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ABSTRACT

Fairness in data-driven decision-making studies scenarios where in-
dividuals from certain population segments may be unfairly treated
when being considered for loan or job applications, access to public
resources, or other types of services. In location-based applications,
decisions are based on individual whereabouts, which often corre-
late with sensitive attributes such as race, income, and education.

While fairness has received significant attention recently, e.g., in
machine learning, there is little focus on achieving fairness when
dealing with location data. Due to their characteristics and specific
type of processing algorithms, location data pose important fairness
challenges. We introduce the concept of spatial data fairness to ad-
dress the specific challenges of location data and spatial queries. We
devise a novel building block to achieve fairness in the form of fair
polynomials. Next, we propose two mechanisms based on fair poly-
nomials that achieve individual spatial fairness, corresponding to
two common location-based decision-making types: distance-based
and zone-based. Extensive experimental results on real data show
that the proposed mechanisms achieve spatial fairness without
sacrificing utility.
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1 INTRODUCTION

In the past decade, location data became an integral part of many
applications, e.g., mobile apps, smart health, smart cities. Individual
locations are often used in creating user profiles, or as an input for
various decision-making processes (e.g., machine learning), which
may affect an individual’s access to public resources, loans, etc.

It is already well-understood that location bias has significant
effects on underprivileged communities, e.g., in the context of trans-
portation and housing [25]. Some public authorities designated
entire geographical regions as economically-disadvantaged areas
(EDA) [2]. However, while fairness has been studied recently in ML
settings [6] for generic data types [16], no specific solution studies
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fairness in spatial data processing. Addressing spatial data fairness
presents two specific challenges:

(1) Location data may lead, intentionally or inadvertently, to
exercise bias against individuals from disadvantaged backgrounds
in a stealth fashion. While it is illegal to use race or ethnicity in a
loan-granting or hiring decision, one may use location of current
residence as input. Even though location may not seem sensitive, it
may be used to discriminate against people of a certain ethnicity, as
on many occasions people from the same ethnic group congregate
in certain spatially-focused communities [18]. Similar concerns
exist for income or education level, which often exhibit strong
correlations with the location where an individual works, lives or
travels [9]. Note that, this sort of discrimination may often occur in-
advertently, as opaque ML algorithms automatically exploit certain
correlations in location data (e.g., higher default rates in certain
zipcodes), without realizing their fairness implications.

(2) Fairness is achieved through some data transformation de-
signed to prevent, or limit, the amount of bias in processing. This
causes loss of utility, whereby the result of processing can be sub-
optimal compared to the result obtained on the original data. Achiev-
ing fairness requires some utility loss, and the emerging fairness-
utility trade-off must be carefully considered when devising a fair-
ness mechanism. In the case of location data, utility has specific
formulations, which may impact results in a way that is unique to
spatial query processing algorithms. Using generic fairness mecha-
nisms devised for other types of data may lead to poor utility, as
seen in [27]. Therefore, it is desirable to design customized mech-
anisms for fighting bias in location data, such that the utility of
spatial information is not significantly decreased.

In this paper, we introduce specific mechanisms targeted at pro-
viding spatial fairness while preserving data utility. We focus on the
case of individual fairness [12], which is more difficult to achieve,
but provides a higher level of fairness guarantees compared to its
group-level counterpart. We provide specific definitions of location
bias, and carefully characterize how location data can be used to
exercise discriminatory decisions.

We introduce a novel construction called fair polynomials (Sec-
tion 3.1) that can be used as building block within mechanisms for
spatial fairness'. We perform a detailed exploration of fair poly-
nomials in order to understand their properties and the trade-off
achieved between enforcing fairness and preserving data utility.

We identify two broad categories of scenarios where location
bias occurs, and we define spatial fairness mechanisms for each:

e Distance-based fairness is relevant in location-based adver-
tising and ride-hailing, where the dominant query type is

'While our focus is on geospatial data, some of our results can be extended for other
types of data with continuous domains.
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nearest-neighbors (NN). In this setting, location bias oc-
curs when individuals are impacted by their distance to a
reference point. In location-based marketing, an algorithm
may advertise special deals to customers that are nearby a
newly-opened health food store. The specific coordinates
of the customers may be less relevant for utility, and in-
stead the distance to a landmark is the important factor
(i.e., the proximity to the store is a good indicator of like-
lihood of visiting it). While this may be efficient, it can
have fairness repercussions. For instance, if the algorithm
chooses the first 100 potential customers to reach based
on distance, it is possible that only a rich neighborhood
is covered. Customers from a poorer neighborhood that
is adjacent to the rich one may never be selected, due to
a slightly larger distance threshold. Figure 1a illustrates
this case. In this situation, we would like to ensure that
individuals from poorer backgrounds also get the chance
to benefit from special deals on healthy food, even though
they are slightly farther away (i.e., avoid the hard decision
boundary phenomenon).

e Zone-based fairness is applicable in scenarios like gerryman-
dering, loan analysis or insurance pricing, where spatial
range queries are the norm. In this case, we look at how to
ensure spatial fairness with respect to coordinate values, in-
stead of distances. This setting is broader, as it can provide
fairness with respect to any reference point. Conversely,
the amount of data utility sacrificed in the process may
be higher. Figure 1b illustrates this point, where two indi-
vidual homes are quoted significantly different insurance
premiums due to their surrounding characteristics. Ideally,
we would like the two residences to have similar premiums,
given their physical proximity.

Our specific contributions are:

e We identify the problem of bias in spatial data processing,
and formalize the notion of spatial data fairness;

e We introduce two definitions of spatial data fairness based
on common interaction types, namely distance-based and
zone-based fairness;

e We devise the novel concept of fair polynomials, which
can be used as a building block to obtain mechanisms that
achieve spatial fairness;

e We propose two mechanisms based on fair polynomials
that enforce distance-based and zone-based fairness;

o We perform an extensive experimental evaluation on real
datasets that shows the effectiveness of the proposed mech-
anisms, and investigates the fairness-utility trade-off.

