
1

Structural Equivalence in Subgraph Matching

Dominic Yang , Yurun Ge , Thien Nguyen , Denali Molitor , Jacob D. Moorman , Andrea L.

Bertozzi , Member, IEEE.

Abstract—Symmetry plays a major role in subgraph matching
both in the description of the graphs in question and in how
it confounds the search process. This work addresses how to
quantify these effects and how to use symmetries to increase the
efficiency of subgraph isomorphism algorithms. We introduce
rigorous definitions of structural equivalence and establish con-
ditions for when it can be safely used to generate more solutions.
We illustrate how to adapt standard search routines to utilize
these symmetries to accelerate search and compactly describe
the solution space. We then adapt a state-of-the-art solver and
perform a comprehensive series of tests to demonstrate these
methods’ efficacy on a standard benchmark set. We extend
these methods to multiplex graphs and present results on large
multiplex networks drawn from transportation systems, social
media, adversarial attacks, and knowledge graphs.

Index terms— Subgraph isomorphism, subgraph matching,

multiplex network, structural equivalence, graph structure

I. INTRODUCTION

The subgraph isomorphism problem (also called the sub-

graph matching problem) specifies a small graph (the tem-

plate) to find as a subgraph within a larger (world) graph.

This problem has been well-studied especially in the pattern

recognition community. The surveys [20], [9], and [28] explain

the broad variety of techniques used as well as applications

including handwriting recognition [2], face recognition [4],

biomedical uses [3], sudoku puzzles and adversarial activity

[51]. More recently, subgraph matching arises as a component

in motif discovery [23], [37], where frequent subgraphs are

uncovered for graph analysis in domains including social net-

works and biochemical data. Additionally, subgraph matching

is relevant in knowledge graph searches, wherein incomplete

factual statements are completed by querying a knowledge

database [8], [47].

Networks are present in many applications; hence, the abil-

ity to detect interesting structures, i.e., subgraphs, apparent in

the networks bears great importance. We investigate subgraph

matching on a wide variety of networks, simulated and real,

single channel and multichannel, ranging from hundreds to

millions of nodes. These data sets include biochemical reac-

tions [21], pattern recognition [12], transportation networks

[13], social networks [16], and knowledge graphs [52].

This paper addresses exact subgraph isomorphisms: given a

template GT = (VT ,ET), and a world GW = (VW ,EW), find

Dominic Yang, Yurun Ge, Denali Molitor, Jacob Moorman, and Andrea L.
Bertozzi are with the Department of Mathematics, University of California,
Los Angeles, Los Angeles, CA, 90095. E-mail: domyang@math.ucla.edu,
yurun@math.ucla.edu, dmolitor@math.ucla.edu, jdmoorman@math.ucla.edu,
bertozzi@math.ucla.edu.

Thien Nguyen is with the department of Computer Science at Northeastern
University, Boston, MA, 02115. E-mail: nguyen.thien@northeastern.edu

Fig. 1. Graph representing a system of biochemical reactions from [21].
Non-gray nodes of the same color are structurally equivalent.

a mapping f ∶ VT → VW that is both injective and respects the

structure of GT . For the latter property to hold, we require

that if (t1, t2) ∈ ET , then we must have (f(t1), f(t2)) ∈ EW .

If this is true, we say that f is edge-preserving. We define

subgraph isomorphism as follows:

Definition 1. Given a template GT = (VT ,ET) and a world

GW = (VW ,EW), a map f ∶ VT → VW is a subgraph

isomorphism if and only if f is injective and edge-preserving.

Throughout this paper, we use the terms subgraph iso-

morphism and subgraph matching interchangeably. Related

terms are subgraph homomorphism which relaxes the in-

jectivity requirement, and induced subgraph isomorphism

which also requires the map to be non-edge-preserving (if

(u, v) ∉ ET , (f(u), f(v)) ∉ EW).

We are interested in the subgraph matching problem (SMP)

[51]:

Definition 2 (Subgraph Matching Problem). Given a tem-

plate graph GT and a world graph GW , find all subgraph

isomorphisms from GT to GW .

