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1. Introduction

In his seminal paper [12], Macdonald introduced the Macdonald P -polynomials Pμ[X; q, t] indexed by partitions μ. The 
modified Macdonald polynomials H̃μ[X; q, t] are a combinatorial version of the Macdonald P -polynomials and they are char-
acterized as the unique family of symmetric functions satisfying the following triangularity and normalization axioms (see 
[6]):

(1) H̃μ[X(1 − q); q, t] =
∑

λ≥μ aλ,μ(q, t)sλ(X),

(2) H̃μ[X(1 − t); q, t] =
∑

λ≥μ′ bλ,μ(q, t)sλ(X), and

(3) 〈H̃μ, s(n)〉 = 1,

for suitable coefficients aλ,μ, bλ,μ ∈ Q(q, t), where μ′ denotes the conjugate partition of μ and sμ(X) is the Schur function. 
The partial order ≤ is the dominance order on partitions defined by

λ ≤ μ if λ1 + · · · + λk ≤ μ1 + · · · + μk for all k,

[−] denotes the plethystic substitution, and 〈−, −〉 is the Hall inner product. Haglund, Haiman, and Loehr proved [6] a 
combinatorial formula for the modified Macdonald polynomials H̃μ[X; q, t] which generalizes to the multi-t Macdonald poly-
nomials H̃μ[X; q, t1, t2, . . . ]. The polynomial H̃μ[X; q, t1, t2, . . . ] specializes to H̃μ[X; q, t] at t1 = t2 = · · · = t and depends 
on an order c1, c2, . . . of the cells of μ.
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Fig. 1. An example of partition.

LLT polynomials are symmetric functions LLTν [X; q] introduced by Lascoux, Leclerc, and Thibon [11], which depend on a 
tuple ν of skew partitions. The LLT polynomial LLTν [X; q] is unicellular if every skew partition in ν is a single cell. Unicellular 
LLT polynomials are naturally indexed by Dyck paths as well as tuples of skew shapes.

Jim Haglund conjectured [3] a combinatorial formula expanding the multi-t Macdonald polynomials indexed by two-row 
partitions μ into unicellular LLT polynomials. In this paper, we prove Haglund’s conjecture. In the following theorem, we 
index LLT polynomials with Dyck paths.

Theorem 1.1. Let μ = (n − k, k) be a two-row partition and c1, . . . , ck be the cells in the upper row. Let D(h1, . . . , hn) be the Dyck 
path of size n whose height of the j-th column is h j for 1 ≤ j ≤ n. Then for k ≤ h1 ≤ · · · ≤ hk we have,

H̃μ[X;q,qhk−k,qhk−1−k, . . . ,qh1−k] = LLTD(h1,...,hk,n,...,n)[X;q],

where the left-hand side is the multi-t-Macdonald polynomial ̃Hμ[X; q, t1, t2, . . . ] at ti = qhi−k for 1 ≤ i ≤ k.

This paper is organized as follows. In Section 2, we provide background on the combinatorics of LLT and modified 
Macdonald polynomials. Section 3 contains various equivalences of LLT polynomials indexed by different families of skew 
shapes and a proof of Theorem 1.1 based on these equivalences. In Section 4, we explore ‘stretching symmetries’ of modified 
Macdonald polynomials which bear formal similarity to Theorem 1.1. We close in Section 5 with some open problems.

2. Background

2.1. Combinatorics

Let μ = (μ1, μ2, . . . , μ�) be a partition of n. We identify μ with its (French) Young diagram

μ = {(i, j) ∈ Z+ × Z+ : j ≤ μi}

and refer to elements in μ as cells. For a cell u in a partition,

• the content of u = (i, j) is c(u) := i − j,

• the arm (resp., coarm) of u is the number of cells strictly to the right (resp., left) of u in the same row,

• the leg (resp., coleg) of u is the number of cells strictly above (resp., below) u in the same column, and
• the major index of u is the leg of u plus one.

For example, for a partition μ = (5, 4, 3, 2), and a cell c = (2, 2) as in Fig. 1,

arm(c) = 2, coarm(c) = 1, leg(c) = 1, coleg(c) = 2, and maj(c) = 2.

Let stat be a statistic on cells. For a subset of cells D ⊆ μ, the number stat(D) is defined by

stat(D) :=
∑

u∈D

stat(u).

