

INSTITUT DE FRANCE
Académie des sciences

Comptes Rendus

Mathématique

Brendon Rhoades

Plethysm and a character embedding problem of Miller

Volume 360 (2022), p. 1113-1116

<https://doi.org/10.5802/crmath.363>

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
<http://creativecommons.org/licenses/by/4.0/>

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Combinatorics / Combinatoire

Plethysm and a character embedding problem of Miller

Brendon Rhoades*,^a

^a Department of Mathematics, University of California, San Diego La Jolla, CA, 92093,
USA

E-mail: bprhoades@ucsd.edu

Abstract. We use a plethystic formula of Littlewood to answer a question of Miller on embeddings of symmetric group characters. We also reprove a result of Miller on character congruences.

Funding. B. Rhoades was partially supported by NSF Grant DMS-1953781.

Manuscript received 29 March 2022, revised 4 April 2022, accepted 5 April 2022.

Given $d \geq 1$ and a partition $\lambda = (1^{m_1} 2^{m_2} 3^{m_3} \dots)$ of a positive integer n , let $\boxplus^d(\lambda)$ be the partition of $d^2 \cdot n$ given by $\boxplus^d(\lambda) := (d^{dm_1} (2d)^{dm_2} (3d)^{dm_3} \dots)$. The Young diagram of $\boxplus^d(\lambda)$ is obtained from that of λ by subdividing every box into a $d \times d$ grid, as suggested by the notation.

Let S_n be the symmetric group on n letters. For a partition $\lambda \vdash n$, let V^λ be the corresponding S_n -irreducible with character $\chi^\lambda : S_n \rightarrow \mathbb{C}$. For $d \geq 1$, define a new class function $\boxplus^d(\chi^\lambda)$ on S_n whose value on permutations of cycle type $\mu \vdash n$ is given by

$$\boxplus^d(\chi^\lambda)_\mu := \chi_{\boxplus^d(\mu)}^{\boxplus^d(\lambda)}. \quad (1)$$

Thus, the values of the class function $\boxplus^d(\chi^\lambda)$ on S_n are embedded inside the character table of the larger symmetric group $S_{d^2 \cdot n}$. A. Miller conjectured [4] that the class functions $\boxplus^d(\chi^\lambda)$ are genuine characters of (rather than merely class functions on) S_n . We prove that this is so in Theorem 1 using *plethysm* of symmetric functions.

In the arguments that follow, we use standard material on symmetric functions; for details see [3]. For $\mu \vdash n$, let $m_i(\mu)$ be the multiplicity of i as a part of μ and $z_\mu := 1^{m_1(\mu)} 2^{m_2(\mu)} \dots m_1(\mu)! m_2(\mu)! \dots$ be the size of the centralizer of a permutation $w \in S_n$ of cycle type μ .

Let $\Lambda = \bigoplus_{n \geq 0} \Lambda_n$ be the ring of symmetric functions in an infinite variable set (x_1, x_2, \dots) . Bases of Λ are indexed by partitions; we use the Schur basis $\{s_\lambda\}$ and power sum basis $\{p_\lambda\}$. The basis p_λ is *multiplicative*: if $\lambda = (\lambda_1, \lambda_2, \dots)$ then $p_\lambda = p_{\lambda_1} p_{\lambda_2} \dots$. The transition matrix from the Schur to the power sum basis encodes the character table of S_n ; for $\lambda \vdash n$ we have

$$s_\lambda = \sum_{\mu \vdash n} \frac{\chi_\mu^\lambda}{z_\mu} p_\mu.$$

* Corresponding author.

Let $\langle -, - \rangle$ be the *Hall inner product* on Λ with respect to which the Schur basis $\{s_\lambda\}$ is orthonormal. The power sums are orthogonal with respect to this inner product. We have $\langle p_\lambda, p_\mu \rangle = z_\lambda \cdot \delta_{\lambda, \mu}$ where δ is the Kronecker delta.