If there is at least one subgraph isomorphism, we call the

problem satisfiable.

Simply finding a subgraph isomorphism is NP-complete [6],

suggesting that there is no algorithm that efficiently finds all

subgraph isomorphisms on all graphs. In spite of this, signifi-

cant progress has been made in the development of algorithms

for detecting subgraph isomorphisms [18], [22], [27], [45]. As

in other NP-complete problems, the literature addressing the

a
rX

iv
:2

3
0
1
.0

3
1
6
1
v
1

[c

s.
D

S
]

 9
 J

a
n
 2

0
2
3

3

In Section III, we introduce candidate equivalence to demon-

strate how to expose previously unseen equivalences during

a subgraph search. In Section IV, we introduce node cover

equivalence, an alternate form of equivalence which is easy

to calculate, and unify all the notions of equivalence into a

hierarchy. In Section V, we adapt the Glasgow solver [45] to

incorporate equivalences and apply it to a set of benchmarks to

assess the performance of each of the equivalence levels1. In

Section VI, we demonstrate how to succinctly represent and vi-

sualize large classes of solution by incorporating equivalence.

In Section VII, we extend our algorithm to be able to handle

multiplex multigraphs and show our algorithm’s success in

fully mapping out the solution space on a variety of these

more structured networks.

This paper takes inspiration for the general subgraph tree

search structure from [51] and shares many of the same

test cases on multichannel networks. In our previous work

[42], we introduced a simpler notion of candidate equivalence

and candidate structure, and tested it on a small selection of

multichannel networks. From these prior works, we observed

the high combinatorial complexity of the solution spaces

necessitating an approach which can exploit symmetry to com-

press the solution space and accelerate search. In this work, we

expand on both papers by introducing several new notions of

equivalence, providing a rigorous foundation for their efficacy

in subgraph search, establishing a compact representation of

the solution space, and empirically assessing these methods

on a broad collection of both real and synthetic data sets.

II. STRUCTURAL EQUIVALENCE

Structural equivalence is an easily understood property of

networks which, if present, can be exploited to greatly speed

up subgraph search. Intuitively, two vertices are structurally

equivalent to each other if they can be “swapped” without

changing the graph structure. This type of equivalence often

occurs in leaves that are both adjacent to the same vertex.

Definition 3. In a graph G = (V,E), we say that two vertices

v,w are structurally equivalent (denoted v ∼s w) if:

1) For u ∈ V,u ≠ v,w,

a) (u, v) ∈ E⇔ (u,w) ∈ E
b) (v, u) ∈ E⇔ (w,u) ∈ E

2) (v,w) ∈ E⇔ (w, v) ∈ E
This definition implies that the neighbors of structurally

equivalent vertices (not including the vertices themselves)

must coincide. The following proposition verifies that this is

an equivalence relation.

Proposition 4. ∼s is an equivalence relation.

Proof. All proofs for propositions stated in this paper are

provided in the appendix.

Using this relation, we can partition the vertices of any

graph into structural equivalence classes, and interchange

members of each class without changing the essential structure

1Our implementation of our algorithms can be found at the following
repository: https://github.com/domyang/glasgow-subgraph-solver.

of the graph. Checking for equivalence between two vertices

simply amounts to comparing neighbors in an O(∣V ∣) opera-

tion in the worst case, but is generally faster for sparse graphs.

Computing the classes themselves can be found by pairwise

comparison of vertices resulting in O(∣V ∣3) operations in

the worst case. Algorithm 1 demonstrates how one could

implement a breadth first search algorithm to take advantage

of the sparsity of a graph to accelerate the computation. Since

For each vertex v visited, it takes O(deg(v)2) to partition the

neighbors of v into equivalence classes, and so in the worst

case the algorithm takes O(∑v deg(v)2) ≈ O(∣V ∣deg(v)2)
where deg(v)2 denotes the average over deg(v)2 for all v. For

sparse graphs, deg(v)≪ ∣V ∣, and so this will be significantly

faster than a naive pairwise check.

