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Abstract We consider discrete one-dimensional Schrédinger operators whose
potentials are generated by sampling along the orbits of a general hyperbolic
transformation. Specifically, we show that if the sampling function is a non-
constant Holder continuous function defined on a subshift of finite type with
a fully supported ergodic measure admitting a local product structure and a
fixed point, then the Lyapunov exponent is positive away from a discrete set of
energies. Moreover, for sampling functions in a residual subset of the space of
Holder continuous functions, the Lyapunov exponent is positive everywhere.
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If we consider locally constant or globally fiber bunched sampling functions,
then the Lyapuonv exponent is positive away from a finite set. Moreover, for
sampling functions in an open and dense subset of the space in question, the
Lyapunov exponent is uniformly positive. Our results can be applied to any sub-
shift of finite type with ergodic measures that are equilibrium states of Holder
continuous potentials. In particular, we apply our results to Schrédinger opera-
tors defined over expanding maps on the unit circle, hyperbolic automorphisms
of a finite-dimensional torus, and Markov chains.
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Schrodinger operators with potentials 853

1 Introduction
1.1 Statement of results

In this series of papers, we are mainly concerned with the Anderson localization
phenomenon for one-dimensional discrete Schrédinger operators H,, in £%(Z)
acting by

[Ho¥ 1) =y (n+ 1) + ¢ (n—1) + Vo) (n). (1.1)

Here we assume €2 to be any compact metric space, T : €2 — 2 a homeomor-
phism, and f : 2 — R be continuous. We consider potentials V,, : Z — R
defined by V,,(n) = f(T"w) for w € Q and n € 7Z. For general background
on Schrodinger operators in £2(Z) with dynamically generated potentials of
this form, we refer the reader to [19-21].

Spectral properties of the operators H,, can be investigated by studying the
behavior of the solutions to the difference equation

umn+1)+umn—1)+Vy(m)u(n) = Eu(n), neZ (1.2)

with E real (or complex, depending on the problem in question). These solu-
tions in turn can be described with the help of the Schrodinger cocycle (T, AF)
with the cocycle map AE . Q — SL(2,R) (resp., SL(2, C)) being defined as

Af(w) = ACD(w) = <E _1f(“’) _01) , (1.3)

where we often leave the dependence on f : Q@ — R implicit as it will be
fixed most of the time.

Such cocycles describe the transfer matrices associated with Schrodinger
operators. Specifically, u = u(n) solves (1.2) if and only if

u(n) '\ _ 4E u(0)
(u(n - 1)) = Af (w) <u(—1)) , nez, (1.4)
where
AT ). A(), n=
Anle) = {[A_n(T"w)]‘l, = -1 ()

and we set Ag(w) to be the identity matrix.
The Lyapunov exponent (LE) of the Schrédinger cocycle plays a key role in
the spectral analysis of the operators. Let « be a T-ergodic probability measure
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on 2. The Lyapunov exponent is given by

. 1
L(A®, ) = lim — / log [|A (@) d ()
n—-oon

1
= inf - f log [| A} (@)l d (). (1.6)

For simplicity, we write L(E) = L(A%, ). By Kingman’s subaddive ergodic
theorem, we have

. 1
lim —log||Af (@)]| = L(E)
n—oon

for p-almostevery w € €. In particular, certain uniform positivity and uniform
large deviation estimates (LDT) for the LE are strong indications of Anderson
localization, which in its spectral formulation states that for p-almost every
w € 2, the operator H,, has pure point spectrum with exponentially decaying
eigenfunctions.

On the other hand, positivity and LDT estimates for the LE are extensively
studied topics in dynamical systems. In general, the more random the base
dynamics (€2, T, ) is, the more likely it is that one has positivity and LDT
for the LE. For instance, for the well-known Anderson model, where V,, is a
realization of independent identically distributed random variables, one does
have uniform positivity and uniform LDT on any compact set of energies E.
These are classic results that go back to the seminal work of Furstenberg [27].
Combining this with a certain elimination of double resonance argument, these
two properties indeed lead to a localization result for the Anderson model; see,
for example, [16] for recent proofs of all these results mentioned above.

The Anderson model may be put into the context of the present paper as
follows. We consider the Anderson model whose single site measure is an
atomic measure supported on a finite number of points, which is the most
difficult case. Let A = {1, 2, ..., ¢} with £ > 2 and let & be a fully supported
probability measure on A. Let @ = A” be the full shift space and consider
the left shift 7 : @ —  defined by (Tw), = wy41 forw € A% and n € Z.
Let u = i, which is strongly mixing with respect to T'. The Anderson model
may be generated by setting V,, = f(T"w) where f : @ — R depends
only on wg. The potentials generated in this way are the most random among
the potentials studied in this paper. It is natural to ask what can be said if
the potentials, or rather the base dynamics (€2, T, n), are less random. In the
language of mathematical physics, what if the V,,’s are weakly correlated? Or
in the language of dynamical systems, what if (€2, 7', ) is a mixing system
such as the Arnold cat map or the doubling map? Or more generally, a subshift
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Schrodinger operators with potentials 855

of finite type with measure of maximal entropy? It turns out that such systems
are much more difficult to analyze.

To further explain what this paper accomplishes, we consider a general
framework of the base dynamics that includes most of the systems mentioned
above as special classes. Let (€2, T') be a subshift of finite type. Let u be a
T -ergodic measure that is fully supported on 2. Moreover, we further assume
that © admits a local product structure (a detailed definition may be found in
Sect. 2.1.2). Let f : Q — R be a-Holder continuous for some 0 < o < 1 and
non-constant. We define

Z; ={E: L(E) = 0}. (1.7)

In the present paper, we address the following question.

Problem Let 2, T, u, and f be described as above. How large is Z 2 1In
particular, when is it discrete, finite, or even empty?

Note that the discreteness of Z can be taken as a starting point to show
full spectral localization for the corresponding operators; see, for example,
the proof of localization in [16, Proof of Theorem 1.3]. We comment on this
point in more detail in Remark 1.6 below. Earlier partial results along this line
may be found for example in [6,9,12,18,22,35,36,44], where either the base
dynamics or the choice of f are quite restricted, or Z is still quite large. The
main theorem of this paper is:

Theorem 1.1 Suppose (2, T) is a subshift of finite type and  is a fully sup-
ported T -ergodic probability measure that has a local product structure that is
fully supported on Q2. Suppose T has a fixed point and f is Holder continuous
and non-constant. Then the set Z ¢ is discrete.

Remark 1.2 Let us mention that the concept of local product structure is
recalled in detail in Sect. 2.1. If  has a local product structure, then its topo-
logical support supp i is a subshift of finite type (see, e.g., [7, Lemma 1.2])
and hence the assumption in Theorem 1.1 that u is fully supported is not a
restriction. If the support is not the whole space, then we can replace (€2, T') by
(supp wt, Tsupp ;o). This remark applies whenever we assume in this paper that
w is fully supported. Conversely, given any subshift of finite type, the unique
equilibrium state associated with a Holder continuous potential always has a
local product structure, see [14,34] or [8, Section 2.2]. In particular, measures
with maximal entropy do have a local product structure.

