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ABSTRACT
Fairness in data-driven decision-making studies scenarios where in-

dividuals from certain population segments may be unfairly treated

when being considered for loan or job applications, access to public

resources, or other types of services. In location-based applications,

decisions are based on individual whereabouts, which often corre-

late with sensitive attributes such as race, income, and education.

While fairness has received significant attention recently, e.g., in

machine learning, there is little focus on achieving fairness when

dealing with location data. Due to their characteristics and specific

type of processing algorithms, location data pose important fairness

challenges. We introduce the concept of spatial data fairness to ad-

dress the specific challenges of location data and spatial queries. We

devise a novel building block to achieve fairness in the form of fair

polynomials. Next, we propose two mechanisms based on fair poly-

nomials that achieve individual spatial fairness, corresponding to

two common location-based decision-making types: distance-based

and zone-based. Extensive experimental results on real data show

that the proposed mechanisms achieve spatial fairness without

sacrificing utility.
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1 INTRODUCTION
In the past decade, location data became an integral part of many

applications, e.g., mobile apps, smart health, smart cities. Individual

locations are often used in creating user profiles, or as an input for

various decision-making processes (e.g., machine learning), which

may affect an individual’s access to public resources, loans, etc.

It is already well-understood that location bias has significant

effects on underprivileged communities, e.g., in the context of trans-

portation and housing [25]. Some public authorities designated

entire geographical regions as economically-disadvantaged areas

(EDA) [2]. However, while fairness has been studied recently in ML

settings [6] for generic data types [16], no specific solution studies
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fairness in spatial data processing. Addressing spatial data fairness

presents two specific challenges:

(1) Location data may lead, intentionally or inadvertently, to

exercise bias against individuals from disadvantaged backgrounds

in a stealth fashion. While it is illegal to use race or ethnicity in a

loan-granting or hiring decision, one may use location of current

residence as input. Even though location may not seem sensitive, it

may be used to discriminate against people of a certain ethnicity, as

on many occasions people from the same ethnic group congregate

in certain spatially-focused communities [18]. Similar concerns

exist for income or education level, which often exhibit strong

correlations with the location where an individual works, lives or

travels [9]. Note that, this sort of discrimination may often occur in-

advertently, as opaque ML algorithms automatically exploit certain

correlations in location data (e.g., higher default rates in certain

zipcodes), without realizing their fairness implications.

(2) Fairness is achieved through some data transformation de-

signed to prevent, or limit, the amount of bias in processing. This

causes loss of utility, whereby the result of processing can be sub-

optimal compared to the result obtained on the original data. Achiev-

ing fairness requires some utility loss, and the emerging fairness-

utility trade-off must be carefully considered when devising a fair-

ness mechanism. In the case of location data, utility has specific

formulations, which may impact results in a way that is unique to

spatial query processing algorithms. Using generic fairness mecha-

nisms devised for other types of data may lead to poor utility, as

seen in [27]. Therefore, it is desirable to design customized mech-

anisms for fighting bias in location data, such that the utility of

spatial information is not significantly decreased.

In this paper, we introduce specific mechanisms targeted at pro-

viding spatial fairnesswhile preserving data utility. We focus on the

case of individual fairness [12], which is more difficult to achieve,

but provides a higher level of fairness guarantees compared to its

group-level counterpart. We provide specific definitions of location

bias, and carefully characterize how location data can be used to

exercise discriminatory decisions.

We introduce a novel construction called fair polynomials (Sec-

tion 3.1) that can be used as building block within mechanisms for

spatial fairness
1
. We perform a detailed exploration of fair poly-

nomials in order to understand their properties and the trade-off

achieved between enforcing fairness and preserving data utility.

We identify two broad categories of scenarios where location

bias occurs, and we define spatial fairness mechanisms for each:

• Distance-based fairness is relevant in location-based adver-

tising and ride-hailing, where the dominant query type is

1
While our focus is on geospatial data, some of our results can be extended for other

types of data with continuous domains.
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nearest-neighbors (NN). In this setting, location bias oc-

curs when individuals are impacted by their distance to a

reference point. In location-based marketing, an algorithm

may advertise special deals to customers that are nearby a

newly-opened health food store. The specific coordinates

of the customers may be less relevant for utility, and in-

stead the distance to a landmark is the important factor

(i.e., the proximity to the store is a good indicator of like-

lihood of visiting it). While this may be efficient, it can

have fairness repercussions. For instance, if the algorithm

chooses the first 100 potential customers to reach based

on distance, it is possible that only a rich neighborhood

is covered. Customers from a poorer neighborhood that

is adjacent to the rich one may never be selected, due to

a slightly larger distance threshold. Figure 1a illustrates

this case. In this situation, we would like to ensure that

individuals from poorer backgrounds also get the chance

to benefit from special deals on healthy food, even though

they are slightly farther away (i.e., avoid the hard decision

boundary phenomenon).

• Zone-based fairness is applicable in scenarios like gerryman-

dering, loan analysis or insurance pricing, where spatial

range queries are the norm. In this case, we look at how to

ensure spatial fairness with respect to coordinate values, in-

stead of distances. This setting is broader, as it can provide

fairness with respect to any reference point. Conversely,

the amount of data utility sacrificed in the process may

be higher. Figure 1b illustrates this point, where two indi-

vidual homes are quoted significantly different insurance

premiums due to their surrounding characteristics. Ideally,

we would like the two residences to have similar premiums,

given their physical proximity.

Our specific contributions are:

• We identify the problem of bias in spatial data processing,

and formalize the notion of spatial data fairness;

• We introduce two definitions of spatial data fairness based

on common interaction types, namely distance-based and

zone-based fairness;

• We devise the novel concept of fair polynomials, which

can be used as a building block to obtain mechanisms that

achieve spatial fairness;

• We propose two mechanisms based on fair polynomials

that enforce distance-based and zone-based fairness;

• We perform an extensive experimental evaluation on real

datasets that shows the effectiveness of the proposed mech-

anisms, and investigates the fairness-utility trade-off.

The rest of the paper is organized as follows: Section 2 formalizes

the notions of bias and fairness for location data. Sections 3 and

4 introduce our proposed distance-based and zone-based fairness

mechanisms, respectively. We survey related work in Section 5. Sec-

tion 6 reports the results of our experimental evaluation, followed

by conclusions in Section 7.

(a) Hard decision-boundary on distance to landmark
leads to unfairness towards poor neighborhoods.

(b) Despite close proximity, location 𝑥 is assigned a
much higher insurance premium compared to 𝑦.

Figure 1: Examples of two common location bias scenarios.

2 SYSTEM MODEL
2.1 Location Bias
The existence of bias, rooted in data or algorithms, is commonly

used as a basis for reasoning on unfairness in decision-making.

Several sources of bias have been identified in the literature, such

as measurement bias [29] and behavioral bias [24], many of which

are intertwined. In this work, we formalize a type of bias that occurs

due to location data. Location bias is formally defined as follows:

Definition 1 (Location Bias). Distortion or algorithmic bias gener-

ated based on locations of entities in the geospatial domain or their

distances to reference points is referred to as location bias.

Distortion refers to the bias intrinsic to the data.Whereas algorith-

mic bias [5] refers bias that is generated by processing algorithms.

A category of bias closely related to algorithmic bias is called data

processing bias [24], which occurs during data cleaning, enrich-

ment, and aggregation. Our focus is on location bias sourced in

processing algorithms. Location bias appears in a variety of ap-

plications where distances or locations may cause discrimination

against individuals or groups. Consider the example in Fig. 2 in

which a store wants to contact nearby customers with daily offers.

A widely known algorithm such as nearest neighborsmay be used to

decide which customers should be contacted. If fairness measures

are not considered, and if the store is located in a rich neighborhood,

customers who live in less privileged areas of the city may never

be contacted, and will be unable to enjoy the special offers.

