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Given d ≥ 1 and a partition λ = (1m1 2m2 3m3 · · · ) of a positive integer n, let �
d (λ) be the

partition of d 2 ·n given by �
d (λ) := (d dm1 (2d)dm2 (3d)dm3 · · · ). The Young diagram of �d (λ) is

obtained from that of λ by subdividing every box into a d ×d grid, as suggested by the notation.

Let Sn be the symmetric group on n letters. For a partition λ` n, let V λ be the corresponding

Sn-irreducible with character χλ : Sn → C. For d ≥ 1, define a new class function �
d (χλ) on Sn

whose value on permutations of cycle type µ` n is given by

�
d

(

χλ
)

µ
:=χ�

d (λ)

�d (µ)
. (1)

Thus, the values of the class function �
d (χλ) on Sn are embedded inside the character table

of the larger symmetric group Sd 2·n . A. Miller conjectured [4] that the class functions �
d (χλ)

are genuine characters of (rather than merely class functions on) Sn . We prove that this is so

in Theorem 1 using plethysm of symmetric functions.

In the arguments that follow, we use standard material on symmetric functions; for

details see [3]. For µ ` n, let mi (µ) be the multiplicity of i as a part of µ and zµ :=

1m1(µ)2m2(µ) · · ·m1(µ)!m2(µ)! · · · be the size of the centralizer of a permutation w ∈ Sn of cy-

cle type µ.

Let Λ =
⊕

n≥0Λn be the ring of symmetric functions in an infinite variable set (x1, x2, . . . ).

Bases of Λ are indexed by partitions; we use the Schur basis {sλ} and power sum basis {pλ}. The

basis pλ is multiplicative: if λ = (λ1,λ2, . . . ) then pλ = pλ1
pλ2

· · · . The transition matrix from the

Schur to the power sum basis encodes the character table of Sn ; for λ` n we have

sλ =
∑

µ`n

χλ
µ

zµ
pµ.
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Let 〈−,−〉 be the Hall inner product on Λ with respect to which the Schur basis {sλ} is

orthonormal. The power sums are orthogonal with respect to this inner product. We have

〈pλ, pµ〉 = zλ ·δλ,µ where δ is the Kronecker delta.

Write R =
⊕

n≥0 Rn where Rn is the space of class functions ϕ : Sn →C. The characteristic map

chn : Rn → Λn is given by chn(ϕ) = 1
n!

∑

w ∈Sn
ϕ(w) ·pcyc(w) where cyc(w) ` n is the cycle type of

w ∈ Sn . The map ch =
⊕

n≥0 chn is a linear isomorphism R → Λ. The space R has an induction

product given by ϕ◦ψ := Ind
Sn+m

Sn ×Sm
(ϕ⊗ψ) for all ϕ ∈ Rn and ψ ∈ Rm . Under this product, the map

ch : R →Λ becomes a ring isomorphism. We record two properties of ch.

• We have ch(χλ) = sλ, so that ch sends the irreducible character basis of R to the Schur

basis of Λ.

• If ϕ : Sn →C is any class function and µ` n, then
〈

ch(ϕ), pµ

〉

= value of ϕ on a permutation of cycle type µ. (2)

Let ψd : Λ → Λ be the map ψd : F (x1, x2, . . . ) 7→ F (xd
1 , xd

2 , . . . ) which replaces each variable

xi with its d th power xd
i

. The symmetric function ψd (F ) is the plethysm pd [F ] of F into the

power sum pd . Let φd : Λ→ Λ be the adjoint of ψd characterized by 〈ψd (F ),G〉 = 〈F,φd (G)〉 for

all F,G ∈ Λ. In this note we apply the operators ψd and φd to character theory; see [6] for an

application to the cyclic sieving phenomenon of enumerative combinatorics.

Theorem 1. Let d ≥ 1 and λ ` n. Consider the chain of subgroups ∆(Sn) ⊆ Sd
n ⊆ Sdn where

Sd
n = Sn × ·· ·×Sn is the d-fold self-product of Sn and ∆(Sn) is the diagonal {(w, . . . , w) : w ∈ Sn}

in Sd
n . Then �

d (χλ) is the character of the ∆(Sn) ∼= Sn module

Res
Sdn

∆(Sn )

(

V λ
◦ · · · ◦V λ

)

(3)

obtained by restricting the d-fold induction product V λ ◦ · · · ◦V λ = Ind
Sdn

Sd
n

(V λ⊗·· ·⊗V λ) to ∆(Sn).

Proof. Let λ,µ` n be two partitions and let d ≥ 1. By (2) we have the class function value

χ�
d (λ)

�d (µ)
=

〈

s�d (λ), p�d (µ)

〉

=

〈

s�d (λ),ψ
d

(

pd
µ

)〉

=

〈

φd

(

s�d (λ)

)

, pd
µ

〉

. (4)

Littlewood [2, p. 340] proved (see also [1, Equation 13]) that for any partition ν` dm, with empty

d-core, the image φd (sν) is given by

φd (sν) = εd (ν) · sν(1) · · · sν(d) (5)

where εd (ν) is the d-sign of ν and (ν(1), . . . ,ν(d)) is the d-quotient of ν. We refer the reader to [1, 2]

for definitions. In our context we have εd (�d (λ)) = +1 (since �
d (λ) admits a d-ribbon tiling

with only horizontal ribbons) and the d-quotient of �d (λ) is the constant d-tuple (λ, . . . ,λ).

