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Coinvariant ring

1. Introduction

The diagonal coinvariant ring DR, is obtained from the rank 2n polynomial ring C[Xp,yn]l = C[x1,...,%n, ¥1,..., Yn] by
factoring out the ideal generated by &;-invariants with vanishing constant term. The ring DR, is a bigraded &,-module;
Haiman used algebraic geometry to calculate its isomorphism type [10]. In recent years, researchers in algebraic combina-
torics studied variants of DR, involving mixtures of commuting and anticommuting variables [1-3,9,11-14,16-19]. Drawing
terminology from supersymmetry, we will refer to commuting variables as bosonic and anticommuting variables as fermionic.
D’Adderio, Iraci, and Vanden Wyngaerd conjectured [3] a generalization of Haiman'’s result involving two sets of bosonic and
two sets of fermionic variables of which Haiman’s result forms the ‘purely bosonic case’. We prove the ‘purely fermionic
case’ of their conjecture.

We begin by fixing some notation. Let C[X,, yn] ® A{05, €,} be the tensor product

ClX1,....xn, Y1, ..., Ynl @ A{O1, ..., 00, &1, ..., &n}

of a rank 2n symmetric algebra with a rank 2n exterior algebra. This ring carries four independent gradings (two bosonic
and two fermionic) and the diagonal action of the symmetric group &,

WX =Xwi) W-Yi=Ywi W-0i=0wi W-&=~Ewq

preserves this quadrigrading. Writing I,, for the ideal generated by G,-invariants with vanishing constant term, the quotient

TDRn = (C[x]a”'sxnvyla"'ayﬂ]®/\{913"'79117‘%-]5'"3511})/111 (1‘1)
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is a quadruply-graded G,-module. The notation TDR, alludes to its status as a ‘supersymmetric double’ of DR, with Twice
as many generators.

Let A denote the ring of symmetric functions in X = (x1,x3,...) over the ground field C(q,t). Given any element
F € A, D’Adderio, Iraci, and Vanden Wyngaerd introduced [3] a Theta operator ®f : A — A whose definition is recalled in
Section 2. Building on the techniques in [3], D’Adderio and Mellit [4] used Theta operators to prove the rise version of the
Delta Conjecture of Haglund, Remmel, and Wilson [8]. D’Adderio and Romero [5] rederived and clarified a slew of symmetric
function identities using Theta operators, drastically shortening many of their proofs.

In this paper, we will only consider Theta operators indexed by elementary symmetric functions e; € A; we abbreviate
©®; 1= O¢,;. If G € A has degree d in the x-variables, then ®; G has degree d 4 i and will typically involve the parameters
g and t (even if G itself does not). D’Adderio, Iraci, and Vanden Wyngaerd conjectured [3] that symmetric functions of
the form ®;0;Ve,_;_j (where V is the Bergeron-Garsia nabla operator) determine the quadruply-graded &,-structure of
TDR;. Deferring various definitions to Section 2, their conjecture may be stated as follows.

Conjecture 1.1. (D'Adderio-Iraci-Vanden Wyngaerd [3]) Let (T DRy); j be the piece of TDRy with homogeneous 6-degree i and
&-degree j. The space (T DRy);,j vanishes whenever i + j > n. If i 4+ j < n we have

grFrob((TDRyp); j; q,t) = ©;O®;Ven_i_j

where q tracks x-degree and t tracks y-degree.

Remark 1.2. D’Adderio et al. define TDR;, in a slightly different way, by considering two sets of fermionic variables in which
variables drawn from different sets commute with one another. This does not affect Conjecture 1.1. Indeed, if V = C" we
have a natural isomorphism of quadruply-graded vector spaces

CIVO VI QA ®VHZ(CIVI®AV)® (C[V*I® AVY) (12)

which commutes with the action of the general linear group GL(V) and its subgroup &, of permutation matrices. In
particular, the isomorphism (1.2) restricts to a linear isomorphism between the subspaces of Gp-invariants with vanishing
constant term. Since these subspaces are multihomogeneous, (1.2) also restricts to a linear isomorphism between the ideals
which they generate. The isomorphism (1.2) therefore induces an isomorphism between TDR; as defined in (1.1) and the
module defined in D’Adderio et al. in [3].