It is clear that we can add a coupling constant A to f in the statement
of Theorem 1.1. This further indicates that such systems do behave like the
Anderson model, as the Anderson model is always localized as long as A > 0.
If we restrict the choice of f so that it is locally constant or || f ||~ is small,
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then we can improve the result as follows. Let C*(2, R), 0 < @ < 1 be the
space of «-Holder continuous functions.

Theorem 1.3 Let (2, T, u) be as in Theorem 1.1. Suppose f € C*(2, R) is
globally bunched or locally constant. Assume further that f is non-constant
and T has a fixed point. Then Z¢ is finite.

A detailed definition of global bunching may be found at Sect. 5.2. In par-
ticular, f is globally bunched if || f || is small. A possible explicit choice of a
smallness condition on || f||sc may be found in (7.7). We can again add a cou-
pling constant A to f in Theorem 1.3 if f is locally constant. If f is globally
bunched, then as A becomes large, Z; y might become a discrete set that is no
longer guaranteed to be finite. This is because we will lose global bunching as
A becomes large and we have to apply Theorem 1.1 then. In Sect. 7, we shall
show that Theorems 1.1 and 1.3 are sharp in the sense that Z; may indeed
be nonempty for a suitable locally constant f. Thus another natural question
is: when can we remove the discrete or finite set Zy? We have the following
results.

Theorem 1.4 Suppose (2, T) is a subshift of finite type and w is a fully sup-
ported T -ergodic measure that has a local product structure. Then there is a
residual subset G of C*(S2, R) such that for each f € G, Zy is empty.

Again, if we restrict the choice of f so that it is either locally constant or
globally bunched, then we can obtain a uniform lower bound of the L(E) for
a even wider class of choices:

Theorem 1.5 Suppose (2, T') is a subshift of finite type and p is a fully sup-
ported T-ergodic measure that has a local product structure. Consider the
subspaces of C*(2, R) consisting of globally bunched or locally constant
functions. For each of them, there is an open and dense subset G such that for
every f € G, we have inf{L(E) : E € R} > 0.

Applications of Theorems 1.1-1.5 to more concrete base dynamics such
as the doubling map, Arnold’s cat map, and Markov shifts may be found in
Sect. 7.

Remark 1.6 (a) Letus emphasize that from the perspective of a spectral anal-
ysis of the operator family {H,},cq, and in particular when seeking a
proof of spectral localization for this family, the discreteness of Z¢ is in
general the appropriate first milestone towards the eventual goal. It then
needs to be combined with control of the Lyapunov exponent away from
Z ¢ (the connected components of Z} need to be exhausted by intervals
on which the Lyapunov exponent is uniformly bounded away from zero;
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(b)

(©)

this is often established by proving the continuity of L(E) in E when-
ever possible), suitable large deviation estimates, and an argument that
rules out the presence of infinitely many double resonances for almost
every w. It then follows for p-almost every w € Q that spectrally almost
every energy in Z¢ admits an exponentially decaying eigenfunction for
H,. As the discrete set Z 7 almost surely carries no weight with respect
to the spectral measures of H,,, this then shows that for p-almost every
w € €2, the operator H,, admits a basis consisting of exponentially decay-
ing eigenfunctions, and the desired spectral localization statement then
follows.

One is nevertheless interested in obtaining stronger results on the size of
the exceptional set Z ¢, such as finiteness or emptiness, whenever possible,
as this leads to stronger versions of the dynamical version of an Ander-
son localization statement. Here, one is interested in showing that the
solutions of the time-dependent Schrédinger equation id,% = H,y are
localized. In other words, one seeks to prove good off-diagonal estimates
for the matrix elements of e /fo relative to the standard basis of £2(Z),
uniformly in the time parameter 7. Energies E in Z¢ present an obsta-
cle for proving this and one generally simply projects away from these
exceptional energies and considers yx; (H,)e "Ho with aset I C Z¢ that
has positive distance from Z¢. In fact, it has been shown that dynamical
localization can actually fail, even when spectral localization holds, if one
does not project away from Z y; compare, for example, [23,29]. Clearly, it
is then desirable to show that Z ¢ is empty whenever this can be expected
to be true. Of course, as pointed out earlier, this will not always be the
case.

Let us emphasize that the road map to spectral localization described
in part (a) of this remark is applicable in the general setting of ergodic
Schrodinger operators, and it has been implemented for special cases rang-
ing from the Anderson model to potentials generated by torus translations,
the standard skew-shift, the doubling map, or the Arnold cat map. While
the literature is vast, let us just mention a few representative papers, [10—
12,16], and refer the reader to [19-21] for more information. Regarding
the base transformations considered in this paper, the absence of a suitable
general and global result showing the discreteness of Z ¢ was the primary
obstacle in attempting to implement this road map. Thus, the present paper
fills precisely this gap and opens the door to a localization proof, which
we intend to work out in detail in the second part of this series [1].
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1.2 Strategy of proofs

One of the main tools we use to prove our results is the so-called invariance
principle as coined in [3]. The first version of the invariance principle goes
back to Ledrappier [33] and it was later generalized in [3]. The version we
adopt in this paper is due to Bonatti et al. [7,39]. A detailed statement of
the invariance principle may be found in Proposition 4.5. It says that if the
Lyapunov exponent L(A, ) of a cocycle (T, A) is 0 and A depends only
on the future or the past, then any (7, A)-invariant measure m on £ x RP!
admits a disintegration {m,, : ® € 2} that depends only on the future or the
past, respectively.

Another main tool we use is given by the so-called stable and unstable
holonomies, which are defined along the stable or unstable sets of w, respec-
tively; see Sect. 2.1.5 for a detailed definition. If L(A, u) = 0, we can define
a measurable family of stable and unstable holonomies for p-almost every w.
Then one can use the stable or unstable holonomies to conjugate the cocycle
(T, A) to one that depends only on the future or the past, respectively.

Combining the two steps above, one can show that the family of invariant
measures {m,,} are invariant with respect to the stable and unstable holonomies
as well. We call such a family an su-state.

It turns out that the existence of su-states is a very rare event in the sense
that they can be easily perturbed away by modifying the data of the cocycle
map A at certain periodic points. Roughly speaking, this is how [7,8,39] show
the positivity of the Lyapunov exponent for certain typical C%-cocycles. More
precisely, [7,8] did it in case the cocycle is fiber bunched or is locally constant
while [39] did it for the general case.

However, to prove Theorems 1.1-1.3, we need to consider Schrodinger
cocycles with fixed sampling functions. They are basically fixed cocycle maps
parametrized by the energy parameter £ € R. So we are not allowed to
perturb the cocycle maps to get typicality. Hence, the above strategy is not
sufficient to yield the discreteness or finiteness of Z as stated in Sect. 1.1. It
turns out that in addition we need to deploy certain tools from spectral theory.
In particular, we will consider the spectra associated with certain periodic
orbits and invoke a result from inverse spectral theory for periodic operators.
Moreover, to make use of the periodic data, among other things, we also
need to show that periodic orbits with small Lyapunov exponent belong to the
topological support of the sets where one can define continuous holonomies.
Finally, to use the periodic data to prove the main results, we have to combine
the conformal barycenter concept due to Douady and Earle [25], Bowen’s
specification property [13], and Kalinin’s theorem regarding approximating
L(E) by the Lyapunov exponent along periodic orbits [30]. In short, the proof
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Schrodinger operators with potentials 859

is based on a fusion of ideas and results from both dynamical systems and
spectral theory.

