
A Low-Cost Stochastic Computing-based

Fuzzy Filtering for Image Noise Reduction

Seyedeh Newsha Estiri∗, Amir Hossein Jalilvand∗, Samaneh Naderi+, M. Hassan Najafi∗, Mahdi Fazeli∗∗

∗University of Louisiana at Lafayette, +Iran University of Science and Technology, ∗∗Halmstad University

Corresponding Author: seyedeh-newsha.estiri1@louisiana.edu

AbstractÐ Images are often corrupted with noise. As a
result, noise reduction is an important task in image processing.
Common noise reduction techniques, such as mean or median
filtering, lead to blurring of the edges in the image, while fuzzy
filters are able to preserve the edge information. In this work, we
implement an efficient hardware design for a well-known fuzzy
noise reduction filter based on stochastic computing. The filter
consists of two main stages: edge detection and fuzzy smoothing.
The fuzzy difference, which is encoded as bit-streams, is used to
detect edges. Then, fuzzy smoothing is done to average the pixel
value based on eight directions. Our experimental results show a
significant reduction in the hardware area and power consump-
tion compared to the conventional binary implementation while
preserving the quality of the results.

Index TermsÐStochastic computing, fuzzy logic, noise reduc-
tion, low-cost design.

I. INTRODUCTION

Today, hardware-based data processing is bounded by some

strict design constraints such as low power consumption,

small circuit area, and reliability. Power and area costs, in

particular, are the main concerns in designing embedded

systems. Weighted binary radix has been the dominant format

for the representation of data in these systems. Computation

on this representation is rather complex and hence costly

as each bit has its own weight according to its position.

Considering the complexity of conventional binary designs,

unconventional design techniques are receiving more and more

attention. Stochastic computing (SC) is one of the unconven-

tional technique that offers low-cost design and high tolerance

to noise [3], [9], [20]. In SC, numbers in the [0, 1] interval

are presented using streams of random bits. The input data is

encoded by the probability of obtaining a one versus a zero.

Complex arithmetic operations can be implemented us-

ing simple logic gates in SC. For example, multiplication

operation can be performed using a single AND gate fed

with uncorrelated (independent) bit-streams. This provides a

significantly lower hardware cost compared to conventional

binary multiplication. SC has been used for implementing low-

cost designs for different application domains, from image

and video processing [16] to sound processing [21], neural

networks [12], sorting [13], and fuzzy [14], to name a few.

The theory of fuzzy logic [10] has been investigated in

numerous applications, including control systems, real-time

embedded systems, robotics, security, image and signal pro-

cessing, telecommunications, decision-making support sys-

tems, and chemical industry [6]. In particular, fuzzy techniques

have produced promising results for different image processing

applications [15] with numerous practical works such as in

industrial and medical image processing [11], [7]. In this

work, as the first study of its kind, we apply the concept of

SC to fuzzy logic-based filtering for image noise reduction.

In contrast to the two-valued logic in the binary sets (true

or false), fuzzy-logic variables have truth values in the [0, 1]
interval, the acceptable range of data in SC. In this work, we

exploit the concept of SC for the hardware-efficient design

of fuzzy filtering image noise reduction. Inspired by the fuzzy

noise reduction technique of [22], our system estimates a fuzzy

derivative to distinguish between local variations due to noise

and image structure. Our proposed SC design takes advantage

of the state-of-the-art low-discrepancy (LD) bit-streams [19]

for low-latency yet high accuracy processing. Our synthesis

results show a significant reduction in the hardware area,

power, and energy consumption compared to the conventional

binary implementation.

The rest of this paper is organized as follows. Section II

presents background information on SC and the implemented

fuzzy filter technique. Section III describes our proposed SC-

based design. Section IV evaluates the hardware efficiency

and the performance of the proposed architecture. Finally,

Section V concludes the paper.