The case i = j = 0 of Conjecture 1.1 amounts to setting the fermionic & and &-variables to zero and is equivalent to
Haiman'’s two-bosonic result grfrob(DRy; q,t) = Vey,. Setting the y-variables and &-variables to zero, Conjecture 1.1 reduces
to the one-bosonic, one-fermionic ‘superspace coinvariant conjecture’ of the Fields Institute combinatorics group (see [18,
19]). If only the &-variables are set to zero, Conjecture 1.1 yields a two-bosonic, one-fermionic conjecture of Zabrocki [18]
tied to the Delta operators on A.

In this paper we give additional evidence for Conjecture 1.1 by proving its purely fermionic case. The fermionic diagonal
coinvariant ring

FDRp = A{On, €4}/ (A 100, £)CT) (13)

is obtained from the rank 2n exterior algebra A{fy,&,} by modding out by the ideal generated by &;,-invariants with
vanishing constant term. Equivalently, the ring FDR, is obtained from TDR;, by setting the x-variables and y-variables
equal to zero. The ring FDR; is a bigraded &;-module. Jongwon Kim and Rhoades introduced FDR; in [12]; Jesse Kim
and Rhoades used FDR, as a model for resolving a set partition of {1,...,n} into a linear combination of noncrossing set
partitions [11]. Our main result is as follows.

Theorem 1.3. We have (FDR;); j = 0 wheneveri+ j>n. When i + j <n we have
Frob (FDRy)i j =©i®;Ven_i_j lg=t=0 -

Remark 1.4. The canonical surjection DR, ® FDR,, —» TDR;, applies to show that the bidegree support assertion in Theo-
rem 1.3 implies the corresponding assertion in Conjecture 1.1.

To prove Theorem 1.3, we apply a result of Jongwon Kim and Rhoades [12] which expresses Frob (FDRy); ; in terms of
Kronecker products of hook-shaped Schur functions. To obtain a recursive structure on the characters Frob (FDRy); j, we
prove a result (Lemma 3.3) on applying the skewing operators hj to Kronecker products s, * s, which may be of indepen-
dent interest for studying Kronecker products in general. For the right-hand side ®;®;Ve,_;_j [q=t=0 of Theorem 1.3, we
apply a result of D’Adderio and Romero [5] for applying the operators hj to expressions of the form ®;®;Hy_i—j)(X;q,t)
and study what happens at the evaluation gq,t — 0. We check that the recursions coincide, and Theorem 1.3 is proven.

The rest of the paper is organized as follows. In Section 2 we give the required background on symmetric functions and
representation theory. In Section 3 we prove Theorem 1.3.
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2. Background

We give background material on symmetric functions and the representation theory of symmetric groups. We use the
operation F[G] of plethysm throughout. For a more thorough exposition of this material, we refer the reader to [7].

As in the introduction, we write A = @,.,An for the graded ring of symmetric functions in the variable set x =
(x1,X2,...) over the ground field C(q,t). For n > 0, we write e, = e, (X), hn = hy(X) € A, for the elementary and complete
homogeneous symmetric functions of degree n.

Bases of A, are indexed by partitions A - n. The elementary basis e, and homogeneous basis h; are defined by setting
e, :=ey, e, - and h)\,i: hy hy, ---. We will also use the basis of Schur functions s, = s;(x) and the basis of (modified)
Macdonald polynomials H; (x;q, t).

The Hall inner product (—, —) on A is defined by declaring the Schur basis to be orthonormal:

(SxsSu) =du

where §; ,, is the Kronecker delta. Given F € A, write F*: A — A for the operator F*(G) := FG of multiplication by F. We
write FL: A — A for the adjoint of the operator F*; it is characterized by

(F-G,H) = (G, F*H) 21)

for all G, H € A. The application of F* to a symmetric function is often referred to as skewing with respect to F.
Eigenoperators on the Macdonald basis have proven to be remarkable objects in symmetric function theory. We use two
such Macdonald eigenoperators in this paper. The first is the nabla operator V : A — A defined by

ViH g0 [] ¢ Huxgo (2.2)
(i,)en

where the product is over all cells (i, j) in the Young diagram of w. Similarly, the operator IT: A — A is given by

m:Huxig. [ A-¢7"¢) - Huxq,0) (23)
3, j)en
i, N#1,1)
where the product is over all cells (i, j) # (1, 1) in the Young diagram of ©. We abbreviate the eigenvalue of IN‘I,L(X; q,t)
under the operator IT as

Mue= [ a-g7'd. (2.4)
(i,)en
i, N#,1)
The omission of (1, 1) in this product assures that the operator IT is nonzero and, in fact, invertible.