Algorithm 1 Routine for computing equivalence classes

1: function FINDEQCLASSES(G = (V,E))
2: Let Q be a queue

3: Pick first vertex v to put in Q

4: Let EQ = {}
5: Let visited = {}
6: while Q not empty do

7: Dequeue v from Q

8: Add v to visited

9: Partition N(v) into equivalence classes, to EQ

10: Add representatives from neighbor classes to Q

11: Check if first vertex v is in any class and add if so

12: Else add it to its own class

13: return EQ

A. Interchangeability and Isomorphism Counting

We now show that given any subgraph isomorphism, we

can interchange any two vertices in the template graph and

still retain a subgraph isomorphism. Before we do this, we

formally define what we mean by interchangeability.

Definition 5. Two template graph vertices v,w ∈ VT are in-

terchangeable if for all subgraph isomorphisms f ∶ VT → VW ,

the mapping g given by interchanging v and w:

g(u) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(w) u = v

f(v) u = w

f(u) otherwise

is also a subgraph isomorphism.

Two world graph vertices v′, w′ ∈ VW are interchangeable

if for all subgraph isomorphisms f , if both v′, w′ are in the

image of f with preimages v,w, the mapping g:

g(u) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w′ u = v

v′ u = w

f(u) otherwise

is an isomorphism. If only one, say v′, is in the image, then

h given by

h(u) =
⎧⎪⎪⎨⎪⎪⎩
w′ u = v

f(u) otherwise

4

is also an isomorphism.

We will qualify this definition later in the paper by re-

stricting the interchangeability only to certain subsets of

isomorphisms. The proposition affirming template vertex in-

terchangeability under template structural equivalence follows:

Proposition 6. Given graphs GT = (VT ,ET), GW =

(VW ,EW), if v,w ∈ VT are structurally equivalent, then they

are interchangeable in any subgraph isomorphism.

Hence, interchanging the images of two template vertices

preserves subgraph isomorphism. As transpositions generate

the full set of permutations, we have the following result:

Proposition 7. If we can partition VT = C1, . . . , Cn into

structural equivalence classes, and there exists at least one

subgraph isomorphism, then there are at least

n

∏
i=1

∣Ci∣!
subgraph isomorphisms.

We can also apply this structural equivalence to the world

graph to demonstrate a similar kind of interchangeability.

Proposition 8. If v′, w′ ∈ VW are structurally equivalent, then

in any subgraph isomorphism f , they are interchangeable.

If we apply both template and world structural equivalence

to our problem, it is natural to ask how many solutions we

can now generate from a single solution. This is given by the

following proposition:

Proposition 9. Let f ∶ VT → VW be a subgraph isomorphism.

Suppose we partition the template graph VT = ⋃n
i=1Ci and

the world graph VW = ⋃m
j=1Dj into structural equivalence

classes. Let Ci,j = Ci ∩ f
−1(Dj) represent the set of template

vertices in Ci that map to world vertices in the equivalence

class Dj . Then there are

n

∏
i=1

∣Ci∣!
m

∏
j=1

n

∏
i=1

(∣Dj ∣ −∑i−1
k=1 ∣Ck,j ∣
∣Ci,j ∣)

isomorphisms generated by interchanging equivalent template

vertices or world vertices using Propositions 6 and 8.

B. Application to Tree Search

We now demonstrate how to adapt any tree-search algorithm

to incorporate equivalence. A tree-search algorithm proceeds

by constructing a partial matching of template vertices to

world vertices, at each step extending the matching by as-

signing the next template vertex to one of its candidate world

vertices. If at any point, the match cannot be extended (due

to a contradiction or finding a complete matching), the last

assigned template vertex is reassigned to the next candidate

vertex. Each possible assignment of template vertex to world

vertex corresponds to a node in the tree, and a path from the

root of the tree to a leaf corresponds to a full mapping of

vertices.

The tree search is a recursive routine described by Algo-

rithm 2. In this procedure, we maintain a binary ∣V (T)∣ ×

∣V (W)∣ matrix cands where cands[i, j] is 1 if world vertex

j is a candidate for template vertex i and 0 otherwise and a

mapping from template vertices to world vertices describing

which vertices have already been matched. In lines 2-4, we

report a match after having matched all vertices. The call

to ApplyFilters in line 5 eliminates candidates based on the

assumptions made so far in the partial match. In line 7, we

save the current state to return to after backtracking, and in

lines 11-14, we iterate through all candidates for the current

vertex attempting a match until we have exhausted them all.