Equation (5) reads

φd

(

s�d (λ)

)

= sd
λ . (6)

Plugging (6) into (4) gives

χ�
d (λ)

�d (µ)
=

〈

φd

(

s�d (λ)

)

, pd
µ

〉

=

〈

sd
λ , pd

µ

〉

(7)

which (thanks to (2)) agrees with the trace of (w, . . . , w) ∈∆(Sn) on V λ ◦· · ·◦V λ for w ∈ Sn of cycle

type µ. �

Ifλ= (λ1,λ2, . . . ) is a partition, let d ·λ= (dλ1,dλ2, . . . ) be the partition obtained by multiplying

every part of λ by d . The argument proving Theorem 1 applies to show that for λ ` n, the class

function χd ·λ : Sn → C given by (χd ·λ)µ := χd ·λ
d ·µ

is a genuine character (although its module does

not have such a nice description). It may be interesting to find other ways to discover characters

of Sn embedded inside characters of larger symmetric groups.
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In closing, we use plethysm to give a quick proof of a character congruence result of Miller [5,

Thm. 1]. Miller gave an interesting combinatorial proof of the following theorem by introducing

objects called “cascades”.

Theorem 2. (Miller) Let d ≥ 1. For any partitions λ` n and µ` dn, we have

χ�
d (λ)

d ·µ
≡ 0 mod d !. (8)

Furthermore, suppose λ,ν` n with d - n. Then

χ�
d (λ)

d 2·ν
= 0. (9)

Proof. Arguing as in the proof of Theorem 1, we have

χ�
d (λ)

d ·µ
=

〈

s�d (λ), pd ·µ

〉

=

〈

s�d (λ),ψ
d (pµ)

〉

=
〈

φd

(

s�d (λ)

)

, pµ

〉

=

〈

sd
λ , pµ

〉

(10)

where the last equality used Equation (6). We have sλ =
∑

ρ`n
χλ
ρ

zρ
pρ so that

χ�
d (λ)

d ·µ
=

〈

sd
λ , pµ

〉

=

〈(

∑

ρ`n

χλ
ρ

zρ
pρ

)d

, pµ

〉

. (11)

We expand far right of (11) using the orthogonality of the p’s to obtain
〈(

∑

ρ`n

χλ
ρ

zρ
pρ

)d

, pµ

〉

=
∑

(µ(1), ...,µ(d))

zµ

zµ(1)
· · ·zµ(d)

×χλ
µ(1)

· · ·χλ
µ(d)

(12)

where the sum is over all d-tuples (µ(1), . . . , µ(d)) of partitions of n whose multiset of parts equals

µ. In particular, (12) is zero unless every part of µ is ≤ n; we assume this going forward. We want

to show that (12) is divisible by d !. To show this, we examine what happens when some of the

entries in a tuple (µ(1), . . . , µ(d)) coincide.

Fix a d-tuple (µ(1), . . . , µ(d)) of partitions of n whose multiset of parts is µ. The ratio of z’s in the

corresponding term on the RHS of (12) is a product of multinomial coefficients

zµ

zµ(1)
· · ·zµ(d)

=

(

m1(µ)

m1

(

µ(1)

)

, . . . , m1

(

µ(d)

)

)

· · ·

(

mn(µ)

mn

(

µ(1)

)

, . . . , mn

(

µ(d)

)

)

. (13)

Let σ = (σ1, . . . , σr ) ` d be the partition of d obtained by writing the entry multiplicities in the

d-tuple (µ(1), . . . , µ(d)) in weakly decreasing order. For example, if n = 3, d = 5, and our d-tuple of

partitions of n is (µ(1), . . . , µ(5)) = ((2,1), (3), (1,1,1), (3), (2,1)), then σ = (2,2,1). Each multinomial

coefficient in (13) for which mi (µ) > 0 is divisible by σ1! · · ·σr !. Since each part of µ is ≤ n, at least

one mi (µ) > 0 and the whole product (13) of multinomial coefficients is divisible by σ1! · · ·σr !.

Thus, the sum of the terms in (12) indexed by rearrangements of (µ(1), . . . , µ(d)) is divisible by
( d
σ1, ...,σr

)

·σ1! · · ·σr ! = d !, so that (12) itself is divisible by d !. This proves the first part of the theorem.

For the second part of the theorem, let λ,ν` n where d - n. Arguing as above, we have

χ�
d (λ)

d 2·ν
=

〈(

∑

ρ`n

χλ
ρ

zρ
pρ

)d

, pd ·ν

〉

. (14)

Since d - n, each partition ρ ` n appearing in the first argument of the inner product in (14) has

at least one part not divisible by d . Since the p’s are an orthogonal basis of Λ, we see that (14) = 0,

proving the second part of the theorem. �
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