G.-
T. Bercea, G.R. Markall, P.H.J. Kelly, Firedrake: automating the finite element
method by composing abstractions, ACM Trans. Math. Software 43 (3) (2016)
1-27, http://dx.doi.org/10.1145/2998441.

T.O. Foundation, OpenFOAM, 2022, URL https://openfoam.org.

M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P.A. Witte, F.J. Herrmann, P.
Velesko, G.J. Gorman, Devito (v3.1.0): an embedded domain-specific language
for finite differences and geophysical exploration, Geosci. Model Dev. 12 (3)
(2019) 1165-1187, http://dx.doi.org/10.5194/gmd-12-1165-2019.

C. Rackauckas, Q. Nie, Differentialequations.jl-a performant and feature-rich
ecosystem for solving differential equations in julia, J. Open Res. Softw. 5 (1)
(2017) 15.

M. Fernando, H. Sundar, Dendro home page, 2020, URL https://Octree.Org.

H. Sundar, R. Sampath, G. Biros, Bottom-Up construction and 2:1 balance
refinement of linear octrees in parallel, SIAM J. Sci. Comput. 30 (5) (2008)
2675-2708.

M. Fernando, D. Neilsen, H. Sundar, A scalable framework for Adaptive Com-
putational General Relativity on Heterogeneous Clusters, in: Proceedings of the
ACM International Conference on Supercomputing, ICS 19, ACM Press, New
York, NY, 2019, pp. 1-12, http://dx.doi.org/10.1145/3330345.3330346.

H.D. Tran, M. Fernando, K. Saurabh, B. Ganapathysubramanian, R.M. Kirby,
H. Sundar, A scalable adaptive-matrix SPMV for heterogeneous architectures,
in: 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), IPDPS ’22, 2022, pp. 13-24, http://dx.doi.org/10.1109/IPDPS53621.
2022.00011.

JuliaLang.org, Julia benchmarks, 2021, URL https://julialang.org/benchmarks.
E. Heisler, A. Deshmukh, H. Sundar, Finch: Domain specific language and
code generation for finite element and finite volume in julia, in: D. Groen, C.
de Mulatier, M. Paszynski, V.V. Krzhizhanovskaya, J.J. Dongarra, P.M.A. Sloot
(Eds.), Computational Science — ICCS 2022, Springer International Publishing,
Cham, 2022, pp. 118-132.

[2]

[3]

[4]

[5]
[6]

[71

[8]
[91

[10]

[11]

[12]
[13]

10

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Journal of Computational Science 68 (2023) 101981

M.S. Alnzs, A. Logg, K.B. @lgaard, M.E. Rognes, G.N. Wells, Unified form lan-
guage: A domain-specific language for weak formulations of partial differential
equations, ACM Trans. Math. Software 40 (2) (2014) http://dx.doi.org/10.1145/
2566630.

F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (3-4) (2012)
251-265, URL https://freefem.org/.

J. Xie, K. Ehmann, J. Cao, MetaFEM: A generic FEM solver by meta-expressions,
Comput. Methods Appl. Mech. Engrg. 394 (2022) 114907, http://dx.doi.org/10.
1016/j.cma.2022.114907, URL https://www.sciencedirect.com/science/article/
pii/S004578252200189X.

S. Macia, P.J. Martinez-Ferrer, S. Mateo, V. Beltran, E. Ayguadé, Assembling a
high-productivity DSL for computational fluid dynamics, in: Proceedings of the
Platform for Advanced Scientific Computing Conference, PASC '19, ACM Press,
New York, NY, 2019, pp. 1-11, http://dx.doi.org/10.1145/3324989.3325721.
Dune, Dune, 2022, URL https://www.dune-project.org.

C. Uphoff, M. Bader, Yet another tensor toolbox for discontinuous Galerkin
methods and other applications, ACM Trans. Math. Softw. 46 (4) (2020) 1-40,
http://dx.doi.org/10.1145/3406835.