Then in line 18, we restore the prior state and backtrack.

Algorithm 2 Generic routine for a tree search

1: function SOLVE(partial match, cands)

2: if MatchComplete(partial match) then

3: ReportMatch(partial match)

4: return

5: ApplyFilters(partial match, cands)

6: Let u = GetNextTemplateVertex()

7: Let cands copy = cands.copy()

8: if Using World Equivalence then

9: RecomputeEquivalence(partial match, cands)

10: Let ws = GenerateWorldVertices(cands, eq)

11: for v in ws do

12: partial match.match(u, v)
13: Solve(partial match, cands copy)

14: partial match.unmatch(u, v)
15: if Using Template Equivalence then

16: for unmatched u′ ∼ u do

17: Set cands[u′, v] = 0

18: Let cands = cands copy

19: if Using World Equivalence then

20: RestoreEquivalence()

21: return

Template equivalence can significantly accelerate the tree

search; from Proposition 6 we can swap the assignments of

equivalent template vertices to find another isomorphism. If

we have a partial match, template vertices u1 ∼ u2, and

we have just considered candidate w for u1, we can ignore

branches where u2 is mapped to w since we can generate

those isomorphisms by taking one where u1 is mapped to

w and swapping. Lines 16 and 17 demonstrate how we can

incorporate this idea into a tree search (without these, we

would have a standard tree search).

To incorporate world equivalence into the search, we modify

the search so that we only assign any template vertex to one

representative of an equivalence class in the search. This can

be done by modifying GenerateWorldVertices to pick only

one representative vertex of each equivalence class out of the

candidates for the current template vertex.

Note that after performing the tree search, the solutions

found will represent classes of solutions that can be generated

by swapping. Some bookkeeping is needed to determine what

assignments can be swapped to count the number of distinct

solutions. We call the solutions that are actually found (and

are not produced by interchanging vertices) representative

5

Fig. 3. Candidate structure for the graphs in Figure 2 before and after
assigning template node A to world node 1.

solutions. The set of solutions that can be generated by

interchanging equivalent vertices for a given representative

solution is a solution class. The ability to represent large

solution classes with a sparse set of solutions is what allows

us to compactly describe massive solution spaces.

III. CANDIDATE EQUIVALENCE

The equivalence discussed in the prior section is a static

form of equivalence, only taking into account information

provided at the start of the subgraph search. However, as

a subgraph search proceeds, we may be able to discard

additional nodes and edges based on information derived from

the assignments already made. For example, in Figure 2, after

assigning A to 1, we may discard nodes 6 and 7 and edge

(4, 5), as it is impossible for them be included in a match

if A and 1 are matched. After these nodes are discarded, we

discover that with respect to the matches already made, 2, 3,

4, and 5 are effectively interchangeable. In order to make use

of this dynamic form of equivalence, we need to introduce an

auxiliary structure that takes into account our knowledge of

the candidates of each vertex u (denoted C[u]).
Definition 10. Given template graph GT = (VT ,ET), world

graph GW = (VW ,EW), and candidate sets C[u] ⊂ VW

for each u ∈ VT , the candidate structure is the directed

graph GC = (VC ,EC) where the vertices VC = {(u, c) ∶
u ∈ VT , c ∈ VW } are template vertex-candidate pairs and

((u1, c1), (u2, c2)) ∈ EC if and only if (u1, u2) ∈ ET and

(c1, c2) ∈ EW .

The candidate structure represents both the knowledge of

candidates for each template node and how template adjacency

interplays with world adjacency. It removes extraneous infor-

mation to expose equivalences not apparent when looking at

the original graphs. We note that this data structure is similar

to the compact path index (CPI) introduced in [27]. However,

the CPI is only defined for a given rooted spanning tree of

the template graph whereas our candidate structure takes into

consideration all edges of the template graph. For our toy

example in Figure 2, if we assume that the candidate sets are

reduced to the minimal candidate sets so that C[A] = {1,4}
and C[B] = {2,3,4,5,6,7}. Then the candidate structure for

these graphs is as shown on the left in Figure 3. At this point,

there is no apparent equivalence to exploit from the candidate

structure. However once we decide to map node A to 1, the

candidate structure reduces to the right graph in Figure 3.