Write $R = \bigoplus_{n \geq 0} R_n$ where R_n is the space of class functions $\varphi : S_n \rightarrow \mathbb{C}$. The *characteristic map* $\text{ch}_n : R_n \rightarrow \Lambda_n$ is given by $\text{ch}_n(\varphi) = \frac{1}{n!} \sum_{w \in S_n} \varphi(w) \cdot p_{\text{cyc}(w)}$ where $\text{cyc}(w) \vdash n$ is the cycle type of $w \in S_n$. The map $\text{ch} = \bigoplus_{n \geq 0} \text{ch}_n$ is a linear isomorphism $R \rightarrow \Lambda$. The space R has an *induction product* given by $\varphi \circ \psi := \text{Ind}_{S_n \times S_m}^{S_{n+m}} (\varphi \otimes \psi)$ for all $\varphi \in R_n$ and $\psi \in R_m$. Under this product, the map $\text{ch} : R \rightarrow \Lambda$ becomes a ring isomorphism. We record two properties of ch .

- We have $\text{ch}(\chi^\lambda) = s_\lambda$, so that ch sends the irreducible character basis of R to the Schur basis of Λ .
- If $\varphi : S_n \rightarrow \mathbb{C}$ is any class function and $\mu \vdash n$, then

$$\langle \text{ch}(\varphi), p_\mu \rangle = \text{value of } \varphi \text{ on a permutation of cycle type } \mu. \quad (2)$$

Let $\psi^d : \Lambda \rightarrow \Lambda$ be the map $\psi^d : F(x_1, x_2, \dots) \mapsto F(x_1^d, x_2^d, \dots)$ which replaces each variable x_i with its d^{th} power x_i^d . The symmetric function $\psi^d(F)$ is the plethysm $p_d[F]$ of F into the power sum p_d . Let $\phi_d : \Lambda \rightarrow \Lambda$ be the adjoint of ψ^d characterized by $\langle \psi^d(F), G \rangle = \langle F, \phi_d(G) \rangle$ for all $F, G \in \Lambda$. In this note we apply the operators ψ^d and ϕ_d to character theory; see [6] for an application to the cyclic sieving phenomenon of enumerative combinatorics.

Theorem 1. *Let $d \geq 1$ and $\lambda \vdash n$. Consider the chain of subgroups $\Delta(S_n) \subseteq S_n^d \subseteq S_{dn}$ where $S_n^d = S_n \times \dots \times S_n$ is the d -fold self-product of S_n and $\Delta(S_n)$ is the diagonal $\{(w, \dots, w) : w \in S_n\}$ in S_n^d . Then $\boxplus^d(\chi^\lambda)$ is the character of the $\Delta(S_n) \cong S_n$ module*

$$\text{Res}_{\Delta(S_n)}^{S_{dn}} (V^\lambda \circ \dots \circ V^\lambda) \quad (3)$$

obtained by restricting the d -fold induction product $V^\lambda \circ \dots \circ V^\lambda = \text{Ind}_{S_n^d}^{S_{dn}} (V^\lambda \otimes \dots \otimes V^\lambda)$ to $\Delta(S_n)$.

Proof. Let $\lambda, \mu \vdash n$ be two partitions and let $d \geq 1$. By (2) we have the class function value

$$\chi_{\boxplus^d(\mu)}^{\boxplus^d(\lambda)} = \langle s_{\boxplus^d(\lambda)}, p_{\boxplus^d(\mu)} \rangle = \langle s_{\boxplus^d(\lambda)}, \psi^d(p_\mu^d) \rangle = \langle \phi_d(s_{\boxplus^d(\lambda)}), p_\mu^d \rangle. \quad (4)$$