We are ready to define the Theta operators of [3]. Given F = F(X) € A, let F [%] be the symmetric function obtained by
plethystically evaluating F at X, where M = (1 — q)(1 — t). The Theta operator ®f : A — A is obtained by conjugating the
multiplication operator F 2] by II. That is, we set

OF -=noF[1]'on—1 (2.5)
M
Assuming F is homogeneous, the operator ®f is homogeneous of degree deg(F) on the graded ring A = @, An. As ex-
plained in the introduction, we will only use Theta operators indexed by elementary symmetric functions, and so abbreviate
Of :=0,.

We redcall some basic ideas from group representation theory. If G is a group and V1, V, are G-modules, we write
V1 ® V; for their Kronecker product (or internal product). This is the G-module with underlying vector space given by the
tensor product of V1 and V;, with G-module structure g - (vi ® v3):=(g-Vv1) ® (g- v2). For us, the group G will either be
a symmetric group &, or a parabolic subgroup &; x &;_; thereof.

If G and H are groups, V is a G-module, and W is an H-module, we write V X W for the (G x H)-module whose
underlying vector space is the tensor product of V and W and whose module structure is determined by (g,h)- (v® w) :=
(g-v)® (h-w). For us, both G and H will be symmetric groups. We use the distinct notations ® and X to avoid confusion
in the proof of Lemma 3.3 below.

Irreducible representations of the symmetric group &, over C are in bijective correspondence with partitions of n.
Given A n, we write S* for the corresponding &,-irreducible. If V is any finite-dimensional &,-module, there are unique
multiplicities ¢, > 0 such that V=&, cx S*. The Frobenius image Frob(V) € A, is the symmetric function

Frob(V):= ;. -5, (2.6)
Abn



A. Iraci, B. Rhoades and M. Romero Discrete Mathematics 346 (2023) 113474

obtained by replacing each irreducible factor with the corresponding Schur function. More generally, if V = @izo Vi is a
graded &,-module with each V; finite-dimensional, its graded Frobenius image is

grFrob(V; q) = ZFrob(V,-) q (2.7)
i>0
and if V =P; j5 Vi, is a bigraded &, module we have the bigraded Frobenius image
grfrob(V; q.t) = Y Frob(V; ) -q't/. (2.8)
i,j>0
Operations on symmetric functions correspond to operations on symmetric group modules via the Frobenius map. For
example, if V is an G,-module and W is an &;-module, the induction product of V. and W is Vo W := lndg:;”ém(v X W)
where the embedding &, x &, C Sp4+m is obtained by letting &, permute the first n letters and &, permute the last m
letters. We have
Frob(V o W) = Frob(V) - Frob(W). (2.9)

Defined for partitions A -n, u +m, and v - n 4+ m, the Littlewood-Richardson coefficients CK’H are the structure coefficients
for this product in the Schur basis. They are characterized by either of the formulas

A "~ v v _ v
S*oSt= @ CrouS or S -Su= Z Crp " Sv- (2.10)
vEm+n vEm+n

The Littlewood-Richardson rule gives a combinatorial interpretation of the nonnegative integers c; w
As another example, the Kronecker product on the space of degree n symmetric functions A, is the bilinear operation
characterized by

Frob(S* ® S*) =s, * s (211)
"

for all A, u - n. The nonnegative integers g ., indexed by triples of partitions A, u, v Fn determined by s) * s, =
> vin & - Sv are the Kronecker coefficients. Finding a combinatorial rule for g ;. . is a famous open problem.

3. Proof of Theorem 1.3

Theorem 1.3 asserts an equality of symmetric functions. Our strategy for proving this equality is to show that both sides
satisfy the following recursion.

Lemma 3.1. Let F, G € A be symmetric functions with vanishing constant terms. Suppose that hjiF = h]*G forall j>1.Then F =G.