It is visually clear that nodes 2, 3, 4, and 5 are structurally

equivalent as candidates of B and C. Similarly, if we assigned

A to 4, nodes 5, 6, and 7 will be structurally equivalent in

the candidate structure. We want to determine under which

circumstances this will ensure interchangeability. We introduce

the following definition:

Definition 11. Given a candidate structure GC = (VC ,EC),
c1, c2 ∈ VW , we say that c1 is candidate equivalent to c2
with respect to u ∈ VT , denoted c1 ∼c,u c2, if and only if

c1, c2 ∉ C[u] or c1, c2 ∈ C[u] and (c1, u) ∼s (c2, u).
It is easy to show that if the candidate sets are complete (for

each template node u, if there is a matching which maps u to

world node v, then v ∈ C[u]), then if c1 ∼s c2, then c1 ∼c,u c2
for all template vertices u.

The exact criteria for interchangeability is a little more com-

plicated. For example, in Figure 2, 4 appears as a candidate

for both A and for B and C, so that we cannot simply swap

4 with nodes that are candidate equivalent to 4 with respect

to B. To address a more complex notion of interchangeability,

we introduce some terms. We say that a subgraph isomor-

phism f is derived from a candidate structure GC if for any

v ∈ VT , (v, f(v)) ∈ VC (i.e., f(v) is a candidate of v). We

say that world vertices w1, w2 are GC-interchangeable if for

all isomorphisms derived from the candidate structure GC , w1

and w2 can be interchanged and preserve isomorphism.

A simple criterion for interchangeability is provided in the

following proposition:

Proposition 12. Suppose that given a specific candidate

structure GC = (VC ,EC), we have that c1, c2 ∈ C[u] and

c1 ∼c,u c2 for some template vertex u. Suppose that c1 and c2
are not candidates for any other vertex. Then c1 and c2 are

GC-interchangeable.

This proposition suggests a simple method for exploiting

candidate equivalence. In our tree search, when we generate

candidate vertices for a given vertex u, we find representatives,

for each candidate equivalence class, that do not appear as

candidates for other vertices. If a class has a vertex appearing

in other candidate sets, then we cannot exploit equivalence

and must check each member of the class. Furthermore, as

we continue to make matches and eliminate candidates, more

world vertices will become equivalent, so it is advantageous to

recompute equivalence before every match as is done in line

9 of Algorithm 2. Upon unmatching, we need to restore the

prior equivalence in line 20.

If we have that f(v) = c1 and f(w) = c2, and we want

to swap c1 for c2, we need a stronger condition; namely, we

need that they are equivalent with respect to both v and w.

In the process of a tree search, we do not know exactly what

each vertex will be mapped to so instead we consider an even

stronger condition:

Definition 13. Given a candidate structure GC = (VC ,EC),
we say that c1 ∈ VW is fully candidate equivalent to c2 ∈ VW ,

denoted c1 ∼c c2 if for all u ∈ VT , c1 ∼c,u c2.

Note that if c1 ∼c,u c2 for some u, and c1, c2 are not

candidates for any other vertices, then c1 ∼c c2. This condition

10

TABLE III
NUMBER OF REPRESENTATIVE SOLUTIONS FOR EACH EQUIVALENCE

LEVEL IN THE TOY PROBLEM IN FIGURE 2

Eq. Level # Rep. Sols. Example Sol.