The structure of the remainder of the paper is as follows. In Sect. 2, we state
some necessary preliminaries and lay out our context. In Sect. 3, we give a
proof of an additive version of a large deviation estimate for Holder continuous
functions defined on €2 and for slightly more restricted measures . These large
deviation estimates may be of independent interest. Moreover, they will play
a key role in the second paper of this series [1]. In Sect. 4, we introduce our
main tools such as the invariance principle and the conformal barycenter, and
we also give detailed proofs of certain lemmas. We prove Theorems 1.1-1.3
in Sect. 5 and Theorems 1.4-1.5 in Sect. 6. In Sect. 7, we apply our general
Theorems 1.1-1.5 to several concrete models such as the doubling map, Arnold
cat map, and Markov chains. In particular, the class of Markov chains includes
general locally constant Schrodinger potentials defined on the full shift space
as a special case, which yields a generalization of the classical Furstenberg
theorem. Many of the results are the first of their kind. We also compute an
explicit choice of Ag > 0 so that || f|lcc < Ao is sufficient for f to be globally
bunched. Finally, we present an example where we show the finite set Z ¢
appearing in the statement of Theorem 1.3 may not be removed in general, so
that our results are sharp in a suitable sense.

2 Preliminaries
2.1 The setting

Inthis section we describe the setting we will work in. We have chosen subshifts
of finite type with appropriate ergodic measures as base transformations as
a compromise between concreteness and generality. Other possible choices
would have been concrete classes of smooth hyperbolic transformations and
expanding maps. For background and discussion of the material presented
below, we refer the reader to [7,8,39].

2.1.1 The base space and the base transformation
Let A = {1,2,...,4£} with £ > 2 be equipped with the discrete topology.

Consider the product space A%, whose topology is generated by the cylinder
sets, which are the sets of the form

(n: jou .- il ={we AL w,yi = ji, 0 <i <k}
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860 A. Avila

withn € Zand jy, ..., jr € A. Thetopology is metrizable and for definiteness
we fix the following metric d on A% Set d (w,w) =0forw e A% and

d(w,®) = e N@® (2.1)

for w, ® € A% with w # &, where
N(w, ®) = max{N > 0: w, = @, forall |[n| < N}. 2.2)
We consider the left shift 7 : A — A” defined by (Tw), = w4 for
we A% and n € Z. Let Orb(w) = {T"w : n € 7} be the orbit of » under the

dynamics 7.

Definition 2.1 Let O = (gij)1<;, j<¢ be an £ x £ matrix with ¢;; € {0, 1} and
let €2 be the subshift of finite type associated to the matrix Q,

Q = {(Wn)neZ : Gupwny, = 1 foralln € Z}.
Consider the topological dynamical system (€2, T').
We say that a finite word jo i . .. jk, where j; € {1,..., £} for0 <i <k,
is admissible if it occurs in some w € €2, that is, there are w € Q and n € Z

such that w,,4; = j; forall 0 <i < k.
The local stable set of a point w € 2 is defined by

Wi ={ow e Q: w, =, forn >0} (2.3)
and the local unstable set of w is defined by
Wiee(@) = {® € @ : w, = @, forn < 0}. 2.4)

A set is called s-locally saturated (resp., u-locally saturated) if it is a union
of local stable (resp., local unstable) sets of the form above.

For each j € A and each pair of points w, @ € [0; j], we denote the unique
point in W} (@) N W}} .(®) by @ A @. Throughout this paper, we fix for each
1 < j < £ achoice of oY) € [0; Jj] so that the maps

o> 0 A0, 0 oA (2.5)

are well-defined and continuous on 2 and are constant on local stable and
unstable sets, respectively.
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2.1.2 Measures with a local product structure

Let the subshift 2 be equipped with the Borel o -algebra and let u be a prob-
ability measure on €2 that is ergodic with respect to 7. We define

Q" = {(0n)nz0: @ € Q) (2.6)
Q" = {(@nn=o : © € 2} 2.7)

to be the spaces of one-sided right and left infinite sequences, respectively,
associated with Q. Metrics for Q% can be defined in a way similar to the
definition of the metric for A% in Sect. 2.1.1. Abusing notation slightly, we
still let d denote their metrics. Let 7 be the projection from Q to Q* and
wt = mF () be the pushforward measure of  on Q7. Similarly, we let 7~
be the projection to 2~ and p~ be the pushforward measure on Q7. Let T
be the left shift operator on Q1 and 7 be the right shift on Q. For n > 0,

we let [1; jo, ..., jx]T denote the cylinder sets in QT; for n < —k, we let
[7; jo, ..., jx]~ denote the cylinder sets in 2. Let ™ denote points in QF,
respectively.

For simplicity, for each 1 < j < ¢, we set u; = p|jo; ;1. Similarly, we set
/,Lji = uF o, j=. respectively.

Note that we do not have Q = Q= x Q. However, foreach 1 < j < £ we
have a natural homeomorphism

P :[0; j1— [0; j1~ x [0; j1" where P(w) = (7~ w, 77 w).

Thus, abusing the notation a bit, we may just write [0; j] = [0; j]~ x [0; j]™.
Moreover, we have for all w € 2,

@ T w) = Wi (w), ()N~ w) = W (w). (2.8)

Definition 2.2 We say u has a local product structure if there is a  : Q —
(0, 00) such thatforeach 1 < j < ¢,y € L'([0; jl, M; X ,u;.r) and

dpj =y -du; x pj). (2.9)

The local product structure of ;© amounts to saying that m X u,;r isequivalent
to ;. Indeed, (2.9) clearly implies that w; is absolutely continuous with
respect to ;X u;’ On the other hand, if u;(E) = 0, then we must have
(u; X ,u;r)(E) = O since ¥ (w) > 0 for all w € Q2. In particular, we may draw
the following conclusion. If E C [0; j] is u-locally saturated with w(E) > 0
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and F C [0; j] is s-locally saturated with w(F) > 0, we have

(W X W ENF) = (uj x u)) @ E xatF)
=pj (x E) puf ()

= n(E) - n(F)
> 0,
which implies that
WENF)=pu;(ENF)>0. (2.10)

Conversely, if ,u; X M;L is equivalent to u; foreach 1 < j < ¢, thendu; =
v - d(/,L; X /,L}_), where ¢ € L1([0; j], MJ_ X ,u;“) is the Radon—-Nikodym
derivative of u; with respect to ,uJT X M;F. Note 1/ € L'([0; j1, ;) is the
Radon—Nikodym derivative of 1 x u with respect to u j- Hence we must
have that ¢ (w) > 0 for all j and for s j-a.e. w. We can of course modify v/
so that it is positive everywhere.

Definition 2.3 A Jacobian of the measure u with respect to Ty on Q7T is a
measurable function J; : QT — R, such foreach j € {1, ..., £}, we have

dp* (Troh) = Jp (@) - d(T) (o ) (Tro™). (2.11)

A Jacobian of u~ with respect to 7_ can be defined similarly.

One consequence of the local product structure of  is that & admit Jaco-
bians with respect to 7+ on [0; j]i for each 1 < j < ¢, respectively. The
following lemma is essentially contained in [8]. While in [8, Lemma 2.2], ¢
is assumed to be continuous, we note that the same proof can be applied to
obtain the following lemma.

