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Given d = 1 and a partition A = (1"2™23"3...) of a positive integer n, let B4(1) be the
partition of d? - n given by B%(A) := (d9"™ (2d)?™2(3d)?" ---). The Young diagram of B4 (1) is
obtained from that of A by subdividing every box into a d x d grid, as suggested by the notation.

Let S,, be the symmetric group on 7 letters. For a partition A F 1, let V* be the corresponding
Sy -irreducible with character XA : S, — C. For d = 1, define a new class function Hﬂd(x’l) on Sy,
whose value on permutations of cycle type p - n is given by

d
B9 (x’l)u = X%‘iig )
Thus, the values of the class function Eﬂd()()‘) on S, are embedded inside the character table
of the larger symmetric group S,2.,,. A. Miller conjectured [4] that the class functions B¢ (y")
are genuine characters of (rather than merely class functions on) S,. We prove that this is so
in Theorem 1 using plethysm of symmetric functions.

In the arguments that follow, we use standard material on symmetric functions; for
details see [3]. For u F n, let m;(u) be the multiplicity of i as a part of u and z, :=
1m1("‘)2m2(”)~-m1(,u)!m2 (w!--- be the size of the centralizer of a permutation w € S, of cy-
cle type p.

Let A = @,,>9 A, be the ring of symmetric functions in an infinite variable set (xi, xp, ...).
Bases of A are indexed by partitions; we use the Schur basis {s)} and power sum basis {p;}. The
basis p, is multiplicative: if A = (A1, A5, ...) then py = py, pa, -+ The transition matrix from the
Schur to the power sum basis encodes the character table of S;; for A - n we have

A
u

Sp= Z —Pu
pEn <p
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Let (—,—) be the Hall inner product on A with respect to which the Schur basis {s3} is
orthonormal. The power sums are orthogonal with respect to this inner product. We have
(P, Pu) =22 '5&# where § is the Kronecker delta.

Write R = @,,-¢ R, where R, is the space of class functions ¢ : S, — C. The characteristic map
chy, : R, — A, is given by ch,(¢p) = % Y wes, ¢(W) -+ Peye(w) Where cyc(w) = n is the cycle type of
w € Sy. The map ch = @,,-¢ ch;, is a linear isomorphism R — A. The space R has an induction
product given by oy := Indi:*x’"sm (p®wy) for all ¢ € R, and ¥ € R;,. Under this product, the map
ch: R — A becomes a ring isomorphism. We record two properties of ch.

o We have ch()()‘) = s3, so that ch sends the irreducible character basis of R to the Schur
basis of A.
e Ifp:S, — Cisany class function and y + n, then

(ch(¢), pu) = value of ¢ on a permutation of cycle type p. 2)

Let wd : A — A be the map wd :F(x1,x,...) — F(x{i,xg, ...) which replaces each variable
x; with its d® power xf. The symmetric function w%(F) is the plethysm p4[F] of F into the
power sum pg. Let ¢4 : A — A be the adjoint of ¢ characterized by (y?(F), G) = (F,¢4(G)) for
all F,G € A. In this note we apply the operators % and ¢, to character theory; see [6] for an
application to the cyclic sieving phenomenon of enumerative combinatorics.

Theorem 1. Let d = 1 and A + n. Consider the chain of subgroups A(S,) < S‘,f < Sagn where
Sﬁ =Sy x -+ x 8y, is the d-fold self-product of S,, and A(Sy,) is the diagonal {(w, ..., w) : we Sy}
in 84, Then 8% (y*) is the character of the A(S,) = S,, module

San (/A A
Respts (Voo 3)

obtained by restricting the d-fold induction product Vo ---o V* = Indig" (Vre---@ V1) to A(Sy).
Proof. Let A, ut nbe two partitions and let d = 1. By (2) we have the class function value