Such an algorithmic advantage towards a particular group or

towards certain individuals is an example of distance-based location

bias with respect to a reference point. The distances can be repre-

sented as a one-dimensional input feature; however, the source of

location bias can be multidimensional, more commonly stored in

two or more dimensions, e.g., as latitudes and longitudes. Consider
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classifying districts in a city as “high risk” or “low risk”, where more

police presence and government resources are allocated to locations

with higher crime rates. A strict boundary between a low-risk and

high-risk district dictates that nearby individuals placed oppositely

across the border are treated differently, despite their proximity. The

unfairness manifests in the number of police patrols, the tolerance

of police officers to crime, the cost of insurance, and the approval of

home improvement loans. To address location bias in classification

tasks, i.e., to prevent individuals with similar features from being

treated significantly different, i.e., unfairly, we first introduce the

notion of location fairness in Section 2.2, and then formulate the

problem of achieving location fairness in Section 2.3.

2.2 Spatial Fairness Definition
There are two categories of fairness definitions, namely group fair-

ness and individual fairness [13]. The former definition addresses

the case where a group with certain features is treated statistically

different compared to other groups. The latter approach focuses on

treating individuals with similar features in a similar way. We adopt

the use of individual fairness for spatial data, since (i) it provides

higher fairness guarantees; (ii) it is more suitable for continuous do-

main features such as locations, in contrast to categorical features

such as education, race, and gender; and (iii) location attributes

tend to be dynamic, and hence more relevant on an individual basis,

rather than for a group. To this end, we formally present the notion

of individual spatial fairness in Definition 2:

Definition 2. (Individual Spatial Fairness). Let L = {𝒍1, 𝒍2, ..., 𝒍𝒎}
denote the set of individual locations that need to be classified

over the output set A, where 𝒍𝒖 ∈ R𝑘 . A randomized mapping

𝑀 : L → Δ(A) satisfies individual spatial fairness iff for every

two locations 𝒍𝒖 , 𝒍𝒗 ∈ L the (𝐷,𝑑)-Lipschitz constraint holds,

𝐷 (𝑀 (𝒍𝒖 ), 𝑀 (𝒍𝒗)) ≤ 𝑑 (𝒍𝒖 , 𝒍𝒗) (1)

Intuitively, the definition states that the evaluation process𝑀 for

two similar locations should yield similar outcomes. The definition

relies on two key distance metrics, (1) similarity distance metric

𝑑 : 𝑉 × 𝑉 → R, measuring how similar individuals are, and (2)

a distance metric 𝐷 (.) measuring the distance between outcome

distributions. The former metric will be defined thoroughly for

locations in the upcoming sections, as it is tailored to the specific

location interaction type. The latter metric, on the other hand, is

commonly defined as total variation norm or so-called statistical

distance. Given two probability distributions 𝑃 and𝑄 over outcome

space A, the statistical distance is calculated as

𝐷 (𝑃,𝑄) = 1

2

∑︁
𝑎∈A

|𝑃 (𝑎) −𝑄 (𝑎) |. (2)

Our focus in this work is on binary decision-making tasks, hence,

the output space is given by A = {0, 1}. We assume a classifier

modeled as a randomized mechanism 𝑀 : 𝐿 → Δ(A) mapping

individuals over outcomes, where Δ(A) denotes all possible dis-
tributions. Thus, the classification of an individual 𝒍𝒖 ∈ L over

outcome spaceA is done according to the distribution of𝑀 (𝒍𝒖 ). To
simplify notation, we assume function 𝑀 to return the likelihood

of the positive outcome, i.e.,𝑀 (𝒍𝒖 ) = 𝑀 (𝒍𝒖 |𝑎 = 1).

Table 1: Summary of notations.

Symbol Description

L = {𝒍1, ..., 𝒍𝒎} Set of datapoints in R𝑘

𝑙𝑖 Distance from 𝒍𝒊 to reference point

𝑚 Number of datapoints

| |.| |𝑝 𝑝-norm distance

A Classification output domain

𝑑 (.) Distance between datapoints

𝐷 (.) Distance between distributions

𝑀 (𝒍𝒊) Likelihood score of location 𝒍𝒊

2.3 Problem Formulation
Consider𝑚 data pointsL = {𝒍1, 𝒍2, ..., 𝒍𝒎} located in a𝑘-dimensional

space (R𝑘 ). Each location represents an individual. Associated at-

tributes of data points are stored in a tabular format such that the

𝑖𝑡ℎ row of the table is dedicated to 𝒍𝒊 (as shown in Fig. 2).

Attribute Distance to Reference (DtR) represents the distance

from a reference point
2 𝑹. We use as DtR metric the Minkowski

distance of order 𝑝 (𝑝-norm distance) defined for two data points

𝒍𝒖 = (𝑥1, ..., 𝑥𝑘 ) and 𝒍𝒗 = (𝑥 ′
1
, ..., 𝑥 ′

𝑘
) as

| | (𝒍𝒖 , 𝒍𝒗) | |𝑝 =
𝑝

√√√
𝑘∑︁
𝑖=1

(𝑥𝑖 − 𝑥 ′
𝑖
)𝑝 . (3)

The𝑢-th entry of the DtR column is associatedwith datapoint 𝒍𝒖 and

entails a scalar 𝑙𝑢 = | | (𝒍𝒖 , 𝑹) | |𝑝/𝛾 , where𝛾 = 𝑚𝑎𝑥
𝑖=1...𝑚

| | (𝒍𝒊, 𝑹) | |𝑝 . Con-
stant 𝛾 ensures the range of distances is [0,1] (0 ≤ 𝑙𝑖 ≤ 1, ∀𝑖=1...𝑚).

The DtR column is shown with DtR metric set to 2-norm. It is im-

portant to note that DtR is based on data representation, and it

is not to be confused with the two distance metrics 𝑑 (.) and 𝐷 (.),
which are crucial elements of individual fairness.

As part of our system model, we assume a classifier performing

decision-making on top of the data (this model aligns well with

current location-based applications, where some machine learning

is involved in data processing). Given an input individual𝑢, the clas-

sifier𝑀 (𝒍𝒖 ) returns a likelihood score for that individual based on

her location (e.g., likelihood of receiving a location advertisement).

Scores are real values in the range of 0 to 1.

The classifier output scores are shown in the last column of

Fig. 2b. For example, user 𝐴 is located at the coordinate 𝒍𝑨 with

the calculated distance from the reference point of

√
1
2 + 1

2 =√
2 normalized to

√
2/
√
10, and the generated score of 𝑀 (𝒍𝑨) =

0.8. Other features and attributes used in the model could be race,

gender, education, etc. The two problems we seek to address to

achieve individual fairness are defined as follows:

Problem 1. (Distance-based Spatial Fairness) For a given location

dataset L with the corresponding DtRs {𝑙1, ..., 𝑙𝑚}, and a function

𝑀 : L → [0, 1], devise a mechanism to enforce individual distance-

based fairness (𝐷,𝑑)-Lipschitz constraints with respect to DtRs.

𝐷 (𝑀 (𝒍𝒊), 𝑀 (𝒍𝒋)) ≤ 𝑑 (𝑙𝑖 , 𝑙 𝑗 ) ∀𝑖, 𝑗 ∈ [1, ...,𝑚] (4)

Problem 2. (Zone-based Spatial Fairness) For a given location

dataset L = {𝒍1, 𝒍2, ..., 𝒍𝒎}, and a function𝑀 : L → [0, 1], devise a
2
The proposed approach can be extended to multiple reference points by using a

composite cost metric, or an existing locality-sensitive hashing (LSH) approach that

produces a single scalar distance value over multiple reference points.
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(a) Data collection. (b) User locations and classification scores. (c) 𝑐-fair polynomials.

Figure 2: An example of distance-based fairness problem.

mechanism to enforce individual fairness (𝐷,𝑑)-Lipschitz constraints
with respect to location coordinates.