A.T.T. McRae, G.-T. Bercea, L. Mitchell, D.A. Ham, C.J. Cotter, Automated
generation and symbolic manipulation of tensor product finite elements, SIAM
J. Sci. Comput. 38 (5) (2016) 25-47, http://dx.doi.org/10.1137/15M1021167.
M. Homolya, R.C. Kirby, D.A. Ham, Exposing and exploiting structure: optimal
code generation for high-order finite element methods, 2017, URL https://arxiv.
org/abs/1711.02473.

R. Dorozhinskii, M. Bader, SeisSol on distributed multi-GPU systems: CUDA code
generation for the modal discontinuous Galerkin method, in: The International
Conference on High Performance Computing in Asia-Pacific Region, in: HPC Asia
2021, ACM Press, New York, NY, 2021, pp. 69-82, http://dx.doi.org/10.1145/
3432261.3436753.

D. Kempf, R. HeR, S. Miithing, P. Bastian, Automatic code generation for high-
performance discontinuous Galerkin methods on modern architectures, ACM
Trans. Math. Softw. 47 (1) (2020) 1-31, http://dx.doi.org/10.1145/3424144.
R.C. Kirby, A. Logg, A compiler for variational forms, ACM Trans. Math. Software
32 (3) (2006) 417-444, http://dx.doi.org/10.1145/1163641.1163644.

A. Logg, G.N. Wells, DOLFIN: Automated finite element computing, ACM Trans.
Math. Software 37 (2) (2010) http://dx.doi.org/10.1145/1731022.1731030.
D.A.D. Pietro, J.-M. Gratien, F. Hiaberlein, A. Michel, C. Prud’homme, Basic
concepts to design a DSL for parallel finite volume applications: extended
abstract, in: Proceedings of the 8th Workshop on Parallel/High-Performance
Object-Oriented Scientific Computing, POOSC ’09, ACM Press, New York, NY,
2009, pp. 1-12, http://dx.doi.org/10.1145/1595655.1595658.

E. Heisler, A. Deshmukh, H. Sundar, Finch documentation, 2023, URL https:
//paralab.github.io/Finch/dev/.

E. Heisler, A. Deshmukh, H. Sundar, Finch code repository, 2023, URL https:
//github.com/paralab/Finch.

J.S. Hesthaven, T. Warburton, Nodal Galerkin Methods:
Algorithms, Analysis, and Applications, Springer Verlag, 2008.

E. Heisler, S. Saurav, A. Deshmukh, S. Mazumder, P. Sadayappan, H. Sundar, A
Domain Specific Language Applied to Phonon Boltzmann Transport for Heat Con-
duction, ASME International Mechanical Engineering Congress and Exposition,
Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering, 2022,
http://dx.doi.org/10.1115/IMECE2022-95034.

E. Heisler, CacheSim.jl code repository, 2023, URL https://github.com/paralab/
CacheSim.jl.

J. Hammer, pycachesim: Python Cache Hierarchy Simulator, 2001, URL https:
//github.com/RRZE-HPC/pycachesim.

M. Fernando, D. Neilsen, H. Lim, E. Hirschmann, H. Sundar, Massively parallel
simulations of binary black hole intermediate-mass-ratio inspirals, SIAM J. Sci.
Comput. 42 (2) (2019) 97-138, http://dx.doi.org/10.1137/18M1196972.

A. Majumdar, C. Tien, F. Gemer, ‘Microscale energy transport in solids, Microsc.
Energy Transp. (1997) 3-93.

S.A. Ali, G. Kollu, S. Mazumder, P. Sadayappan, A. Mittal, Large-scale parallel
computation of the phonon Boltzmann Transport Equation, Int. J. Therm. Sci.
86 (2014) 341-351, http://dx.doi.org/10.1016/j.ijthermalsci.2014.07.019, URL
https://www.sciencedirect.com/science/article/pii/S1290072914002233.

S. Mazumder, Boltzmann transport equation based modeling of phonon heat
conduction: progress and challenges, Ann. Rev. Heat Transfer 24 (2022).