Littlewood [2, p. 340] proved (see also [1, Equation 13]) that for any partition $v \vdash dm$, with empty d -core, the image $\phi_d(s_v)$ is given by

$$\phi_d(s_v) = \epsilon_d(v) \cdot s_{v^{(1)}} \cdots s_{v^{(d)}} \quad (5)$$

where $\epsilon_d(v)$ is the d -sign of v and $(v^{(1)}, \dots, v^{(d)})$ is the d -quotient of v . We refer the reader to [1, 2] for definitions. In our context we have $\epsilon_d(\boxplus^d(\lambda)) = +1$ (since $\boxplus^d(\lambda)$ admits a d -ribbon tiling with only horizontal ribbons) and the d -quotient of $\boxplus^d(\lambda)$ is the constant d -tuple $(\lambda, \dots, \lambda)$. Equation (5) reads

$$\phi_d(s_{\boxplus^d(\lambda)}) = s_\lambda^d. \quad (6)$$

Plugging (6) into (4) gives

$$\chi_{\boxplus^d(\mu)}^{\boxplus^d(\lambda)} = \langle \phi_d(s_{\boxplus^d(\lambda)}), p_\mu^d \rangle = \langle s_\lambda^d, p_\mu^d \rangle \quad (7)$$

which (thanks to (2)) agrees with the trace of $(w, \dots, w) \in \Delta(S_n)$ on $V^\lambda \circ \dots \circ V^\lambda$ for $w \in S_n$ of cycle type μ . \square

If $\lambda = (\lambda_1, \lambda_2, \dots)$ is a partition, let $d \cdot \lambda = (d\lambda_1, d\lambda_2, \dots)$ be the partition obtained by multiplying every part of λ by d . The argument proving Theorem 1 applies to show that for $\lambda \vdash n$, the class function $\chi^{d \cdot \lambda} : S_n \rightarrow \mathbb{C}$ given by $(\chi^{d \cdot \lambda})_\mu := \chi_{d \cdot \mu}^{d \cdot \lambda}$ is a genuine character (although its module does not have such a nice description). It may be interesting to find other ways to discover characters of S_n embedded inside characters of larger symmetric groups.

In closing, we use plethysm to give a quick proof of a character congruence result of Miller [5, Thm. 1]. Miller gave an interesting combinatorial proof of the following theorem by introducing objects called “cascades”.

Theorem 2. (Miller) *Let $d \geq 1$. For any partitions $\lambda \vdash n$ and $\mu \vdash dn$, we have*

$$\chi_{d \cdot \mu}^{\boxplus^d(\lambda)} \equiv 0 \pmod{d!}. \quad (8)$$

Furthermore, suppose $\lambda, \nu \vdash n$ with $d \nmid n$. Then

$$\chi_{d^2 \cdot \nu}^{\boxplus^d(\lambda)} = 0. \quad (9)$$

Proof. Arguing as in the proof of Theorem 1, we have

$$\chi_{d \cdot \mu}^{\boxplus^d(\lambda)} = \langle s_{\boxplus^d(\lambda)}, p_{d \cdot \mu} \rangle = \langle s_{\boxplus^d(\lambda)}, \psi^d(p_\mu) \rangle = \langle \phi_d(s_{\boxplus^d(\lambda)}), p_\mu \rangle = \langle s_\lambda^d, p_\mu \rangle \quad (10)$$

where the last equality used Equation (6). We have $s_\lambda = \sum_{\rho \vdash n} \frac{\chi_\rho^\lambda}{z_\rho} p_\rho$ so that

$$\chi_{d \cdot \mu}^{\boxplus^d(\lambda)} = \langle s_\lambda^d, p_\mu \rangle = \left\langle \left(\sum_{\rho \vdash n} \frac{\chi_\rho^\lambda}{z_\rho} p_\rho \right)^d, p_\mu \right\rangle. \quad (11)$$

We expand far right of (11) using the orthogonality of the p 's to obtain

$$\left\langle \left(\sum_{\rho \vdash n} \frac{\chi_\rho^\lambda}{z_\rho} p_\rho \right)^d, p_\mu \right\rangle = \sum_{(\mu_{(1)}, \dots, \mu_{(d)})} \frac{z_\mu}{z_{\mu_{(1)}} \cdots z_{\mu_{(d)}}} \times \chi_{\mu_{(1)}}^\lambda \cdots \chi_{\mu_{(d)}}^\lambda \quad (12)$$

where the sum is over all d -tuples $(\mu_{(1)}, \dots, \mu_{(d)})$ of partitions of n whose multiset of parts equals μ . In particular, (12) is zero unless every part of μ is $\leq n$; we assume this going forward. We want to show that (12) is divisible by $d!$. To show this, we examine what happens when some of the entries in a tuple $(\mu_{(1)}, \dots, \mu_{(d)})$ coincide.