For partitions λ and μ with μ ⊆ λ, the skew shape is the set-theoretic difference λ/μ := λ − μ. A ribbon is an edgewise 
connected skew shape containing no 2 × 2 block of cells. Note that the contents of the cells of a ribbon are consecutive 
integers. The descent set of a ribbon ν is the set of contents c(u) of those cells u = (i, j) ∈ ν such that the cell v = (i − 1, j)
directly below u also belongs to ν . For an interval I = [r, r + s] := {r, r + 1, . . . , r + s}, there is a one-to-one correspondence 
between ribbons of content I and subsets D ⊆ I \ {r} by considering the descent set of each ribbon (we regard diagonal 
translations of ribbons as indistinguishable). We denote the ribbon with a content set I and a descent set D by R I (D). In 
particular, for any integer a we use Ca := R{a}(∅) to denote a cell of content a. For each subset of cells D ⊆ {(i, j) ∈ μ : 1 < i}

where no cell is in the first row, let D( j) := {i : (i, j) ∈ D}. For a partition μ, and a subset D of μ without a cell in the first 
row, Rμ(D) is a tuple of ribbons defined by

Rμ(D) := (R[1,μ′
1]

(D(1)), R[1,μ′
2]

(D(2)), . . . ).
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Fig. 2. Labeling of cells.

2.2. LLT polynomials and modified Macdonald polynomials

For a skew partition ν , a semistandard tableau of shape ν is a filling of ν with positive integers where each row is weakly 
increasing from left to right and each column is strictly increasing from bottom to top. For a tuple ν = (ν(1), ν(2), . . . ) of 
skew partitions, a semistandard tableau T = (T (1), T (2), . . . ) of shape ν is a tuple of semistandard tableaux where each 
T (i) is a semistandard tableau of shape ν(i) . The set of semistandard tableaux of shape ν is denoted by SSYT(ν). For a 
semistandard tableau T = (T (1), T (2), . . . ) of shape ν , an inversion of T is a pair of cells u ∈ ν(i) and v ∈ ν( j) such that 
T (i)(u) > T ( j)(v) and either

• i < j and c(u) = c(v), or
• i > j and c(u) = c(v) + 1.

Denote by inv(T ) the number of inversions in T . The LLT polynomial LLTν [X; q] is defined by

LLTν [X;q] =
∑

T∈SSYT(ν)

qinv(T )X T .

Here, X T := x
T 1
1 x

T 2

2 · · · , where T i is the number of i’s in T .

If a tuple ν of skew partitions consists of single cells, the LLT polynomial LLTν [X; q] is called unicellular. Dyck paths can 
also index unicellular LLT polynomials. Given a tuple of n cells, index these cells in order of increasing content, breaking 
ties by indexing from left to right within a given content. For all i, let hi be the maximal index j such that the i-th and 
j-th cell forms an inversion pair, i.e., i < j and either both cells are in the same row or the j-th cell is in the next row and 
strictly to the left of the i-th cell. Then the correspondence sends the tuple of cells to a Dyck path, where the height of i-th 
column is given by hi . For example, a tuple of cells in Fig. 2 corresponds to the Dyck path of height (2, 4, 5, 5, 5).

Haglund–Haiman–Loehr also provided an expansion of the modified Macdonald polynomials into LLT polynomials in-
dexed by tuples of ribbons.

Theorem 2.1. [6, Section 3] For a partition μ, we have

H̃μ[X;q, t] =
∑

D

q−arm(D)tmaj(D) LLTRμ(D)[X;q],

where the sum is over all subsets D ⊆ {(i, j) ∈ μ : 1 < i}.

As a generalization of the above LLT expansion (or a combinatorial formula) of modified Macdonald polynomials, the 
multi-t Macdonald polynomial H̃μ[X; q, t1, t2 . . . ] is defined as follows: For a partition μ, consider an ordering c1, c2, . . . of 
cells in μ. Then the multi-t-Macdonald polynomial is

H̃μ[X;q, t1, t2, . . . ] :=
∑

D

q−arm(D)
∏

ci∈D

t
maj(ci)
i

LLTRμ(D)[X;q], (2.1)

where the sum is over all subsets D ⊆ {(i, j) ∈ μ : 1 < i}. By specializing each t variable ti = t , the multi-t-Macdonald 
polynomial is just a usual modified Macdonald polynomial.
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3. Proving Haglund’s conjecture

3.1. LLT-equivalences

Write [n]q :=
1−qn

1−q
for the q-analog of an integer n. Let 

∑
i ai(q)ν

(i) and 
∑

j b j(q)μ
( j) be N[q]-linear combinations of 

tuples of skew partitions. Following Miller [13], we say these linear combinations are LLT-equivalent if for every tuple λ of 
skew partitions, we have

∑

i

ai(q) LLT(ν(i),λ)[X;q] =
∑

j

b j(q) LLT(μ( j),λ)[X;q].