II. BACKGROUND

A. Stochastic Computing

Stochastic computing (SC) is an unconventional computing

paradigm operating on random bit-streams. Independent of

the length, the ratio of the number of ones to the length

of the stream determines the bit-stream value. For example,

1101011101 is a representation for 0.7 in the stochastic do-

main. Conventionally, to convert data from conventional binary

to stochastic representation, a random number from a random

number source is compared with a constant number (i.e., the

input data). The output of this comparison produces one bit

of the bit-stream. For an N -bit bit-stream, the input number

is compared with N random numbers. Implementing complex

operations with simple hardware and the ability to tolerate high

rates of noise are the primary advantages of SC. Minimum

20
22

 IE
EE

 1
3t

h
In

te
rn

at
io

na
l G

re
en

 a
nd

 S
us

ta
in

ab
le

 C
om

pu
tin

g
Co

nf
er

en
ce

 (I
GS

C)
 |

 9
78

-1
-6

65
4-

65
50

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IG

SC
55

83
2.

20
22

.9
96

93
58

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore. Restrictions apply.

and maximum operations, for example, are two operations

widely used in the fuzzy system with simple implementation

in the stochastic domain. The minimum/maximum operation

is implemented with a single AND/OR gate when fed with two

correlated bit-streams, i.e., two bit-streams with a maximum

overlap in the position of ones [3]. The conventional binary

implementation of these operations, however, requires an n-

bit comparator and an n-bit multiplexer (MUX). This results

in a higher hardware area and power cost with the binary

implementation. SC-based designs are independent of the

precision of data; the same design can process input data with

higher precision by processing longer bit-streams.

Conventionally, pseudo-random number generators are used

in SC systems to convert data from binary to stochastic bit-

streams. Recently, quasi-random number generators, such as

Sobol [17] and Halton [4] sequence generators, have been used

to generate high-quality low discrepancy (LD) bit-streams.

LD bit-streams provide higher accuracy with significantly

shorter bit-streams compared to conventional pseudo-random

bit-streams. 1s and 0s are uniformly spaced in LD bit-streams,

so the bit-streams do not suffer from the random fluctuations

error [17]. The bit-streams converge faster to the expected

results, resulting in a lower processing time and energy con-

sumption.

In this work, we use Sobol sequences to generate LD bit-

streams. The first 2N numbers of any Sobol sequence can

precisely present all possible N -bit precision numbers in the

[0,1] interval. Hence, the only error in converting an N -

bit precision data to a 2N Sobol-based LD bit-stream is the

quantization error [18]. Sobol sequence generators, however,

are costly to implement in hardware. For a lower bit-stream

generation cost compared to conventional comparator-based

LD bit-stream generator that requires a costly Sobol sequence

generator, we use the finite-state machine (FSM)-based LD

bit-stream generator proposed in [5] to generate Sobol-based

LD bit-streams.

B. Fuzzy Filtering Technique

Noise reduction with feature preservation is a fundamental

problem in image processing. One of the main types of

noise is additive noise. This noise is defined when a value

with a specific distribution (e.g., Gaussian distribution) is

added to each image pixel. The fuzzy filter of this work

aims to remove the additive noise from input images. In

contrast to the mean and median filter-based noise reduction

techniques, which result in loss of edge information, the

selected filter can preserve edge information and details of

the image. The first stage for processing each image pixel

is to compute a fuzzy derivative. A set of 16 fuzzy rules is

then fired to determine a correction term for the processed

pixel value. These rules use the fuzzy derivative as input.

Small, negative and positive membership functions

are used in our fuzzy filter. The small membership function

can be adapted for more iterations of noise reduction. In this

approach, detecting the edges near the target pixel is the first

step in removing noise. Consider a 3 × 3 neighborhood of

Fig. 1. 3× 3 neighborhood of pixel (x, y).

pixel(x, y) as shown in Fig. 1. The derivative in direction D
(D ∈ dir = {NW,W,SW,S, SE,E,NE,N}) is defined as

the difference between pixel(x, y) and its neighbor in the D
direction. This derivative value is denoted by ∆D(x, y).