Proof. For any partition A = (A1, A2, A3,...) with A1 > 0, we have
(F.hy) = (hy F,hs) = (hy, G, h) = (G, hy) 3.1)

where XA = (A2, A3,...) and the result follows since the h;, form a basis of A and (—, —) is an inner product. O

We handle the representation theoretic side Frob (FDRy); j of Theorem 1.3 first. Our starting point is the following result
of Jongwon Kim and Rhoades [12] which describes this symmetric function in terms of Kronecker products of hook-shaped
Schur functions.

Theorem 3.2. (Jongwon Kim-Rhoades [12]) We have (FDRy);, j = 0 whenever i+ j > n. When i + j < n we have

Frob (FDRn)l,] = 5(n—i,1i) *S(n—j,lj) — S(H—H-l,li*]) *S(n—j-‘r],l-’-*l)

where by convention $_j 1 1i-1) * S(_j11,15-1) =0 wheni=0o0r j=0.

Theorem 3.2 was proven by showing that the Gp-invariant element 61&1 + --- + 6,&, € A{0,, &} satisfies a kind of
‘bigraded Lefschetz property’. While there exist expressions for the Schur expansion of s, *s, when A, u Fn are hooks (see
e.g. [15]), these formulas are rather complicated. With an eye towards Lemma 3.1, we give a recursive rule for applying hj—
to an arbitrary Kronecker product of Schur functions.
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Lemma 3.3.Let 1 < j <nand let AV, . - n be two partitions. We have

1 A A2
hj (SA(l) *SA(Z)) = E Cu,vm 'C//.,U(Z) (Sv(l) * Sv<2)) (3.2)
p=j
v y@pn—j

where the CZ“L“) are Littlewood-Richardson coefficients.

The proof of Lemma 3.3 requires both of the module operations X and ® introduced in Section 2.

Proof. It is well-known that, for any G,-module V, the degree n — k symmetric function h].LFrob V has the algebraic inter-
pretation

hjFrobV = FrobHome; (1s, Resg! ., , V) (33)

where the Homg ;-space is an &, j-module by means of the second factor of & x &,_j. In our situation, this reads

S a ()
B (5,00 % 5,) = FrobHome; (1e . Res@! 5, (5" @ ) (3.4)
S (1) )
=FrobHoms; (1s,, (Resg ., ") ® ResQ, o 5*7)) (3.5)
M (2) 1) 1) 2) )
=FobHoms; | 1s;. B oy oo - (S BT H @ (M RSYT) (3.6)
D @

v y@pn—j

A 2@ M @ » e
=FobHoms; | 1s;. D i oy - (S @SFHR(S @SV (3.7)
P
v y@pn—j
A(D 12 . 1) 2)
= Z Cam v €L o -dim Homg;(1s;, " @ S* ™) -s,m * 5,0 (3.8)
1D O

v @ pn—j

where we used the fact that restriction functors commute with Kronecker products and the consequence

Resg" s, ,S" = @ cly(S"®S")  (iin) (3.9)
Mg
vkn—j
of Frobenius reciprocity.
The multiplicities g, ,1) ,@ = dim(Hom(S?, s @ s1?)) of Schur functions sp in general Kronecker products s, *
s,@ are difficult to compute. However, when p = (j) and SP=1g ; as in our setting, character orthogonality gives

1 1=y @
ny =) =k (3.10)

dim(Home, (1s., S @ S
G576 0 otherwise.

Adding this information to the above string of equalities gives

hjl(SAm *$,2) (3.11)

= Y Ao e dimHome (s, 54" @ 547 5,0 % 5,0 (3.12)
1 2 ;
RO

= Z Ci;.(,];“) . C;‘:’Z‘)}Q) “SuM %S, (313)
u(”,lfb(;{—n—j

and our proof is complete. O
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Our ability to put Lemma 3.3 to good use is bounded by our understanding of the products Cﬁ 1]1“) -ci‘: 21)}(2) of Littlewood-