Lemma 2.4 The measures ui admit positive Jacobians J+ € Ll([O; j]i,
d uj.c) with respect to Ty on [0; j ]i, respectively, for each 1 < j < L.

Forl = (Iy,...,1y) € {1,...,£}", we write the cylinder [0; [, ..., I, j]
as [0; [, j] and set |/| := n. We use a similar notation for spaces of one-sided
sequences. For a cylinder [0; [, j]™ C Q*, we clearly have a Jacobian for

TE' :[0; 1, j1T — [0; j]1T, which is denoted by Jg’j) 050, ., 1T —
(0, 00) and is given by the formula

n—1
y
I @b = T J(Tho™).
k=0
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By the definition of a Jacobian, we have for any integrable function f : Q1 —
R and any [0; [, j]T C Q7 that

/ faydut @) = / £Vt 18 @My dut@h). 2.12)
[0;j1* [0;2,j1F

We first have the following immediate consequence of Lemma 2.4, which
will be used in Sect. 5.

Corollary 2.5 Let D C Q7 be such that w (D N [0; j17) > 0. Then for all
[0; L, j1T C T, we have

pra M oynio: L, j1t) > 0.

Similarly, if w=(D N [0;j17) > O for some D C Q7, then for all
[—IL; j, 11~ C 7, we have

w (" Dyn =11 j.07) > 0.

Proof We only consider the case for (2T, Ty, u™); the case with (27, T_, ™)
can be handled similarly.

Without loss of generality, we may just consider a Borel set D C [0; j]t
with positive measure. By (2.12), we have

0<ut(D)

=/ xp(mdp ()

[0; /1
l l,j
= / 1 1T oI (@H)dpt (™)
[0;,/]

Lj
- / I @hdut @),
[0;,/IN(T. ™ D)

which implies that * ([0 2, j10 (T} ' D)) > 0. O

For some results we will need the measure p to obey a quantitative version
of local product structure, which is defined as follows.

Definition 2.6 We say that u satisfies the bounded distortion property if there
is C > 1 such that for all cylinders [n; jo, ..., jx] C Qand [/;ig, ..., jm] C
Q, where ! > n + k and [n; jo, ..., k]l NI, io, ..., im] # O, we have

R A el [ T
-l < wn ([n; jo Jel N[ dg im]) <c (2.13)

wn; jo, - gk - (s ios ooy im]) —

@ Springer



864 A. Avila

Note that by T-invariance of 4 and by the definition of u®, u has the
bounded distortion property if and only if 4 or £~ has the bounded distortion
property. For instance, the bounded distortion property of ;1 means that for
alln > 0,1 >n+k,and [n; jo,..., il N [l;i0,...,in]" # @, we have

c'< . : : :
wt ([ns jos - - k™) -t (Usins -y im]Y)

<C. (2.14)

In fact, given any subshift of finite type, the unique equilibrium state asso-
ciated with a Holder continuous potential always has the bounded distortion
property; see Lemma 3.4.

It is not difficult to see that every measure satisfying the bounded dis-
tortion property has a local product structure. Indeed, for every cylinder
[—k; j—ky vy =1, JOs---» ji] C 2, we have by (2.13)

(Wi X ([=Ks ks - os =t JOs -+ s m])
= Wiy ([=ks ks oo gty o1 ™) - 1 (103 o, - - jin] )
= (k3 j—ks s =1, jol) - 14([05 Jos - - jm])
< u(l—=k: jorr - j=11) - (105 jo, - -, jm])
< C(l=k; joks -+ J=15 0 -+ Jm])
= Cpjy([=ks jts s J15 JOs - -+ Jm])-
Similarly, we can obtain such estimates for all other cylinders. Since every

Borel set can be approximated by cylinder sets, these estimates clearly imply
that /"'Lj_ X M;r is absolutely continuous with respect to ;. On the other hand,

1o ([=Ks ks - s =15 JOs - - im])
:'U’JO([_k’ j*kv”'aj*lvj()v"'ajm])
< Cwjo ([=k3 jts - s J=117) - 15 (105 oo -+ s jm] ™)
C2

— W ([=k ks e ety do17) - T (10: oy e, Gm]T
< =0 jo]—)M’O([ Jekes woes ety jol7) - 1 (105 Jos - s jm] ™)
< Cluy x W) ([=Ks koo dots Jos - )

C2

where C = max{m : 1 < j < ¢} is independent of the choice of the

cylinder sets. Note in the fourth line above, we use the bounded distortion
property of ™ as:

1o (=5 ks vy Jot17) - w5, (105 jol ™) < Cpay (K3 jmis -+ s =15 Jo1 7).
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It clearly implies that 1 ; is absolutely continuous with respect to ny X ujr
foreach1 < j < ¢.

2.1.3 SL(2,R)-cocycles and their projectivization

A continuous map A : Q — SL(2,R) gives rise to the cocycle (7', A) :
QxR?> > QxR?, (w,v) = (Tw, A(w)v). Forn € Z, we let (T, A)" =
(T", A,). In particular, we have

AT ') Aw), n>1;
Ap(w) = | I, n =0,
[A_p(T"w)] 7!, n<-—lI,

where I is the identity matrix. Now let i be a T-ergodic probability measure
with topological support equal to 2. The Lyapunov exponent is given by

1
L(A, ) = lim —/IOg [An (@) dp(w)

n—oon

o1
inf — / log | An (@)l dp(w).
n>ln
By Kingman’s subaddive ergodic theorem, we have
.1
lim —log||An(w)| = L(A, )
n—oon

for p-a.e. w. By linearity and invertibility of each A(w), we can projectivize
the second component and consider (T, A) : @ x RP! — Q x RP!,

2.1.4 Reduction to a topologically mixing subshift

We need to reduce to the case where T : 2 — € is topologically mixing and
collect some standard facts. One may find a detailed discussion of the results
stated in this section in [31, Section 1.9].

One says that (2, T') is topologically mixing if for any pair of nonempty
open sets U,V C Q, thereisan N > 1 such that T"(U) NV # @ for all
n>N.

Note that a general subshift of finite type (£2, 7) might not be topologi-
cally mixing. But any subshift of finite type that has a dense positive semiorbit
has the following decomposition. By the spectral decomposition theorem for
hyperbolic basic sets, we can decompose Q as Q = | |,_; ; for some s > 1
and for closed subsets €2;, so that the following holds true: 7'(£2;) = €24 for
1 <[l < sand T(Q24) = (1), and T7|€2; is a topologically mixing subshift

@ Springer



866 A. Avila

of finite type for each 1 </ < s. In particular, if (€2, 7') has a fully supported
ergodic measure, then (€2, T) has such a decomposition. Moreover, the nor-
malized restriction wu; of p to €; is a T*-invariant ergodic, fully supported
probability measure with local product structure or bounded distortion prop-
erty, provided the same property is true for u on 2. One may also see [17,
Section 3.2] for such facts.

Then for a cocycle map A : Q — SL(2,R), we consider Ay : Q; —
SL(2, R) as As(w), which may be considered a cocycle map defined over the
base dynamics 7% : ©; — ;. Clearly, L(Ag, ;) > Oforsome 1 <[ <s
implies that L(A, i) > 0. Since the present paper is only concerned with the
positivity of the Lyapunov exponent, we assume from now on that (€2, 7') is
topologically mixing.