The rest of the paper is organized as follows: Section 2 formalizes
the notions of bias and fairness for location data. Sections 3 and
4 introduce our proposed distance-based and zone-based fairness
mechanisms, respectively. We survey related work in Section 5. Sec-
tion 6 reports the results of our experimental evaluation, followed
by conclusions in Section 7.
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Figure 1: Examples of two common location bias scenarios.

2 SYSTEM MODEL
2.1 Location Bias

The existence of bias, rooted in data or algorithms, is commonly
used as a basis for reasoning on unfairness in decision-making.
Several sources of bias have been identified in the literature, such
as measurement bias [29] and behavioral bias [24], many of which
are intertwined. In this work, we formalize a type of bias that occurs
due to location data. Location bias is formally defined as follows:

Definition 1 (Location Bias). Distortion or algorithmic bias gener-
ated based on locations of entities in the geospatial domain or their
distances to reference points is referred to as location bias.

Distortion refers to the bias intrinsic to the data. Whereas algorith-
mic bias [5] refers bias that is generated by processing algorithms.
A category of bias closely related to algorithmic bias is called data
processing bias [24], which occurs during data cleaning, enrich-
ment, and aggregation. Our focus is on location bias sourced in
processing algorithms. Location bias appears in a variety of ap-
plications where distances or locations may cause discrimination
against individuals or groups. Consider the example in Fig. 2 in
which a store wants to contact nearby customers with daily offers.
A widely known algorithm such as nearest neighbors may be used to
decide which customers should be contacted. If fairness measures
are not considered, and if the store is located in a rich neighborhood,
customers who live in less privileged areas of the city may never
be contacted, and will be unable to enjoy the special offers.

Such an algorithmic advantage towards a particular group or
towards certain individuals is an example of distance-based location
bias with respect to a reference point. The distances can be repre-
sented as a one-dimensional input feature; however, the source of
location bias can be multidimensional, more commonly stored in
two or more dimensions, e.g., as latitudes and longitudes. Consider



classifying districts in a city as “high risk” or “low risk”, where more
police presence and government resources are allocated to locations
with higher crime rates. A strict boundary between a low-risk and
high-risk district dictates that nearby individuals placed oppositely
across the border are treated differently, despite their proximity. The
unfairness manifests in the number of police patrols, the tolerance
of police officers to crime, the cost of insurance, and the approval of
home improvement loans. To address location bias in classification
tasks, i.e., to prevent individuals with similar features from being
treated significantly different, i.e., unfairly, we first introduce the
notion of location fairness in Section 2.2, and then formulate the
problem of achieving location fairness in Section 2.3.

2.2 Spatial Fairness Definition

There are two categories of fairness definitions, namely group fair-
ness and individual fairness [13]. The former definition addresses
the case where a group with certain features is treated statistically
different compared to other groups. The latter approach focuses on
treating individuals with similar features in a similar way. We adopt
the use of individual fairness for spatial data, since (i) it provides
higher fairness guarantees; (ii) it is more suitable for continuous do-
main features such as locations, in contrast to categorical features
such as education, race, and gender; and (iii) location attributes
tend to be dynamic, and hence more relevant on an individual basis,
rather than for a group. To this end, we formally present the notion
of individual spatial fairness in Definition 2:

Definition 2. (Individual Spatial Fairness). Let £ = {I1, I, ..., I}
denote the set of individual locations that need to be classified
over the output set A, where I, € R¥. A randomized mapping
M : L — A(A) satisfies individual spatial fairness iff for every
two locations Iy, I, € L the (D, d)-Lipschitz constraint holds,
D(M(Iu), M(1)) < d(ly, 1) )
Intuitively, the definition states that the evaluation process M for
two similar locations should yield similar outcomes. The definition
relies on two key distance metrics, (1) similarity distance metric
d: VXV — R, measuring how similar individuals are, and (2)
a distance metric D(.) measuring the distance between outcome
distributions. The former metric will be defined thoroughly for
locations in the upcoming sections, as it is tailored to the specific
location interaction type. The latter metric, on the other hand, is
commonly defined as total variation norm or so-called statistical
distance. Given two probability distributions P and Q over outcome
space A, the statistical distance is calculated as

DR =2 3 IP(@ -0l

aceA

@)

Our focus in this work is on binary decision-making tasks, hence,
the output space is given by A = {0,1}. We assume a classifier
modeled as a randomized mechanism M : L — A(A) mapping
individuals over outcomes, where A(A) denotes all possible dis-
tributions. Thus, the classification of an individual I, € £ over
outcome space A is done according to the distribution of M(1). To
simplify notation, we assume function M to return the likelihood
of the positive outcome, i.e., M(Iy) = M(lyla = 1).
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Table 1: Summary of notations.

Symbol Description

L={l,...l,} Set of datapoints in RK
I; Distance from I; to reference point

m Number of datapoints

111p p-norm distance

A Classification output domain
d(.) Distance between datapoints
D(.) Distance between distributions
M(1;) Likelihood score of location /;

2.3 Problem Formulation

Consider m data points £ = {l, Iy, ..., I, } located in a k-dimensional
space (R¥). Each location represents an individual. Associated at-
tributes of data points are stored in a tabular format such that the
it" row of the table is dedicated to I; (as shown in Fig. 2).
Attribute Distance to Reference (DtR) represents the distance
from a reference point? R. We use as DtR metric the Minkowski
distance of order p (p-norm distance) defined for two data points

Iy = (x1, ... x¢) and I = (x7, ...,x,’c) as

”(lu,lv)“p =

The u-th entry of the DtR column is associated with datapoint I,, and
entails a scalar I, = ||(Iy, R)||p/y, where y = max (1, R)||p. Con-
= m

stant y ensures the range of distances is [0,1] (0 < [; < 1, Vi=l..m).
The DtR column is shown with DtR metric set to 2-norm. It is im-
portant to note that DtR is based on data representation, and it
is not to be confused with the two distance metrics d(.) and D(.),
which are crucial elements of individual fairness.