Richardson coefficients appearing therein. Thanks to Theorem 3.2, for our purposes both AV and A will be hook-shaped

partitions so that these coefficients will be fairly simple. The situation becomes more complicated for general AV, 2@ tn,

but Lemma 3.3 could conceivably be useful for studying Kronecker products s, * s, for partitions other than hooks.
Although we will not need it, for completeness we record the companion Kronecker product recursion involving ejr:

n A o)
E'j (S)L(l) k S;\(Z)) = Z Cu/,vm .CM,U(Z) (Sv(l) *Sv(z)). (3.14)
H=j
v @ pn—j
Equation (3.14) has the same right-hand side as Equation (3.2), except that in the first Littlewood-Richardson coefficient the

partition u -k is replaced by its conjugate p’ - k. Equation (3.14) may be proven in the same way as Equation (3.2), except
one uses the formula

10 = @@y,

. (3.15)
0 otherwise

dim(Homg; (sign stV @ sty = {

for the multiplicity of the sign representation in a Kroenecker product of irreducibles.

Our application of Lemma 3.3 may be stated as follows. In order to motivate the next result and understand its proof, it
will be useful to recall that a product egh, of an elementary symmetric function with a homogeneous symmetric function
is a sum

eahb =5(b,19) + s(b+1,l”’1) (316)

of two successive hook-shaped Schur functions.
Lemma 3.4. For any j > 1 and any integers k, ¢, and m with k + £ +m = n we have

i
h; (Stkre.m) * Stkm,16) — S(kt-e+1,1m-1 * 5(k+m+1,1/5*1))

= hyyo—jem * hgym—jee — hggoem—j * hgpmee—j.  (3.17)

Proof. By telescoping sums, we may (and will) prove the equivalent assertion
j
hj_(s(k+z,1m) *S(rm,10)) = th-ké—j-&-remfr My ym—jree—r. (3.18)
r=0
Applying Equation (3.16), the right-hand side of Equation (3.18) reads
j
Z hieve—jrem—r * Agpm—jree—r
r=0

j
=D (Stkere—jram=y + Sere—jra1.amr-1) * (Sgepm—jrae-r) + Sgrm—jrrra6-1) - (319)
r=0

As for the left-hand side of Equation (3.18), Lemma 3.3 yields

1 (k+2£,1™) _(k+m,1%)
hj (S()H_@,]m) * S(k+m,1@)) = Z C,u,,vm . C}L,V(Z) (Su(l) * Sv(z)). (3.20)
p=j

v y@pn—j

m
Z‘tfl)l ) is nonzero only when both p and vV are hooks. In this case, we have

u=(—r,1") for some re{0,1,...,j— 1} and the Littlewood-Richardson Rule implies

The Littlewood-Richardson coefficient ¢

S(j—r,1)S (¢, n=i=¢) = S(j_ryc 1r+n=i—c) T S(j_pycq,aren-i—e+1y + R (3:21)

where R is a sum of Schur functions indexed by non-hook partitions. Therefore, the Schur function s, 1m) appears in this
product precisely when j—r+c=k+ £ or j—r+c—1=k+ ¢ or, in other words,

c=k+C—j+r or c=k+Cl—j+r+1.

Similarly, the Schur function s, ¢, appears in the product s¢j—r 1r)S( jn-j-c) precisely when

6
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c=k+m—j+r or c=k+m—j+r+1.

This means that

k+¢,1m k+m,1¢
Z Cf:,v(l) )'CL,UT(Z) )(Sv(l) *S,2) (3.22)
pj
v @ pn—j
c ™ (k+m, 1%
_ k+€,1™ k+m,
_ZZ (j—1,17),(c,1n=J=¢) C; r,17),(d,1n—Jj~d) (5(6 1n=i=¢) ¥ S(g =i~ d)) (3.23)
r=0 c,d
j
=3 (Serejrram )+ Sgere—jre1,1mr1) * (Stesm—jor16-r)  Sterm—jr41,10--1)) (3.24)
r=0

and applying Equation (3.19) finishes the proof. O

We turn to the Theta operator side of Theorem 1.3. Our starting point is an identity of D’Adderio and Romero [5, Theorem
8.2]. We use the standard g-analogs

[nlg:=14+q+---+ q"! [n]lg :=[nlg[n —1lg---[1]q [n} = & (3.25)
k q [k]'g - [n —k]lq

of numbers, factorials, and binomial coefficients together with the convention [Z]q =0 whenever k <0 or k > n. We will

also need the symmetric functions E, x = E, x(X; q) introduced in [6] which may be defined plethystically by