Note that supp(n) = Q and ergodicity of u together already imply that
Orb(w) = Q for p-almost every w € Q.

Topological mixing has additional consequences, which are needed in the
present paper. First, it implies that the set of periodic orbits is dense in €2.
Moreover, we have the following more quantitative behavior of periodic points,
which is called the specification property. It concerns shadowing finite pieces
of segments of different orbits by a single orbit, in particular, by a periodic orbit.
It was first introduced by Bowen [13]. The following version for subshifts of
finite type is due to Sigmund [37]. Fora < b € Z, welet [a, b] C Z denote the
indicated interval of integers. In other words, [a, b] ={n € Z :a < n < b}.

Proposition 2.7 Let (2, T') be a topologically mixing subshift of finite type.
For each € > 0, there is an integer r = r(€) > 0 such that for any choice
of points p) € Q and intervals of integers I; = [a;, b;l, i = 1,2, with
ay — by > r and any n > by — ay + r, there exists a periodic point p with
period n such that

d(T/p, T/ pDy <eforjel, i=1,2.
2.1.5 Stable and unstable holonomies

Given (€2, T, u) as above, consider A : Q — SL(2, R) and the projective
cocycle (T, A) :  x RP! — Q x RP'. We will denote the fiber {w} x RP!
by &y.

Definition 2.8 A stable holonomy h* for A is a family of homeomorphisms
hfo o - &, — &, defined whenever w and o’ belong to the same local stable
set, satisfying the following properties:

: S N — S N —_1
@) hw,’w,, o hw’w, = hw’w,, and hw’w =1id,

(i) A@)ohs = hy, 1.0 Aw),
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(iii) (w,®") = kS () is continuous when w, @’ belong to the same local
stable set, uniformly in ¢.

An unstable holonomy h, ., : E, — &, is defined analogously for pairs of
points in the same unstable set.

By property (i), we have hfo’w, = (h;/,w)_l for any o’ € W[ (w), where
T € {s, u}.

These projective holonomies /7 W hl o typically arise via projectivization
of Hcf)’w/, Ha’j’w/ € SL(2, R) that are obtained as follows:

H}, oy = lim Ay(@) ™ Ay ().
H' = lim A_, (o) 'A () (2.15)
’ n—o00

for w, o’ in the same stable (resp., unstable) set. Conditions need to be placed
on the cocycle to ensure convergence in (2.15); see, for example, the proof of
Lemma 4.2. The analogues of the properties (i)—(iii) for H:;’w/, Ha’j’w, follow
directly from the construction and this in turn implies (i)—(iii) for hfo W hC”U o
by projectivization. Holonomies that arise from (2.15) are called canonical

holonomies of A.
2.1.6 Invariant measures of projective cocycles

Consider a projective cocycle (T, A) : © x RP! — Q x RP! that has stable
and unstable holonomies.

Definition 2.9 Suppose we are given a (7', A)-invariant probability measure
m on Q x RP! that projects to j in the first component. A disintegration
of m along the fibers is a measurable family {m,, : @ € Q} of conditional
probabilities on RP! such that m = f my, di(w), that is,

m(D) = / me,({z € RP' : (w,z) € DY) du(w) (2.16)
Q

for each measurable set D C § x RP!,

By Rokhlin’s disintegration theorem, such a disintegration exists. Moreover,
{my : @ € 2} is another disintegration of m if and only if m, = m,, for
u-almost every w € . By a straightforward calculation one checks that
{A(w)ym, : w € Q} is a disintegration of (T, A),.m, where A(w).m,, is the
measure on the fiber {Tw} x RP'. In particular, the (7, A)-invariance of m
implies A(w)smy, = mr, for p-almost every w € Q. Conversely, if {m,, :
w € Q} is a family of probability measures where i, is defined on {w} x RP!,

@ Springer



868 A. Avila

then we may define a measure /7 on Q x RP! via the right side of (2.16) by
replacing m,, with m,,. Then m is (T, A)-invariant if A(w)sm, = mr, for
u-a.e. .

We say m is an s-state (resp., a u-state) if it is in addition invariant under the
stable (resp., unstable) holonomies. That is, the disintegration {m,, : v € 2}
satisfies that (hfo’w/)*mw = myy for p-almost every w € 2 and for every
o' € W (o) (resp., (h% ?w,)*mw = m,y for p-almost every w € 2 and for
every o € Wiee(@)). In this case, we say that {m,,} is s-invariant (resp. u-
invariant). A measure that is both an s-state and a u-state is called an su-state.

2.1.7 Schrodinger operators and cocycles
In this subsection let us initially assume that €2 is a compact metric space,
T : @ — € is a homeomorphism, and f : @ — R is continuous. We

consider potentials V,, : Z — R defined by V,,(n) = f(T"w) for v € Q2 and
n € 7, and associated Schrodinger operators H,, in £2(Z) acting by

[HoYl(n) =y (n+ 1D +y(n—1) + Vy(m)y(n).
The spectrum o (H,,) is defined as
o(H,) ={E € C: H, — E does not have a bounded inverse}.

For a subset S of a metric space (X, d) and § > 0, the open §-neighborhood
of Sis given by Bs(S) = {x € X : d(x, s) < 6 for some s € S}. In particular,
B;(x) denotes the open ball centered at the point x € X. We need the following
uniform estimate that relates the spectrum o (H,) with the orbit Orb(w) =
{T"(w), n € Z}; see, for example, [43, Theorem 6].

Proposition 2.10 For each ¢ > 0, there exists a § > 0, depending on ¢ only,
so that the following holds true. If the orbit Orb(wq) of some wqy € Q satisfies

Orb(wgy) N Bs(w) # @
for some w € 2, then
0 (Hy) C Belo (Hey)l-

Proposition 2.10 implies that if Orb(wp) is dense in 2, then o(H,) C
0 (Hy,) for all € Q. In this case, we set

Y =0 (Hyy).

@ Springer



Schrodinger operators with potentials 869

Let us now return to the main scenario of this paper, where T is a topo-
logically mixing shift operator on a subshift of finite type 2 with an ergodic
measure u satisfying supp(u) = Q. Let Per(7T') be the set of periodic points
of T. Recall that Per(7') = 2. Recall we have that Orb(w) = 2 for p-almost
every w. All these facts together with Proposition 2.10 imply for p-almost
every w that

T=0H,)= |J o(H,). (2.17)
wpePer(T)

Spectral properties of the operators H,, can be investigated in terms of the
behavior of the solutions to the difference equation

uin+1)+un—1)+ V,(m)u(n) = Eu(n), nec2Z, (2.18)

with E real or complex (depending on the problem in question). These solu-
tions in turn can be described with the help of the Schrodinger cocycle (T, AF)
with the cocycle map AF : @ — SL(2, R) (resp., SL(2, C) when E € C\R)
being defined as

AF (@) = AT (w) = (E _lf(“)) _01),

where we often leave the dependence on f : 2 — R implicit as it will be
fixed most of the time. Such cocycles describe the transfer matrices associated
with Schrodinger operators with dynamically defined potentials. Specifically,
u solves (2.18) if and only if

um) \ _ L E u(0)
<u(n _ 1)> = A, (w) (u(—l)) , nelwd.