As part of our system model, we assume a classifier performing
decision-making on top of the data (this model aligns well with
current location-based applications, where some machine learning
is involved in data processing). Given an input individual u, the clas-
sifier M (1) returns a likelihood score for that individual based on
her location (e.g., likelihood of receiving a location advertisement).
Scores are real values in the range of 0 to 1.

The classifier output scores are shown in the last column of
Fig. 2b. For example, user A is located at the coordinate I4 with
the calculated distance from the reference point of V12 +1% =
V2 normalized to V2/v10, and the generated score of M(l4) =
0.8. Other features and attributes used in the model could be race,
gender, education, etc. The two problems we seek to address to
achieve individual fairness are defined as follows:

ProBLEM 1. (Distance-based Spatial Fairness) For a given location
dataset L with the corresponding DtRs {ly, ..., l;;}, and a function
M : L — [0,1], devise a mechanism to enforce individual distance-
based fairness (D, d)-Lipschitz constraints with respect to DIRs.

D(M(1;), M(Iy)) < d(li,1;) Vi, j € [1,...m] )

PROBLEM 2. (Zone-based Spatial Fairness) For a given location
dataset L = {l1, 1o, ..., 1;n}, and a function M : L — [0, 1], devise a

2The proposed approach can be extended to multiple reference points by using a
composite cost metric, or an existing locality-sensitive hashing (LSH) approach that
produces a single scalar distance value over multiple reference points.
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Figure 2: An example of distance-based fairness problem.

mechanism to enforce individual fairness (D, d)-Lipschitz constraints
with respect to location coordinates.

®)

Fairness mechanisms must inherently alter the output likelihood
scores in order to achieve the fairness requirement. Hence, there
is a cost for such an operation in terms of utility loss. Since we
expect the output of a fairness mechanism to be used for a learning
task, we choose as utility metric fitting error, a widely accepted ML
metric for output scores, formally presented in Definition 3.

D(M(Iy), M(Iy)) < d(l;, 1) Vi,je[1,..,m]

Definition 3. (Utility). Let 8 : M — M’ be a mechanism that
maps every likelihood score M to a likelihood score in M’ given
that M,M" : L — A(A). The fitting error (utility) of B is:

o 1
m

As an example, suppose that the output score is mapped to a
constant 0.5, i.e., M'(l;) = 0.5, Vi. The utility loss can then be

Do (Mts) - MY (1))

i=1

(6)

1
calculated as (/1(0.32 +0.2%2 +0.22) ~ 0.206.

3 DISTANCE-BASED SPATIAL FAIRNESS

We introduce a spatial fairness mechanism for Problem 1. Each
data point is augmented with a DtR column representing a user’s
distance from the reference point. Therefore, the most natural simi-
larity distance metric is 1-norm.

d(l;,1;) = |l; - 1 (7)

LEmMmA 3.1. Given the classifier output space of A = {0,1}, the
statistical distance for every two individuals can be calculated as

D(M(13), M(1y)) = IM(I;) — M(1))] (8)
Proor.
DM M) =5 > P@) - Q@) ©
ae{0,1}

%('M(li) - M|+ 11 -M(1L;) - (1 -M(I)))  (10)
[M(L;) — M(Ly)] (11)

]
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3.1 Fair-Polynomials

Despite the strong fairness guarantees provided by individual fair-
ness, applying a large number of hard constraints has limited its
practicality. A common mechanism for individual fairness is to de-
fine an application-specific optimization problem usually referred
to as vendor’s utility function and solve it while imposing individual
fairness hard constraints. Unfortunately, two major issues arise
with such an approach when applied to location data: (i) In existing
approaches, e.g., [27], a constraint optimization problem solver is
used to alter input locations such that fairness requirements are met.
The number of constraints grows quadratically with the number of
data points, which makes their enforcement computationally pro-
hibitive; (ii) The definition of the utility function in most scenarios
is not straightforward, confining applicable use cases.

We devise the concept of fair polynomials, the intuition behind
which is depicted in Figure 2c. A polynomial is efficiently fitted to
the output scores of the classifier with a reasonably low fitting error.
Fair polynomials no longer require enforcement of a large number
of hard constraints: given a new data point, its corresponding fair
value can be generated by evaluating the polynomial at that point.

Definition 4 (c-fair Polynomials). A single variable degree n
polynomial P(x) : R — R is said to be c-fair if and only if for every
two points x and y in its domain

IP(x) - P(y)| < clx — gl (12)

Given that a fair polynomial providing good estimates of likeli-
hood scores exists, by one-to-one mapping (fitting) of the likelihood
scores to polynomials, individual distance-based fairness can be
achieved for every two data points. The constant ¢ € [1,+inf]
in c-fair polynomials aims to exploit the trade-off between utility
and fairness. When ¢ = 1, the optimal individual location fairness
is achieved but is usually associated with a higher loss in utility.
When the value of ¢ grows larger, the fairness constraint is relaxed,
leading to higher utility but lower fairness.

As the distance-based fairness problem only involves scalars, our
focus is on single variable degree n polynomials. We will extend to
multi-variable polynomials to accommodate for multi-dimensional
data points and address Problem 2 in Section 4.1. In the following,
we answer three central questions, (i) what is the sufficient condi-
tion for a polynomial to be fair, (ii) how to derive the coefficients
of the polynomial by imposing individual fairness constraints, and
(iii) how to determine the degree of a fair polynomial.



3.2 Sufficient Condition for Fair Polynomials
There are several families of polynomials that preserve individ-
ual fairness over the defined distances for DtR. For example, one
such family of polynomials is P(x) = ¢x™/n which is proven in
Lemma 3.2 to be a c-fair polynomial.

LEMMA 3.2. The polynomial P(x) = cx™ /n, is a c-fair polynomial
for every two points x,y € [-1,1].