𝐷 (𝑀 (𝒍𝒊), 𝑀 (𝒍𝒋)) ≤ 𝑑 (𝒍𝒊, 𝒍𝒋) ∀𝑖, 𝑗 ∈ [1, ...,𝑚] (5)

Fairness mechanisms must inherently alter the output likelihood

scores in order to achieve the fairness requirement. Hence, there

is a cost for such an operation in terms of utility loss. Since we

expect the output of a fairness mechanism to be used for a learning

task, we choose as utility metric fitting error, a widely accepted ML

metric for output scores, formally presented in Definition 3.

Definition 3. (Utility). Let B : 𝑀 → 𝑀 ′
be a mechanism that

maps every likelihood score 𝑀 to a likelihood score in 𝑀 ′
given

that𝑀,𝑀 ′
: L → Δ(A). The fitting error (utility) of B is:

2

√√
1

𝑚

𝑚∑︁
𝑖=1

(𝑀 (𝒍𝒊) −𝑀 ′(𝒍𝒊))2 (6)

As an example, suppose that the output score is mapped to a

constant 0.5, i.e., 𝑀 ′(𝒍𝒊) = 0.5, ∀𝑖 . The utility loss can then be

calculated as
2

√︂
1

4

(0.32 + 0.22 + 0.22) ≈ 0.206.

3 DISTANCE-BASED SPATIAL FAIRNESS
We introduce a spatial fairness mechanism for Problem 1. Each

data point is augmented with a DtR column representing a user’s

distance from the reference point. Therefore, the most natural simi-

larity distance metric is 1-norm.

𝑑 (𝑙𝑖 , 𝑙 𝑗 ) = |𝑙𝑖 − 𝑙 𝑗 | (7)

Lemma 3.1. Given the classifier output space of A = {0, 1}, the
statistical distance for every two individuals can be calculated as

𝐷 (𝑀 (𝒍𝒊), 𝑀 (𝒍𝒋)) = |𝑀 (𝑙𝑖 ) −𝑀 (𝑙 𝑗 ) | (8)

Proof.

𝐷 (𝑀 (𝒍𝒊), 𝑀 (𝒍𝒋)) =
1

2

∑︁
𝑎∈{0,1}

|𝑃 (𝑎) −𝑄 (𝑎) | (9)

=
1

2

( |𝑀 (𝒍𝒊) −𝑀 (𝒍𝒋) | + |1 −𝑀 (𝒍𝒊) − (1 −𝑀 (𝒍𝒋)) |) (10)

= |𝑀 (𝒍𝒊) −𝑀 (𝒍𝒋) | (11)

□

3.1 Fair-Polynomials
Despite the strong fairness guarantees provided by individual fair-

ness, applying a large number of hard constraints has limited its

practicality. A common mechanism for individual fairness is to de-

fine an application-specific optimization problem usually referred

to as vendor’s utility function and solve it while imposing individual

fairness hard constraints. Unfortunately, two major issues arise

with such an approach when applied to location data: (i) In existing

approaches, e.g., [27], a constraint optimization problem solver is

used to alter input locations such that fairness requirements are met.

The number of constraints grows quadratically with the number of

data points, which makes their enforcement computationally pro-

hibitive; (ii) The definition of the utility function in most scenarios

is not straightforward, confining applicable use cases.

We devise the concept of fair polynomials, the intuition behind

which is depicted in Figure 2c. A polynomial is efficiently fitted to

the output scores of the classifier with a reasonably low fitting error.

Fair polynomials no longer require enforcement of a large number

of hard constraints: given a new data point, its corresponding fair

value can be generated by evaluating the polynomial at that point.

Definition 4 (𝑐-fair Polynomials). A single variable degree 𝑛

polynomial 𝑃 (𝑥) : R→ R is said to be 𝑐-fair if and only if for every

two points 𝑥 and 𝑦 in its domain

|𝑃 (𝑥) − 𝑃 (𝑦) | ≤ 𝑐 |𝑥 − 𝑦 | (12)

Given that a fair polynomial providing good estimates of likeli-

hood scores exists, by one-to-one mapping (fitting) of the likelihood

scores to polynomials, individual distance-based fairness can be

achieved for every two data points. The constant 𝑐 ∈ [1, + inf]
in 𝑐-fair polynomials aims to exploit the trade-off between utility

and fairness. When 𝑐 = 1, the optimal individual location fairness

is achieved but is usually associated with a higher loss in utility.

When the value of 𝑐 grows larger, the fairness constraint is relaxed,

leading to higher utility but lower fairness.

As the distance-based fairness problem only involves scalars, our

focus is on single variable degree 𝑛 polynomials. We will extend to

multi-variable polynomials to accommodate for multi-dimensional

data points and address Problem 2 in Section 4.1. In the following,

we answer three central questions, (i) what is the sufficient condi-

tion for a polynomial to be fair, (ii) how to derive the coefficients

of the polynomial by imposing individual fairness constraints, and

(iii) how to determine the degree of a fair polynomial.
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3.2 Sufficient Condition for Fair Polynomials
There are several families of polynomials that preserve individ-

ual fairness over the defined distances for DtR. For example, one

such family of polynomials is 𝑃 (𝑥) = 𝑐𝑥𝑛/𝑛 which is proven in

Lemma 3.2 to be a 𝑐-fair polynomial.

Lemma 3.2. The polynomial 𝑃 (𝑥) = 𝑐𝑥𝑛/𝑛, is a 𝑐-fair polynomial

for every two points 𝑥,𝑦 ∈ [−1, 1].

Proof. The proof can be derived by expanding the equation

and applying triangle inequality, considering that |𝑥𝑖𝑦 𝑗 | ≤ 1,∀𝑖, 𝑗 .

𝑐 | 𝑥
𝑛 − 𝑦𝑛

𝑛
| = 𝑐 | (𝑥 − 𝑦) (𝑥𝑛−1 + 𝑥𝑛−1𝑦 + ... + 𝑦𝑛)

𝑛
| ≤ (13)

(𝑐 |𝑥 − 𝑦 |) ( |𝑥𝑛−1 | + |𝑥𝑛−1𝑦 | + ... + |𝑦𝑛 |)
𝑛

| ≤ 𝑐 |𝑥 − 𝑦 | (14)

□
A fair polynomial must be flexible enough to reduce the error

once the likelihood scores are fitted to the polynomial, and not

every fair family of polynomials is a viable option. Consider the

generic degree 𝑛 polynomial written as

𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥 + ... + 𝑎𝑛𝑥
𝑛, (15)

where 𝑎𝑖 are real numbers. In Theorem 1, we derive a sufficient

condition for polynomials of order 𝑛 to preserve individual fairness.

Theorem 1. A sufficient condition for a single variable degree

𝑛 polynomial 𝑃 (𝑥) =
∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑖
to be 𝑐-fair given that 𝑎𝑖 ∈ R and

|𝑥 | ≤ 1 is to have,

𝑛∑︁
𝑖=1

𝑖 |𝑎𝑖 | ≤ 𝑐 (16)

Proof. Following the definition of individual location fairness:

|𝑃 (𝑥)−𝑃 (𝑦) | = |
𝑛∑︁
𝑖=1

𝑎𝑖 (𝑥𝑖 − 𝑦𝑖 ) | ≤
𝑛∑︁
𝑖=1

|𝑎𝑖 (𝑥𝑖 − 𝑦𝑖 ) | (17)

≤
𝑛∑︁
𝑖=1

( |𝑎𝑖 (𝑥 − 𝑦) |) ( |𝑥𝑖−1 | + |𝑥𝑖−2𝑦 | + ... + |𝑦𝑖 |) (18)

≤
𝑛∑︁
𝑖=1

|𝑎𝑖 × 𝑖 (𝑥 − 𝑦) | = |𝑥 − 𝑦 |
𝑛∑︁
𝑖=1

𝑖 |𝑎𝑖 | (19)

The above inequality is true based on Jensen’s inequality (and also,

extended triangle inequality) as well as applying the result from

Lemma 3.2. Given that the inequality in Eq. (16) is satisfied, the

polynomial is proven to be 𝑐-fair based on the definition. □

The theorem indicates that if likelihood scores generated by

the model are fitted to a polynomial for which the coefficients are

selected such that

∑𝑛
𝑖=1 𝑖 |𝑎𝑖 | ≤ 𝑐 , then 𝑐-fairness is guaranteed for

data entries. The sufficient condition in Theorem 1 can be used

directly to learn 𝑐-fair polynomials, but the non-linearity existing

in the constraint can result in higher computation complexity, as

coefficients are unbounded. Theorem 2 addresses this problem by

deriving linear constraints over coefficients.

