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Let (x1, . . . , xn, y1, . . . , yn) be a list of 2n commuting variables, (θ1, . . . , θn, ξ1, . . . , ξn) be a 
list of 2n anticommuting variables, and C[xn, yn] ⊗ ∧{θn, ξn} be the algebra generated by 
these variables. D’Adderio, Iraci, and Vanden Wyngaerd introduced the Theta operators on 
the ring of symmetric functions and used them to conjecture a formula for the quadruply-
graded Sn-isomorphism type of C[xn, yn] ⊗ ∧{θn, ξn}/I where I is the ideal generated 
by Sn-invariants with vanishing constant term. We prove their conjecture in the ‘purely 
fermionic setting’ obtained by setting the commuting variables xi, yi equal to zero.

 2023 Elsevier B.V. All rights reserved.

1. Introduction

The diagonal coinvariant ring DRn is obtained from the rank 2n polynomial ring C[xn, yn] = C[x1, . . . , xn, y1, . . . , yn] by 
factoring out the ideal generated by Sn-invariants with vanishing constant term. The ring DRn is a bigraded Sn-module; 
Haiman used algebraic geometry to calculate its isomorphism type [10]. In recent years, researchers in algebraic combina-

torics studied variants of DRn involving mixtures of commuting and anticommuting variables [1–3,9,11–14,16–19]. Drawing 
terminology from supersymmetry, we will refer to commuting variables as bosonic and anticommuting variables as fermionic. 
D’Adderio, Iraci, and Vanden Wyngaerd conjectured [3] a generalization of Haiman’s result involving two sets of bosonic and 
two sets of fermionic variables of which Haiman’s result forms the ‘purely bosonic case’. We prove the ‘purely fermionic 
case’ of their conjecture.

We begin by fixing some notation. Let C[xn, yn] ⊗ ∧{θn, ξn} be the tensor product

C[x1, . . . , xn, y1, . . . , yn] ⊗ ∧{θ1, . . . , θn, ξ1, . . . , ξn}

of a rank 2n symmetric algebra with a rank 2n exterior algebra. This ring carries four independent gradings (two bosonic 
and two fermionic) and the diagonal action of the symmetric group Sn

w · xi = xw(i) w · yi = yw(i) w · θi = θw(i) w · ξi = ξw(i)

preserves this quadrigrading. Writing In for the ideal generated by Sn-invariants with vanishing constant term, the quotient

T DRn := (C[x1, . . . , xn, y1, . . . , yn] ⊗ ∧{θ1, . . . , θn, ξ1, . . . , ξn})/In (1.1)
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is a quadruply-graded Sn-module. The notation T DRn alludes to its status as a ‘supersymmetric double’ of DRn with Twice 
as many generators.

Let � denote the ring of symmetric functions in x = (x1, x2, . . . ) over the ground field C(q, t). Given any element 
F ∈ �, D’Adderio, Iraci, and Vanden Wyngaerd introduced [3] a Theta operator �F : � → � whose definition is recalled in 
Section 2. Building on the techniques in [3], D’Adderio and Mellit [4] used Theta operators to prove the rise version of the 
Delta Conjecture of Haglund, Remmel, and Wilson [8]. D’Adderio and Romero [5] rederived and clarified a slew of symmetric 
function identities using Theta operators, drastically shortening many of their proofs.

In this paper, we will only consider Theta operators indexed by elementary symmetric functions ei ∈ �; we abbreviate 
�i := �ei . If G ∈ � has degree d in the x-variables, then �i G has degree d + i and will typically involve the parameters 
q and t (even if G itself does not). D’Adderio, Iraci, and Vanden Wyngaerd conjectured [3] that symmetric functions of 
the form �i� j∇en−i− j (where ∇ is the Bergeron-Garsia nabla operator) determine the quadruply-graded Sn-structure of 
T DRn . Deferring various definitions to Section 2, their conjecture may be stated as follows.

Conjecture 1.1. (D’Adderio-Iraci-Vanden Wyngaerd [3]) Let (T DRn)i, j be the piece of T DRn with homogeneous θ -degree i and 
ξ -degree j. The space (T DRn)i, j vanishes whenever i + j ≥ n. If i + j < n we have

grFrob((T DRn)i, j;q, t) = �i� j∇en−i− j

where q tracks x-degree and t tracks y-degree.

Remark 1.2. D’Adderio et al. define T DRn in a slightly different way, by considering two sets of fermionic variables in which 
variables drawn from different sets commute with one another. This does not affect Conjecture 1.1. Indeed, if V = Cn we 
have a natural isomorphism of quadruply-graded vector spaces

C[V ⊕ V ∗] ⊗ ∧(V ⊕ V ∗) ∼= (C[V ] ⊗ ∧V ) ⊗
(
C[V ∗] ⊗ ∧V ∗

)
(1.2)

which commutes with the action of the general linear group GL(V ) and its subgroup Sn of permutation matrices. In 
particular, the isomorphism (1.2) restricts to a linear isomorphism between the subspaces of Sn-invariants with vanishing 
constant term. Since these subspaces are multihomogeneous, (1.2) also restricts to a linear isomorphism between the ideals 
which they generate. The isomorphism (1.2) therefore induces an isomorphism between T DRn as defined in (1.1) and the 
module defined in D’Adderio et al. in [3].