Here (ν, λ) is the tuple obtained by concatenating ν and λ. Abusing notation, we write
∑

i

ai(q)ν
(i) =

∑

j

b j(q)μ
( j),

to indicate LLT-equivalence. In this section, we establish a series of LLT-equivalences which are ribbon-analogues of results 
in [13,10,7].

We prove some of the LLT-equivalences inductively, by showing that both sides satisfy ‘linear relations’. To be more 
precise, we say that a function f (α) of integers α satisfies a linear relation in α if we have

qf (α) + f (α + 2) = [2]q f (α + 1).

If a function f (D) is defined for Dyck paths D , we say f satisfies a row linear relation if we have

qf (D) + f (D ′′) = [2]q f (D
′),

where Dyck paths D , D ′ , and D ′′ are Dyck paths where they differ at only one row, and the number of boxes in that row 
below the Dyck path is given by a, a + 1 and a + 2, respectively. We define column linear relation similarly.

Let R be a ribbon of content [r − 1] with a descent set D . We can add a cell of content r to R to obtain a ribbon of 
content [r] in two ways; add a cell above or to the left of the cell of content r − 1. In other words, there are two ribbons 
R+
H := R[r](D) and R+

V := R[r](D ∪ {r}) obtained by adding a cell to R . We used the + sign to mean that one cell is added, 
and H and V stand for adding a cell horizontally or vertically. Our first LLT equivalence is as follows.

Proposition 3.1. For a ribbon R of content [r − 1], we have the following LLT equivalence

R+
H + qαR+

V = [α]q(R,Cr) − q[α − 1]q(Cr, R)

=

{
[α]q(R,Cr) − q[α − 1]q(Cr, R) if α ≥1, and

−qα[−α]q(R,Cr) + qα[1− α]q(Cr, R) if α <1

for all integers α.

Proof. The formula is easy to see when α = 0, 1. Since each of the three expressions satisfies a linear relation in α, the 
proposition follows. �

Our second LLT equivalence is a linear relation for LLT polynomials which generalizes the local linear relation of unicel-
lular LLT polynomials given in [10,7].

Proposition 3.2. For a ribbon R of content [r − 1], we have the following LLT equivalence

[k]q

(
Ck−1
r , R,Cr

)
= q[k − 1]q

(
Ck
r , R

)
+

(
R,Ck

r

)
.

Proof. The following linear relation is established in [10]:

[2]q (Cr,Cr−1,Cr) = q
(
C2
r ,Cr−1

)
+

(
Cr−1,C

2
r

)
.

The only difference between this LLT equivalence and ours is that we replaced Cr−1 with a ribbon R of content [r−1]. Since 
a cell of content r cannot form an inversion pair with a cell of content less than r − 1, it suffices to care about the cell of 
content r − 1 in R (the last cell). The proof of [10, Theorem 3.5] applies to show

[2]q (Cr, R,Cr) = q
(
C2
r , R

)
+

(
R,C2

r

)
.

Applying this inductively, as in [7, Proof of Theorem 3.4], proves the proposition. �
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Our third LLT equivalence is a commuting relation between a ribbon and a cell.

Proposition 3.3. [13] Let R be a ribbon of content [r] with a descent set D. Then we have the following LLT equivalence

(Cr, R) =

{
q−1 (R,Cr) if r ∈ D, and

(R,Cr) otherwise.
(3.1)

Proof. To prove that two linear combinations of tuples of skew partitions are LLT equivalent, it suffices to show that there is 
a bijection preserving weight, inversion, and content between semistandard tableaux corresponding to those. Since a similar 
argument also proves the second case, we only prove the first case.

For semistandard tableaux of shape (Cr , R) and (R, Cr) are the followings tableaux with either of the following four 
conditions holds: a > b > c, a = b > c, b > a > c, or b > c ≥ a.

T = b

c

a

, T ′= a

b

c

We let the bijection preserve the fillings of the cells of R of content less than r − 1, so we omit those cells. In Table (3.2), 
we give the q-weight of each side of (3.1), inv(T ) and inv(T ′) − 1 for each case.

a > b > c a = b > c b > a > c b > c ≥ a

T 1 0 0 0

q−1T ′ 0 0 1 0

(3.2)

Let us define a bijection sending T to T ′ if a, b and c satisfies the second or the fourth case (a = b > c or b > c ≥ a), 
and sending T to a tableau obtained from T ′ by switching a and b otherwise (a > b > c or b > a > c). By definition of the 
bijection, it is obviously weight and content preserving, and (3.2) shows that it is also inversion preserving. �

For the last, we need one more commuting relation between dominoes given in [10].