Proor. The proof can be derived by expanding the equation
and applying triangle inequality, considering that |x'y/| < 1, Vi, j.

xn_yn

| l(x—y)(x”_1 +xly+ L+ y™)
=c

n n
(clx =y (X" + "1yl + ... + [y"])
n

| <

(13)

|

| <clx-yl  (14)

]

A fair polynomial must be flexible enough to reduce the error

once the likelihood scores are fitted to the polynomial, and not

every fair family of polynomials is a viable option. Consider the
generic degree n polynomial written as

(15)

where a; are real numbers. In Theorem 1, we derive a sufficient
condition for polynomials of order n to preserve individual fairness.

P(x) = ap + aix + ... + apx",

THEOREM 1. A sufficient condition for a single variable degree
n polynomial P(x) = 2% aix' to be c-fair given that a; € R and

i=0
|x| < 1 is to have,
n

Zi|ai| <c

i=1

(16)

Proor. Following the definition of individual location fairness:

P(x)-P(y) = | Y @i’ =) < Y lai(x' = g (17)
i=1 i=1
< D aiGe =D (x| + 162yl + .+ ') (18)
i=1
< Y laixitx—y)l = -yl Y ila] (19)
i=1 i=1

The above inequality is true based on Jensen’s inequality (and also,
extended triangle inequality) as well as applying the result from
Lemma 3.2. Given that the inequality in Eq. (16) is satisfied, the
polynomial is proven to be c-fair based on the definition. O

The theorem indicates that if likelihood scores generated by
the model are fitted to a polynomial for which the coefficients are
selected such that )1, ila;| < c, then c-fairness is guaranteed for
data entries. The sufficient condition in Theorem 1 can be used
directly to learn c-fair polynomials, but the non-linearity existing
in the constraint can result in higher computation complexity, as
coefficients are unbounded. Theorem 2 addresses this problem by
deriving linear constraints over coefficients.

THEOREM 2. A sufficient condition for a 1-variable n-th degree
polynomial P(x) = 3, a;ix* to be c-fair is to have:
6XiXc

el < DT D)

Viel.n (a €R) (20)
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Proor. The bound on each a; value must allow for the maximum
degree of freedom while fitting the likelihood scores. Therefore,
the condition can be written as an optimization problem.

n
Minimize - Z a;
i=1
n (21)
Subject to Z ilajl < ¢
i=1
Writing the Lagrangian and applying the stationary condition
of Karush-Kuhn-Tucker (KKT) [15],

n n
L(ay, . and) = = D @i =AY ilail = ¢) (22)
i=1 i=1
oL i
=>—=—1—/1L=O—>ai=—/1i (23)
ada; a;
A can be derived from complementary slackness to be
¢ 6c
Ay it= A= —o—— 24
;l €= n(n+1)(2n+1) (24)
Therefore, bounds on the coefficients are given as
6ic
i| < ——— Viel. 25
el < Dy Vel (25)
m}

3.3 Derivation of Fair Polynomials

We employ a simple ML model to compute polynomial coefficients,
where each location distance represents a training sample used
to fit the likelihood scores to a polynomial. The training set can
be assembled by choosing at random a number of locations from
the same data domain as the application (e.g., residential locations
within a city). In cases where the target user population is already
known (e.g., the coordinates of customers for a store that is using
location-based advertising), this user set can be directly used for
training. In the following, to simplify notation, we assume the latter.

For a given training input /;, the polynomial output is derived as
P(l;) = ap + a1l; +...+anlin, (26)

We denote the matrix of all training examples as

1 0L li I
R I
1L, B m

Recall that m is the number of training examples, and the variables
that we learn are the a;s, which define the fair polynomial fitted to
the data. The vector of coefficients can be written as

a’ = [ag, a1, a3, ... an] (27)
and the likelihood scores are vectorized as
b = [M(1). M(L2), ... M(Im)] (28)
The convex optimization problem to learn a is formulated as:
Minimize ||La — b||2
6X1X 29
Subject to  |a;| < e (29

n(n+1)(2n+1)



This is equivalent to the least square problem with linear constraints
and can be solved efficiently with algorithms such as Trust Region
Reflective [11] and Bounded-variable least-squares [28], with com-
plexity linear to the order of the polynomial n. Existing work [27]
requires enforcing O(m?) hard constraints (m >> n).

The selection of the polynomial degree n can be conducted based
on a trial and error methodology. The optimal degree is the one
that results in the minimum variance of error between likelihood
scores and their corresponding values on the polynomial. Formally,
let e; denote the error between M(1;) and P(l;), i.e.,

ei = |[M(I;) — P(l;)] (30)
Then, the value of n > 1 is selected such that
m
n= argmin(z eiz)/(m -n-1) (31)
i=1

4 ZONE-BASED SPATIAL FAIRNESS

Revisiting the example in Figure 2, suppose that two users A and
B both apply for a home improvement loan, and despite living in
close proximity, one is categorized in an underdeveloped area and
the other in a developed region due to geographic segmentation. A
bank applies a classifier to decide whether an applicant should be
granted a loan. The applicant whose home is in the underdeveloped
category might be disadvantaged, as the location category can
significantly impact the output of the classifier. Individual fairness
argues that if two users are located close to each other, their output
likelihood scores should not differ significantly.

In the distance-based fairness case, a single variable c-fair poly-
nomial can fit output scores due to scalar distances. For multi-
dimensional data points, Definition 4 is no longer directly applicable.
To address this problem, we extend the definition to multivariate
polynomials to achieve individual fairness for higher dimensional
data points. The number of variables involved in fair polynomials
is equal to the dimensionality of data points (k).