The case i = j = 0 of Conjecture 1.1 amounts to setting the fermionic θ and ξ -variables to zero and is equivalent to 
Haiman’s two-bosonic result grFrob(DRn; q, t) = ∇en . Setting the y-variables and ξ -variables to zero, Conjecture 1.1 reduces 
to the one-bosonic, one-fermionic ‘superspace coinvariant conjecture’ of the Fields Institute combinatorics group (see [18,
19]). If only the ξ -variables are set to zero, Conjecture 1.1 yields a two-bosonic, one-fermionic conjecture of Zabrocki [18]
tied to the Delta operators on �.

In this paper we give additional evidence for Conjecture 1.1 by proving its purely fermionic case. The fermionic diagonal 
coinvariant ring

F DRn := ∧{θn, ξn}/〈∧{θn, ξn}
Sn
+ 〉 (1.3)

is obtained from the rank 2n exterior algebra ∧{θn, ξn} by modding out by the ideal generated by Sn-invariants with 
vanishing constant term. Equivalently, the ring F DRn is obtained from T DRn by setting the x-variables and y-variables 
equal to zero. The ring F DRn is a bigraded Sn-module. Jongwon Kim and Rhoades introduced F DRn in [12]; Jesse Kim 
and Rhoades used F DRn as a model for resolving a set partition of {1, . . . , n} into a linear combination of noncrossing set 
partitions [11]. Our main result is as follows.

Theorem 1.3. We have (F DRn)i, j = 0 whenever i + j ≥ n. When i + j < n we have

Frob (F DRn)i, j = �i� j∇en−i− j |q=t=0 .

Remark 1.4. The canonical surjection DRn ⊗ F DRn ։ T DRn applies to show that the bidegree support assertion in Theo-
rem 1.3 implies the corresponding assertion in Conjecture 1.1.

To prove Theorem 1.3, we apply a result of Jongwon Kim and Rhoades [12] which expresses Frob (F DRn)i, j in terms of 
Kronecker products of hook-shaped Schur functions. To obtain a recursive structure on the characters Frob (F DRn)i, j , we 
prove a result (Lemma 3.3) on applying the skewing operators h⊥

d
to Kronecker products sλ ∗ sμ which may be of indepen-

dent interest for studying Kronecker products in general. For the right-hand side �i� j∇en−i− j |q=t=0 of Theorem 1.3, we 
apply a result of D’Adderio and Romero [5] for applying the operators h⊥

d
to expressions of the form �i� j H̃(n−i− j)(x; q, t)

and study what happens at the evaluation q, t → 0. We check that the recursions coincide, and Theorem 1.3 is proven.
The rest of the paper is organized as follows. In Section 2 we give the required background on symmetric functions and 

representation theory. In Section 3 we prove Theorem 1.3.
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2. Background

We give background material on symmetric functions and the representation theory of symmetric groups. We use the 
operation F [G] of plethysm throughout. For a more thorough exposition of this material, we refer the reader to [7].

As in the introduction, we write � =
⊕

n≥0 �n for the graded ring of symmetric functions in the variable set x =
(x1, x2, . . . ) over the ground field C(q, t). For n ≥ 0, we write en = en(x), hn = hn(x) ∈ �n for the elementary and complete 
homogeneous symmetric functions of degree n.

Bases of �n are indexed by partitions λ ⊢ n. The elementary basis eλ and homogeneous basis hλ are defined by setting 
eλ := eλ1eλ2 · · · and hλ := hλ1hλ2 · · · . We will also use the basis of Schur functions sλ = sλ(x) and the basis of (modified) 
Macdonald polynomials H̃λ(x; q, t).

The Hall inner product 〈−, −〉 on � is defined by declaring the Schur basis to be orthonormal:

〈sλ, sμ〉 = δλ,μ

where δλ,μ is the Kronecker delta. Given F ∈ �, write F • : � → � for the operator F •(G) := FG of multiplication by F . We 
write F⊥ : � → � for the adjoint of the operator F •; it is characterized by

〈F⊥G, H〉 = 〈G, F •H〉 (2.1)

for all G, H ∈ �. The application of F⊥ to a symmetric function is often referred to as skewing with respect to F .
Eigenoperators on the Macdonald basis have proven to be remarkable objects in symmetric function theory. We use two 

such Macdonald eigenoperators in this paper. The first is the nabla operator ∇ : � → � defined by

∇ : H̃μ(x;q, t) �→
∏

(i, j)∈μ

qi−1t j−1 · H̃μ(x;q, t) (2.2)

where the product is over all cells (i, j) in the Young diagram of μ. Similarly, the operator � : � → � is given by

� : H̃μ(x;q, t) �→
∏

(i, j)∈μ
(i, j) �=(1,1)