Theorem 2. A sufficient condition for a 1-variable 𝑛-th degree

polynomial 𝑃 (𝑥) = ∑𝑛
𝑖=1 𝑎𝑖𝑥

𝑖
to be 𝑐-fair is to have:

|𝑎𝑖 | ≤
6 × 𝑖 × 𝑐

𝑛(𝑛 + 1) (2𝑛 + 1) ∀ 𝑖 ∈ 1...𝑛 (𝑎𝑖 ∈ R) (20)

Proof. The bound on each𝑎𝑖 valuemust allow for themaximum

degree of freedom while fitting the likelihood scores. Therefore,

the condition can be written as an optimization problem.

Minimize −
𝑛∑︁
𝑖=1

𝑎𝑖

Subject to

𝑛∑︁
𝑖=1

𝑖 |𝑎𝑖 | ≤ 𝑐

(21)

Writing the Lagrangian and applying the stationary condition

of Karush–Kuhn–Tucker (KKT) [15],

𝐿(𝑎1, ..., 𝑎𝑛, 𝜆) = −
𝑛∑︁
𝑖=1

𝑎𝑖 − 𝜆(
𝑛∑︁
𝑖=1

𝑖 |𝑎𝑖 | − 𝑐) (22)

⇒ 𝜕𝐿

𝜕𝑎𝑖
= −1 − 𝜆

𝑖

𝑎𝑖
= 0 → 𝑎𝑖 = −𝜆𝑖 (23)

𝜆 can be derived from complementary slackness to be

𝜆

𝑛∑︁
𝑖=1

𝑖2 = 𝑐 → 𝜆 =
6𝑐

𝑛(𝑛 + 1) (2𝑛 + 1) (24)

Therefore, bounds on the coefficients are given as

|𝑎𝑖 | ≤
6𝑖𝑐

𝑛(𝑛 + 1) (2𝑛 + 1) ∀ 𝑖 ∈ 1...𝑛 (25)

□

3.3 Derivation of Fair Polynomials
We employ a simple ML model to compute polynomial coefficients,

where each location distance represents a training sample used

to fit the likelihood scores to a polynomial. The training set can

be assembled by choosing at random a number of locations from

the same data domain as the application (e.g., residential locations

within a city). In cases where the target user population is already

known (e.g., the coordinates of customers for a store that is using

location-based advertising), this user set can be directly used for

training. In the following, to simplify notation, we assume the latter.

For a given training input 𝑙𝑖 , the polynomial output is derived as

𝑃 (𝑙𝑖 ) = 𝑎0 + 𝑎1𝑙𝑖 + ... + 𝑎𝑛𝑙
𝑛
𝑖 , (26)

We denote the matrix of all training examples as

𝐿 =


1 𝑙1 𝑙2

1
... 𝑙𝑛

1

1 𝑙2 𝑙2
2

... 𝑙𝑛
2

. . . . .

1 𝑙𝑛 𝑙2𝑛 ... 𝑙𝑛𝑚

 .
Recall that𝑚 is the number of training examples, and the variables

that we learn are the 𝑎𝑖s, which define the fair polynomial fitted to

the data. The vector of coefficients can be written as

𝒂𝑇 = [𝑎0, 𝑎1, 𝑎2, ..., 𝑎𝑛] (27)

and the likelihood scores are vectorized as

𝒃𝑇 = [𝑀 (𝑙1), 𝑀 (𝑙2), ..., 𝑀 (𝑙𝑚)] (28)

The convex optimization problem to learn 𝒂 is formulated as:

Minimize | |𝐿𝒂 − 𝒃 | |2

Subject to |𝑎𝑖 | ≤
6 × 𝑖 × 𝑐

𝑛(𝑛 + 1) (2𝑛 + 1)
(29)
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This is equivalent to the least square problemwith linear constraints

and can be solved efficiently with algorithms such as Trust Region

Reflective [11] and Bounded-variable least-squares [28], with com-

plexity linear to the order of the polynomial 𝑛. Existing work [27]

requires enforcing 𝑂 (𝑚2) hard constraints (𝑚 >> 𝑛).

The selection of the polynomial degree 𝑛 can be conducted based

on a trial and error methodology. The optimal degree is the one

that results in the minimum variance of error between likelihood

scores and their corresponding values on the polynomial. Formally,

let 𝑒𝑖 denote the error between𝑀 (𝒍𝒊) and 𝑃 (𝑙𝑖 ), i.e.,
𝑒𝑖 = |𝑀 (𝒍𝒊) − 𝑃 (𝑙𝑖 ) | (30)

Then, the value of 𝑛 ≥ 1 is selected such that

𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛(
𝑚∑︁
𝑖=1

𝑒2𝑖 )/(𝑚 − 𝑛 − 1) (31)

4 ZONE-BASED SPATIAL FAIRNESS
Revisiting the example in Figure 2, suppose that two users 𝐴 and

𝐵 both apply for a home improvement loan, and despite living in

close proximity, one is categorized in an underdeveloped area and

the other in a developed region due to geographic segmentation. A

bank applies a classifier to decide whether an applicant should be

granted a loan. The applicant whose home is in the underdeveloped

category might be disadvantaged, as the location category can

significantly impact the output of the classifier. Individual fairness

argues that if two users are located close to each other, their output

likelihood scores should not differ significantly.

In the distance-based fairness case, a single variable 𝑐-fair poly-

nomial can fit output scores due to scalar distances. For multi-

dimensional data points, Definition 4 is no longer directly applicable.

To address this problem, we extend the definition to multivariate

polynomials to achieve individual fairness for higher dimensional

data points. The number of variables involved in fair polynomials

is equal to the dimensionality of data points (𝑘).

Three key variables are involved in finding an efficient family of

fair polynomials that can fit the output likelihood scores with low

utility loss: (i) dimensionality of data 𝑘 ; (ii) the distance metric 𝑑 (.)
and (iii) fair polynomial degree 𝑛. The individual fairness problem

can be characterized with respect to these criteria as follows:

• One-dimensional data representation (scalars), 1-norm dis-

tance, flexible order polynomial. This corresponds to the

distance-based fairness case.

• 2-Dimensional data representation, 2-norm distances; order

1 polynomial. This is the most common scenario for loca-

tions where the attribute columns include 2D coordinates,

and the fairness must be achieved with respect to Euclidean

distance between individuals.

• 𝑘-Dimensional data representation, 2-norm distances; order

1 polynomial.

• 𝑘-Dimensional data representation, 𝑝-norm distances; order

1 polynomial.

• 𝑘-Dimensional data representation, 𝑝-norm distances; flex-

ible order polynomial.

We formulate and derive the sufficiency condition to guarantee

individual fairness for each mentioned scenario. The optimization

problem in Eq. (29) is formulated with the derived constraints. We

omit the vectorization process for conciseness. For several of the

proofs used in this section, we make use of Generalized Titu’s

Lemma provided in Lemma 4.1.