Three key variables are involved in finding an efficient family of
fair polynomials that can fit the output likelihood scores with low
utility loss: (i) dimensionality of data k; (ii) the distance metric d(.)
and (iii) fair polynomial degree n. The individual fairness problem
can be characterized with respect to these criteria as follows:

e One-dimensional data representation (scalars), 1-norm dis-
tance, flexible order polynomial. This corresponds to the
distance-based fairness case.

e 2-Dimensional data representation, 2-norm distances; order
1 polynomial. This is the most common scenario for loca-
tions where the attribute columns include 2D coordinates,
and the fairness must be achieved with respect to Euclidean
distance between individuals.

o k-Dimensional data representation, 2-norm distances; order
1 polynomial.

o k-Dimensional data representation, p-norm distances; order
1 polynomial.

e k-Dimensional data representation, p-norm distances; flex-
ible order polynomial.

We formulate and derive the sufficiency condition to guarantee

individual fairness for each mentioned scenario. The optimization
problem in Eq. (29) is formulated with the derived constraints. We
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omit the vectorization process for conciseness. For several of the
proofs used in this section, we make use of Generalized Titu’s
Lemma provided in Lemma 4.1.

LEMMA 4.1 (GENERALIZED TITU’S LEMMA). Let m be an integer
greater than or equal to 2, a" a non-negative real number, and x; a
positive real number. Then,

a;" (Z ai)™
nm 2 =1 Y 1 !
> (32)
; Xi l l
PRrOOF. Proof is in Appendix B of our extended version’. O

4.1 2-norm, 2 dimensional data, Order 1
polynomial

For higher dimensional data, the most common scenario happens
when data points are in 2D, and the order of the polynomial is one.
In practice, data points represent coordinates of locations on the
map. Consider two locations Iy = (x1, x2) and I = (x],x;) in R?,
where x; and x{ are the x-axis coordinates, while xp and xé denote
y-axis coordinates. To achieve individual fairness with respect to
locations, the hard Lipschitz constraints dictate that:

D(M(1;), M(l)) < d(l;,1;) Vi, jel.m (33)

The distance between distribution scores, i.e., D(.), is calculated

as before based on Equation (3.1) and the distance between locations
is the 2-norm of data points (Euclidean distance), calculated as:

d(li, ) = 3 (x1 = x])% + (xz - x)? (39

We start by showing how a fair-polynomial can be derived for
the Euclidean similarity distance. Then, we relax the assumptions
and generalize the approach for arbitrary distance norms as well as
n-dimensional data points. Recall that as location data are stored
in 2D, the fair polynomial consists of two variables. The general-
ized definition of fair polynomials for order n polynomials and k
dimensional data is provided in Definition 5.

Definition 5 (Generalized c-Fair Polynomial). The polynomial

P(x1, %2, .0y Xp) - R¥ — R with real coefficients is c-fair iff for every
two points x = (x1, x, ..., X ) and x” = (x{,xé, <.s XJy) In its domain
[P (1, %2, .. Xm) = P(X], X500, X)) | < (35)

exd(x,x") =cx||(x,x")|lp

In the case of 2-dimensional locations and Euclidean distance,
fair polynomials imply that for every two locations I = (x1,x2)
and Iy = (x7, x;), we must have,

IPGrn,x2) = P(ep, )] < e x 30 =22+ (o —xp)? (36)
Where the polynomial is denoted by
P(x1,x2) = ag + aixy + azxz (37)

The goal is to learn the coefficients a; such that the polynomial
P(.) can model the output scores M(.) and preserve fairness with
respect to Euclidean distance. Theorem 3 provides the sufficiency
condition for a two-variables order one polynomial to be fair.

3https://github.com/SinaShaham/c-Fair-Polynomials/tree/main



THEOREM 3. A sufficient condition for a 2-variable first degree
polynomial P(x1,x3) = agp + ajx1 + azxz to be c-fair defined over
2-norm similarity distance is to have:

lal, laz| < ¢/V2

(a1az €R) (38)

Proor. On the one hand, based on Lemma 4.1, a lower bound
for Euclidean distances can be written as

A1) =61 = x))2 + (e~ x)? (39)
Pl = x{1+ ez = x 22 (40)
On the other hand, for the polynomial one can write
[P(x1,x2) = P(x],x3)| = |a1(x1 = x7) + az(x2 = x3)| (41)
< lall (e = x|+ lazall(x2 = x5)| (42)

By combining the two equations the sufficiency condition in Equa-
tion (38) can be derived from the following inequality

lag||(xr = x) [+lazll (xz — x3)| < (43)

e (Ix1 = x{| +|xz = x3)/ V2

The above theorem indicates that if the coefficients of polyno-
mials fitted to data are chosen such that |a1], |az| < ¢/V?2, fairness
is guaranteed for every two locations in the domain. The suffi-
ciency condition for first degree polynomials is generalized for
k-dimensional data points in space in Theorem 4 (the number of
variables in the polynomial is equal to the number of dimensions).

THEOREM 4. A sufficient condition for a k-variable first degree
polynomial P(x1, ..., xx) = ap + Zi'c:l ajx; defined over 2-norm simi-
larity distance to be c-fair is:

lail < c/Vk, Vi=1.k (a€R) (44)
PRroOF. Please see proof in Appendix B of our extended version.
O

4.2 p-norm, k dimensional, Order 1 polynomial

We relax the similarity metric for arbitrary p-norm distance, calcu-
lated for data points I; = (x1, ..., x¢) and [; = (x7, ..., x,’c) as

dli, ) = (45)

THEOREM 5. A sufficient condition for a k-variable first degree
polynomial P(x1, ..., xx) = ap + Zé‘:l ajx; defined over p-norm simi-
larity distance to be c-fair is:
kPl Vi=1.k

lai| < ¢/ (46)
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ProoF. Based on generalized Titu’s Lemma, we have on the one
hand a lower bound for Euclidean distances:

d(1:,1) (47)

Z(xq —xp)P >

q=1

k
P>
&t

On the other hand, for the polynomial one can write

i

k
=GP (k01 = () leg = xgl)/ Ykp!
gq=1

|P(x1, .o Xge) = P, oo xk)|—|Zaq(xq—xq)| (48)

k
< > lagllGeg x| (49)
=

Combining the two, we obtain:

k k
D lagli(eg = x| < D g = xgl/ kP~ (50)
g=1 gq=1
The inequality is satisfied when |aq| < 1/ Yk?~1. o

4.3 p-norm, k dimensional, Order n polynomial

So far, the sufficiency condition for c-fair polynomials was derived
for arbitrary norms in k-dimensional space based on order 1 poly-
nomials. Moreover, for distance-based fairness, c-fair polynomials
were developed for 1-dimensional distance using arbitrary degree
n polynomial. This subsection provides the theoretical background
for the generalized scenario in which the location data are in k
dimensions with the norm set to p, and degree n polynomials.