‘l_ —r
Enk —q"Zq(z)H (—1)ey [ 1_qq ] (3.26)

Here and throughout, we write ITIk(x; q,t) for H k(X g, 1),

Theorem 3.5. (D’Adderio-Romero [5]) For any integers j, m, £, and k we have

j k j—r+a
~ k
hy OmO¢Hy(x: q,0) =) > Y Om 1Ok j-aVEj-
jOmBe k(X;q,t) £ |:r:|qa0 2 m—j+r9+k—j—aVEj-rtab

(1) b—1][b+r—a-1 (kra+1) 11 [b+k—r—a
|4 [ a ]q[ k—a—1 ]q+ [a—]][ k—a ]q '

We will use Theorem 3.5 to obtain a recursion for the Theta operators at g =t = 0. In order to do this, we must first
replace the left-hand side of Theorem 3.5 with something closer to the expression ©;0 ;Vey |q=¢t=o. This is accomplished
with the following lemma.

Lemma 3.6. For any integers m, £, and k we have
OmO¢Vey o= OmOHi(X: ¢.1) lr=0 - (3.27)

Proof. The first step is to note that

Hi(%;q,t) = Vey le=o - (3.28)

The left side of Equation (3.28) is well-known to be the graded Frobenius image of the coinvariants of the symmetric group
with a single set of bosonic variables. The right side is the bigraded Frobenius image of the coinvariants with two sets of
bosonic variables, with the x-variables set to zero. Therefore, the two sides are the same.

We claim that for any symmetric function G, we have

(®e,\G) li=0= (Oe, (G |t:0)) le=0 - (3.29)

It is sufficient to verify (3.29) over a basis. If G = ﬁﬂ(x; q,t), then G |(—o= ﬁﬂ (x;q,0) is a modified Hall-Littlewood sym-
metric function; these also give a basis for symmetric functions. Let D, ,(q,t) be the coefficients in the expansion

7



A. Iraci, B. Rhoades and M. Romero Discrete Mathematics 346 (2023) 113474
Hu(x:q,0)=Y D@ OHy(X:q.) (3:30)
v

Setting t = 0, we find that

Dyv(q,0) =8y p. (3.31)
Now, applying Theta operators to both sides of (3.30), we find
Oc, Hu(%:0.0) = > Dy (q.1)O¢, Hy(X: q.1). (332)
A

Assuming that ®e.AITI\,(x; g,t) has no poles at t =0, then setting t =0 on both sides of (3.32) we get

Oc, Hyu(%: 4,0) le=o =Y _ Dyu.v(q, 0)O¢, Hy(X: 4, 1) lt=0 (3.33)
A
= O¢, Hu (X ¢, 1) le=o, (3.34)
which proves (3.29). To show that there are no poles at t =0, we see that by definition of Theta operators,
~ I, ~
O Huxi 0.0 = dj, ,@. 05" Hpxiq.0), (3.35)
0 I
where dﬁ.p(q, t) is the coefficient of I:?p (X;q,t) in ek[x/M]I':IM(x; q,t). At t =0, this product gives
X7~ X 1~
e [M] Hu(X;q,t) [t=0 =¢€x T—q H,(x;q,0) (3.36)
=Y Cup@H,(x:q,0) (337)
P

for some coefficients C ,(q). Since the modified Hall-Littlewood symmetric functions are a basis, we must then have

dlﬁ,p(q,O) = Cp,p(q). This means dﬁ,p(q,t) has no pole at t =0, and since I, /I, also has no pole at t =0, we can

conclude that (3.29) holds for any symmetric function G, proving the lemma. O

With Lemma 3.6 in hand, we apply Theorem 3.5 to get a recursive expression for the action of hjl on the symmetric
functions ©,;,®,Vey |g—t=o of Theorem 1.3.