Consider an edge passing through the neighborhood of a

pixel(x, y) in the SW − NE direction. The derivative value

∆NW (x, y) will be large, but also the derivative values of the

neighboring pixels perpendicular to the edge’s direction can

be large. For example, in the NW direction, we can calculate

∆NW (x, y), ∆NW (x − 1, y + 1), and ∆NW (x + 1, y − 1).
The idea is to reduce the effect of one derivative value, which

is high due to noise. Therefore, if two out of three derivative

values are small, we can assume that no edge is present in

this direction [22]. This observation will be considered when

we formulate the fuzzy rule to calculate the fuzzy derivative

values. We define the following membership function:

m(a) =

{

1− |a|
Sd

, 0 ≤ a ≤ Sd
0, |a| > Sd

(1)

where Sd is an adaptive parameter. For example, the

value of the fuzzy derivative ∆F

NW
(x, y) for pixel(x, y) in

the NW -direction is calculated by applying the following rule:

if (∆NW (x, y) is small and ∆NW (x−1, y+1) is small)

or (∆NW (x, y) is small and ∆NW (x+1, y−1) is small)

or (∆NW (x−1, y+1) is small and ∆NW (x+1, y−1) is

small)

then ∆F

NW
(x, y) is small.

Sd determines the spread of the small membership func-

tion and ultimately the threshold for edge detection. Instead of

sampling the whole image for standard deviation (STD), we

take k×k blocks of the image and find their STD. We then take

the minimum STD across all blocks. We choose K = 6 for

efficiency [2]. This minimum deviation Sd will always be less

than the deviation in case of an edge. Finally, we multiply STD

by an amplification parameter (α) to increase noise reduction:

Sd = α× standard deviation (2)

We use a pair of fuzzy rules for each direction to compute

the correction term for the processed pixel value. The idea

behind these rules is as follows: if no edge is present in a

specific direction, the derivative value in that direction can

and will be used to compute the correction term. The first

part (edge assumption) can be realized by using the fuzzy

derivative value. For the second part (filtering), we must

distinguish between the positive and negative values of the

correction term. We can specify the following fuzzy rules to

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore. Restrictions apply.

Direction

(1)

Direction

(2)

Direction

(3)

Direction

(4)

Direction

(5)

Direction

(6)

Direction

(7)

Direction

(8)

Correction Calculator

Correction Accumulator

Output

C
o

rr1

C
o

rr2

C
o

rr3

C
o

rr4

C
o

rr5

C
o

rr6

C
o

rr7

C
o

rr8

 (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3)

 (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3) (3,1) (3,2) (3,3)

 (2,1) (2,2) (2,3)

 (1,1) (1,2) (1,3) (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,3) (3,2) (3,1)

 (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3)

UU

RL

D

RL

D

U

RL

D

U

RL

D

 (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3)

 (1,1) (1,2) (1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3)

 (1,1) (1,2)

(1,3)

 (2,1) (2,2) (2,3)

 (3,1) (3,2) (3,3)

Fig. 2. General design of the fuzzy filtering technique.

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

UU

LL

dd

RR

Direction(1) Direction(2) Direction(3) Direction(4)

Direction(5) Direction(6) Direction(7) Direction(8)

Fig. 3. An example a 3×3 block with the center pixel (2, 2). Eight directions
with their representative pixel values are illustrated.

obtain the final correction for a direction:

CDp
:if ∆F

NW
(x, y) is small and ∆NW (x, y) is positive)

then c is positive

CDn
:if ∆F

NW
(x, y) is small and ∆NW (x, y) is negative)

then c is negative

After obtaining CDp
and CDn

for all directions, we can

average their value to obtain the final correction:

∆C(x, y) = ΣD∈directions(CDp
− CDn

)/8 (3)

III. PROPOSED SC-BASED DESIGN

In this section, we present our proposed SC hardware

architecture for the discussed fuzzy filtering noise reduction

technique. As shown in Fig. 2, the design consists of two main

parts: 1) correction calculator and 2) correction accumulator.