Lemma 4.1 (Generalized Titu’s Lemma). Let 𝑚 be an integer

greater than or equal to 2, 𝑎𝑚
𝑖

a non-negative real number, and 𝑥𝑖 a

positive real number. Then,

𝑛𝑚−2
𝑛∑︁
𝑖=1

𝑎𝑚
𝑖

𝑥𝑖
≥

(∑𝑛
𝑖=1 𝑎𝑖 )𝑚∑𝑛
𝑖=1 𝑥𝑖

(32)

Proof. Proof is in Appendix B of our extended version
3
. □

4.1 2-norm, 2 dimensional data, Order 1
polynomial

For higher dimensional data, the most common scenario happens

when data points are in 2D, and the order of the polynomial is one.

In practice, data points represent coordinates of locations on the

map. Consider two locations 𝒍1 = (𝑥1, 𝑥2) and 𝒍2 = (𝑥 ′
1
, 𝑥 ′

2
) in R2,

where 𝑥1 and 𝑥
′
1
are the 𝑥-axis coordinates, while 𝑥2 and 𝑥

′
2
denote

𝑦-axis coordinates. To achieve individual fairness with respect to

locations, the hard Lipschitz constraints dictate that:

𝐷 (𝑀 (𝒍𝒊), 𝑀 (𝒍𝒋)) ≤ 𝑑 (𝒍𝒊, 𝒍𝒋) ∀𝑖, 𝑗 ∈ 1...𝑚 (33)

The distance between distribution scores, i.e., 𝐷 (.), is calculated
as before based on Equation (3.1) and the distance between locations

is the 2-norm of data points (Euclidean distance), calculated as:

𝑑 (𝒍𝒊, 𝒍𝒋) = 2

√︃
(𝑥1 − 𝑥 ′

1
)2 + (𝑥2 − 𝑥 ′

2
)2 (34)

We start by showing how a fair-polynomial can be derived for

the Euclidean similarity distance. Then, we relax the assumptions

and generalize the approach for arbitrary distance norms as well as

𝑛-dimensional data points. Recall that as location data are stored

in 2D, the fair polynomial consists of two variables. The general-

ized definition of fair polynomials for order 𝑛 polynomials and 𝑘

dimensional data is provided in Definition 5.

Definition 5 (Generalized 𝑐-Fair Polynomial). The polynomial

𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑘 ) : R𝑘 → Rwith real coefficients is 𝑐-fair iff for every

two points 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚) and 𝑥 ′ = (𝑥 ′
1
, 𝑥 ′

2
, ..., 𝑥 ′𝑚) in its domain

|𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑚) − 𝑃 (𝑥 ′
1
, 𝑥 ′

2
,..., 𝑥 ′𝑚) | ≤ (35)

𝑐 × 𝑑 (𝑥, 𝑥 ′) = 𝑐 × ||(𝑥, 𝑥 ′) | |𝑝
In the case of 2-dimensional locations and Euclidean distance,

fair polynomials imply that for every two locations 𝒍1 = (𝑥1, 𝑥2)
and 𝒍2 = (𝑥 ′

1
, 𝑥 ′

2
), we must have,

|𝑃 (𝑥1, 𝑥2) − 𝑃 (𝑥 ′
1
, 𝑥 ′

2
) | ≤ 𝑐 × 2

√︃
(𝑥1 − 𝑥 ′

1
)2 + (𝑥2 − 𝑥 ′

2
)2 (36)

Where the polynomial is denoted by

𝑃 (𝑥1, 𝑥2) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 (37)

The goal is to learn the coefficients 𝑎𝑖 such that the polynomial

𝑃 (.) can model the output scores𝑀 (.) and preserve fairness with

respect to Euclidean distance. Theorem 3 provides the sufficiency

condition for a two-variables order one polynomial to be fair.

3
https://github.com/SinaShaham/c-Fair-Polynomials/tree/main
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Theorem 3. A sufficient condition for a 2-variable first degree

polynomial 𝑃 (𝑥1, 𝑥2) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 to be 𝑐-fair defined over

2-norm similarity distance is to have:

|𝑎1 |, |𝑎2 | ≤ 𝑐/
√
2 (𝑎1 𝑎2 ∈ R) (38)

Proof. On the one hand, based on Lemma 4.1, a lower bound

for Euclidean distances can be written as

𝑑 (𝒍𝒊, 𝒍𝒋) = 2

√︃
(𝑥1 − 𝑥 ′

1
)2 + (𝑥2 − 𝑥 ′

2
)2 ≥ (39)

2

√︃
( |𝑥1 − 𝑥 ′

1
| + |𝑥2 − 𝑥 ′

2
|)2/2 (40)

On the other hand, for the polynomial one can write

|𝑃 (𝑥1, 𝑥2) − 𝑃 (𝑥 ′
1
, 𝑥 ′

2
) | = |𝑎1 (𝑥1 − 𝑥 ′

1
) + 𝑎2 (𝑥2 − 𝑥 ′

2
) | (41)

≤ |𝑎1 | | (𝑥1 − 𝑥 ′
1
) | + |𝑎2 | | (𝑥2 − 𝑥 ′

2
) | (42)

By combining the two equations the sufficiency condition in Equa-

tion (38) can be derived from the following inequality

|𝑎1 | | (𝑥1 − 𝑥 ′
1
) |+|𝑎2 | | (𝑥2 − 𝑥 ′

2
) | ≤ (43)

𝑐 × (|𝑥1 − 𝑥 ′
1
| + |𝑥2 − 𝑥 ′

2
|)/

√
2

□

The above theorem indicates that if the coefficients of polyno-

mials fitted to data are chosen such that |𝑎1 |, |𝑎2 | ≤ 𝑐/
√
2, fairness

is guaranteed for every two locations in the domain. The suffi-

ciency condition for first degree polynomials is generalized for

𝑘-dimensional data points in space in Theorem 4 (the number of

variables in the polynomial is equal to the number of dimensions).

Theorem 4. A sufficient condition for a 𝑘-variable first degree

polynomial 𝑃 (𝑥1, ..., 𝑥𝑘 ) = 𝑎0 +
∑𝑘
𝑖=1 𝑎𝑖𝑥𝑖 defined over 2-norm simi-

larity distance to be 𝑐-fair is:

|𝑎𝑖 | ≤ 𝑐/ 2
√
𝑘, ∀𝑖 = 1...𝑘, (𝑎𝑖 ∈ R) (44)

Proof. Please see proof in Appendix B of our extended version.

□

4.2 𝑝-norm, 𝑘 dimensional, Order 1 polynomial
We relax the similarity metric for arbitrary 𝑝-norm distance, calcu-

lated for data points 𝒍𝒊 = (𝑥1, ..., 𝑥𝑘 ) and 𝒍𝒋 = (𝑥 ′
1
, ..., 𝑥 ′

𝑘
) as

𝑑 (𝒍𝒊, 𝒍𝒋) = 𝑝

√√√√ 𝑘∑︁
𝑞=1

(𝑥𝑞 − 𝑥 ′𝑞)𝑝 (45)

Theorem 5. A sufficient condition for a 𝑘-variable first degree

polynomial 𝑃 (𝑥1, ..., 𝑥𝑘 ) = 𝑎0 +
∑𝑘
𝑖=1 𝑎𝑖𝑥𝑖 defined over 𝑝-norm simi-

larity distance to be 𝑐-fair is:

|𝑎𝑖 | ≤ 𝑐/ 𝑝
√︁
𝑘𝑝−1, ∀𝑖 = 1...𝑘 (46)

Proof. Based on generalized Titu’s Lemma, we have on the one

hand a lower bound for Euclidean distances:

𝑑 (𝒍𝒊, 𝒍𝒋) = 𝑝

√√√√ 𝑘∑︁
𝑞=1

(𝑥𝑞 − 𝑥 ′𝑞)𝑝 ≥ (47)