(1− qi−1t j−1) · H̃μ(x;q, t) (2.3)

where the product is over all cells (i, j) �= (1, 1) in the Young diagram of μ. We abbreviate the eigenvalue of H̃μ(x; q, t)
under the operator � as

�μ :=
∏

(i, j)∈μ
(i, j) �=(1,1)

(1− qi−1t j−1). (2.4)

The omission of (1, 1) in this product assures that the operator � is nonzero and, in fact, invertible.
We are ready to define the Theta operators of [3]. Given F = F (x) ∈ �, let F

[
x
M

]
be the symmetric function obtained by 

plethystically evaluating F at x
M
, where M = (1 − q)(1 − t). The Theta operator �F : � → � is obtained by conjugating the 

multiplication operator F
[
x
M

]•
by �. That is, we set

�F := � ◦ F
[ x

M

]•

◦ �−1. (2.5)

Assuming F is homogeneous, the operator �F is homogeneous of degree deg(F ) on the graded ring � =
⊕

n≥0 �n . As ex-
plained in the introduction, we will only use Theta operators indexed by elementary symmetric functions, and so abbreviate 
�d := �ed .

We recall some basic ideas from group representation theory. If G is a group and V1, V2 are G-modules, we write 
V1 ⊗ V2 for their Kronecker product (or internal product). This is the G-module with underlying vector space given by the 
tensor product of V1 and V2 with G-module structure g · (v1 ⊗ v2) := (g · v1) ⊗ (g · v2). For us, the group G will either be 
a symmetric group Sn or a parabolic subgroup S j ×Sn− j thereof.

If G and H are groups, V is a G-module, and W is an H-module, we write V ⊠ W for the (G × H)-module whose 
underlying vector space is the tensor product of V and W and whose module structure is determined by (g, h) · (v ⊗ w) :=
(g · v) ⊗ (h · w). For us, both G and H will be symmetric groups. We use the distinct notations ⊗ and ⊠ to avoid confusion 
in the proof of Lemma 3.3 below.

Irreducible representations of the symmetric group Sn over C are in bijective correspondence with partitions of n. 
Given λ ⊢ n, we write Sλ for the corresponding Sn-irreducible. If V is any finite-dimensional Sn-module, there are unique 
multiplicities cλ ≥ 0 such that V ∼=

⊕
λ⊢n cλS

λ . The Frobenius image Frob(V ) ∈ �n is the symmetric function

Frob(V ) :=
∑

λ⊢n

cλ · sλ (2.6)
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obtained by replacing each irreducible factor with the corresponding Schur function. More generally, if V =
⊕

i≥0 V i is a 
graded Sn-module with each V i finite-dimensional, its graded Frobenius image is

grFrob(V ;q) =
∑

i≥0

Frob(V i) · qi (2.7)

and if V =
⊕

i, j≥0 V i, j is a bigraded Sn module we have the bigraded Frobenius image

grFrob(V ;q, t) =
∑

i, j≥0

Frob(V i, j) · qit j. (2.8)

Operations on symmetric functions correspond to operations on symmetric group modules via the Frobenius map. For 
example, if V is an Sn-module and W is an Sm-module, the induction product of V and W is V ◦ W := Ind

Sn+m

Sn×Sm
(V ⊠W )

where the embedding Sn × Sm ⊂ Sn+m is obtained by letting Sn permute the first n letters and Sm permute the last m
letters. We have

Frob(V ◦ W ) = Frob(V ) · Frob(W ). (2.9)

Defined for partitions λ ⊢ n, μ ⊢ m, and ν ⊢ n + m, the Littlewood-Richardson coefficients cνλ,μ are the structure coefficients 
for this product in the Schur basis. They are characterized by either of the formulas

Sλ ◦ Sμ ∼=
⊕

ν⊢m+n

cνλ,μSν or sλ · sμ =
∑

ν⊢m+n

cνλ,μ · sν . (2.10)

The Littlewood-Richardson rule gives a combinatorial interpretation of the nonnegative integers cνλ,μ .

As another example, the Kronecker product on the space of degree n symmetric functions �n is the bilinear operation ∗
characterized by

Frob(Sλ ⊗ Sμ) = sλ ∗ sμ (2.11)

for all λ, μ ⊢ n. The nonnegative integers gλ,μ,ν indexed by triples of partitions λ, μ, ν ⊢ n determined by sλ ∗ sμ =∑
ν⊢n gλ,μ,ν · sν are the Kronecker coefficients. Finding a combinatorial rule for gλ,μ,ν is a famous open problem.

3. Proof of Theorem 1.3

Theorem 1.3 asserts an equality of symmetric functions. Our strategy for proving this equality is to show that both sides 
satisfy the following recursion.

Lemma 3.1. Let F , G ∈ � be symmetric functions with vanishing constant terms. Suppose that h⊥
j F = h⊥

j G for all j ≥ 1. Then F = G.