Lemma 3.7. For any integers j, m, ¢, and k we have

J
1
hj OmO¢Vey lg=t=0= Z Om—rO¢—rVer_jiar lg=t=0

r=0
j—1

+ Z(@)m—r—] Op—r + Om—rOp—r—1)Vek_jrar+1 lg=t=0
r=0
j—2

+D  On 100 r1Verjrar2 lg=t=0 -
r=0

Proof. For convenience, we apply the transformation a — k —a in Theorem 3.5 to obtain

j k k+j—r—a
hti©,0,H(x;q,t) = Om_iir®piraVErrir_

(@7 b—1 b—k—l—r—i—a—l} (r—a)|: b—1 :| |:b+k—r—a}
x(q ’ |:k—aL[ a—1 q-l-q ’ k—a—1], a q (3:38)

Our goal is to evaluate Equation (3.38) at ¢ — 0. From Equation (3.27), we see the right-hand sides of both Equation (3.38)
and the equation in the statement of the Lemma agree.

At ¢ — 0, in order for the expression in the parentheses of (3.38) to be nonzero, we must have —1 <a —r <1 (for
otherwise both summands involve only positive powers of q). Moreover, by examining the g-binomials, we see that r <k

8
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(from the g-binomial on the first line of (3.38)) and a < j (since b <k+ j—r —a, or b—k+r+a < j, the rightmost g-
binomial in both summands vanishes unless a < j). Notice that, when the summands in the parentheses evaluate at g — 0
to something nonzero, once evaluated they do not depend on b anymore, so we can isolate the sum over b and use the
identity
k+j—r—a

Z vEk-&-j—r—a,b = Vek-‘rj—r—a- (3.39)

b=1
We have three separate cases depending on the value of a —r € {—1,0,1}.

Casel.a—r=-1.

In this case, the left summand q(“f)[i:;] [b’k+i+a’]] in the parentheses vanishes and the right summand
q a-1 q

(5971 b1 b+k—r—a : : T
q' 2 [k_a_1]q[ . ]q evaluates to 1 at ¢ — 0. Since a > 0, the sum restricts to r > 1 and we have a contribution of

J
Z Om—j+rOp—jtr—1Vektj—2r+1 lg=t=0;
r=1

now making the change of variables r — j —r we get
j-1

Z Om—rOp—r—1Vek—jtar+1 lg=t=0 - (3.40)
r=0

Case2.a—-r=0.

In this case, both summands in the parentheses evaluate to 1 at ¢ — 0, except when a =r =0 (in which case the left

summand evaluates to 0) or when a =r = j (in which case the right summand evaluates to 0). The contribution of this case
is

J
D 2= 80— 8. ))Om 11O j4r Vet j—ar lg=t=0
r=0

where §; o and &, j are Kronecker deltas. We can rewrite this as

J j—1
Z Om—j+rOp—jtrVertj-or lg=t=0 + Z Om—j+rOr—j+rVektj—ar lg=t=0
r=0 r=1

and now making the change of variables r + j —r in the left summand and r+— j —r — 1 in the right summand we get

j j=2
Z Om—rOp—rVer_jior lg=t=0 + Z Om—r-10p_r_1 Vek7j+2r+2 lg=t=0 - (3.41)
r=0 r=0

Case3.a—r=1.
In this case the right summand in the parentheses vanishes at ¢ — 0 and the left summand evaluates to 1. Since a < j,
the sum restricts to r < j — 1. We get a contribution of

j—1

Z Om—j+rO¢—jrr+1Verrj—2r-1 lg=t=0;
r=0

now making the change of variables r+— j —r — 1 we get

j—1

Z Om—r-10¢—rVer_jyor+1 lg=t=0 - (3.42)
r=0

The lemma follows immediately by combining the contributions (3.40), (3.41), and (3.42). O
We have all the tools we need to prove our main result Theorem 1.3.
Proof. (of Theorem 1.3) By Theorem 3.2, we aim to show

OmOr Ve lq=t=0= Sk+£.1m) * Sgetm, 16) = St e+1,1m1) * S(km+1,16-1) (343)

9
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for all integers k, £, m > 0. Notice that both sides of Equation (3.43) are symmetric functions of degree m + ¢ + k. When
m + £ + k =0 both sides specialize to 1 so we assume that m + ¢ + k > 0 and both sides have positive total degree.