For the Schrodinger cocycle (7', AE), weset L(E) = L(AE, 11). One of the
main questions in the spectral analysis of the ergodic family of Schrodinger
operators {H,},cq (With respect to the ergodic measure 1) is for how many
E € ¥ we have L(E) > 0.

2.2 Periodic potentials
A periodic point w of T gives rise to a periodic potential, that is, if 77w = w,

then, V,(n+ p) = V,(n) forevery n € Z. Since much of our work below will
involve the study of periodic points and the associated potentials, let us recall
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some basic properties of Schrodinger operators with periodic potentials; see
[24,38] for proofs of the results stated in this subsection.
Consider a Schrodinger operator

[HYl(n) =y (mn+ 1) +y@m—1)+Vm)yn).

in ¢2(Z) with a p-periodic potential, V(n + p) = V(n) for every n € Z.
Define, for E € C, the monodromy matrix

0 .
M(E) = 1—[ (E —IV(]) —Ol)

Jj=p—1

and the discriminant A(E) = Tr(M (E)), where Tr(B) is the trace of B. The
function A(-) is a monic polynomial of degree p.

Proposition 2.11 The set A~'((—2,2)) consists of p disjoint open inter-
vals and on each of them, A is strictly monotone. Moreover, c(H) =

AT ((=2,2)) = A7 (-2, 2)).

This shows that the spectrum of H consists of a finite union of closed
intervals and, in fact, the number of connected components of the spectrum
is bounded by the period of the potential. This suggests an interesting inverse
problem. Suppose we are given a set that has such a form, that is, it has finitely
many connected components, each being a closed interval. Suppose further
that we know that the set is the spectrum of a periodic Schrédinger operator.
Can we say anything about the period of the potential?!

Proposition 2.12 Suppose V : 7Z. — R is periodic. Denote the spectrum of
the associated Schrodinger operator by o.

(a) For a probability measure m on o, consider its potential energy
Em) = f/ log (I1E — E'|™Y) dm(E)dm(E') € RU {00}. (2.19)

Then there is a unique measure, my, which minimizes the potential energy
among all probability measures on o, and in fact £(my) = 0.

(b) The measure my assigns rational weight to each connected component of
o.

!' The more natural inverse problem would lead us too far afield. Namely, one should rather ask,
given a finite union of closed intervals, identify within a suitable class of operators those that
have the given set as their spectrum. The theory is classical but one needs to pass to the more
general class of finite-gap Jacobi matrices to study this question in the appropriate setting.
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(c) The potential V is p-periodic if and only if the weight of each connected
component of o with respect to my is an integer multiple of %.

This result shows that the shape of the spectrum of a periodic Schrodinger
operator determines the period of the potential. An immediate consequence
is the fact that the spectrum of a periodic Schrédinger operator is connected
if and only if the period is one, that is, the potential is constant. Another
characterization of constant potentials is the following:

Proposition 2.13 Suppose V : Z — R s periodic. Then the spectrum o of the
associated Schrodinger operator has Lebesgue measure at most 4. Moreover,
the Lebesgue measure of o is equal to 4 if and only if V is constant.

Finally, we note the following standard facts. For each E € C such that
A(E) # %2, there are exactly two eigendirections s (E) and u(E) in CP! of the
monodromy matrix M (E), which are actually the so-called Weyl-Titchmarsh
m-functions associated with the operator. Moreover, s(E) 7# u(E) are real if
and only if £ € R\o (Hy), and they are the stable and unstable directions of
the real hyperbolic matrix M (E). Here we always set s(E) to be the stable
direction and u ( E') to be the unstable direction. If E is in the upper or lower-half
plane or is such that £ € R and |A(E)| < 2, then s(E) and u(E) are not real.
In the latter case, we have s(E) = u(E). For A(E) = £2, welet I C R be the
connected component of o (Hy) containing E. If E belongs to the boundary
of I, then M (E) has a unique real invariant direction. We may think of this
caseas s(E) = u(E). If E is a point at which a spectral gap is collapsed (or, in
other words, at which two different components of A~!(—2, 2) touch), then
M (E) = %1, in which case all directions are invariant.

Based on the description above, we may consider two functions s and u
which are holomorphic on the upper or lower half plane H and C\H, respec-
tively. When restricted to the real line R, they both are continuous functions.
Moreover, they are analytic on each spectral gap or in the interior of each
connected component of o (Hy ). If Eg is on the boundary of some connected
component of I € o (Hy), then s and u are locally like g (v/£(E — Ep)) near
Ey for some choice of g that is real-analytic near Eg. Here the choice of g
depends on s or u, and the sign of (E — Eyp) is determined by whether Ej is
the right or left endpoint of /. Moreover, s(E) and u(FE) are real only when
VE(E — E)p) is real. Thus, we can find an open disk D C C centered at Ey
and a ramified (at Eo) double cover 7 : D — D of D so that s(E) and u(E)
are holomorphic in E € D. Moreover, when n(E) € DNR, s(E) and u(E)

are real only when 4/ +((E) — Ep) is real.
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3 Large deviations

The main goal of this section is to prove the following large deviation theorem.
Let C*(2,R), 0 < « < 1, be the space of a-Holder continuous functions. In
other words, f € C¥(€2, R) if there are C > 0 such that

| f(w) — f(@)| < C-d(w, )" forall w, ' € Q.

Note that here C1 (€2, R) is the space of Lipschitz continuous functions, not
the space of functions with continuous derivatives. Similarly, we can define
the space C%(Q2™, R). Throughout this section, u, or equivalently p ™, will be
assumed to have the bounded distortion property.

Theorem 3.1 Let (2, T) be a topologically mixing subshift of finite type. Let
u be a T-ergodic probability measure that has the bounded distortion property.
Let f € C¥(2, R) for some 0 < a < 1. Then, for each ¢ > 0, there exist
C, c > 0, depending on f, a, and &, such that

1n—l
u{a)e Q: ‘—Zf(Tka))—/ fdu‘ Ze} < Ce ™™, Vn>1.
=0 §2

Theorem 3.1 will be a consequence of the following version of large devia-
tions. Recall we have the spaces (Qi, T+, ;F) of one-sided infinite sequences
with nonnegative/nonpositive indices.

Theorem 3.2 Let (QF, Ty, u) be a topologically mixing one-sided subshift
of finite type and suppose that ™ is T T -ergodic and has the bounded distortion
property. Let f € C*(Q", R) for some 0 < a < 1. Then for each & > 0, there
exist C, ¢ > 0, depending on f, a, and & such that

n—1

1
+Hloteat |2 Tk+_/ dut

> 8} < Ce ™, Vn>1.

(3.1)

We first derive Theorem 3.1 from Theorem 3.2. Let us write S, f =
ZZ;(I) f o T* for the Birkhoff sums. We let ¢(w) = »@) A w which we
defined in (2.5). Note that ¢(w) is continuous on 2 and constant on local
stable sets.
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Proof of Theorem 3.1 Let f € C*(2, R). Since f is Holder continuous and
¢(w) € W} (w), a straightforward computation shows that

o0

(@) =) [f(T"0) = f(T"p())]

n=0
converges uniformly, and hence is continuous. We define
) = f() +h* (Tw) — b ().