𝑝

√√√√
(
𝑘∑︁
𝑞=1

|𝑥𝑞 − 𝑥 ′𝑞 |)𝑝/𝑘𝑝−1 = (
𝑘∑︁
𝑞=1

|𝑥𝑞 − 𝑥 ′𝑞 |)/
𝑝
√︁
𝑘𝑝−1

On the other hand, for the polynomial one can write

|𝑃 (𝑥1, ..., 𝑥𝑘 ) − 𝑃 (𝑥 ′
1
, ..., 𝑥 ′

𝑘
) | = |

𝑘∑︁
𝑞=1

𝑎𝑞 (𝑥𝑞 − 𝑥 ′𝑞) | (48)

≤
𝑘∑︁
𝑞=1

|𝑎𝑞 | | (𝑥𝑞 − 𝑥 ′𝑞) | (49)

Combining the two, we obtain:

𝑘∑︁
𝑞=1

|𝑎𝑞 | | (𝑥𝑞 − 𝑥 ′𝑞) | ≤
𝑘∑︁
𝑞=1

|𝑥𝑞 − 𝑥 ′𝑞 |/
𝑝
√︁
𝑘𝑝−1 (50)

The inequality is satisfied when |𝑎𝑞 | ≤ 1/ 𝑝
√
𝑘𝑝−1. □

4.3 𝑝-norm, 𝑘 dimensional, Order 𝑛 polynomial
So far, the sufficiency condition for 𝑐-fair polynomials was derived

for arbitrary norms in 𝑘-dimensional space based on order 1 poly-

nomials. Moreover, for distance-based fairness, 𝑐-fair polynomials

were developed for 1-dimensional distance using arbitrary degree

𝑛 polynomial. This subsection provides the theoretical background

for the generalized scenario in which the location data are in 𝑘

dimensions with the norm set to 𝑝 , and degree 𝑛 polynomials.

Although by increasing the degree of polynomials, a better fit

to likelihood scores can be achieved, the existence of monomials

in which multiple variables are involved leads to complexity in the

derivation of sufficiency conditions. To address this, we assume

that the monomials in the multivariable polynomial consist of only

a single variable. Making such an assumption comes with the cost

of utility loss; however, it greatly reduces the complexity of the

generic case. We assume that the degree 𝑛 polynomial is expressed

as the summation of 𝑘 univariate polynomials.

𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑘 ) =
𝑘∑︁
𝑖=1

𝑃𝑖 (𝑥𝑖 ), (51)

where 𝑃𝑖 (𝑥𝑖 ) =
∑𝑛

𝑗=1 𝑎𝑖 𝑗𝑥
𝑗
𝑖
is a degree 𝑛 univariate polynomial with

its input being 𝑥𝑖 , the 𝑖th variable in the original polynomial. The

assumption helps to remove existence of monomials with multiple

variables such as 𝑥3
𝑖
𝑥2
𝑗
𝑥3
𝑘
and to simplify derivation of location

fairness sufficiency conditions provided in Theorem 6.

Theorem 6. A sufficient condition for a 𝑘-variable 𝑛-th degree

polynomial 𝑃 (𝑥1, 𝑥2, ..., 𝑥𝑘 ) =
∑𝑘
𝑖=1 𝑃𝑖 (𝑥𝑖 ) to be 𝑐-fair defined over

𝑝-norm similarity distance is to have:

|𝑎𝑖 𝑗 | ≤
6 × 𝑗 × 𝑐

𝑝
√
𝑘𝑝−1

𝑛(𝑛 + 1) (2𝑛 + 1) , ∀𝑖 = 1...𝑘 & ∀𝑗 = 1...𝑛 (52)
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Proof. We write the equation in its component form shown in

Equation 51. An upper bound for 𝑃𝑖 (𝑥𝑖 ) can be derived as,

|𝑃 (𝑥1, ..., 𝑥𝑘 ) − 𝑃 (𝑥 ′
1
, ..., 𝑥 ′

𝑘
) | = |

𝑘∑︁
𝑖=1

𝑃𝑖 (𝑥𝑖 ) −
𝑘∑︁
𝑖=1

𝑃𝑖 (𝑥 ′𝑖 ) | (53)

= |
𝑘∑︁
𝑖=1

(𝑃𝑖 (𝑥𝑖 ) − 𝑃𝑖 (𝑥 ′𝑖 )) | ≤
𝑘∑︁
𝑖=1

|𝑃𝑖 (𝑥𝑖 ) − 𝑃𝑖 (𝑥 ′𝑖 ) | (54)

An upper bound for the sub-terms for all 𝑗 = 1...𝑘 can be derived as

|𝑃𝑖 (𝑥𝑖 )−𝑃𝑖 (𝑥 ′𝑖 ) | = |
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑥 𝑗𝑖 − 𝑥
′𝑗
𝑖
) | ≤ |𝑥𝑖 − 𝑥 ′𝑖 |

𝑛∑︁
𝑗=1

𝑗 |𝑎𝑖 𝑗 | (55)

The above inequality is derived based on Eq. (17) setting |𝑥𝑖 | ≤ 1.

We also use the lower bound derived in Eq. (47)

𝑐 × 𝑑 (𝒍𝒖 , 𝒍𝒗) ≥ 𝑐

𝑘∑︁
𝑞=1

|𝑥𝑞 − 𝑥 ′𝑞 |/
𝑝
√︁
𝑘𝑝−1 (56)

Putting the derived upper bound and lower bound together, the

following inequality is satisfied, and 𝑐-fairness is guaranteed.

|𝑥𝑖 − 𝑥 ′𝑖 | (
𝑛∑︁
𝑗=1

𝑗 |𝑎𝑖 𝑗 |) ≤ 𝑐 |𝑥 𝑗 − 𝑥 ′𝑗 |/
𝑝
√︁
𝑘𝑝−1 (57)

𝑛∑︁
𝑗=1

𝑗 |𝑎𝑖 𝑗 | ≤ 𝑐/ 𝑝
√︁
𝑘𝑝−1 (58)

By applying the method used in DtR, the bounds are linearized to,

|𝑎𝑖 𝑗 | ≤
6 × 𝑗 × 𝑐

𝑛(𝑛 + 1) (2𝑛 + 1) 𝑝
√
𝑘𝑝−1

∀ 𝑖 ∈ 1...𝑛 (𝑎𝑖 ∈ R) (59)

□

It is worth noting that the generated scores by fair polynomials

can result in values greater than one or less than zero. In such

scenarios, the values are suppressed to one and zero, respectively.

It is straightforward to prove that the suppression process does

not violate the individual fairness constraints and leads to higher

utility.

5 RELATED WORK
Fairness notions can be grouped into two broad categories of Group

Fairness and Individual Fairness [12]. In group fairness, a protected

attribute of the dataset, such as race or gender, which is considered

to be critical in decision-making outcomes, partitions individuals

into groups. The ML model used for a decision-making task on the

dataset is considered to be fair if it achieves some statistical measure

across groups. A few of the key statistical measures include statisti-

cal parity [21][12], equalized odds [17], treatment equality [7], and

test fairness [10]. Individual fairness aims to give similar predictions

to similar outcomes, focusing on fairness for individuals as opposed

to groups. Group fairness notions are generally weaker than in-

dividual fairness notions [19]. Despite higher fairness guarantees

provided by individual fairness and fragility of group fairness no-

tions, group fairness notions are widely studied in the literature

due to their easier enforcement [23]. Only a handful of approaches

exist in the literature to achieve fairness in the geospatial domain.