Proof. For any partition λ = (λ1, λ2, λ3, . . . ) with λ1 > 0, we have

〈F ,hλ〉 = 〈h⊥
λ1

F ,hλ̄〉 = 〈h⊥
λ1
G,hλ̄〉 = 〈G,hλ〉 (3.1)

where λ̄ = (λ2, λ3, . . . ) and the result follows since the hλ form a basis of � and 〈−, −〉 is an inner product. �

We handle the representation theoretic side Frob (F DRn)i, j of Theorem 1.3 first. Our starting point is the following result 
of Jongwon Kim and Rhoades [12] which describes this symmetric function in terms of Kronecker products of hook-shaped 
Schur functions.

Theorem 3.2. (Jongwon Kim-Rhoades [12]) We have (F DRn)i, j = 0 whenever i + j ≥ n. When i + j < n we have

Frob (F DRn)i, j = s(n−i,1i) ∗ s(n− j,1 j) − s(n−i+1,1i−1) ∗ s(n− j+1,1 j−1)

where by convention s(n−i+1,1i−1) ∗ s(n− j+1,1 j−1) = 0 when i = 0 or j = 0.

Theorem 3.2 was proven by showing that the Sn-invariant element θ1ξ1 + · · · + θnξn ∈ ∧{θn, ξn} satisfies a kind of 
‘bigraded Lefschetz property’. While there exist expressions for the Schur expansion of sλ ∗ sμ when λ, μ ⊢ n are hooks (see 
e.g. [15]), these formulas are rather complicated. With an eye towards Lemma 3.1, we give a recursive rule for applying h⊥

j

to an arbitrary Kronecker product of Schur functions.

4
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Lemma 3.3. Let 1 ≤ j ≤ n and let λ(1), λ(2) ⊢ n be two partitions. We have

h⊥
j (sλ(1) ∗ sλ(2)) =

∑

μ⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ,ν(1) · cλ(2)

μ,ν(2)(sν(1) ∗ sν(2)) (3.2)

where the cλ(i)

μ,ν(i) are Littlewood-Richardson coefficients.

The proof of Lemma 3.3 requires both of the module operations ⊠ and ⊗ introduced in Section 2.

Proof. It is well-known that, for any Sn-module V , the degree n − k symmetric function h⊥
j Frob V has the algebraic inter-

pretation

h⊥
j Frob V = FrobHomS j

(1S j
,Res

Sn

S j×Sn− j
V ) (3.3)

where the HomS j
-space is an Sn− j-module by means of the second factor of S j ×Sn− j . In our situation, this reads

h⊥
j (sλ(1) ∗ sλ(2)) = FrobHomS j

(
1S j

,Res
Sn

S j×Sn− j
(Sλ(1)

⊗ Sλ(2)
)
)

(3.4)

= FrobHomS j

(
1S j

, (Res
Sn

S j×Sn− j
Sλ(1)

) ⊗ (Res
Sn

S j×Sn− j
Sλ(2)

)
)

(3.5)

= FrobHomS j

⎛
⎜⎜⎜⎝1S j

,
⊕

μ(1),μ(2)⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ(1),ν(1) · cλ(2)

μ(2),ν(2) · (Sμ(1)
⊠ Sν(1)

) ⊗ (Sμ(2)
⊠ Sν(2)

)

⎞
⎟⎟⎟⎠ (3.6)

= FrobHomS j

⎛
⎜⎜⎜⎝1S j

,
⊕

μ(1),μ(2)⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ(1),ν(1) · cλ(2)

μ(2),ν(2) · (Sμ(1)
⊗ Sμ(2)

)⊠ (Sν(1)
⊗ Sν(2)

)

⎞
⎟⎟⎟⎠ (3.7)

=
∑

μ(1),μ(2)⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ(1),ν(1) · cλ(2)

μ(2),ν(2) · dim HomS j
(1S j

, Sμ(1)
⊗ Sμ(2)

) · sν(1) ∗ sν(2) (3.8)

where we used the fact that restriction functors commute with Kronecker products and the consequence

Res
Sn

S j×Sn− j
Sλ ∼=

⊕

μ⊢ j
ν⊢n− j

cλ
μ,ν(Sμ

⊠ Sν) (λ ⊢ n) (3.9)

of Frobenius reciprocity.
The multiplicities gρ,μ(1),μ(2) = dim(Hom(Sρ , Sμ(1)

⊗ Sμ(2)
)) of Schur functions sρ in general Kronecker products sμ(1) ∗

sμ(2) are difficult to compute. However, when ρ = ( j) and Sρ = 1S j
as in our setting, character orthogonality gives

dim(HomS j
(1S j

, Sμ(1)
⊗ Sμ(2)

)) =

{
1 μ(1) = μ(2),

0 otherwise.
(3.10)

Adding this information to the above string of equalities gives

h⊥
j (sλ(1) ∗ sλ(2)) (3.11)

=
∑

μ(1),μ(2)⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ(1),ν(1) · cλ(2)

μ(2),ν(2) · dim HomS j
(1S j

, Sμ(1)
⊗ Sμ(2)

) · sν(1) ∗ sν(2) (3.12)

=
∑

μ⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ,ν(1) · cλ(2)

μ,ν(2) · sν(1) ∗ sν(2) (3.13)

and our proof is complete. �

5



A. Iraci, B. Rhoades and M. Romero Discrete Mathematics 346 (2023) 113474

Our ability to put Lemma 3.3 to good use is bounded by our understanding of the products cλ(1)

μ,ν(1) · cλ(2)

μ,ν(2) of Littlewood-

Richardson coefficients appearing therein. Thanks to Theorem 3.2, for our purposes both λ(1) and λ(2) will be hook-shaped 
partitions so that these coefficients will be fairly simple. The situation becomes more complicated for general λ(1), λ(2) ⊢ n, 
but Lemma 3.3 could conceivably be useful for studying Kronecker products sλ(1) ∗ sλ(2) for partitions other than hooks.