We consider a 3× 3 block window. For each center pixel, the

correction value is calculated in eight directions. Fig. 3 shows

an example of a 3×3 block window with eight directions. The

calculated correction values of each direction are summed up

Min

 Opt

Process

Comp

(d>1)

Div

Sub.

Sub

Mult.

Abs

Value

Sub

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Abs

Value

Sub

 Abs

Value

Sub

1

M

U

X Corr1

--

Fig. 4. Conventional Binary Implementation of the Correction Calculator.

AddAddAdd DivDiv

8

input

Output

Corr1

Corr8

...

Fig. 5. Conventional Binary Implementation of the Correction Accumulator.

together and the produced result will be added to the input

pixel value.

A. Correction Calculator

Fig. 4 shows the conventional binary architecture of the

correction calculator. Fig. 6 illustrates the corresponding SC-

based implementation. First, the input values (∆(x,y) values

for eight directions) are converted to stochastic bit-streams

using a stochastic number generator (SNG) unit. Fig. 8 shows

the structure of the SNG unit. The inputs are converted to

Sobol-based LD bit-streams using the FSM-based bit-stream

generator proposed in [5]. One FSM is shared for converting

all inputs. However, each input is connected to a different

MUX unit. Considering a 3×3 block window, we compute the

fuzzy derivative values for eight directions. Also, we have an

adaptive parameter, Sd. So, in total, we need 3×8+1=25 MUX

units in the SNG unit. The fuzzy rule, a min-based function, is

implemented using a standard AND gate. According to Equa-

tion 1, the small membership function consists of a division,

a comparator, and a subtraction unit. For division, we employ

a state-of-the-art SC division circuit, called CORDIV [8], that

exploits the correlation between input bit-streams to realize the

division operation. CORDIV not only has a lower hardware

cost than the previous stochastic division circuits but also

provides higher accuracy. In the conventional binary design,

the comparator unit checks the division output to see if the

value is less than one. A comparator unit is unnecessary in the

stochastic design as the values are in the [0, 1] interval. The

subtraction unit can be implemented with a standard OR-gate

in the stochastic design. The last operation in the correction

calculator circuit is multiplication. As shown in Equation 2,

the final result is the correction component of direction D and

is a fraction of ∆(x,y).

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore. Restrictions apply.

 Opt

Process

Sub

Abs

Value

Sub

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Abs

Value

Sub

 Abs

Value

Sub

‘1’

ANDAND XOR
ANDAND

D

MUX

D

MUX

Corr1S

N

G

Fig. 6. Stochastic-based Implementation of the Correction Calculator.

CompComp

Corr1
MUXMUX

MUXMUX

(x-1,y-1) (x,y-1) (x+1,y-1)

(x-1,y) (x,y) (x+1,y)

(x-1,y+1) (x,y+1) (x+1,y+1)

(x-1,y-1) (x,y-1) (x+1,y-1)

(x-1,y) (x,y) (x+1,y)

(x-1,y+1) (x,y+1) (x+1,y+1)

‘0’

‘0’

N1

P1

AdditionSubSub DivDiv

8

input

Output

1N1N

...

8N

1P1P
...

8P

Accumulative

Parallel

Counter

Accumulative

Parallel

Counter

Fig. 7. Stochastic-based Implementation of the Correction Accumulator.

 Mux Mux

FSM-based Sobol generator

Clock

FSM-based Sobol generator

Clock

...

...

...
...

‘0’

 Mux Mux

...

‘0’a24

 Mux Mux

...

