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Abstract

Let Vi, Vo, V3, ... be a sequence of Q-vector spaces where V,, carries an action
of &,,. Representation stability and multiplicity stability are two related notions of
when the sequence V,, has a limit. An important source of stability phenomena
arises when V, is the d"® homology group (for fixed d) of the configuration space of
n distinct points in some fixed topological space X. We replace these configuration
spaces with moduli spaces of tuples (W7,...,W,,) of subspaces of a fixed complex
vector space CV such that Wi + --- + W,, = CVN. These include the varieties of
spanning line configurations which are tied to the Delta Conjecture of symmetric
function theory.

Mathematics Subject Classifications: 05E10

1 Introduction and Main Result

Let (Vi,)n>1 be a sequence of finite-dimensional Q-vector spaces where each V,, has an
action of &,,. Introduced by Church [1] in a geometric context, representation stability
gives a notion of the sequence V,, having a limit.
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Definition 1. (Church [1]) Let (V,,)n>1 be a sequence of &,, representations, and for each
n > 1let f, : V, = V.41 be a linear map. Then we say that (V},),>1 is (uniformly)
representation stable with respect to the maps (fy,)n>1 if for n >0

e the map f, is injective,
e we have f,(w-v) =w- f,(v) for all w € &,, and all v € V,,
e the G, ;1 module generated by the image f,,(V,,) C V,1; is all of V,,,1, and

e the transposition (n+1,n+2) € &,,,5 acts trivially on the image of the composition
im(V, 28V 5 Vi) € Vi,

The isotypic decompositions of a representation stable sequence V,, exhibit limiting
properties. A partition of n is a weakly decreasing sequence A = (Aq, Ay, ... ) of positive
integers which sum to n. We write A - n to mean that A is a partition of n and |A| = n for
the sum of the parts of A\. The (English) Ferrers diagram of A consists of \; left-justified
boxes in row i; we identify partitions with their Ferrers diagrams.

Partitions of n are in bijective correspondence with irreducible representations of G,,;
given X\ F n, let S* be the corresponding irreducible &,-module.

If o= (g, p2,...) is a partition and n > |u| + w1, the padded partition is u[n] = n
is given by p[n] := (n — |ul, p1, o, ... ). Any partition A - n may be expressed uniquely
as A = pln| for some partition p. In fact, if A = (A1, A2, Ag,...) then A\ = pu[n] where
n = ()\2,)\3,...).

For any n > 1, the &,,-module V,, decomposes into a direct sum of irreducibles. There
exist unique multiplicities m,,,, so that V,, = i m”,nS“[”l where the direct sum is over
all partitions u.

Definition 2. The sequence (V;,),>1 is uniformly multiplicity stable if there exists N such
that for any partition p, we have my,, = m,,, for all n,n’ > N.

Church, Ellenberg, and Farb proved that multiplicity and representation stability are
essentially equivalent.

Theorem 3. (Church-Ellenberg-Farb [2]) Let (V,,),>1 be a sequence of &,,-representations.
Then (Vy)ns1 is uniformly multiplicity stable if and only if there exists some collection
of linear maps f, : Vi, = Vyyq such that (V,,)n>1 is representation stable with respect to

(fn)n>1'

Theorem 3 notwithstanding, writing down explicit maps f, : V,, = V,41 which real-
ize the representation stability of a specific multiplicity stable sequence (V},),>1 can be
difficult.

Many geometric instances of representation stability arise from configuration spaces.
If X is a topological space and n > 1, the n'* configuration space of X is the moduli space
of n distinct points in X:

Conf, X := {(z1,...,2,) : v; € X and z; # x; for i # j}. (1)
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Figure 1: A point configuration, a line configuration, and a 2-plane configuration.

The left of Figure 1 shows a point in Confs(X) where X is the torus. The set Conf, X
has the subspace topology inherited from the n-fold product X x --- x X.

For d > 0, let Hy(Conf, X) be the d* homology group of the n'* configuration space
of X.! The natural action of &,, on Conf, (X) induces an action on Hy(Conf,X). There
are many results stating that if the space X is ‘nice’, the sequence (Hy(Conf,X)),>1 is
representation stable [1, 2]. Such stability results can be proven even when the homology
of Conf,, (X) or its &,,-structure are unknown. In general, it is often easier to prove that
a sequence V,, is representation stable than it is to find its &,,-structure.