Proposition 3.4. [10, Lemma 5.5] Let V and H be vertical and horizontal dominoes of content [r, r + 1], respectively. Then we have 
the following LLT equivalence

(V , H) = (H, V ).

3.2. Proof of Haglund’s conjecture

Let μ = (n − k, k). Note that for a subset D ⊆ {(2, j) ∈ μ}, arm(D) =
∑

(2, j)∈D(k − j). Therefore, the multi-t-Macdonald 
polynomial is given by

H̃μ[X;q,qhk−k,qhk−1−k, . . . ,qh1−k] =
∑

D

q
∑

(2, j)∈D hk+1− j−2k+ j LLTRμ(D)[X;q],

where the sum is over all subsets D ⊆ {(2, j) ∈ μ}. For a subset D ⊆ {(2, j) ∈ μ}, we define

Drev = {(2,k + 1− j) : (2, j) ∈ D}.

For example, let μ = (7, 5) and

D = {(2,1), (2,2), (2,4)} = .

Then we have

Drev = {(2,2), (2,4), (2,5)} = .

The tuple of ribbons corresponding to D and Drev are

Rμ(D) = (V , V , H, V , H,C,C) and Rμ(Drev) = (H, V , H, V , V ,C,C),

5
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where V and H are vertical and horizontal dominoes (of content 1,2) and C is a cell of content 1. Since Proposition 3.4 says 
that we can swap the vertical and horizontal dominoes (V ’s and H ’s),

LLTRμ(D)[X;q] = LLTRμ(Drev )[X;q].

Thus we have

H̃μ[X;q,qhk−k,qhk−1−k, . . . ,qh1−k] =
∑

D

q
∑

(2, j)∈D h j−k− j+1 LLTRμ(D)[X;q]. (3.3)

Our goal is to show that the right-hand side of (3.3) is the same as LLTD(h1,...,hk,n,...,n)[X; q].
There are two steps for proving this identity using induction. The first step is to show the identity for “near-staircase” 

shapes, namely, the case when h j = k + j − 1 + e j for j = 1, . . . , k, where e j is either 0 or 1. These partitions are conjugate 
to partitions containing (n − k − 1, n − k − 2, . . . , n − 2k) and contained in (n − k, n − k − 1, . . . , n − 2k + 1). Proof of the first 
step is straightforward. When h j = k + j − 1 + e j , we have h j − k − j + 1 = e j so by Proposition 3.1, (3.3) becomes

∑

D

q

∑
c j∈D e j

LLTRμ(D)[X;q] = LLT(Pe1
,Pe2

,...,Pek
,C1,C1,...,C1)[X;q],

where P1 = (C1, C2) and P0 = (C2, C1) and there are n − 2k number of C1 ’s in total.
The second step is to show that (3.3) satisfies both column and row linear relations. Proving the column linear relation 

is trivial by the formula since a function qh
j
is linear in h j . Therefore, one only needs to prove the row linear relation. Let 

f (h1, · · · , hk) be the right-hand side of equation (3.3). Then we need to show that for any positive integer i ∈ [k] and a ≤ n

satisfying hi−1 ≤ a and hi+2 ≥ a + 1, the following holds:

q · f (h1, . . . ,hi−1,a,a,hi+2, . . . ,hk) + f (h1, . . . ,hi−1,a + 1,a + 1,hi+2, . . . ,hk) (3.4)

= [2]q f (h1, . . . ,hi−1,a,a + 1,hi+2, . . . ,hk) (3.5)

When (2, i) and (2, i +1) are both in D , or neither of them is in D , the corresponding sum 
∑

D q
∑

(2, j)∈D h j−k− j+1 LLTRμ(D)[X; q]
satisfies (3.4)=(3.5).

When exactly one of (2, i), (2, i + 1) is in D , the corresponding function for (3.4) is

∑

D

q1+χ(i,D)(a−k−i+1)+χ(i+1,D)(a−k−i)q
∑

(2, j)∈D, j �=i,i+1 h j−k− j+1 LLTRμ(D)[X;q]

+
∑

D

qχ(i,D)(a−k−i+2)+χ(i+1,D)(a−k−i+1)q
∑

(2, j)∈D, j �=i,i+1 h j−k− j+1 LLTRμ(D)[X;q]

= 2[2]qq
a−k−i+1

∑

D ′

q
∑

(2, j)∈D, j �=i,i+1 h j−k− j+1 LLTRμ(D ′)[X;q]

where χ(i, D) is 1 if (2, i) ∈ D , 0 otherwise, and the sum in the last line runs over all D ′ ⊂ {(2, j) ∈ μ} satisfying (2, i) ∈ D ′

and (2, i + 1) /∈ D ′ . Here we applied Proposition 3.4.