Although by increasing the degree of polynomials, a better fit
to likelihood scores can be achieved, the existence of monomials
in which multiple variables are involved leads to complexity in the
derivation of sufficiency conditions. To address this, we assume
that the monomials in the multivariable polynomial consist of only
a single variable. Making such an assumption comes with the cost
of utility loss; however, it greatly reduces the complexity of the
generic case. We assume that the degree n polynomial is expressed
as the summation of k univariate polynomials.

k
P(xl,xg,...,xk) = ZPi(xl'), (51)
i=1

where P;(x;) = Z 1 Qi ]x is a degree n univariate polynomial with
its input being x;, the ith variable in the original polynomial. The
assumption helps to remove existence of monomials with multiple
variables such as x3 2x3 and to simplify derivation of location

x5x
J7k
fairness sufficiency condltlons provided in Theorem 6.

THEOREM 6. A sufficient condition for a k-variable n-th degree
polynomial P(x1,x2, ..., X) = Zle P;(x;) to be c-fair defined over
p-norm similarity distance is to have:

6% jx cVkp-1

OXIXCVE i1 k&Vj=1..
nn+)(2ntl) J=

laij| < (52)



Proor. We write the equation in its component form shown in
Equation 51. An upper bound for P;(x;) can be derived as,

k k
IP(x1, o) = P, s Xl = | ) Pixi) = D PGD] (59)
i=1 i=1

k k
=1 > (Pilxi) = PieD)| < )" 1Pi(xi) = Pilx])] - (54)
i=1 i=1

An upper bound for the sub-terms for all j = 1...k can be derived as

> jlaijl (59
j=1

n
P (x)=Pi(x)] = | ) aij(x] = x)] < i = ]|
j=1 J

7=
The above inequality is derived based on Eq. (17) setting |x;| < 1.
We also use the lower bound derived in Eq. (47)

k
e X d(ly,Ip) > CZ g — x|/ Yp1
q=1

(56)

Putting the derived upper bound and lower bound together, the
following inequality is satisfied, and c-fairness is guaranteed.

n
i = x{1() jlaijl) < clx; = x|/ Kkp=! (57)
=1
n
> ilaijl < ¢f Yier1 (58)
j=1

By applying the method used in DtR, the bounds are linearized to,
6XjXc

< Viel.n (aj €R)
n(n+1)(2n+ 1) YepT '

(59)

laijl
o

It is worth noting that the generated scores by fair polynomials
can result in values greater than one or less than zero. In such
scenarios, the values are suppressed to one and zero, respectively.
It is straightforward to prove that the suppression process does
not violate the individual fairness constraints and leads to higher
utility.

5 RELATED WORK

Fairness notions can be grouped into two broad categories of Group
Fairness and Individual Fairness [12]. In group fairness, a protected
attribute of the dataset, such as race or gender, which is considered
to be critical in decision-making outcomes, partitions individuals
into groups. The ML model used for a decision-making task on the
dataset is considered to be fair if it achieves some statistical measure
across groups. A few of the key statistical measures include statisti-
cal parity [21][12], equalized odds [17], treatment equality [7], and
test fairness [10]. Individual fairness aims to give similar predictions
to similar outcomes, focusing on fairness for individuals as opposed
to groups. Group fairness notions are generally weaker than in-
dividual fairness notions [19]. Despite higher fairness guarantees
provided by individual fairness and fragility of group fairness no-
tions, group fairness notions are widely studied in the literature
due to their easier enforcement [23]. Only a handful of approaches
exist in the literature to achieve fairness in the geospatial domain.
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The current state-of-the-art approach to enforce individual lo-
cation fairness is to define a linear loss function once the likeli-
hood scores are generated and solve optimization under individual
fairness Lipschitz constraints. Let I be an instance of our prob-
lem consisting of a metricd : £ x £ — R, and a loss function
L: L XA — R, the optimization problem is defined as,

t(l) = i E E L(x, 60
P = s <L ati T 0
Subject to: Vx,y €: D(M(x),M(y)) <d(x,y) (61)

Vx € L: M(x) € A(A) (62)

One can see that the number of constraints in this mechanism
grows quadratically with the number of individuals, imposing a
large computational complexity on the system. The authors in [27]
formulate the loss function for location-based advertisements in
social media. Locations visited on the map are shown as binary
strings, and a classifier is used to predict whether a user should
receive a targeted advertisement. Moreover, not directly related
to locations, but for general purpose advertisement and auctions,
individual fairness is applied in [13]. Another application over
which the loss function has been defined is achieving individual
fairness in ranking and recommendation systems [26]. In ranking
systems, the amount of unfairness with respect to individuals is
measured after ranking, and a loss function aims to reorder ranking
such that the amount of individual unfairness is minimized [8].

Several attempts have also been made to apply the individual
fairness notion for clustering datapoints in Cartesian space. The
notion in [20] defines clustering conducted for a point in space
as fair if the average distance to the points in its own cluster is
not greater than the average distance to the points in any other
cluster. The authors in [22] focus on defining individual fairness
for k-median and k-means algorithms. Clustering is defined to be
individually fair if every point expects to have a cluster center
within a particular radius. To the best of our knowledge, no work
has directly defined individual fairness with respect to locations.