‘0’a1Sd

Fig. 8. SNG unit design. (a1,...,a24) are the ∆(x, y) values calculated for
pixel(x,y) and its neighbouring pixels in 8 directions. The other input is the
adaptive parameter Sd.

B. Correction Accumulator

Fig. 5 shows the block diagram of the conventional binary

design for the correction accumulator. After calculating the

correction values of all directions, we average their value to

obtain the final correction value. The final value result will

then be added to the pixel value. The correction values of

each direction are either positive or negative depending on

the sign of the ∆(x,y) value of the direction. A common

approach for handling negative data in the stochastic domain is

by extending the range of numbers from [0, 1] to [−1, 1] using

a linear transformation in a so-called bipolar encoding [3].

Bipolar SC, however, requires twice bit-stream length and

so twice processing time for the same accuracy compared to

stochastic unipolar encoding. We divide the correction values

into positive and negative subsets to handle negative correction

values in the proposed correction accumulator. As shown in

Fig. 7, a comparator is used to determine the sign of ∆(x,y).

For example, if the value of pixel (x+1,y) is greater than

the value of pixel (x,y), ∆E(x,y) and so the correction value

are positive. In the accumulation step (Accumulative Parallel

Counter (APC)), the correction values in the ªpositiveº subset

and the ªnegativeº subset are accumulated separately using

binary adders, implicitly converting them from bit-stream to

binary representation. The outputs of the two APC units are

then subtracted from each other. In the last step, the final

correction value is divided by eight and is added to the original

input pixel.

IV. DESIGN EVALUATION

In this section, we evaluate the hardware cost and the

performance of the proposed SC design compared to the

conventional binary implementation of the discussed fuzzy

noise reduction technique.

A. Cost Comparison

For hardware cost comparison, we developed RTL VHDL

descriptions for the proposed SC-based and the conventional

binary design. The designs were synthesized using the Syn-

opsys Design Compiler v2018.06 with the 45nm FreePDK

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I
HARDWARE COST COMPARISON OF THE PROPOSED SC AND CONVENTIONAL BINARY DESIGN.

THE BIT-STREAM LENGTH FOR THE SC DESIGNS IS 2BW , WHERE BW IS THE BIT WIDTH.

Bit

Width

Area

(µm2)

Power @Max Frequency

(mW)

Critical Path

(ns)

Energy

(pj)

Proposed Conventional Proposed Conventional Proposed Conventional Proposed Conventional

2 2,652 30,552 1.47 7.97 0.99 5.42 5.82 43.24

3 2,907 33,209 1.52 8.66 0.99 5.42 12.05 47.00

4 3,049 34,957 1.54 9.07 1.00 5.59 24.68 50.74

5 3,367 38,841 1.65 10.08 1.05 5.83 55.59 58.73

6 4,175 51,787 1.75 10.81 1.05 5.83 117.6 62.98

7 4,348 53,389 1.71 11.23 1.05 5.83 229.6 65.50

8 4,895 59,988 1.75 11.54 1.06 5.89 476.1 67.98

TABLE II
ACCURACY EVALUATION (MSE) OF THE PROPOSED SC WITH DIFFERENT

BIT-STREAM LENGTHS (BL) AND THE CONVENTIONAL BINARY DESIGN

σ = 5 σ = 10 σ = 15
Noisy image 1377 2381 3175

Conventional Binary Fuzzy Filter 310 605 883
Proposed Fuzzy Filter (BL=8) 335 661 901

Proposed Fuzzy Filter (BL=16) 321 631 897
Proposed Fuzzy Filter (BL=32) 317 629 891

library [1]. We report the synthesis results for different data

bit-widths (i.e., M = 2, 3, 4, 5, 6, 7 and 8). Table I reports the

synthesis results in terms of hardware footprint area, power

consumption at maximum working frequency, critical path

latency, and energy consumption. The energy consumption of

the proposed design is calculated by finding power × critical

path latency × number of clock cycles. As it can be seen,

the proposed design achieves up to 91.8% savings in the

hardware area and 84.7% reduction in power consumption.