Although we will not need it, for completeness we record the companion Kronecker product recursion involving e⊥
j :

e⊥
j (sλ(1) ∗ sλ(2)) =

∑

μ⊢ j

ν(1),ν(2)⊢n− j

cλ(1)

μ′,ν(1) · cλ(2)

μ,ν(2)(sν(1) ∗ sν(2)). (3.14)

Equation (3.14) has the same right-hand side as Equation (3.2), except that in the first Littlewood-Richardson coefficient the 
partition μ ⊢ k is replaced by its conjugate μ′ ⊢ k. Equation (3.14) may be proven in the same way as Equation (3.2), except 
one uses the formula

dim(HomS j
(signS j

, Sμ(1)
⊗ Sμ(2)

)) =

{
1 μ(1) = (μ(2))′,

0 otherwise
(3.15)

for the multiplicity of the sign representation in a Kroenecker product of irreducibles.
Our application of Lemma 3.3 may be stated as follows. In order to motivate the next result and understand its proof, it 

will be useful to recall that a product eahb of an elementary symmetric function with a homogeneous symmetric function 
is a sum

eahb = s(b,1a) + s(b+1,1a−1) (3.16)

of two successive hook-shaped Schur functions.

Lemma 3.4. For any j ≥ 1 and any integers k, ℓ, and m with k + ℓ +m = n we have

h⊥
j

(
s(k+ℓ,1m) ∗ s(k+m,1ℓ) − s(k+ℓ+1,1m−1 ∗ s(k+m+1,1ℓ−1)

)

= hk+ℓ− jem ∗ hk+m− jeℓ − hk+ℓem− j ∗ hk+meℓ− j . (3.17)

Proof. By telescoping sums, we may (and will) prove the equivalent assertion

h⊥
j (s(k+ℓ,1m) ∗ s(k+m,1ℓ)) =

j∑

r=0

hk+ℓ− j+rem−r ∗ hk+m− j+reℓ−r . (3.18)

Applying Equation (3.16), the right-hand side of Equation (3.18) reads

j∑

r=0

hk+ℓ− j+rem−r ∗ hk+m− j+reℓ−r

=

j∑

r=0

(
s(k+ℓ− j+r,1m−r) + s(k+ℓ− j+r+1,1m−r−1)

)
∗

(
s(k+m− j+r,1ℓ−r) + s(k+m− j+r+1,1ℓ−r−1)

)
. (3.19)

As for the left-hand side of Equation (3.18), Lemma 3.3 yields

h⊥
j

(
s(k+ℓ,1m) ∗ s(k+m,1ℓ)

)
=

∑

μ⊢ j

ν(1),ν(2)⊢n− j

c
(k+ℓ,1m)

μ,ν(1) · c
(k+m,1ℓ)

μ,ν(2) (sν(1) ∗ sν(2)). (3.20)

The Littlewood-Richardson coefficient c(k+ℓ,1m)

μ,ν(1) is nonzero only when both μ and ν(1) are hooks. In this case, we have 

μ = ( j − r, 1r) for some r ∈ {0, 1, . . . , j − 1} and the Littlewood-Richardson Rule implies

s( j−r,1r)s(c,1n− j−c) = s( j−r+c,1r+n− j−c) + s( j−r+c−1,1r+n− j−c+1) + R (3.21)

where R is a sum of Schur functions indexed by non-hook partitions. Therefore, the Schur function s(k+ℓ,1m) appears in this 
product precisely when j − r + c = k + ℓ or j − r + c − 1 = k + ℓ or, in other words,

c = k + ℓ − j + r or c = k + ℓ − j + r + 1.

Similarly, the Schur function s(k+m,1ℓ) appears in the product s( j−r,1r )s(c,1n− j−c) precisely when

6
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c = k +m − j + r or c = k +m − j + r + 1.