NE 18 A→ 1,B → 2,C → 3

TE 9 A→ 1,{B,C}→ 2,{B,C}→ 3

WE 10 A→ 1,B → {2,3},C → 4

TEWE 6 A→ 1,{B,C}→ 5,{B,C}→ {6,7}
CE 5 A→ 1,B → 2,C → {3,4,5}
FE 2 A→ 1,B → {2,3,4,5},C → {2,3,4,5}
NC 2 A→ 1,B → {2,3,4,5},C → {2,3,4,5}

lence class that has been previously assigned but has grown in

size due to recomputing equivalence. For example, if we first

assign template node B to the equivalence class {2,3}, we are

forced to assign A to 1. Finally, we recompute equivalence,

and we find that {2,3,4,5} comprise an equivalence class,

to which we assign our last template node C. We therefore

have solution class (B → {2,3},A → 1, C → {2,3,4,5}).
We diagram this class in Figure 9 where we color each

template node and its associated candidates the same color.

The subgraph of all nodes and edges that participate in the rep-

resentative solution is the solution-induced world subgraph.

The final graph depicts the compressed solution-induced

world subgraph where we drop all nonparticipant nodes and

edges, and we combine like-colored nodes into “supernodes”

with a label indicating the number of nodes joined. From this

last graph, we can observe the original template graph structure

among the participant world nodes.

We use these graphical representations depict various sym-

metric features of our datasets. As an example, we plot

the template and world subgraph for an example from the

biochemical dataset in Figure 10. From this depiction, we

observe that there are multiple different sources from which

equivalence may arise. One aspect is the large number of pairs

of structurally equivalent nodes that are colored the same in the

template graph. A second source is leaf nodes on the template

graph that can be mapped to large equivalence classes in

the world graph. By using an equivalence-informed subgraph

search, we can expose exactly where these complexities arise.

The compressed solution-induced world graph is depicted in

Figure 11 and clearly shows the role each world node plays

with respect to the template graph in a solution.

VII. APPLICATION TO MULTIPLEX NETWORKS

A. Multiplex MultiGraph Matching

Often analysts wish to encode attributed information into

the nodes and edges of a graph and allow for more than

one interaction to occur between nodes. For example, a

transportation network may have multiple modes of travel

between hubs (e.g., trains and subways). Formally, if we have

K distinct edge labels, then a multiplex multigraph is a K+1-

tuple (V,E1,E2, . . . ,EK) where V is the set of vertices, and

Ei
∶ V ×V → Z≥0 is a function dictating how many edges there

are of label i between two vertices. Intuitively, a multiplex

multigraph is a collection of K multigraphs which share the

same set of nodes. The index i of the edge function is the

“channel” i, and we refer to the edges given by edge function

Ei as the edges in channel i, and the graph (V,Ei) as the

graph in channel i.

A multiplex subgraph isomorphism f ∶ VT → VW

preserves the number of edges in each channel. Given template

(VT ,E
1

T , . . . ,E
K
T) and world (VW ,E1

W , . . . ,EK
W), for any

u, v ∈ VT , we require Ei
W (f(u), f(v)) ≥ Ei

T (u, v), i.e., there

need to be enough edges between f(u) and f(v) to support

the edges between u and v. Definitions for equivalence also

extend naturally: we say v ∼s w if in each channel i for

each u ≠ v,w, Ei(v, u) = Ei(w,u), Ei(u, v) = Ei(u,w),
and Ei(v,w) = Ei(w, v). The other forms of equivalence and

related theorems all generalize similarly.

Recently, significant work has been done on developing

algorithms for finding multiplex subgraph isomorphisms. [29]

develops an indexing approach based on neighborhood struc-

ture in multichannel graphs. [46] extends the single channel

package [14] to handle the multichannel case and focuses

on using intelligent vertex ordering for finding isomorphisms.

[38] utilizes a constraint programming approach for filtering

out candidates which is extended in [51]. A similar filtering

approach is taken in [41]. [44] relaxes the problem to a

continuous optimization problem which is then solved and

projected back onto the original space.

B. Multiplex Experiments

We assess the performance of our equivalence enhance-

ments on the Glasgow solver, adapted to handle multiplex

subgraph isomorphism problems. The adaptations involve min-

imal changes to the base algorithm, to ensure that matches are

only made if they preserve the edges in every channel. To

eliminate more candidates, we also perform a prefilter using

the statistics and topology filters from [38] as well as maintain

the subgraphs in each channel as the supplemental graphs used

in the Glasgow algorithm.