X%Z&; - <Saadm)’l’aad(u)> - <Saad(m”/’d (pﬁ)> - <¢d (Smd(m)’pﬁ>' @

Littlewood [2, p. 340] proved (see also [1, Equation 13]) that for any partition v - d m, with empty
d-core, the image ¢, (sy) is given by

ba(sy)=€q(V)-s,0 - Sy@ (5)

where €4 (v) is the d-sign of v and (v, ...,v@) is the d-quotient of v. We refer the reader to [1,2]
for definitions. In our context we have ed(BEId(/l)) = +1 (since EEId()L) admits a d-ribbon tiling
with only horizontal ribbons) and the d-quotient of B4(A) is the constant d-tuple (4,...,1).
Equation (5) reads

ba (smaqn) = s5- 6)
Plugging (6) into (4) gives
B4 d d d
Xigagy = (9a smew) pit) = (55 pi) @
which (thanks to (2)) agrees with the trace of (w, ..., w) € A(S,) on Vio--oVrforwe S, of cycle
type p. [

IfA=(A;1,A,...) isapartition, letd-A = (d11,d A, ...) be the partition obtained by multiplying
every part of A by d. The argument proving Theorem 1 applies to show that for A - n, the class
function y¥* : S, — C given by (y%*) ui= )(g:ﬁ is a genuine character (although its module does
not have such a nice description). It may be interesting to find other ways to discover characters
of S, embedded inside characters of larger symmetric groups.
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In closing, we use plethysm to give a quick proof of a character congruence result of Miller [5,
Thm. 1]. Miller gave an interesting combinatorial proof of the following theorem by introducing
objects called “cascades”.

Theorem 2. (Miller) Let d = 1. For any partitions A+ n and p+ dn, we have

B0
Xay = 0 modd! 8
Furthermore, suppose A, v+ n with dt n. Then
d
1o =0, 9)
Proof. Arguing as in the proof of Theorem 1, we have
BY@ d d
Xd.u[ "= (sqagy Payu) = <SEEd<;w‘/’ (Pu)> =(ba (sma)) Pu) = <%Pu> (10)

A
where the last equality used Equation (6). We have sy =3, 5, )Z(_Z pp so that
d X p ¢
=Ry o o
X )=<Sf'vu>=<(z —pp) ypu>~ (11)
pkn Zp
We expand far right of (11) using the orthogonality of the p’s to obtain

2 d
Xp Eam A A
<(Z _pp) ’p.u>=( Z T e X 12)
73

orn%e ) (g ) o " R
where the sum is over all d-tuples (1), ..., 4(g)) of partitions of n whose multiset of parts equals
u. In particular, (12) is zero unless every part of y is < n; we assume this going forward. We want
to show that (12) is divisible by d!. To show this, we examine what happens when some of the

entries in a tuple (1), ..., t(g)) coincide.
Fix a d-tuple (1, ..., tg)) of partitions of n whose multiset of parts is u. The ratio of z’s in the
corresponding term on the RHS of (12) is a product of multinomial coefficients
Zu my (K) my ({)
R o —— . (13)
Zuy B\ (H)s - ma (Ha) M (B))s - i (i)

Let 0 = (03, ..., 0;) F d be the partition of d obtained by writing the entry multiplicities in the
d-tuple (uqy, ..., H(q) in weakly decreasing order. For example, if n = 3, d = 5, and our d-tuple of
partitions of n is (uq, ..., gE) = ((2,1D),(3),(1,1,1),(3),(2,1)), then o = (2,2,1). Each multinomial
coefficient in (13) for which m;(u) > 0 is divisible by o!--- o ,!. Since each part of u is < n, at least
one m;(y) > 0 and the whole product (13) of multinomial coefficients is divisible by o!---o .
Thus, the sum of the terms in (12) indexed by rearrangements of (uq), ..., tq) is divisible by
(01,.(.1.,%) .01!---0,! = d!, so that (12) itselfis divisible by d!. This proves the first part of the theorem.
For the second part of the theorem, let A, v - n where d { n. Arguing as above, we have
o\
AW = <( > Z—ppp) ,pm>. (14)
pkEn <p

Since d 1 n, each partition p - n appearing in the first argument of the inner product in (14) has
at least one part not divisible by d. Since the p’s are an orthogonal basis of A, we see that (14) =0,
proving the second part of the theorem. O
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