This means that
∑

μ⊢ j

ν(1),ν(2)⊢n− j

c
(k+ℓ,1m)

μ,ν(1) · c
(k+m,1ℓ)

μ,ν(2) (sν(1) ∗ sν(2)) (3.22)

=

j−1∑

r=0

∑

c,d

c
(k+ℓ,1m)

( j−r,1r),(c,1n− j−c)
· c

(k+m,1ℓ)

( j−r,1r),(d,1n− j−d)

(
s(c,1n− j−c) ∗ s(d,1n− j−d)

)
(3.23)

=

j∑

r=0

(
s(k+ℓ− j+r,1m−r) + s(k+ℓ− j+r+1,1m−r−1)

)
∗

(
s(k+m− j+r,1ℓ−r) + s(k+m− j+r+1,1ℓ−r−1)

)
, (3.24)

and applying Equation (3.19) finishes the proof. �

We turn to the Theta operator side of Theorem 1.3. Our starting point is an identity of D’Adderio and Romero [5, Theorem 
8.2]. We use the standard q-analogs

[n]q := 1+ q + · · · + qn−1 [n]!q := [n]q[n − 1]q · · · [1]q

[
n

k

]

q

:=
[n]!q

[k]!q · [n − k]!q
(3.25)

of numbers, factorials, and binomial coefficients together with the convention 
[n
k

]
q

= 0 whenever k < 0 or k > n. We will 
also need the symmetric functions En,k = En,k(x; q) introduced in [6] which may be defined plethystically by

En,k := qk
k∑

r=0

q(
r
2)

[
k

r

]

q

(−1)ren

[
x
1− q−r

1− q

]
. (3.26)

Here and throughout, we write H̃k(x; q, t) for H̃(k)(x; q, t).

Theorem 3.5. (D’Adderio-Romero [5]) For any integers j, m, ℓ, and k we have

h⊥
j �m�ℓ H̃k(x;q, t) =

j∑

r=0

[
k

r

]

q

k∑

a=0

j−r+a∑

b=1

�m− j+r�ℓ+k− j−a∇E j−r+a,b

×

(
q(

k−r−a
2 )

[
b − 1

a

]

q

[
b + r − a − 1

k − a − 1

]

q

+ q(
k−r−a+1

2 )
[
b − 1

a − 1

]

q

[
b + k − r − a

k − a

]

q

)
.

We will use Theorem 3.5 to obtain a recursion for the Theta operators at q = t = 0. In order to do this, we must first 
replace the left-hand side of Theorem 3.5 with something closer to the expression �i� j∇en |q=t=0 . This is accomplished 
with the following lemma.

Lemma 3.6. For any integers m, ℓ, and k we have

�m�ℓ∇ek |t=0= �m�ℓ H̃k(x;q, t) |t=0 . (3.27)

Proof. The first step is to note that

H̃k(x;q, t) = ∇ek |t=0 . (3.28)

The left side of Equation (3.28) is well-known to be the graded Frobenius image of the coinvariants of the symmetric group 
with a single set of bosonic variables. The right side is the bigraded Frobenius image of the coinvariants with two sets of 
bosonic variables, with the x-variables set to zero. Therefore, the two sides are the same.

We claim that for any symmetric function G , we have

(
�eλ

G
)
|t=0=

(
�eλ (G |t=0)

)
|t=0 . (3.29)

It is sufficient to verify (3.29) over a basis. If G = H̃μ(x; q, t), then G |t=0= H̃μ(x; q, 0) is a modified Hall-Littlewood sym-

metric function; these also give a basis for symmetric functions. Let Dμ,ν (q, t) be the coefficients in the expansion

7
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H̃μ(x;q,0) =
∑

ν

Dμ,ν(q, t)H̃ν(x;q, t) (3.30)

Setting t = 0, we find that

Dμ,ν(q,0) = δν,μ. (3.31)

Now, applying Theta operators to both sides of (3.30), we find

�eλ
H̃μ(x;q,0) =

∑

λ

Dμ,ν(q, t)�eλ
H̃ν(x;q, t). (3.32)

Assuming that �eλ
H̃ν(x; q, t) has no poles at t = 0, then setting t = 0 on both sides of (3.32) we get

�eλ
H̃μ(x;q,0) |t=0 =

∑

λ

Dμ,ν(q,0)�eλ
H̃ν(x;q, t) |t=0 (3.33)

= �eλ
H̃μ(x;q, t) |t=0, (3.34)

which proves (3.29). To show that there are no poles at t = 0, we see that by definition of Theta operators,

�eλ
H̃μ(x;q, t) =

∑

ρ

dλ
μ,ρ(q, t)

�ρ

�μ
H̃ρ(x;q, t), (3.35)

where dλ
μ,ρ(q, t) is the coefficient of H̃ρ(x; q, t) in eλ[x/M]H̃μ(x; q, t). At t = 0, this product gives

eλ

[ x

M

]
H̃μ(x;q, t) |t=0 = eλ

[
x

1− q

]
H̃μ(x;q,0) (3.36)

=
∑

ρ

Cμ,ρ(q)H̃ρ(x;q,0) (3.37)

for some coefficients Cμ,ρ(q). Since the modified Hall-Littlewood symmetric functions are a basis, we must then have 
dλ
μ,ρ(q, 0) = Cμ,ρ(q). This means dλ

μ,ρ(q, t) has no pole at t = 0, and since �ρ/�μ also has no pole at t = 0, we can 
conclude that (3.29) holds for any symmetric function G , proving the lemma. �

With Lemma 3.6 in hand, we apply Theorem 3.5 to get a recursive expression for the action of h⊥
j on the symmetric 

functions �m�ℓ∇ek |q=t=0 of Theorem 1.3.