By a similar argument, one can prove

2qa−k−i+1
∑

D ′

q
∑

(2, j)∈D, j �=i,i+1 h j−k− j+1 LLTRμ(D ′)[X;q]

is the same as (3.5), proving the claim.

We show that proving the two steps is enough to show Haglund’s conjecture using induction, where the base case is the 
conjecture for near-staircase shapes.

By the induction hypothesis, Haglund’s conjecture is true for a Dyck path D(h′
1, h

′
2, . . . , h

′
k
) where h′

1 = k or k + 1, and 
k + 1 ≤ h′

i
≤ n for any 1 < i. Assume that we have any Dyck path D(h1, . . . , hk) satisfying k ≤ hi ≤ n. There are two cases:

(1) h2 ≥ k + 2. In this case, since we know that Haglund’s conjecture holds for h1 = k and k + 1, it holds for any k ≤ h1 ≤ h2
by using the fact that both sides of Haglund’s conjecture satisfy the column linear relation.

(2) h2 = k or k +1. In this case, consider the largest index i satisfying hi = k. If there is no i or i = 1, the corresponding two 
Dyck paths satisfy Haglund’s conjecture by an induction. If i > 1, then we use two previous paths and the row linear 
relation to show that Haglund’s conjecture holds for any i.

6
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4. Stretching symmetries

The starting point for this project was observing a certain ‘stretching symmetry’ satisfied by the modified Macdonald 
polynomials H̃μ[X; q, t]. After the authors posted an earlier version of this paper was posted to the arxiv, Mark Haiman [5]
informed the authors that this observation follows from the work of Garsia and Tesler [2]. We reproduce this derivation 
here.

Given a partition μ = (μ1, μ2, . . . ), let kμ be the partition kμ = (kμ1, kμ2, . . . ) obtained by multiplying each part of 
μ by k. This stretching operation on partitions lifts to the following symmetry of the modified Macdonald polynomials at 
t = qk .

Theorem 4.1. [2] Let μ be a partition and k be a positive integer. Then we have

H̃kμ[X;q,qk] = H̃kμ′ [X;q,qk].

Proof. For any partition λ, let Bλ(q, t) be the polynomial

Bλ(q, t) :=
∑

c∈λ

qcoarmλ(c)tcolegλ(c).

For any two partitions λ, ν , Theorem 1.1 of [2] yields the implication

Bλ(q
r,qs) = Bν(qr,qs) ⇒ H̃λ[X;qr,qs] = H̃ν [X,qr,qs] (4.1)

for any positive integers r, s. Since Bkμ(q, qk) = Bkμ′ (q, qk), the result follows. �

Like Theorem 1.1, Theorem 4.1 concerns specializing modified Macdonald polynomials by sending t to a power of q. 
In a forthcoming paper of the first and second named authors with Donghyun Kim, a different proof [9] of Theorem 4.1

will be given. This proof will show that the equality of B-polynomials Bλ(q, qk) = Bν(q, qk) is equivalent to the equality 
H̃λ[X; q, qk] = H̃μ[X; q, qk] of specialized Macdonald polynomials (so that the converse of the implication (4.1) holds).

For the rest of this section, we study Theorem 4.1, where the partition μ is a single column. To be more precise, we give 
two new proofs of the following result.

Theorem 4.2. For nonnegative integers k and �, we have

H̃(
k�

)[X;q,qk] = H̃(k�)[X;q,qk] =
∑

T∈SYT(n)

qmaj(T )sλ(T )

where λ(T ) is the shape of the standard tableau T .

The final equality in Theorem 4.2 holds because H(n)[X; q, t] =
∑

T∈SYT(n) q
maj(T )sλ(T ) is the (singly) graded Frobenius 

image of the coinvariant ring attached to the symmetric group Sn; see Subsection 4.2 for more details. We prove Theo-
rem 4.2 in two ways: a combinatorial argument using LLT-equivalences and an algebraic argument involving Garsia-Haiman 
modules.

4.1. Combinatorial proof of Theorem 4.2

Let μ =
(
k�

)
. By Theorem 2.1, we have an LLT expansion of the modified Macdonald polynomial of μ at t = qk by

H̃μ(x;q,qk) =
∑

D⊆{(i, j)∈μ:1<i}

qkmaj(D)−arm(D) LLTRμ(D)[X;q]. (4.2)

Note that for the cells in {(i, j) : 1 < i ≤ �, 1 ≤ j ≤ k}, the q-statistics

kmaj−arm

in (4.2) are given by 1, 2, . . . , k for the cells in the top row, k + 1, k + 2, . . . , 2k for the cells in the second top row, and so 
on.