The proposed design achieves a lower area and power cost for

all data bit-widths. However, in terms of energy consumption,

the proposed design provides lower energy for bit-widths less

than six. The energy saving rate decreases by increasing the

data-width as the number of processing cycles in the proposed

design increases by increasing the precision of data.

B. Accuracy Comparison

The fixed-point baseline design and the proposed bit-stream-

based design were implemented in MATLAB for accuracy

evaluation. Both approaches were evaluated with a test image

after adding different levels of Gaussian noise. Figure 9 shows

the representative test image. We corrupted the image with

the variance of Gaussian noise equal to 5, 10, and 15. To

evaluate the results, we calculated the mean squared error

(MSE) between the original image and the filtered image. For

high noise levels, we need to apply more iterations to reach an

MSE close to the median filter. However, one or two iterations

give us an acceptable noise reduction for low noise levels.

For more noise reduction, we can increase the amplification

α factor. Table II reports the MSE results. For the variance

Fig. 9. Original Test Image.

Fig. 10. Noisy image with additive Gaussian noise of variance = 10.

equal to 5, both the baseline and proposed stochastic filters

are applied in only one iteration. Three iterations are done to

achieve a lower MSE for the variance of Gaussian noise equal

to 10 and 15. The proposed SC fuzzy filter design performs as

well as the conventional binary-based fuzzy filter. The MSE

obtained from the proposed design is negligibly higher than the

baseline design, mainly due to the quantization errors. Figure

10 shows the dog image with noise var = 10. A 7×7 Median

filter and the fuzzy filter in stochastic and binary domains are

applied to the noisy image. As seen in Figure 11, the median

filter was unable to preserve the image’s details, such as the

grass, the border of the dog body and the image background

is blurred. However, both designs of the fuzzy filter were able

to keep the small details, and the output is sharper.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

(c)
Fig. 11. The output image after applying (a) conventional fuzzy filtering,
(b) stochastic-based fuzzy filtering, and (c) median filtering (7× 7).

V. CONCLUSION

This work proposed a low-cost hardware design for a fuzzy

noise reduction filter based on stochastic computing. The main

idea is to distinguish between local variations due to noise

and due to image structures such as edges. Synthesis results

confirm the efficiency of the proposed design. The stochastic-

based design provides significant saving in the hardware

area and power costs compared to the conventional binary

implementation while preserving the quality of the results.

ACKNOWLEDGMENTS

This work was supported in part by National Science

Foundation (NSF) grant #2019511, the Louisiana Board

of Regents Support Fund #LEQSF(2020-23)-RD-A-26, and

generous gifts from Cisco, NVidia, and Xilinx.

REFERENCES

[1] NCSU FreePDK 45nm Library. https://research.ece.ncsu.edu/eda/
freepdk/freepdk45/.

[2] Noise reduction using fuzzy filtering. https://devendrapratapyadav.
github.io/Fuzzy Image processing/, 2018.

[3] A. Alaghi, W. Qian, and J. P. Hayes. The Promise and Challenge of
Stochastic Computing. IEEE Trans. on Computer-Aided Design of Integ.

Circ. and Sys., 37(8):1515±1531, Aug 2018.
[4] Armin Alaghi and John P Hayes. Fast and accurate computation using

stochastic circuits. In 2014 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 1±4. IEEE, 2014.
[5] Sina Asadi, M. Hassan Najafi, and Mohsen Imani. A low-cost fsm-based

bit-stream generator for low-discrepancy stochastic computing. In 2021

Design, Automation Test in Europe Conference Exhibition (DATE),
pages 908±913, 2021.