Fix a d -tuple $(\mu_{(1)}, \dots, \mu_{(d)})$ of partitions of n whose multiset of parts is μ . The ratio of z 's in the corresponding term on the RHS of (12) is a product of multinomial coefficients

$$\frac{z_\mu}{z_{\mu_{(1)}} \cdots z_{\mu_{(d)}}} = \binom{m_1(\mu)}{m_1(\mu_{(1)}), \dots, m_1(\mu_{(d)})} \cdots \binom{m_n(\mu)}{m_n(\mu_{(1)}), \dots, m_n(\mu_{(d)})}. \quad (13)$$

Let $\sigma = (\sigma_1, \dots, \sigma_r) \vdash d$ be the partition of d obtained by writing the entry multiplicities in the d -tuple $(\mu_{(1)}, \dots, \mu_{(d)})$ in weakly decreasing order. For example, if $n = 3$, $d = 5$, and our d -tuple of partitions of n is $(\mu_{(1)}, \dots, \mu_{(5)}) = ((2, 1), (3), (1, 1, 1), (3), (2, 1))$, then $\sigma = (2, 2, 1)$. Each multinomial coefficient in (13) for which $m_i(\mu) > 0$ is divisible by $\sigma_1! \cdots \sigma_r!$. Since each part of μ is $\leq n$, at least one $m_i(\mu) > 0$ and the whole product (13) of multinomial coefficients is divisible by $\sigma_1! \cdots \sigma_r!$. Thus, the sum of the terms in (12) indexed by rearrangements of $(\mu_{(1)}, \dots, \mu_{(d)})$ is divisible by $\binom{d}{\sigma_1, \dots, \sigma_r} \cdot \sigma_1! \cdots \sigma_r! = d!$, so that (12) itself is divisible by $d!$. This proves the first part of the theorem.

For the second part of the theorem, let $\lambda, \nu \vdash n$ where $d \nmid n$. Arguing as above, we have

$$\chi_{d^2 \cdot \nu}^{\boxplus^d(\lambda)} = \left\langle \left(\sum_{\rho \vdash n} \frac{\chi_\rho^\lambda}{z_\rho} p_\rho \right)^d, p_{d \cdot \nu} \right\rangle. \quad (14)$$

Since $d \nmid n$, each partition $\rho \vdash n$ appearing in the first argument of the inner product in (14) has at least one part not divisible by d . Since the p 's are an orthogonal basis of Λ , we see that (14) = 0, proving the second part of the theorem. \square

Acknowledgements

B. Rhoades is grateful to Alex Miller for many helpful conversations, as well as comments on a draft of this manuscript.

References

- [1] A. Lascoux, B. Leclerc, J.-Y. Thibon, “Ribbon tableaux, Hall–Littlewood symmetric functions, quantum affine algebras, and unipotent varieties”, *J. Math. Phys.* **38** (1997), no. 2, p. 1041–1068.
- [2] D. E. Littlewood, “Modular representations of symmetric groups”, *Proc. R. Soc. Lond., Ser. A* **209** (1951), p. 333–353.
- [3] I. G. Macdonald, *Symmetric functions and Hall polynomials*, second ed., Oxford Mathematical Monographs, Oxford University Press, 1995.
- [4] A. R. Miller, “Personal communication”, 2021.
- [5] ———, “Congruences in character tables of symmetric groups”, <https://arxiv.org/abs/1908.03741v1>, 2019.
- [6] B. Rhoades, “Hall–Littlewood polynomials and fixed point enumeration”, *Discrete Math.* **310** (2010), no. 4, p. 869–876.