6 EXPERIMENTAL EVALUATION

We evaluate our proposed spatial data fairness mechanisms in
the two studied scenarios. For the distance-based case, we use
a dataset of taxi fares from New York City; for the zone-based case,
we consider budget allocation to police departments according to
the Chicago crime occurrence dataset. We ran experiments on a
3.40GHz core-i7 Intel processor with 8GB RAM. The code is imple-
mented in Python and uses the Trust Region Reflective least square
implementation from Scipy [4] (the maximum number of iterations
for convergence is set to 300, and the default tolerance threshold
value of le-2 is used to stop the optimization iterations).

6.1 Distance-based Spatial Fairness

We sampled 120,000 records from the NYC taxi dataset [1] providing
over 55 million trips and their associated fares. We deployed an Arti-
ficial Neural Network (ANN) to assess the likelihood of taxi fares be-
ing fair in the system. Specifically, we seek to capture whether there
is bias in the setting of fares based on the specific neighborhoods
where the trip starts/ends. Ideally, the trip distance should be the
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Figure 3: Distance-based Mechanism, New York taxi dataset.

only factor determining price (we carefully pre-process the dataset
such that trips are clustered according to the time of week/day, such
that differences in fare due to demand status and traffic causes are
eliminated). Our goal is to first understand the percentage of records
for which the individual fairness constraints do not hold with re-
spect to traveled distances. Then, we analyze the performance of
the proposed c-fair mechanism.
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Figure 4: Zone-based Mechanism.

ML Model for Fairness Characterization. Our ANN model consists
of two hidden layers with 200 and 100 neurons and an output layer
with two neurons representing the binary classification task. The
activation function used in the model is RELU, the dropout proba-
bility for each layer set to 0.4, and cross-entropy is used as the loss
function. The accuracy of the model is 92%. The input features in-
clude pick-up date and time (categorical hour, AM or PM, weekday,



EDT date), pick-up longitude, pick-up latitude, drop-off longitude,
drop-off latitude, passenger count, and distance traveled in kilo-
meters. The ride fares have a mean of 10 dollars with a standard
deviation of 7 dollars, and the average traveled distance is 3.31 km
with a standard deviation of 3.2 km. For model training purposes,
we split the data into training, validation and test datasets with
96,000, 12,000, and 12, 000 records, respectively. To generate the
ground truth for the training dataset, we have used price per kilo-
meter traveled as the indicator of how fair the associated traveled
fares are. For every hour of the day, the average price per kilometer
is calculated as the hard threshold between fair and unfair travels.
The trips above the threshold are classified as unfair, and the values
less than the threshold are assumed to be fair. This results in a total
of 21, 928 trips being categorized as unfair.

Once the ANN model is trained, we predict the likelihood of
each trip fare being fair on the test dataset. For every two records,
the individual fairness constraint is evaluated to reveal whether
fares are fair with respect to travel distances. In the absence of
any fairness mechanisms being deployed, 32% of constraints are
not satisfied, hence those trips are unfair. The 32% threshold is
highlighted with a red horizontal line in the experimental plots, to
highlight the fairness improvement of the considered approaches.

Next, we apply the proposed c-fair mechanism to achieve distance-
based fairness. Our experiments evaluate the performance based
on four key metrics: percentage of unfairness (constraints were not
satisfied), the degree of c-fair polynomial (n), the parameter ¢, and
the root mean square (RMS) of fitting error to likelihood scores.

Percentage of Unfairness. Fig. 3a shows the impact of increasing
c on reducing unfairness when the degree of the polynomial is
5, 10, 15, and 20. As expected, lower values of ¢ result in higher
fairness in the system, with maximum fairness achieved when c is
equal to one. For the maximum fairness scenario, the percentage of
unfairness is zero, meaning that all individual fairness constraints
are satisfied for every two records in the dataset. By increasing the
value of c, fair polynomials would have more room for maneuver
and fitting to likelihood scores, but it comes with the cost of higher
unfairness. Such behaviour demonstrates the utility-fairness trade-
off captured by the constant c. Increasing the polynomial degree can
be seen to improve the percentage of unfairness until it reaches the
point where it overfits the likelihood scores, and the performance
deteriorates. Fig. 3b shows more clearly the impact of increasing the
value of n on unfairness. Lower c values result in a lower percentage
of unfairness for all polynomial degrees.

Fitting Error. Figs. 3c and 3d demonstrate the amount of utility
loss in data due to fitting likelihood scores to a c-fair polynomial.
Two key trends can be observed from the figures. First, increasing
the value of ¢ lowers the fitting error. This is expected, as higher ¢
allows more flexibility for selecting coefficients and better fitting
performance. Second, increasing the value of n for the same value of
c raises the fitting error. To understand this behavior, one can intu-
itively look at the problem as allocating the same amount of budget
among several buckets representing coefficients. Although increas-
ing the degrees of freedom provides better fitting performance as
higher degree monomials exist, it further restricts the budget for
each coefficient. Thus, the lower degree monomials, which have a
more significant impact on the performance, are allocated a lower
amount of budget, negatively affecting the performance.
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Computational Complexity. We measure the computational over-
head of c-fair polynomials in terms of time complexity, number
of iterations before optimization convergence, and final optimiza-
tion cost (the final optimization cost represents the value of the
Scipy cost function upon reaching the solution [4]). Fig. 5 shows
the results. In each graph, the overhead is shown for four values of
¢ = 25, 50, 75, 100 plotted for varying polynomial degrees. Overall,
the time complexity is in the order of milliseconds and does not
limit the practical deployment of c-fair polynomials. The second
graph illustrates the number of iterations before reaching the opti-
mal point. The optimization process stops either by reaching the
maximum number of iterations (300) or when the relative change
in optimization cost remains below the tolerance threshold (1e-2).
As explained previously, the slight oscillation in the performance
is due to selecting a random start point for the optimization.

Note that, increasing the degree of polynomial n results in higher
computational overhead. This is expected, as more degrees of free-
dom (coefficients) lead to more effort for finding the optimal point.
Another consistent behavior across all three figures is that increas-
ing ¢ on average reduces the computation complexity cost and
facilitates reaching the near-optimal point. The trend is more ap-
parent in the final optimization cost figure, in which it can be clearly
seen that a higher c value leads to a lower cost.