Choose a subset E ⊆ {(i, j) ∈ μ : 1 < i < �} consisting of cells not in the first and the last row and take a partial sum of 
the right-hand-side of (4.2) over subsets D ⊆ {(i, j) ∈ μ : 1 < i}, where D restricted to {(i, j) ∈ μ : 1 < i < �} equals to E . 
This partial sum gives qkmaj(E)−arm(E) times the following sum

∑

D

q
∑

(�, j)∈D j LLTRμ(D)[X;q], (4.3)

7
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where the sum is over subsets D whose restriction to {(i, j) ∈ μ : 1 < i < �} equals to E .
We claim that the summation in (4.3) is LLT equivalent with a single tuple of ribbons:

∑

D

q
∑

(�, j)∈D j
Rμ(D) =

(
R

(
k�−1

)(E),Ck
�

)
, (4.4)

where the sum in the left-hand-side is over subsets D whose restriction to {(i, j) ∈ μ : 1 < i < �} equals to E . We prove this 
claim by induction on k. For the initial case, assume k = 1. By Proposition 3.1 for α = 1, we have

R(1�)(E) + qR(1�) (E ∪ {�}) =
(
R[�−1] (E) ,C�

)
,

which proves the claim for k = 1.

Assume k > 1. Then we have
∑

D

q
∑

j:(�, j)∈D j
Rμ(D)

=
(
R

(
(k−1)�−1

) ({(i, j) ∈ E : 1 ≤ i ≤ k − 1}) ,Ck−1
� , R[�](E

(k))

)

+ qk
(
R

(
(k−1)�−1

) ({(i, j) ∈ E : 1 ≤ i ≤ k − 1}) ,Ck−1
� , R[�](E

(k) ∪ {�})
)

= [k]q

(
R

(
(k−1)�−1

) ({(i, j) ∈ E : 1 ≤ i ≤ k − 1}) ,Ck−1
� , R[�−1](E

(k)),C�

)

− q[k − 1]q

(
R

(
(k−1)�−1

) ({(i, j) ∈ E : 1 ≤ i ≤ k − 1}) ,Ck
�, R[�−1](E

(k))

)

=
(
R

(
k�−1

) (E) ,Ck
�

)
.

The first equation follows by the induction hypothesis. The second equation follows from Proposition 3.1 and the third 
equation follows from Proposition 3.2. This proves the claim.

Sliding the cells C� ’s to the leftmost part of the diagonal of content � − 1 gives
(
R

(
k�−1

) (E) ,Ck
�

)
=

(
Ck

�−1, R
(
k�−1

) (E)

)
. (4.5)

Recall that by Proposition 3.3, we can swap a cell of content r and a ribbon R of content [r] where a weight q−1 is attached 
in the case the last cell of R is a descent. Thus,

(
Ck

�−1, R
(
k�−1

)(E)

)
= q−k|{ j:(�−1, j)∈E}|

(
R

(
k�−1

)(E),Ck
�−1

)
, (4.6)

Combining (4.4), (4.5) and (4.6), we conclude that

H̃μ[X;q,qk] =
∑

E

qkmaj(E)−arm(E)−k|{ j:(�−1, j)∈E}| LLT(
R

(k�−1)
(E),Ck

�−1

)[X;q], (4.7)

where the sum is over all subsets E ⊆ {(i, j) ∈ μ : 1 < i < �}. Note that each cell in the top row in E contributes to the 
q-weight

kmaj(E) − arm(E) − k |{ j : (� − 1, j) ∈ E}|

in (4.7) by 1, 2, . . . , k as in the initial case. Therefore we can apply the whole procedure again to obtain

H̃μ[X;q,qk] =
∑

E

qkmaj(E)−arm(E)−2k|{ j:(�−2, j)∈E}| LLT(
R

(k�−2)
(E),C2k

�−1

)[X;q],

where the sum is over all E ⊆ {(i, j) ∈ μ : 1 < i < � − 1}. By applying this repeatedly, we prove Theorem 4.2.