Lemma 3.7. For any integers j, m, ℓ, and k we have

h⊥
j �m�ℓ∇ek |q=t=0=

j∑

r=0

�m−r�ℓ−r∇ek− j+2r |q=t=0

+

j−1∑

r=0

(�m−r−1�ℓ−r + �m−r�ℓ−r−1)∇ek− j+2r+1 |q=t=0

+

j−2∑

r=0

�m−r−1�ℓ−r−1∇ek− j+2r+2 |q=t=0 .

Proof. For convenience, we apply the transformation a �→ k − a in Theorem 3.5 to obtain

h⊥
j �m�ℓ H̃k(x;q, t) =

j∑

r=0

[
k

r

]

q

k∑

a=0

k+ j−r−a∑

b=1

�m− j+r�ℓ− j+a∇Ek+ j−r−a,b

×

(
q(

a−r
2 )

[
b − 1

k − a

]

q

[
b − k + r + a − 1

a − 1

]

q

+ q(
r−a
2 )

[
b − 1

k − a − 1

]

q

[
b + k − r − a

a

]

q

)
(3.38)

Our goal is to evaluate Equation (3.38) at q → 0. From Equation (3.27), we see the right-hand sides of both Equation (3.38)

and the equation in the statement of the Lemma agree.
At q → 0, in order for the expression in the parentheses of (3.38) to be nonzero, we must have −1 ≤ a − r ≤ 1 (for 

otherwise both summands involve only positive powers of q). Moreover, by examining the q-binomials, we see that r ≤ k

8
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(from the q-binomial on the first line of (3.38)) and a ≤ j (since b ≤ k + j − r − a, or b − k + r + a ≤ j, the rightmost q-
binomial in both summands vanishes unless a ≤ j). Notice that, when the summands in the parentheses evaluate at q → 0

to something nonzero, once evaluated they do not depend on b anymore, so we can isolate the sum over b and use the 
identity

k+ j−r−a∑

b=1

∇Ek+ j−r−a,b = ∇ek+ j−r−a. (3.39)

We have three separate cases depending on the value of a − r ∈ {−1, 0, 1}.
Case 1. a − r = −1.

In this case, the left summand q(
a−r
2 )[b−1

k−a

]
q

[b−k+r+a−1
a−1

]
q

in the parentheses vanishes and the right summand

q(
r−a
2 )[ b−1

k−a−1

]
q

[b+k−r−a
a

]
q
evaluates to 1 at q → 0. Since a ≥ 0, the sum restricts to r ≥ 1 and we have a contribution of

j∑

r=1

�m− j+r�ℓ− j+r−1∇ek+ j−2r+1 |q=t=0;

now making the change of variables r �→ j − r we get

j−1∑

r=0

�m−r�ℓ−r−1∇ek− j+2r+1 |q=t=0 . (3.40)

Case 2. a − r = 0.

In this case, both summands in the parentheses evaluate to 1 at q → 0, except when a = r = 0 (in which case the left 
summand evaluates to 0) or when a = r = j (in which case the right summand evaluates to 0). The contribution of this case 
is

j∑

r=0

(2− δr,0 − δr, j)�m− j+r�ℓ− j+r∇ek+ j−2r |q=t=0

where δr,0 and δr, j are Kronecker deltas. We can rewrite this as

j∑

r=0

�m− j+r�ℓ− j+r∇ek+ j−2r |q=t=0 +

j−1∑

r=1

�m− j+r�ℓ− j+r∇ek+ j−2r |q=t=0

and now making the change of variables r �→ j − r in the left summand and r �→ j − r − 1 in the right summand we get

j∑

r=0

�m−r�ℓ−r∇ek− j+2r |q=t=0 +

j−2∑

r=0

�m−r−1�ℓ−r−1∇ek− j+2r+2 |q=t=0 . (3.41)

Case 3. a − r = 1.

In this case the right summand in the parentheses vanishes at q → 0 and the left summand evaluates to 1. Since a ≤ j, 
the sum restricts to r ≤ j − 1. We get a contribution of

j−1∑

r=0

�m− j+r�ℓ− j+r+1∇ek+ j−2r−1 |q=t=0;

now making the change of variables r �→ j − r − 1 we get

j−1∑

r=0

�m−r−1�ℓ−r∇ek− j+2r+1 |q=t=0 . (3.42)

The lemma follows immediately by combining the contributions (3.40), (3.41), and (3.42). �

We have all the tools we need to prove our main result Theorem 1.3.

Proof. (of Theorem 1.3) By Theorem 3.2, we aim to show

�m�ℓ∇ek |q=t=0= s(k+ℓ,1m) ∗ s(k+m,1ℓ) − s(k+ℓ+1,1m−1) ∗ s(k+m+1,1ℓ−1) (3.43)
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for all integers k, ℓ, m ≥ 0. Notice that both sides of Equation (3.43) are symmetric functions of degree m + ℓ + k. When 
m + ℓ + k = 0 both sides specialize to 1 so we assume that m + ℓ + k > 0 and both sides have positive total degree.