We consider datasets including those from [51] and which

represent both real world examples and synthetically generated

data. The real world examples include a transportation network

in Great Britain [13], an airline network [15], a social network

built on interactions on Twitter related to the Higgs Boson

[16], and COVID data [52]. For the transportation and twitter

networks, the template is extracted from the world graph.

The synthetically generated datasets are examples which rep-

resent emails, phone calls, financial transactions, among other

interactions between individuals and are all generated as

part of the DARPA-MAA program [33]–[35]. The subgraph

isomorphisms to be detected may be a group of actors involved

in adversarial activities including human trafficking and money

laundering. The statistics regarding these different subgraph

isomorphism problems are described in Table IV. For more

details on these particular datasets, see [51].

The multiplex datasets are much larger than the single-

channel graphs in the previous section, with the largest world

graphs having hundreds of thousands of nodes and hundreds of

millions of edges. The synthetic datasets are divided into three

groups based on which organization generated the dataset:

PNNL [34], GORDIAN [35], and IvySys Technologies [33].

17

[24] C. McCreesh and P. Prosser, “A parallel, backjumping

subgraph isomorphism algorithm using supplemental

graphs,” in International conference on principles and

practice of constraint programming, Springer, 2015,

pp. 295–312.

[25] X. Ren and J. Wang, “Exploiting vertex relationships in

speeding up subgraph isomorphism over large graphs,”

Proceedings of the VLDB Endowment, vol. 8, no. 5,

pp. 617–628, 2015.

[26] C. Solnon, G. Damiand, C. De La Higuera, and J.-C.

Janodet, “On the complexity of submap isomorphism

and maximum common submap problems,” Pattern

Recognition, vol. 48, no. 2, pp. 302–316, 2015.

[27] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang,

“Efficient subgraph matching by postponing cartesian

products,” in Proceedings of the 2016 International

Conference on Management of Data, ACM, 2016,

pp. 1199–1214.

[28] F. Emmert-Streib, M. Dehmer, and Y. Shi, “Fifty years

of graph matching, network alignment and network

comparison,” Information sciences, vol. 346, pp. 180–

197, 2016.

[29] V. Ingalalli, D. Ienco, and P. Poncelet, “Sumgra: Query-

ing multigraphs via efficient indexing,” in International

Conference on Database and Expert Systems Applica-

tions, Springer, 2016, pp. 387–401.

[30] L. Kotthoff, C. McCreesh, and C. Solnon, “Portfolios

of subgraph isomorphism algorithms,” in Learning and

Intelligent Optimization, P. Festa, M. Sellmann, and

J. Vanschoren, Eds., Cham: Springer International Pub-

lishing, 2016, pp. 107–122.

[31] V. Carletti, P. Foggia, A. Saggese, and M. Vento,

“Introducing VF3: A new algorithm for subgraph iso-

morphism,” in International Workshop on Graph-Based

Representations in Pattern Recognition, Springer, 2017,

pp. 128–139.

[32] Y. Liang and P. Zhao, “Similarity search in graph

databases: A multi-layered indexing approach,” in 2017

IEEE 33rd International Conference on Data Engineer-

ing (ICDE), IEEE, 2017, pp. 783–794.

[33] K. O. Babalola, O. B. Jennings, E. Urdiales, and

J. A. DeBardelaben, “Statistical methods for generat-

ing synthetic email data sets,” in 2018 IEEE Interna-

tional Conference on Big Data (Big Data), Oct. 2018,

pp. 3986–3990.

[34] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin,

“Multi-channel large network simulation including ad-

versarial activity,” in 2018 IEEE International Confer-

ence on Big Data (Big Data), Oct. 2018, pp. 3947–

3950.

[35] K. Karra, S. Swarup, and J. Graham, “An empiri-

cal assessment of the complexity and realism of syn-

thetic social contact networks,” in 2018 IEEE Interna-

tional Conference on Big Data (Big Data), Oct. 2018,

pp. 3959–3967.

[36] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble,

“When subgraph isomorphism is really hard, and why

this matters for graph databases,” Journal of Artificial

Intelligence Research, vol. 61, pp. 723–759, 2018.