4.2. Representation-theoretic proof of Theorem 4.2

For any μ � n, Haiman established [4] the Schur positivity of H̃μ[X; q, t] by proving

grFrob(Vμ;q, t) = H̃μ[X;q, t] (4.8)

where Vμ is the Garsia-Haiman module [1] attached to μ. The module Vμ is the following subspace of C[Xn, Yn] :=
C[x1, . . . , xn, y1, . . . , yn]. Fix a bijective labeling T of the boxes of μ with 1, 2, . . . , n and define a polynomial δμ ∈ C[Xn, Yn]

by

8
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δμ := εn ·
∏

c∈μ

x
coarm(c)
T (c) y

coleg(c)
T (c) (4.9)

where Sn acts on C[Xn, Yn] diagonally and εn :=
∑

w∈Sn
sign(w)w is the antisymmetrizing idempotent. The Garsia-Haiman 

module Vμ is the smallest linear subspace of C[Xn, Yn] containing δμ which is closed under the partial differentiation 
operators ∂/∂xi and ∂/∂ yi for 1 ≤ i ≤ n. In particular, when μ � n is a single row or column, we have an isomorphism of 
singly-graded Sn-modules Vμ

∼= Rn , where Rn := C[Xn]/〈C[Xn]
Sn
+ 〉 is the type A coinvariant algebra in the x-variables.

Let η : C[Xn, Yn] � C[Xn] be the evaluation map that fixes xi and specializes yi �→ (xi)
k . For any μ � n, we have an 

Sn-module homomorphism ϕμ : Vμ → Rn given by the composition

ϕμ : Vμ ↪→ C[Xn, Yn]
η

−→ C[Xn] � Rn (4.10)

of including Vμ into C[Xn, Yn], evaluating along η, and then projecting onto Rn .

Proposition 4.3. If n = k� and μ = (k�) is a rectangle, then ϕμ is an isomorphism.

Since the (singly) graded Frobenius image of Rn is

grFrob(Rn;q) =
∑

λ�n

⎛
⎝ ∑

T∈SYT(λ)

qmaj(T )

⎞
⎠ · sλ[X] (4.11)

and η evaluates the y-variables to degree k, Proposition 4.3 implies Theorem 4.2. We prove Proposition 4.3 as follows.

Proof. The domain and codomain of ϕμ are both vector spaces of dimension n!, so it is enough to show that the image of 
ϕμ spans Rn . We choose our filling T of the k-by-� rectangle μ so that

δμ = εn ·

⎛
⎜⎜⎝

∏

0≤i≤k−1
0≤ j≤�−1

xi� j+i+1 y
j

� j+i+1

⎞
⎟⎟⎠ . (4.12)

This corresponds to the ‘English reading order’ standard filling of μ. The evaluation η(δμ) of the Vandermonde determinant 
is the image in Rn of the Vandermonde, i.e.,

η(δμ) = εn · (x01x
1
2 · · · xn−1

n ). (4.13)

If we endow monomials in x1, . . . , xn with the lex term order with underlying variable order x1 < · · · < xn the leading 
monomial of η(δμ) is x01x

1
2 · · · xn−1

n . We show that any exponent sequence (a1, . . . , an) with ai < i is the leading monomial 
of some polynomial in η(Vμ). Since such monomials constitute the standard basis of Rn with respect to the aforementioned 
term order, this completes the proof.

Suppose we have a componentwise inequality (a1, a2, . . . , an) ≤ (0, 1, . . . , n − 1). We apply the Euclidean algorithm to 
any difference (i − 1) − ai to write

(i − 1) − ai = qim + ri,

where qi ≥ 0 and 0 ≤ ri <m. We have an element of Vμ given by

(∂/∂x1)
r1(∂/∂ y1)

q1 · · · (∂/∂xn)
rn (∂/∂ yn)

qn (δμ). (4.14)

The image of (4.14) under η has leading monomial xa11 · · · x
an
n , and the argument in the last paragraph completes the 

proof. �

If μ � n is not a rectangle, the restriction of η to Vμ is not injective, so the above argument does not go through.

5. Concluding remarks

5.1. Schur positivity

Theorem 4.2 is equivalent to the assertion that

H̃(k�)[X;q, t] − H̃(k�)[X;q, t]

9
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is divisible by (qk − t). The proof in Section 3 does not only show the equality of the modified Macdonald polynomials at 
t = qk in Theorem 4.2 but also proves the LLT positivity, thus Schur positivity of the quotient

H̃(k�)[X;q, t] − H̃(k�)[X;q, t]

qk − t
.

For any partition μ, Theorem 4.1 implies that the rational function

H̃kμ[X;q, t] − H̃kμ′ [X;q, t]

qk − t
(5.1)

is a polynomial in q, t , and X . Surprisingly, some (but not all) of the quotients (5.1) are Schur positive. In particular, SAGE 
computations suggest that if each cell c = (i, j) of μ satisfies either

(1) c is also contained in μ′ , or
(2) c is under the main diagonal, i.e. i < j,

then (5.1) is Schur positive. It is an interesting question to ask for necessary and sufficient conditions for two partitions 
λ, μ, and k ≥ 0 so that (5.1) is Schur positive.