In particular, we have

/;Zfd,u:/szﬁduand 1S0f = Suf ], < 2018 o,

where || - ||co denotes the supremum norm. It is straightforward to see that
o
[T = f@@)+ ) [f(T"Tew)) — f(T"p(Tw))],
n=0

which implies that f* is constant on Wil (o) for all @ € Q. Moreover, we

claim that f+ € C %(SZ, R). Indeed, take w and o’ € . Without loss of
generality, we may assume N (w, o) is large and take k = L%J . Then we have

fHw) - fH)
[f(T"p(@)) — f(T"p()]

1

[f(T"p(T&)) — f(T"p(Tw))]

+7'1M”

S
=]

+ Y [f(T"Te@) - f(T"(Tw))]

3
1
~

M

[f(T"Tp()) — f(T"9(To))],

3
Il
~

where the absolute values of the first two terms may be bounded by

k
CZe—a(N—i) < Ce_a% = Cd(Cl), C()/)%,
i=1
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and the absolute values of the last two terms may be bounded by
Ce ™ < Ce™7 = Cd(w, o)?.

Thus f+ € C 3 (22, R). Since £ is constant onlocal stable sets, it descends to a
functionin C2 (21, R). Abusing notation slightly, let f* denote its descended
function as well. Clearly, we have [ fTdu = [+ fTdpt and S, [T (w) =
Sy f(mtw). Fix any € > 0 and define

. } |

By Theorem 3.2, there are C, ¢ > 0, depending on ™, a, and &, such that

Bf(e) == {w+ eQt: ‘%Snﬁ(w*) - fm frdu*

M+(B,l+) < Ce ", ¥n>0.

Combining the relations of f and £ above, if we choose N = N(¢) so that
4|1h° ||co < Ne, then we have

{a) eQ: ‘lSnf(a)) —/ fdu| > e} C @7 'Br(/2), vn = N.
n Q

Changing C, c if necessary, we then have for alln > 1,

" {w cQ: ‘%Snﬂw) —/ fdu|> e} < ul(@™)"'B/ (e/2)]
Q

= ut (Bl (e/2)
< Ce™ ",

as desired. O

To prove Theorem 3.2, we first need the following lemma. For [ =

(ly, ..., 1) where [y ...l, is admissible (in this case we also just say that
[ is admissible), we set Ql+ :=[0;11,1p,...,0L,]1", || :=n, and
gp—— L (3.2)
- ,u+(Q£) 1

In other words, /L1+ is the normalized push-forward of u* under the injec-

tive map TV : @ — QF. Note that ;)" is concentrated on TJ}'(Q;F). By
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definition, it clearly holds that

1
w)

l
Fdu = forllaut.
Qt Qf

If we view T;m as a map from TJ}' (Ql+) to €;7, we obtain
—l
w@) [y o roritan = [
T(Q) Qf

Since ,ul+ is concentrated on TJ_U (Qf), we may simply write the equation above
as B B

wp) [ forMant = [ g (33)

&

Recall we also write [n; []7 = [n; [1, ..., [,]™.

Lemma 3.3 Consider a topologically mixing one-sided subshift of finite type
(QF, Ty, u™), where u has the bounded distortion property. There exists a
C > 1 so that, uniformly for all admissible I, we have

d +
Moo+ +
ﬁ(w ) < C for p-a.e. o™, (3.4)

duf . . :
where ﬁ is the Radon—Nikodym derivative of /LI“L with respect to u™. In

particular, we have for all positive measurable functions f and all admissible
l)

[ rani <c [ ran 3.3

Proof Fix an admissible [ = (Iy, ..., l,). Clearly, (3.4) is equivalent to the
existence of a C > 1, independent of [, such that for every [n; i =
[n;iy,...,in]T € QT (which implies n > 0), we have

i (Ins i)

—_— 3.6
ar Ol - (3:0)
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By definition of ,ul+, we have

i) (03 110 [ + 11): i)
pwt(nsil) w0 Dpt((n; i)

Hence, (3.6) is equivalent to

wt(0; 11N [n + |5 i]) -
wr([0; Ihpt([n; i])

By T'-invariance of u™, the above estimate is then guaranteed by (2.14).
Indeed, if [0; []N[n+|l|+ro; i], then itis trivial. If [0; I1N[n+|l|+7ro; ] # O,
then it is a consequence of the second inequality of (2.14). O

We are now ready to prove Theorem 3.2. We adopt the strategy of [2, Section
6.1].

Proof of Theorem 3.2 We split the proof into two parts. First, we show
1
,ﬁ{aﬁ eQt: =S, f(oh) — / fdu® > e} <Ce ™ VYn=>1.(@3.7)
n

For simplicity, we write I,,(w™) = %Snf(aﬂ') andy = [ fdut.Fixae > 0.
By the Birkhoff Ergodic Theorem, I,(w) converges to [ fdu™ pointwise
almost everywhere and in L. Thus we have

lim pt o™ : |L(0") —y| > e} =0.
n—o0

By (3.5) of Lemma 3.3, we have
lim sup /,L;r{a)+ (@) —y| > e} =0, (3.8)
n—00 <

where the supremum is taking over the set of all admissible . Fixa0 < ¢’ < .

Let B, = {0t € QT : Li(w") > y + &'} andk = 8_28/. By (3.8) (replacing &

by &), we have for all admissible / and all large n that

supf(ln(aﬁ)—y —e)du = sup (/ +/ ><In<w+)—y—e)dul+
L B r \/B, /Bt B

< Csupuf (By) + (¢/ — ) inf 1] (BY)
P 1 nf 11f

< —K. 3.9
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Fix alarge N so that (3.9) holds true. For any 8’ > 0, by (3.5) and boundedness
of the integrand below, there clearly exists a C’ = C’(8’, N) > 0 such that for
all 7] < 8 andall 1 <n < N, we have

sup f enn@h)—y—¢) dut <C'. (3.10)
| L

Hence ¢y (1) = f e NUn@D)—y—e) g u;’ are uniformly bounded holomor-
phic functionson {r € C : |¢| < §'} forall [ admissible. In particular, {¢y ;(£)};
is anormal family on the opendisk {r € C : |¢t| < §'}. Shrinking §’ if necessary,
we see that {‘p;v,l(t)}L is a normal family on the open disk {t € C : |7| < &'}
as well. Note that

¢n.1(0) = 1 and ¢y ,(0) = f Ny —y —e¢) du[.

By (3.9) and shrinking 8’ if necessary, we must have that d)}v’ (1) < =N for
all t € (—¢’, &) and all admissible /. This implies that

N’ ¢N,l(1)

for all 1 € (=&, 8") and all admissible /. Since (log ¢ ;)(0) = 0, we then
have

sup { log w1 ()} < —(C") "' Nkt
!

for all 0 < § < &'. Hence, it holds for all 0 < § < & that

sup/eaN(’NW)—V—e) duj < e~ (€N, (3.11)
' !

Now we want to extend the estimate above to all n > 1 via the bounded
distortion property of p*.