We consider a matroidal variation on configuration spaces in which sequences of dis-
tinct points are replaced by spanning sequences of m-dimensional subspaces of C*. Let
Gr(m, k) be the Grassmannian of m-planes in C*¥ and let Gr(m, k)" be its n-fold self-
product. We consider the open subvariety

X(m,k,n) = {(Wy,...,W,) € Gr(m, k)" : Wy +---+ W, = CF} (2)

of sequences (W4, ..., W,) which span C*. Figure 1 shows a point in X (1,3,5) (middle)
and X (2,3,3) (left).

The variety X (m, k,n) is nonempty if and only if & < mn. There is a homotopy equiv-
alence X (1,n,n) ~ Fl(n) between X (1, n,n) and the variety of flags in C". Pawlowski and
Rhoades [6] introduced the variety X (1,k,n) of spanning line configurations (¢1,...,¢,)
in C* and presented its cohomology as

H*(X(1,k,n)) = Q[a1,...,2,] /&%, ... 2% en,en 1, ..\ enii1) (3)

where ey is the degree d elementary symmetric polynomial. The above quotient rings were
introduced earlier by Haglund, Rhoades, and Shimozono [4] in the context of Macdonald
theory [3].

The symmetric group &,, acts naturally on the variety X (m, k,n) and on its homol-
ogy. There are two natural ways to ‘grow’ a triple (m,k,n) preserving the condition

X(m,k,n) # @:
(m, k,n) ~ (m,k,n+1) and (m,k,n) ~ (m,k+m,n+1).

We prove that both of these growth rules yield stability results.

'We use singular homology with rational coefficients.
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Theorem 4. Fiz integers m,k,r > 0. Both sequences
Hy(X(m, k,n)) Hy(X(m,mn —r,n)) (n>0) (4)
of homology &,,-modules are representation stable.

Theorem 4 is a ‘matroidal analogue’ of configuration space stability results. The coho-
mology ring H*(X (m, k,n)) was presented by Rhoades [7], but its graded &,,-isomorphism
type — like the &,,-structures of the homology representations of Theorem 4 — is un-
known. Our proof of Theorem 4 does not use the cohomology presentation in [7], but
rather goes through the theory of Fl-modules and a geometric result on the inclusion
X(m,k,n) C Gr(m,k)™. Our methods illustrate that a sequence of &,-modules can be
shown to exhibit stability even in the presence of relatively little information about these
modules.

The remainder of the paper is organized as follows. In Section 2 we give background
material on affine pavings and the category of Fl-modules. In Section 3 we prove The-
orem 4. This paper is an abridged and generalized version of the FPSAC 2020 extended
abstract [5].

2 Affine Pavings and Fl-modules
Let Z be a complex variety. An affine paving of Z is a chain
=4y CLC---Clh.=1

of closed subvarieties of Z such that each difference Z; — Z;_; is isomorphic to a disjoint
union of affine spaces. If & =27, C Z; C --- C Z, = Z is an affine paving and 0 < j < m,
let U := Z—Z;. The inclusion ¢ : U — Z induce a map ¢, : Ho(U) — H4(Z) on homology.
When U arises from an affine paving of Z as above, the map ¢, is injective.

The standard affine paving of complex projective space P! is given in coordinates
by

FClx:0:-:0:0] Clhik:---:0:0]Co- Clrikror- k0] Clhikr-mix:k] =P1

where the stars represent free complex entries. More generally, the Schubert decompo-
sition of the Grassmannian Gr(m, k) induces an affine paving of this space. Taking the
n-fold product of this paving with itself yields a paving of Gr(m, k)", but this naive paving
interacts poorly with the inclusion X (m, k,n) C Gr(m, k)". A nonstandard affine paving
of Gr(m, k)™ was crucial to the presentation of the cohomology of X (m,k,n) in [7].

Theorem 5. (Rhoades [7]) There ezists an affine paving Zy C Zy C --- C Z, of the
Grassmann product Gr(m, k)" such that X (m, k,n) = Gr(m, k)" — Z; for some j.

In particular, if v : X(m, k,n) < Gr(m, k)" is inclusion, then i, : Ho(X(m, k,n)) —
Ho(Gr(m, k)™) is an injection.
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Theorem 5 was a component of the presentation of H*(X (m,k,n)) in [7]. It will be a
key tool in our proof, as well. The other ingredient we need is the category of Fl-modules
recalled below.

Let FI be the category whose objects are the finite sets [n] := {1,2,...,n} forn > 0
and whose morphisms are injective functions f : [n] — [p]. Let Vect be the category of
Q-vector spaces with morphisms given by linear maps.