5.2. Combinatorial formula for Kostka polynomials

A combinatorial formula for (q, t)-Kostka polynomials is unknown in general, and finding one is one of the most impor-

tant open problems in algebraic combinatorics.

We recall that a standard tableau of a partition λ � n is a semistandard tableau consisting of 1, 2, . . . , n. We denote the 
set of standard tableaux of shape λ by SYT(λ). It is well known that (q, t)-Kostka polynomial at (1, 1) gives

K̃λ,μ(1,1) = |SYT(λ)|.

Therefore, the most desirable form of a combinatorial formula for (q, t)-Kostka polynomials would be given by a generating 
function for the standard tableaux with two statistics:

K̃λ,μ(q, t) =
∑

T∈SYT(λ)

qstatq(T )tstatt (T ).

Theorem 4.2 implies

K̃λ,
(
k�

)(q,qk) =
∑

T∈SYT(λ)

qmaj(T ).

This suggests that the modified Macdonald polynomials (or modified (q, t)-Kostka polynomials) for rectangle μ might have 
more structure. For example, Theorem 4.2 implies the desirable (q, t)-statistics statq and statt such that

statq + kstatt

and maj statistics are equidistributed over SYT(λ). We hope that this gives a hint to track the q, t-statistics for (q, t)-Kostka 
polynomials for rectangles. The (q, t)-Kostka polynomials for partitions of 4 are given in the following table.

μ \λ [4] [3,1] [2,2] [2,1,1] [1,1,1,1,1]

[4] 1 q + q2 + q3 q2 + q4 q3 + q4 + q5 q6

[2,2] 1 t + qt + q t2 + q2 qt2 + qt + q2t q2t2

[1,1,1,1] 1 t + t2 + t3 t2 + t4 t3 + t4 + t5 t6

5.3. A common generalization of two main theorems

There is an intersection between Theorem 1.1 and Theorem 4.2. More precisely, taking μ = (k, k) and hi = 2k for all i’s 
in Theorem 1.1 yields

H̃(n,n)[X;q,qn] =
∑

T∈SYT(2n)

qmaj(T )X T . (5.2)

Taking μ = (2) (or μ = (1, 1)) in Theorem 4.2 also yields (5.2). Therefore, it is natural to ask the following question.

Question 5.1. Is there a common generalization of Theorem 4.1 and Theorem 1.1?

10
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5.4. A new Mahonian statistic

For any k ≥ 1, we define a statistic majk on words w = w1w2 . . . over the positive integers by

majk(w) :=
∑

0< j−i<k

χ((i, j) ∈ Inv(w)) +
∑

i

iχ((i, i + k) ∈ Inv(w))

where Inv(w) is the inversion set of w and for a statement P , we let χ(P ) = 1 if P is true and χ(P ) = 0 if P is false. 
We recover the classical major index maj1(w) = maj(w) at k = 1. Theorem 4.2 and the formula for modified Macdonald 
polynomials in [6] imply that for any partition μ = (μ1, . . . , μk) � n and any integer k ≥ 1, we have

∑

w∈W (μ)

qmajk(w) =
[n]!q

[μ1]!q · · · [μk]!q

where W (μ) is the set of words w = w1 . . . wn of content μ and [n]!q := [n]q[n − 1]q · · · [1]q is the q-analog of n!. In 
particular, the operators majk for k ≥ 1 are equidistributed on W (μ). Kadell gave [8] a bijective proof of this fact.

Corollary 5.2. For n = k�, we have

H̃(
�k

)[X;qk,q] = H̃(k�)[X;q,qk] =
∑

T∈SYT(n)

qmaj(T )X T .

Proof. Apply Theorem 4.2 and either the q, t-symmetry H̃μ[X; q, t] = H̃μ′ [X; t, q] or the representation-theoretic argument 
in Subsection 4.2. �

We define a new statistic maj′� for words w = w1 . . . wn by

maj′�(w) =
∑

i

⌈
i

�

⌉
χ((i, i + �) ∈ Inv(w))

Corollary 5.2 and the combinatorial formula for H̃μ[X; q, t] in [6] implies that the composite statistic

kmaj� −(n − 1)maj′�

is equidistributed with the major index on words. That is, for any partition μ of n,

∑

w∈W (μ)

qkmaj�(w)−(n−1)maj′�(w) =
[n]!q

[μ1]!q · · · [μk]!q
. (5.3)

Question 5.3. Is there a bijective proof of (5.3)?
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