The current state-of-the-art approach to enforce individual lo-

cation fairness is to define a linear loss function once the likeli-

hood scores are generated and solve optimization under individual

fairness Lipschitz constraints. Let 𝐼 be an instance of our prob-

lem consisting of a metric 𝑑 : L × L → R, and a loss function

𝐿 : L ×𝐴 → R, the optimization problem is defined as,

𝑜𝑝𝑡 (𝐼 ) = 𝑚𝑖𝑛
{𝑀 (𝑥) }𝑥∈𝐿

𝑬
𝑥∼𝐿

𝑬
𝑎∼𝑀 (𝑥)

𝐿(𝑥, 𝑎) (60)

Subject to: ∀𝑥,𝑦 ∈: 𝐷 (𝑀 (𝑥), 𝑀 (𝑦)) ≤ 𝑑 (𝑥,𝑦) (61)

∀𝑥 ∈ 𝐿 : 𝑀 (𝑥) ∈ Δ(𝐴) (62)

One can see that the number of constraints in this mechanism

grows quadratically with the number of individuals, imposing a

large computational complexity on the system. The authors in [27]

formulate the loss function for location-based advertisements in

social media. Locations visited on the map are shown as binary

strings, and a classifier is used to predict whether a user should

receive a targeted advertisement. Moreover, not directly related

to locations, but for general purpose advertisement and auctions,

individual fairness is applied in [13]. Another application over

which the loss function has been defined is achieving individual

fairness in ranking and recommendation systems [26]. In ranking

systems, the amount of unfairness with respect to individuals is

measured after ranking, and a loss function aims to reorder ranking

such that the amount of individual unfairness is minimized [8].

Several attempts have also been made to apply the individual

fairness notion for clustering datapoints in Cartesian space. The

notion in [20] defines clustering conducted for a point in space

as fair if the average distance to the points in its own cluster is

not greater than the average distance to the points in any other

cluster. The authors in [22] focus on defining individual fairness

for 𝑘-median and 𝑘-means algorithms. Clustering is defined to be

individually fair if every point expects to have a cluster center

within a particular radius. To the best of our knowledge, no work

has directly defined individual fairness with respect to locations.

6 EXPERIMENTAL EVALUATION
We evaluate our proposed spatial data fairness mechanisms in

the two studied scenarios. For the distance-based case, we use

a dataset of taxi fares from New York City; for the zone-based case,

we consider budget allocation to police departments according to

the Chicago crime occurrence dataset. We ran experiments on a

3.40GHz core-i7 Intel processor with 8GB RAM. The code is imple-

mented in Python and uses the Trust Region Reflective least square

implementation from Scipy [4] (the maximum number of iterations

for convergence is set to 300, and the default tolerance threshold

value of 1𝑒-2 is used to stop the optimization iterations).

6.1 Distance-based Spatial Fairness
We sampled 120,000 records from the NYC taxi dataset [1] providing

over 55 million trips and their associated fares. We deployed an Arti-

ficial Neural Network (ANN) to assess the likelihood of taxi fares be-

ing fair in the system. Specifically, we seek to capture whether there

is bias in the setting of fares based on the specific neighborhoods

where the trip starts/ends. Ideally, the trip distance should be the
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(a) Percentage of Unfairness versus 𝑐 .

(b) Percentage of Unfairness versus 𝑛.

(c) Fitting Error versus 𝑐 .

(d) Fitting Error versus 𝑛.

Figure 3: Distance-based Mechanism, New York taxi dataset.

only factor determining price (we carefully pre-process the dataset

such that trips are clustered according to the time of week/day, such

that differences in fare due to demand status and traffic causes are

eliminated). Our goal is to first understand the percentage of records

for which the individual fairness constraints do not hold with re-

spect to traveled distances. Then, we analyze the performance of

the proposed 𝑐-fair mechanism.

(a) Percentage of Unfairness versus 𝑐 .

(b) Percentage of Unfairness versus 𝑛.

(c) Fitting Error versus 𝑐 .

(d) Fitting Error versus 𝑛.

Figure 4: Zone-based Mechanism.

ML Model for Fairness Characterization. Our ANN model consists

of two hidden layers with 200 and 100 neurons and an output layer

with two neurons representing the binary classification task. The

activation function used in the model is RELU, the dropout proba-

bility for each layer set to 0.4, and cross-entropy is used as the loss

function. The accuracy of the model is 92%. The input features in-

clude pick-up date and time (categorical hour, AM or PM, weekday,
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EDT date), pick-up longitude, pick-up latitude, drop-off longitude,

drop-off latitude, passenger count, and distance traveled in kilo-

meters. The ride fares have a mean of 10 dollars with a standard

deviation of 7 dollars, and the average traveled distance is 3.31 km

with a standard deviation of 3.2 km. For model training purposes,

we split the data into training, validation and test datasets with

96, 000, 12, 000, and 12, 000 records, respectively. To generate the

ground truth for the training dataset, we have used price per kilo-

meter traveled as the indicator of how fair the associated traveled

fares are. For every hour of the day, the average price per kilometer

is calculated as the hard threshold between fair and unfair travels.

The trips above the threshold are classified as unfair, and the values

less than the threshold are assumed to be fair. This results in a total

of 21, 928 trips being categorized as unfair.

Once the ANN model is trained, we predict the likelihood of

each trip fare being fair on the test dataset. For every two records,

the individual fairness constraint is evaluated to reveal whether

fares are fair with respect to travel distances. In the absence of

any fairness mechanisms being deployed, 32% of constraints are

not satisfied, hence those trips are unfair. The 32% threshold is

highlighted with a red horizontal line in the experimental plots, to

highlight the fairness improvement of the considered approaches.

Next, we apply the proposed 𝑐-fairmechanism to achieve distance-

based fairness. Our experiments evaluate the performance based

on four key metrics: percentage of unfairness (constraints were not

satisfied), the degree of 𝑐-fair polynomial (𝑛), the parameter 𝑐 , and

the root mean square (RMS) of fitting error to likelihood scores.

Percentage of Unfairness. Fig. 3a shows the impact of increasing

𝑐 on reducing unfairness when the degree of the polynomial is

5, 10, 15, and 20. As expected, lower values of 𝑐 result in higher

fairness in the system, with maximum fairness achieved when 𝑐 is

equal to one. For the maximum fairness scenario, the percentage of

unfairness is zero, meaning that all individual fairness constraints

are satisfied for every two records in the dataset. By increasing the

value of 𝑐 , fair polynomials would have more room for maneuver

and fitting to likelihood scores, but it comes with the cost of higher

unfairness. Such behaviour demonstrates the utility-fairness trade-

off captured by the constant 𝑐 . Increasing the polynomial degree can

be seen to improve the percentage of unfairness until it reaches the

point where it overfits the likelihood scores, and the performance

deteriorates. Fig. 3b shows more clearly the impact of increasing the

value of𝑛 on unfairness. Lower 𝑐 values result in a lower percentage

of unfairness for all polynomial degrees.

Fitting Error. Figs. 3c and 3d demonstrate the amount of utility

loss in data due to fitting likelihood scores to a 𝑐-fair polynomial.

Two key trends can be observed from the figures. First, increasing

the value of 𝑐 lowers the fitting error. This is expected, as higher 𝑐

allows more flexibility for selecting coefficients and better fitting

performance. Second, increasing the value of𝑛 for the same value of

𝑐 raises the fitting error. To understand this behavior, one can intu-

itively look at the problem as allocating the same amount of budget

among several buckets representing coefficients. Although increas-

ing the degrees of freedom provides better fitting performance as

higher degree monomials exist, it further restricts the budget for

each coefficient. Thus, the lower degree monomials, which have a

more significant impact on the performance, are allocated a lower

amount of budget, negatively affecting the performance.

Computational Complexity. We measure the computational over-

head of 𝑐-fair polynomials in terms of time complexity, number

of iterations before optimization convergence, and final optimiza-

tion cost (the final optimization cost represents the value of the

Scipy cost function upon reaching the solution [4]). Fig. 5 shows

the results. In each graph, the overhead is shown for four values of

𝑐 = 25, 50, 75, 100 plotted for varying polynomial degrees. Overall,

the time complexity is in the order of milliseconds and does not

limit the practical deployment of 𝑐-fair polynomials. The second

graph illustrates the number of iterations before reaching the opti-

mal point. The optimization process stops either by reaching the

maximum number of iterations (300) or when the relative change

in optimization cost remains below the tolerance threshold (1𝑒-2).