An Fl-module is a covariant functor V' : FI — Vect. We write V' (n) instead of V([n])
for the vector space corresponding to [n]. More explicitly, an Fl-module consists of

e a Q-vector space V(n) for each n > 0, and
e a Q-linear map V' (f) : V(n) — V(p) for each injection f : [n] — [p]

such that V(f o g) = V(f) o V(g) for any two injections f : [n] — [p] and g : [p] — [¢]
and V (id,)) = idy(n). Submodules and quotients of Fl-modules are defined in the natural
way. If V' is an Fl-module, then V' (n) is naturally an &,-module for each n.

An Fl-module V' is finitely generated if there is a finite subset S of the disjoint union
||~ V(n) such that no proper Fl-submodule W of V' satisfies S C [ |,.,W(n). Finite
generation of Fl-modules and representation stability are equivalent notions.

Theorem 6. (Church-Ellenberg-Farb [2]) Let ¢, : [n] < [n + 1] denote the standard
injection, and let V' be a finitely generated Fl-module. Then the sequence (V(n))n>1 is
representation stable with respect to the maps V (v,). Every representation stable sequence
arises in this way.

One reason Theorem 6 is useful is that finite generation in the category of Fl-modules
is inherited by submodules (and quotient modules, although we will not use this). Said
differently, the category of Fl-modules is Noetherian.

Theorem 7. (Snowden [8]; see also Church-Ellenberg-Farb [2]) Any submodule of a
finitely generated Fl-module is finitely generated.

3 Proof of Theorem 4
We need to prove the stability of two sequences of homology representations of G,,, namely
Hy(X(m, k,n)) and Hy(X(m,mn —r,n))

for fixed integers m, k, and r. The stability of the sequence Hy(X (m,k,n)) is easier to
establish; we handle this case first. For any subset I C [k] we let E; := span{e; : ¢ € I}
be the coordinate subspace of C* spanned by the corresponding basis vectors.
For any injection f : [n] — [p], we define an associated map py : Gr(m, k)" —
Gr(m, k)P by the rule
vp s (Wi, oo, W) = (W1, .0, V) (5)

p
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where W}(i) =W, forl<i<nand W]’ = L) whenever 1 < j < p is not in the image of
f. As an example, if m =3, k =6, and f: [3] = [5] is f(1) =4, f(2) =2, f(3) =1 then
py: Gr(3,6)% — Gr(3,6)° is

My (Wl,WQ,Wi;) — <W37W27E[3]7W17E[3])

for all (W), W, W) € Gr(3, 6)%.
For any two injections f : [n] < [p] and f : [p] < [¢] we have

Hgof = Hg © Hj- (6)

Furthermore, the map py preserves the spanning condition; abusing notation, we denote
the restricted map on X-spaces by the same symbol pf : X (m, k,n) — X(m, k,p).

For any injection f : [n] — [p|, the induced maps (us). on homology fit into a
commutative square

Ho(X(m, k,n)) - Ho(Gr(m, k)™)
(Mf)* (Hf)*
Ho(X(m, k,p)) ; Ho(Gr(m, k)?)

where the horizontal maps are those induced by the injections X (m, k,n) < Gr(m, k)"
and X (m, k,p) — Gr(m, k). Theorem 5 implies that the horizontal arrows are injections,
so that [n] — Hy(X(m,k,n)) is a sub-Fl-module of [n] — Hy(Gr(m, k)") for each degree
d. The Kiinneth Theorem implies

Hy(Gr(m, k)") = @ Hy (Gr(m, k) ® -+ ® Hg, (Gr(m, k)) (7)

as graded vector spaces. Since Hg, (Gr(m, k)) is a finite-dimensional vector space for each
d;, the Fl-module [n] — Hy(Gr(m, k)") is finitely generated for d fixed. Theorem 7 implies
that [n] — Hy(X(m, k,n)) is also a finitely generated Fl-module, and Theorem 6 shows
that Hy(X (m, k,n)) is representation stable.

Now fix integers m,r and consider the sequence X (m,mn — r,n) of spaces for n > 0.
One would like to put an Fl-structure on the spaces X (m,mn — r,n) which is compatible
with their inclusions X (m, mn—r,n) < Gr(m, mn—r)" into Grassmann products. How-
ever, complications arise since the ambient dimension mn — r increases with n, resulting
in an Fl-structure which only holds when one passes to homology.