[37] G. Micale, R. Giugno, A. Ferro, M. Mongiovi, D.

Shasha, and A. Pulvirenti, “Fast analytical methods for

finding significant labeled graph motifs,” Data Mining

and Knowledge Discovery, vol. 32, no. 2, pp. 504–531,

2018.

[38] J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd,

and A. L. Bertozzi, “Filtering methods for subgraph

matching on multiplex networks,” in 2018 IEEE In-

ternational Conference on Big Data (Big Data), IEEE,

2018, pp. 3980–3985.

[39] H. Jin, X. He, Y. Wang, H. Li, and A. L. Bertozzi,

“Noisy subgraph isomorphisms on multiplex networks,”

in 2019 IEEE International Conference on Big Data

(Big Data), IEEE, 2019, pp. 4899–4905.

[40] A. Kopylov and J. Xu, “Filtering strategies for inexact

subgraph matching on noisy multiplex networks,” in

2019 IEEE International Conference on Big Data (Big

Data), 2019, pp. 4906–4912.

[41] L. Liu, B. Du, H. Tong, et al., “G-finder: Approximate

attributed subgraph matching,” in 2019 IEEE Interna-

tional Conference on Big Data (Big Data), IEEE, 2019,

pp. 513–522.

[42] T. Nguyen, D. Yang, Y. Ge, H. Li, and A. L. Bertozzi,

“Applications of structural equivalence to subgraph

isomorphism on multichannel multigraphs,” in 2019

IEEE International Conference on Big Data (Big Data),

IEEE, 2019, pp. 4913–4920.

[43] C. Solnon, “Experimental evaluation of subgraph iso-

morphism solvers,” in International Workshop on

Graph-Based Representations in Pattern Recognition,

Springer, 2019, pp. 1–13.

[44] D. Sussman, Y. Park, C. E. Priebe, and V. Lyzinski,

“Matched filters for noisy induced subgraph detection,”

IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 1–1, 2019, ISSN: 0162-8828. DOI: 10.

1109/TPAMI.2019.2914651.

[45] C. McCreesh, P. Prosser, and J. Trimble, “The glas-

gow subgraph solver: Using constraint programming to

tackle hard subgraph isomorphism problem variants,”

in International Conference on Graph Transformation,

Springer, 2020, pp. 316–324.

[46] G. Micale, V. Bonnici, A. Ferro, D. Shasha, R. Giugno,

and A. Pulvirenti, “Multiri: Fast subgraph matching in

labeled multigraphs,” arXiv preprint arXiv:2003.11546,

2020.

[47] T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, and

A. L. Bertozzi, “Inexact attributed subgraph matching,”

Proc. IEEE Cong. BIG DATA, Graph Techniques for

Adversarial Activity Analytics (GTA3 4.0) workshop,

pp. 2575–2582, 2020.

[48] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang,

D. Eide, K. Funk, R. Kinney, Z. Liu, W. Merrill, et al.,

“Cord-19: The covid-19 open research dataset,” ArXiv,

2020.

[49] Q. Wang, M. Li, X. Wang, N. Parulian, G. Han, J. Ma, J.

Tu, Y. Lin, H. Zhang, W. Liu, et al., “Covid-19 literature

	I Introduction
	I-A Related Work
	I-B Paper Outline

	II Structural Equivalence
	II-A Interchangeability and Isomorphism Counting
	II-B Application to Tree Search

	III Candidate Equivalence
	IV Node Cover Equivalence
	IV-A Equivalence Hierarchy

	V Experiments
	VI Compact Solution Representation
	VII Application to Multiplex Networks
	VII-A Multiplex MultiGraph Matching
	VII-B Multiplex Experiments
	VII-B1 PNNL
	VII-B2 GORDIAN
	VII-B3 IvySys
	VII-B4 COVID
	VII-B5 Higgs Twitter Erdos–Rényi Experiments

	VIII Conclusion
	Biographies
	Dominic Yang
	Yurun Ge
	Thien Nguyen
	Denali Molitor
	Jacob D. Moorman
	Andrea L. Bertozzi, Member, IEEE