6.2 Zone-based Spatial Fairness

For this scenario, we consider the case of budget allocation to
different areas of Chicago, USA, based on the measured crime
rates. We use the dataset provided by the Chicago Police Depart-
ment’s CLEAR (Citizen Law Enforcement Analysis and Reporting)
system [3], consisting of reported crime incidents in Chicago. A
1024 X 1024 grid is overlaid on top of the Chicago map, and the goal
is to fairly allocate the budget such that neighborhoods that are
close to each other are treated similarly. We have selected seven
major crime categories of sexual assault, homicide, kidnapping, sex
offense, motor vehicle theft, criminal damage, and narcotics among
the reported crimes, and trained a logistic regression model to infer
the likelihood of crime occurrence in each cell. The training dataset
includes the crime data from January to November 2015, and the
December data is chosen as the test dataset. The accuracy of the
model is 94% and its output is a set of likelihoods indicating the
probability of crime occurrence. The budget allocated to each cell
is proportional to the likelihood score derived by the classifier.

Once the likelihood scores are generated, they are used with
X and Y cell coordinates to achieve individual location fairness
with the distance metric set to 2-norm. In absence of any fairness
mechanism, we determine the percentage of individual location
fairness constraints not being satisfied at 44.0%.

To understand if the expansion to higher polynomial degrees is
essential, we started our experiments by focusing on degree one c-
fair polynomials and applying the results in Theorem 3. As expected,
the fitting error was rather high, and the utility was insufficient. We
also noticed that for degree one polynomials, the optimal solution
is achieved even when the value of c is equal to one. Therefore,
increasing ¢ does not help with improving the fitting error. Thus, it
is crucial to use higher degree polynomials for this purpose.
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(a) Distance-based Mechanism.

Next, we apply the optimization formulation derived in Theo-
rem 6, the most generalized formula allowing each dimension to
contribute in fitting with a degree n polynomial. Fig. 4 demonstrates
the performance of c-fair polynomials for achieving individual lo-
cation fairness on the crime dataset. The patterns are generally
consistent with the distance-based case considered in the New York
taxi fares experiment. Figs. 4a and 4b show the impact of ¢ and n on
the percentage of unfairness and Figs. 4c and 4d show the perfor-
mance with respect to utility. The red line is used as the reference
point representing the percentage of unfairness in the original data,
in the absence of fairness mechanisms.

Increasing the value of ¢ results in a lower degree of fairness
and higher fitting error once the degree of polynomial reaches
an acceptable level. This result further substantiates the fairness-
utility trade-off in the system, also observed in the distance-based
case. In a 2-dimensional space, using a degree of 10 and the above
polynomial to model each dimension can ensure that scores are
under-fitted, preventing high fitting error values. In summary, the
amount of fairness achieved with the fair polynomials, even for a

(b) Number of Iterations Before Convergence.

Computation Overhead Analysis on Chicago Crime Dataset.
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(c) Optimization Final Cost.

reasonably low degree for polynomials such as 15 and values of ¢
greater than 10, can be seen to be over 70%.

Fig. 6 shows the computation complexity of the proposed mech-
anism. The first point to notice is that a relatively high amount of
time is required to achieve zone fairness compared to the distance-
based setting. However, computational complexity is still low in
absolute value, and not an obstacle for practical deployment, with
sub-second execution time.

6.3 Comparison with benchmarks

We derive a threshold-based benchmark from the fairness mech-
anism in [12] and the binary evaluation approach in [14]. Given
constant threshold t, let polynomial P(l;) = t, and let parameter
a define by how much scores can be altered (e.g., if @ = 0.1, each
score can be altered by at most +0.1). For DtR, the benchmark cycles
through each score M; and pushes it towards polynomial P(l;) with
an allowance of a:

M(1;) « M(1;) + sign(P(l;) — a) X min(e, |P(l;) — al) (63)

The sign operation ensures the direction of change is favorable
to the benchmark, and min ensures that the change in score does
not overshoot P(I;). When « is zero, no utility loss exists, and the
unfairness percentage is the same as the original. As a grows, the
flexibility margin results in more constraints being satisfied until
absolute fairness is achieved. For the zone-based fairness case, we
use P(x,y) = (x +y)/V?2, easily extensible to higher dimensions.

Figure 7 shows the utility-fairness trade-off obtained by the
baseline for both distance- and zone-based cases. Unfairness is
monotonically decreasing as one allows a higher « alteration to
the score. We notice a plateau of desirable behavior concentrated
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Figure 9: Zone-based Mechanism Benchmark Comparison, Chicago crime dataset.

between o = [0.2,0.6], where the utility-fairness trade-off is good
(for a values below 0.2 unfairness is too high, whereas for values
higher than 0.6 the fairness gain fades in the multi-variate case).
Next, we focus our attention to this desirable « range, and we
plot the relative performance of the benchmark versus our proposed
fair polynomials approach for various values of ¢ and n. The plots in
Figs. 8 and 9 show that our approach provides a superior trade-off
compared to benchmarks. The benchmark outperforms only for
zone-based fairness when n = 20. In all other cases, fair polynomials
provide either a vastly improved utility, or better fairness.

7 CONCLUSION

We studied in depth the problem of individual fairness for location
data, and we identified sources of location bias that can occur in
practical settings. We formulated two distinct settings for spatial
fairness: distance-based and zone-based fairness, and we devised
specific techniques to achieve spatial fairness while preserving
utility, with the help of a novel construction called fair polynomials.
While our focus is on spatial fairness, fair polynomials have the
potential to provide useful building blocks for fairness in other
application domains. In future work, we plan to study more complex
types of spatial queries. At the same time, we plan to study the effect
of fairness mechanisms in conjunction with other constraints, such
as privacy, e.g., devise mechanisms that can achieve both spatial
fairness and location privacy.
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