We prove this result by induction on the total degree m + ℓ + k. Let j ≥ 1. Using Lemma 3.38, we apply the operator h⊥
j

to the left-hand side of Equation (3.43) yielding

h⊥
j �m�ℓ∇ek|q=t=0 =

j∑

r=0

�m−r�ℓ−r∇ek− j+2r

∣∣
q=t=0

+

j−1∑

r=0

(�m−r−1�ℓ−r + �m−r�ℓ−r−1)∇ek− j+2r+1

∣∣
q=t=0

+

j−2∑

r=0

�m−r−1�ℓ−r−1∇ek− j+2r+2

∣∣
q=t=0

(ind. hp.) =

j∑

r=0

sk+ℓ− j+r,1m−r ∗ sk+m− j+r,1ℓ−r − sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r+1,1ℓ−r−1

+

j−1∑

r=0

sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r,1ℓ−r − sk+ℓ− j+r+2,1m−r−2 ∗ sk+m− j+r+1,1ℓ−r−1

+

j−1∑

r=0

sk+ℓ− j+r,1m−r ∗ sk+m− j+r+1,1ℓ−r−1 − sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r+2,1ℓ−r−2

+

j−2∑

r=0

sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r+1,1ℓ−r−1 − sk+ℓ− j+r+2,1m−r−2 ∗ sk+m− j+r+2,1ℓ−r−2

(1) − (2) =

j∑

r=0

sk+ℓ− j+r,1m−r ∗ sk+m− j+r,1ℓ−r −

j∑

r=0

sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r+1,1ℓ−r−1

(3) − (4) +

j−1∑

r=0

sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r,1ℓ−r −

j∑

r=1

sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r,1ℓ−r

(5) − (6) +

j−1∑

r=0

sk+ℓ− j+r,1m−r ∗ sk+m− j+r+1,1ℓ−r−1 −

j∑

r=1

sk+ℓ− j+r,1m−r ∗ sk+m− j+r+1,1ℓ−r−1

(7) − (8) +

j−2∑

r=0

sk+ℓ− j+r+1,1m−r−1 ∗ sk+m− j+r+1,1ℓ−r−1 −

j∑

r=2

sk+ℓ− j+r,1m−r ∗ sk+m− j+r,1ℓ−r

where the second equality used induction on degree and the numerals (1), . . . , (8) on the left of the last expression abbre-
viate the eight sums therein. We rearrange and make cancellations in these sums, obtaining

(1) − (8) = sk+ℓ− j,1m ∗ sk+m− j,1ℓ + sk+ℓ− j+1,1m−1 ∗ sk+m− j+1,1ℓ−1

(3) − (4) + sk+ℓ− j+1,1m−1 ∗ sk+m− j,1ℓ − sk+ℓ+1,1m− j−1 ∗ sk+m,1ℓ− j

(5) − (6) + sk+ℓ− j,1m ∗ sk+m− j+1,1ℓ−1 − sk+ℓ,1m− j ∗ sk+m+1,1ℓ− j−1

(7) − (2) − sk+ℓ,1m− j ∗ sk+m,1ℓ− j − sk+ℓ+1,1m− j−1 ∗ sk+m+1,1ℓ− j−1 .

Reindexing these eight summands with (a), . . . , (h) and applying Equation (3.16) gives

(a) + (b) = sk+ℓ− j,1m ∗ sk+m− j,1ℓ + sk+ℓ− j+1,1m−1 ∗ sk+m− j+1,1ℓ−1

(c) − (d) + sk+ℓ− j+1,1m−1 ∗ sk+m− j,1ℓ − sk+ℓ+1,1m− j−1 ∗ sk+m,1ℓ− j

(e) − ( f ) + sk+ℓ− j,1m ∗ sk+m− j+1,1ℓ−1 − sk+ℓ,1m− j ∗ sk+m+1,1ℓ− j−1

−(g) − (h) − sk+ℓ,1m− j ∗ sk+m,1ℓ− j − sk+ℓ+1,1m− j−1 ∗ sk+m+1,1ℓ− j−1

(a) + (c) = hk+ℓ− jem ∗ sk+m− j,1ℓ

10
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(b) + (e) + hk+ℓ− jem ∗ sk+m− j+1,1ℓ−1

−(d) − (g) − hk+ℓem− j ∗ sk+m,1ℓ− j

−( f ) − (h) − hk+ℓem− j ∗ sk+m+1,1ℓ− j−1

= hk+ℓ− jem ∗ hk+m− jeℓ − hk+ℓem− j ∗ hk+meℓ− j

= h⊥
j (sk+ℓ,1m ∗ sk+m,1ℓ − sk+ℓ+1,1m−1 ∗ sk+m+1,1ℓ−1)

where the last step uses Lemma 3.4. In summary, we have

h⊥
j �m�ℓ∇ek|q=t=0 = h⊥

j (sk+ℓ,1m ∗ sk+m,1ℓ − sk+ℓ+1,1m−1 ∗ sk+m+1,1ℓ−1) (3.44)

and since this holds for every j ≥ 1, by Lemma 3.1 we can deduce that Equation (3.43) holds. This completes the proof of 
Theorem 1.3. �
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