More precisely, if f : [n] — [p] is an injection, define vy : Gr(m,mn — r)* —
Gr(m,mp — r)P by the formula

v (W, Wh) = (W4, W) (8)
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where the spaces W are determined as follows. If f(i) = j, we set W} := W;, where we
view W, as a subspace of C™~" by means of the embedding C™"*~" C C™~" along the
first mn — r coordinates. For the p —n elements 1 < j; < --- < j,—, < p of [p] which are
not in the image of f, we let W; C C™P~" be the coordinate subspace

Wi, = Elmntt—1)—r+1m(nte)—r] = spanfe; : m(n+£—1) —r+1<i <m(n+{) —r}.

An example should clarify the definition of vy. Suppose m = 2, n =3, r = 1, and
p=6. If f:[3] = [6] is given by f(1) = 3, f(2) =1, f(3) = 6 then v; : Gr(2,5)*> —
Gr(2,11)? is given by

ve: (Wi, Wa, Wa) = (Wa, Eggny, Wi, Egs gy, Epoany, Ws).

where we regard Wy, Wy, W5 C C!! by means of the inclusion C*> C C!! along the first five
coordinates. In general, whenever piy : (Wy,...,Wy) — (Wy,..., W))and Wy+---+W,, =
Cmr=r we have Wi + --- + W) = C™7". The map v; therefore restricts to a map
X (m,mn—r,n) = X(m, mp—r,p); we use the same symbol v to refer to this restriction.

If f:[n] — [p] and g : [p] < [q] are two injections, we do not typically have the
equality of maps v, = v, o vy. For example, suppose m = 2,7 =1, (n,p,q) = (3,6,7),
and f : [3] < [6] is as above. Define g : [6] — [7] by ¢(1) =5,¢9(2) = 1,¢9(3) = 3,9(4) =
6,9(5) = 2, ¢(6) = 7. Then

Vg OVy . (Wb W, Ws) = (E{6,7}7E{10,11}, W1>E{12,13}7W2, E{8,9}7W3>
whereas
Vgof (Wi, Wy, W3) (E{6,7}aE{8,9}7 Wi, Eqoany, We, Eqiz,13y, Ws).

In general, the spaces Wi,..., W, will appear in the same positions (and in the same
order) in the images (W7, ..., W/) of the tuple (W,..., W, ) under either v, o v; or vy,
but the E’s will usually appear in a different order.
For fixed injections g : [n] < [p] and f : [p] < |g|, there is an invertible linear
transformation A € GL,,,4—,(C) such that
vgovy: (Wi, ...,Wy) = (A-W{,...,A-W/) where vyop : (Wr,..., W) = (W],..., W)
(9)
for all (Wh,...,W,) € Gr(m,mn —r)". Recall that the group GL,,,—,(C) is path con-
nected. Any path from I to A in GL,,,—,(C) provides a homotopy between v, o vy and
Vgot- In summary, we have
Vgof ™ Vy O Uy (10)

as maps on spaces so that the induced maps (vyor)s = ()4 © (v), on homology coincide.
As before, if f : [n] < [p] is an injection, we have a commutative square of maps on
homology
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by

Ho(X(m,mn —r,n)) —— He(Gr(m, mn —r)")

(VT)* (Vf)*

Hy (X (m,mp —r,p)) T) Hy(Gr(m,mp — r)P)

where Theorem 5 guarantees that the horizontal maps are injective. The last paragraph
shows that, for a fixed degree d, we have an Fl-module [n] — Hy(Gr(m, mn — r)") with
submodule [n] — Hy(X (m,mn —r,n)). The Kiinneth formula implies

Hy(Gr(m,mn —1r)") = @ Hy (Gr(m,mn—r71))®---® Hy, (Gr(m,mn —r)). (11)
The space Gr(m, mn — r) admits an affine paving whose cells (the Schubert cells) are
indexed by partitions A\ whose Young diagrams fit inside a m x [m(n — 1) — r] box. The
(complex) dimension of the Schubert cell corresponding to A is the number of boxes ||

in A. Consequently, the homology of Gr(m,mn — r) is concentrated in even degrees and
for d; even the Schubert cells induce a basis

{on i D=8 A lntn—1) -}

of Hy,(Gr(m,mn — r)). Since the Schubert cells are compatible with the embeddings
Cmn=r C C™7, we conclude that [n] — Hy(Gr(m,mn — r)") is a finitely-generated
Fl-module. Theorems 6 and 7 complete the proof.
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