As explained previously, the slight oscillation in the performance

is due to selecting a random start point for the optimization.

Note that, increasing the degree of polynomial 𝑛 results in higher

computational overhead. This is expected, as more degrees of free-

dom (coefficients) lead to more effort for finding the optimal point.

Another consistent behavior across all three figures is that increas-

ing 𝑐 on average reduces the computation complexity cost and

facilitates reaching the near-optimal point. The trend is more ap-

parent in the final optimization cost figure, in which it can be clearly

seen that a higher 𝑐 value leads to a lower cost.

6.2 Zone-based Spatial Fairness
For this scenario, we consider the case of budget allocation to

different areas of Chicago, USA, based on the measured crime

rates. We use the dataset provided by the Chicago Police Depart-

ment’s CLEAR (Citizen Law Enforcement Analysis and Reporting)

system [3], consisting of reported crime incidents in Chicago. A

1024× 1024 grid is overlaid on top of the Chicago map, and the goal

is to fairly allocate the budget such that neighborhoods that are

close to each other are treated similarly. We have selected seven

major crime categories of sexual assault, homicide, kidnapping, sex

offense, motor vehicle theft, criminal damage, and narcotics among

the reported crimes, and trained a logistic regression model to infer

the likelihood of crime occurrence in each cell. The training dataset

includes the crime data from January to November 2015, and the

December data is chosen as the test dataset. The accuracy of the

model is 94% and its output is a set of likelihoods indicating the

probability of crime occurrence. The budget allocated to each cell

is proportional to the likelihood score derived by the classifier.

Once the likelihood scores are generated, they are used with

𝑋 and 𝑌 cell coordinates to achieve individual location fairness

with the distance metric set to 2-norm. In absence of any fairness

mechanism, we determine the percentage of individual location

fairness constraints not being satisfied at 44.0%.

To understand if the expansion to higher polynomial degrees is

essential, we started our experiments by focusing on degree one 𝑐-

fair polynomials and applying the results in Theorem 3. As expected,

the fitting error was rather high, and the utility was insufficient. We

also noticed that for degree one polynomials, the optimal solution

is achieved even when the value of 𝑐 is equal to one. Therefore,

increasing 𝑐 does not help with improving the fitting error. Thus, it

is crucial to use higher degree polynomials for this purpose.
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(a) Time Complexity. (b) Number of Iterations Before Convergence. (c) Optimization Final Cost.

Figure 5: Computation Overhead Analysis on New York Taxi Dataset.

(a) Time Complexity. (b) Number of Iterations Before Convergence. (c) Optimization Final Cost.

Figure 6: Computation Overhead Analysis on Chicago Crime Dataset.

(a) Distance-based Mechanism. (b) Zone-based Mechanism.

Figure 7: Comparison Benchmark Performance.

Next, we apply the optimization formulation derived in Theo-

rem 6, the most generalized formula allowing each dimension to

contribute in fitting with a degree𝑛 polynomial. Fig. 4 demonstrates

the performance of 𝑐-fair polynomials for achieving individual lo-

cation fairness on the crime dataset. The patterns are generally

consistent with the distance-based case considered in the New York

taxi fares experiment. Figs. 4a and 4b show the impact of 𝑐 and 𝑛 on

the percentage of unfairness and Figs. 4c and 4d show the perfor-

mance with respect to utility. The red line is used as the reference

point representing the percentage of unfairness in the original data,

in the absence of fairness mechanisms.

Increasing the value of 𝑐 results in a lower degree of fairness

and higher fitting error once the degree of polynomial reaches

an acceptable level. This result further substantiates the fairness-

utility trade-off in the system, also observed in the distance-based

case. In a 2-dimensional space, using a degree of 10 and the above

polynomial to model each dimension can ensure that scores are

under-fitted, preventing high fitting error values. In summary, the

amount of fairness achieved with the fair polynomials, even for a

reasonably low degree for polynomials such as 15 and values of 𝑐
greater than 10, can be seen to be over 70%.

Fig. 6 shows the computation complexity of the proposed mech-

anism. The first point to notice is that a relatively high amount of

time is required to achieve zone fairness compared to the distance-

based setting. However, computational complexity is still low in

absolute value, and not an obstacle for practical deployment, with

sub-second execution time.

6.3 Comparison with benchmarks

We derive a threshold-based benchmark from the fairness mech-

anism in [12] and the binary evaluation approach in [14]. Given

constant threshold 𝑡 , let polynomial 𝑃 (𝑙𝑖 ) = 𝑡 , and let parameter

𝛼 define by how much scores can be altered (e.g., if 𝛼 = 0.1, each
score can be altered by at most ±0.1). For DtR, the benchmark cycles

through each score 𝑀𝑖 and pushes it towards polynomial 𝑃 (𝑙𝑖 ) with
an allowance of 𝛼 :

𝑀 (𝑙𝑖 ) ← 𝑀 (𝑙𝑖 ) + 𝑠𝑖𝑔𝑛(𝑃 (𝑙𝑖 ) − 𝛼) ×min(𝛼, |𝑃 (𝑙𝑖 ) − 𝛼 |) (63)

The 𝑠𝑖𝑔𝑛 operation ensures the direction of change is favorable

to the benchmark, and𝑚𝑖𝑛 ensures that the change in score does

not overshoot 𝑃 (𝑙𝑖 ). When 𝛼 is zero, no utility loss exists, and the

unfairness percentage is the same as the original. As 𝛼 grows, the

flexibility margin results in more constraints being satisfied until

absolute fairness is achieved. For the zone-based fairness case, we

use 𝑃 (𝑥,𝑦) = (𝑥 + 𝑦)/√2, easily extensible to higher dimensions.

Figure 7 shows the utility-fairness trade-off obtained by the

baseline for both distance- and zone-based cases. Unfairness is

monotonically decreasing as one allows a higher 𝛼 alteration to

the score. We notice a plateau of desirable behavior concentrated
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(a) 𝑐 = 25. (b) 𝑐 = 50. (c) 𝑐 = 75.

Figure 8: Distance-based Mechanism Benchmark Comparison, New York taxi dataset.

(a) 𝑐 = 25. (b) 𝑐 = 50. (c) 𝑐 = 75.

Figure 9: Zone-based Mechanism Benchmark Comparison, Chicago crime dataset.

between 𝛼 = [0.2, 0.6], where the utility-fairness trade-off is good

(for 𝛼 values below 0.2 unfairness is too high, whereas for values

higher than 0.6 the fairness gain fades in the multi-variate case).

Next, we focus our attention to this desirable 𝛼 range, and we

plot the relative performance of the benchmark versus our proposed

fair polynomials approach for various values of 𝑐 and 𝑛. The plots in

Figs. 8 and 9 show that our approach provides a superior trade-off

compared to benchmarks. The benchmark outperforms only for

zone-based fairness when𝑛 = 20. In all other cases, fair polynomials

provide either a vastly improved utility, or better fairness.

7 CONCLUSION
We studied in depth the problem of individual fairness for location

data, and we identified sources of location bias that can occur in

practical settings. We formulated two distinct settings for spatial

fairness: distance-based and zone-based fairness, and we devised

specific techniques to achieve spatial fairness while preserving

utility, with the help of a novel construction called fair polynomials.

While our focus is on spatial fairness, fair polynomials have the

potential to provide useful building blocks for fairness in other

application domains. In future work, we plan to studymore complex

types of spatial queries. At the same time, we plan to study the effect

of fairness mechanisms in conjunction with other constraints, such

as privacy, e.g., devise mechanisms that can achieve both spatial

fairness and location privacy.
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