We prove this result by induction on the total degree m + ¢ + k. Let j > 1. Using Lemma 3.38, we apply the operator h].L
to the left-hand side of Equation (3.43) yielding

J
1
hj OmO¢Veglg=t=0 = Z ®m—r®e—rvek7j+2r|q:t:0

r=0
j—1
+ Z (Om—r-10¢—r + Om—rOp_r_1) Vex_ji1ori1 g=t=0
r=0
j—2

+ Om—r-10¢—r—1Vex_jiari2 |q:t:0
r
J
(lrld. hp) = ZS/H_[_]q_rjm—r * 5k+m—j+r,1[”’ — Sk+£7j+r+1,lm’r’1 * Sk+m—j+r+1,1£’r’1

Il
o

r=0
j—-1
+ Zsk+lfj+r+l,1m*f*1 * Skpm— jopr, 16T 7 Sk l— jr42,1m7=2 F Spym_ jpr1,16-7-1
r=0
j—1
+ Zsk+z—j+r,1m—r * Skepm— jbr 41,1671 7 Skpe—jbr+1,1m==1 K Spepmjyr g2, 1612
r=0
j-2
+ Zsk+£—j+r+l,1m*f*1 * Skpm— jopr41,16-T=1 = Skp— jpr42,1m—r=2 ¥ Spym_ j 42,1672
r=0
J J
H-2 = Zskﬂiﬁﬁrr,lm*r * Skm—jr, 16T Zsk+£—j+r+l,lm*r*1 * Skpm—jr41,101
r=0 r=0
j-1 J
3-@ + Zsk+z—j+r+l,1m—f—1 * Sktm—j+r, 167 — Zsk+£—j+r+1,1m—f—1 * Sktm—j4r, 167
r=0 r=1
j-1 J
(5) — (6) + Zsk-ﬁ-l—j—ﬁ-fﬂmf" * Skbm—jtr41,16--1 — ZS}H_[_]'_H»,]m—r * Skpm—jr41,16--1
r=0 r=1
j—2 J
(7) = (®) + Zsk+£7j+r+l,1m*r*1 * Skpm— jbr1,16--1 ZS’<+[*j+r,1m7r * Skpm—j+r, 16T
r=0 r=2
where the second equality used induction on degree and the numerals (1), ..., (8) on the left of the last expression abbre-

viate the eight sums therein. We rearrange and make cancellations in these sums, obtaining

(1) =) =Skqe—jam * Skpm—j 16 F Sko—jr1,1m=1 * Sk j41,1¢-1

B =@ Sk j1,1m1 * Skpm—j, 16 T Ske1,1m-i=1 % S 167
(5) = (®)  +Skte—j,1m *F Skm—j 1,161 ~ Sk, 1M * Skqmop1, 1671
(1) = @) = Sgpeam—i * Sk, 165 = Skyer1,1m=i=1 * Skymy1, 1651

Reindexing these eight summands with (a), ..., (h) and applying Equation (3.16) gives

@+ () =Skre—jam *Sgym_j1¢ + Skpe—jr1,1m=1 * Skqpm—jr1,1¢-1

©— () Sk jp1,1m1 *F Skpm—j 16 — Skpo1,1m-i—1 * Sgrm, 16

e)—(H) + Skp0—j, 1M * Spqm_jp1,16-1 — ke, 1m—i * Skqpm1,16--1
—(@) — () =S ami * Spym 1677~ Sk 1,11 * Skqma, 1651

@+ () =hgre—jem * Sgym—_j1t

10



A. Iraci, B. Rhoades and M. Romero Discrete Mathematics 346 (2023) 113474

b))+ (e) + Nito—jm * Skym—j41,16-1
—(d) - () — Riem—j * Sy 16-i
—(fH—m — Rirelm—j * Sppmiq.16-i-1
=hiy ¢ jem * heym—jee — hiyeem—j * hgymee—j
= hl(s %S -5 *S )
= Ny (S, 1m * S m, 18 = ko1, 1m=1 * Spqm1,1¢-1

where the last step uses Lemma 3.4. In summary, we have

L L
h] @m(’)[VEI('q:t:O = h] (S]<+L1m *Skam, 16 — Sk4ga1,1m-1 % Sk+m+],]£—1) (344)

and since this holds for every j > 1, by Lemma 3.1 we can deduce that Equation (3.43) holds. This completes the proof of
Theorem 1.3. O
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