Discontinuous

Eric Heisler is a Ph.D. student at the University of Utah. He
is developing tools for scientific computing including Finch.


http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1515/jnma-2020-0043
http://dx.doi.org/10.1515/jnma-2020-0043
http://dx.doi.org/10.1515/jnma-2020-0043
https://dealii.org/deal92-preprint.pdf
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1145/2998441
https://openfoam.org
http://dx.doi.org/10.5194/gmd-12-1165-2019
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb7
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb7
https://Octree.Org
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb9
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb9
http://dx.doi.org/10.1145/3330345.3330346
http://dx.doi.org/10.1109/IPDPS53621.2022.00011
http://dx.doi.org/10.1109/IPDPS53621.2022.00011
http://dx.doi.org/10.1109/IPDPS53621.2022.00011
https://julialang.org/benchmarks
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb13
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1145/2566630
https://freefem.org/
http://dx.doi.org/10.1016/j.cma.2022.114907
http://dx.doi.org/10.1016/j.cma.2022.114907
http://dx.doi.org/10.1016/j.cma.2022.114907
https://www.sciencedirect.com/science/article/pii/S004578252200189X
https://www.sciencedirect.com/science/article/pii/S004578252200189X
https://www.sciencedirect.com/science/article/pii/S004578252200189X
http://dx.doi.org/10.1145/3324989.3325721
https://www.dune-project.org
http://dx.doi.org/10.1145/3406835
http://dx.doi.org/10.1137/15M1021167
https://arxiv.org/abs/1711.02473
https://arxiv.org/abs/1711.02473
https://arxiv.org/abs/1711.02473
http://dx.doi.org/10.1145/3432261.3436753
http://dx.doi.org/10.1145/3432261.3436753
http://dx.doi.org/10.1145/3432261.3436753
http://dx.doi.org/10.1145/3424144
http://dx.doi.org/10.1145/1163641.1163644
http://dx.doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1145/1595655.1595658
https://paralab.github.io/Finch/dev/
https://paralab.github.io/Finch/dev/
https://paralab.github.io/Finch/dev/
https://github.com/paralab/Finch
https://github.com/paralab/Finch
https://github.com/paralab/Finch
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb29
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb29
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb29
http://dx.doi.org/10.1115/IMECE2022-95034
https://github.com/paralab/CacheSim.jl
https://github.com/paralab/CacheSim.jl
https://github.com/paralab/CacheSim.jl
https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
http://dx.doi.org/10.1137/18M1196972
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb34
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb34
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb34
http://dx.doi.org/10.1016/j.ijthermalsci.2014.07.019
https://www.sciencedirect.com/science/article/pii/S1290072914002233
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb36
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb36
http://refhub.elsevier.com/S1877-7503(23)00041-8/sb36

E. Heisler et al.

Aadesh Deshmukh is a Master’s student at the University of
Utah. He is developing efficient software in Julia including
Finch.

Sandip Mazumder is a Professor of Mechanical and
Aerospace Engineering at The Ohio State University. His re-
search explores computational fluid dynamics, heat transfer,
and other nanoscale transport phenomena.

11

Journal of Computational Science 68 (2023) 101981

Ponnuswamy Sadayappan is a Professor in the School
of Computing at the University of Utah. He is research-
ing high-performance computing techniques for tensor
computations.

Hari Sundar is an Associate Professor in the School of
Computing at the University of Utah. He is researching high-
performance, parallel computing techniques for scientific
computing.



	Multi-discretization domain specific language and code generation for differential equations
	Introduction
	Related Work
	Domain Specific Language
	Input Expressions
	Indexed Entities
	Symbolic operators
	Configuration
	Mesh
	Solve and Post Processing

	Intermediate Representation
	Symbolic level
	Finch IR

	Code Generation
	Modifying Generated Code

	Features
	Code Generation Targets
	Multiple Discretizations
	Nonlinear Equations

	Performance Opportunities
	Cache Optimization

	Demonstration
	Steady-state Advection–diffusion–reaction Equation
	Bratu Equation (a Nonlinear Poisson Equation)
	Phonon Boltzmann Transport Equation

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