[6] Zeungnam Bien and Kyung Chan Min. Fuzzy logic and its applications
to engineering. Information Sciences and Intelligent Systems. 1st Edn.,

Kluwer Academic Publishers, ISBN, 10:0792337557, 1995.
[7] Sylvie Bothorel, Bernadette Bouchon Meunier, and Serge Muller. A

fuzzy logic based approach for semiological analysis of microcalcifi-
cations in mammographic images. International Journal of Intelligent

Systems, 12(11-12):819±848, 1997.
[8] Te-Hsuan Chen and John P. Hayes. Design of division circuits for

stochastic computing. In 2016 IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI), pages 116±121, 2016.
[9] Brian R Gaines. Stochastic computing systems. Advances in information

systems science, pages 37±172, 1969.
[10] JA Goguen. La zadeh. fuzzy sets. information and control, vol. 8

(1965), pp. 338±353.-la zadeh. similarity relations and fuzzy orderings.
information sciences, vol. 3 (1971), pp. 177±200. The Journal of

Symbolic Logic, 38(4):656±657, 1973.
[11] Lars Hildebrand and Madjid Fathi. Soft computing as a methodology

for color processing. In EUSFLAT-ESTYLF Joint Conf., pages 263±266.
Citeseer, 1999.

[12] R. Hojabr, K. Givaki, S. R. Tayaranian, P. Esfahanian, A. Khonsari,
D. Rahmati, and M. H. Najafi. Skippynn: An embedded stochastic-
computing accelerator for convolutional neural networks. In 56th Design

Automation Conference (DAC), 2019.
[13] Amir Hossein Jalilvand, Seyedeh Newsha Estiri, Samaneh Naderi,

M. Hassan Najafi, and Mohsen Imani. A fast and low-cost comparison-
free sorting engine with unary computing: Late breaking results. In
Proceedings of the 59th ACM/IEEE Design Automation Conference,
DAC ’22, page 1390±1391, 2022.

[14] Amir Hossein Jalilvand, M. Hassan Najafi, and Mahdi Fazeli. Fuzzy-
logic using unary bit-stream processing. In 2020 IEEE International

Symposium on Circuits and Systems (ISCAS), pages 1±5, 2020.
[15] Etienne E Kerre and Mike Nachtegael. Fuzzy techniques in image

processing, volume 52. Springer Science & Business Media, 2000.
[16] Peng Li, D.J. Lilja, Weikang Qian, K. Bazargan, and M.D. Riedel.

Computation on stochastic bit streams digital image processing case
studies. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 22(3):449±462, 2014.
[17] Siting Liu and Jie Han. Energy efficient stochastic computing with

sobol sequences. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017, pages 650±653. IEEE, 2017.
[18] M. Hassan Najafi, Devon Jenson, David J. Lilja, and Marc D. Riedel.

Performing stochastic computation deterministically. IEEE Tran. on Very

Large Scale Integration (VLSI) Systems, 27(12):2925±2938, 2019.
[19] M Hassan Najafi, David J Lilja, and Marc Riedel. Deterministic

methods for stochastic computing using low-discrepancy sequences. In
2018 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 1±8. IEEE, 2018.
[20] Weikang Qian, Xin Li, Marc D Riedel, Kia Bazargan, and David J

Lilja. An architecture for fault-tolerant computation with stochastic
logic. IEEE transactions on computers, 60(1):93±105, 2010.

[21] Peter Schober, Seyedeh Newsha Estiri, Sercan Aygun, Nima TaheriNe-
jad, and Hassan Najafi. Sound Source Localization using Stochastic
Computing. In The 2022 International Conference on Computer-Aided

Design (ICCAD), pages 1±9, 2022.
[22] Dimitri Van De Ville, Mike Nachtegael, Dietrich Van der Weken,

Etienne E Kerre, Wilfried Philips, and Ignace Lemahieu. Noise reduction
by fuzzy image filtering. IEEE transactions on fuzzy systems, 11(4):429±
436, 2003.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on July 14,2023 at 18:51:07 UTC from IEEE Xplore. Restrictions apply.