Since f € C*(QT,R) and nl,(w) = (S, f)(w) is the Birkhoff sum, it is
straightforward to see that

n—1
nly(@") —nl, @9 < €Y d(T{e, T{oH* < €1, (3.12)

k=0
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provided o™, @ € Q;7, where |I| = n. Note here that C; depends only on o

+ +
and f. We choose @) max € Ql so that

a)l min

Li(@] o) = max {L(@")}and I (@, ;) = min {I,(@")}.
wteQ wtef

In particular we have
n(In (a);max) —1, (mein)) < (1. (3.13)

Since (n + N) 4 n(0T) = NIn(T]w™) + nl,(w™), we have for all n > 1
that

f AN Uin @H)=y=e) g+
_ / D1 @)=y =) INUN(TL )=y =2) g +

-y f AU (@ )=y =e) SN UN(TLH) =y =) g+
=n

=y A1 (@ )=y =) / SNUNTI0 )=y =e) g+

+
ll=n &

— Z M+(Qf)€8n([n(w;’rmax)_y_8)/eaN([N(w+)_y_8) d,LLl+
|l]=n

- (sup/ AN Uy @) —p) duf)
Jar )

5 (ean[l(w,fmax)—l(w,fmin)l _ / @) —y—e) du*)
o

|L|=n

< ¢ (sup / NN =0 g+ f o=y =6) g+
1 Jo+ - o+

where the third identity follows from (3.3) and the last inequality follows from
(3.13). We choose N large so that (C’) "' N« > 2C; and set ¢ = %(C/)_ISK.
Then by (3.11) we have for alln > 1,

/ e&(n+N)(In+N(a)+)fyfe) d,Uv+ < ecN/ eén(ln(w"')fyfs) d,qu.
o+

Qt
(3.14)
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Now, given any n > 1, we may apply the Euclidean division n = kN + r.
Using (3.14) several times, we obtain for all n > 1 that

Wt e~y ze) = [ Oyt < e,
Qt
(3.15)

Note that the estimate for small » is absorbed into the constant C due to (3.10).
This gives one part of the estimates (3.7).
To prove the second part which is

Wty @ ze) < [ TNt < e,
Qt
(3.16)

we just need to replace I,(w) — y — ¢ by y — [,(w) — ¢ and rum the same
proof of (3.7) above. The only difference is that in this case we set B, = {o™ :
y — I,(w) > &'} for some 0 < &’ < ¢. All other steps are exactly the same.
The two estimates (3.7) and (3.16) clearly imply the desired large deviation
estimate as stated in Theorem 3.2. O

The fact that an equilibrium state of a Holder continuous potential has local
product structure may be found in [8,14]. Here we show that equilibrium
states of Holder continuous potentials have the bounded distortion property as
defined in (2.13), which also implies that such a x has a local product structure.
In particular this shows that Theorem 3.1 holds true for such measures. Equiv-
alently, we may consider (1, u™, Ty), where u™ is an equilibrium state of
a Holder continuous potential and show that such a u has the bounded dis-
tortion property. Indeed, equilibrium states of Holder continuous potentials
defined over (€2, T') are lifts of equilibrium states of Holder continuous poten-
tials defined over (T, Ty); see, for example, [8]. According to [8,14], such
a u has a Holder continuous Jacobian with respect to Ty. So it suffices to
prove the following lemma:

Lemma 3.4 Let (Q1, Ty, u™) be a one-sided subshift of finite type, where
w is a Ty-ergodic measure that has a Hélder continuous Jacobian. Then ™
satisfies the bounded distortion property as defined in (2.14).

Proof To get (2.14), we fix any [0; []T C QT and set n = |[|. Choose any
[k; j17 c QT such that k > n and [0; []T N [k; j1T # @.

Let Jy € C*(2, Ry) be the Jacobian of u™ with respect to T';.. Since it is
positive and continuous on T, we have inf +cq+ |J+(0T)| > ¢ > 0, which
implies that log J1 € C¥(Q*, Ry ). Consider the map T" : [0; ] — Q1 and
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let J l; be its Jacobian. Then we have

n—1
S =[] s Tio™.

i=0
Suppose w™, @T € [0; [] for some || = n. Then we have

n—1
l 1 ~ i P~
| log J;(a)+) —log J;r(w+)| = Z | log J.(T'w™) — log J+(T‘w+)|
i=0
< C-d(Tiot, TLo™)”
< C,

where C is independent of [ , ™, and @*. Thus we have

I (@)

I @)

c ! < < Cforallo™, & € [0;1]7. (3.17)

Now by the definition of the Jacobian, we have
l
/ Xtk—n; j1+ (M dp™ () = f Xtk—n; j1+ (TE0o ) JL (@) dpu™ (07),
Qt B [0;1+ N

which implies that

(ks j1T) Lot
W0 L1 A [k g1 =

[
T (@ in) < ).

+ + : :
Here o/ ., and W] max Are chosen as in the proof of Theorem 3.2. Using

1= [o 1dpt = [0, Tt (@)dpt, we obtain

1 1
ur (01 <

Lo + )
J+ (wl ,max) J (wl mln)
Combining the two estimates above with (3.17), we clearly get

w(10; %) - wt([ks j17T)

c!< <
w*([0: 11+ N [k; j1+)

’

which is (2.14). O
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Remark 3.5 There are many early works concerning large deviation estimates
for functions defined on hyperbolic dynamical systems; see, for example, [41].
But we could not find a proof that applies in our framework. In Sect. 4, we shall
show that if u has the bounded distortion property, then Theorem 3.1 yields
relatively global versions of all the techniques needed. We hope they will be
of independent interest. Most importantly, the results, ideas, and proofs given
in this section will be used in the second paper [1] of this series.

4 Invariance principle and conformal barycenter

In this section, we develop some tools that are needed to prove our main results
in the next two sections. Our main objective is to consider cocycles that have
zero Lyapunov exponent. First, we show that a small Lyapunov exponent gives
rise to a measurable family of holonomies, which will be integrable if  has
the bounded distortion property. In the case of a zero Lyapunov exponent, we
shall introduce techniques originally developed in [33], and then generalized
in [3,7,39], which are referred to as the invariance principle. We will use the
invariance principle to show the existence of a continuous su-state on suitable
sets. Concretely, in case of a zero Lyapunov exponent and bounded distortion,
we will construct an su-state that is continuous on the support of a certain full
measure set. In case we have only local product structure, we will construct a
local su-state that is continuous on the support of some positive measure set.
Then we show that periodic points with small Lyapunov exponents belong to
the support in question. Finally, we will construct an su-invariant family of
d-measures by using the conformal barycenter.

4.1 Measurable holonomies resulting from small exponents
For the remainder of this subsection, we fix 0 < o < 1 and consider
the space of «-Holder continuous cocycles C* (€2, SL(2, R)), that is, A €
CY(2,SL(2,R)) if

|A(w) — A@)| < C -d(w, ®)* forall v, v € Q. 4.1)

Thus for every w, @ € Q and n > 0, we have

IA(T"w) — A(T"®)|| < Ce™" ifo e Wi (),

4.2
IA(T "w) — A(T"®)|| < Ce™"  ifd € W (). (42)

Our goal is to show that a small Lyapunov exponent produces stable and
unstable holonomies. Unfortunately, we can not show that these holonomies
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satisfy all properties of Definition 2.8. Therefore we introduce the following
weaker version of Definition 2.8.

Definition 4.1 A measurable stable holonomy h® for A is a measurable family
of homeomorphisms /2’ e Ew — &, ,defined for p-almost every w and every
o' € Wi (w), satisfying the following properties:

1 hfo,’w,, o hfo’w, = hfo’w,/ and hy, , = id,

(ii)) A(@) o B, o =Wr o 10 © Al@).

A measurable unstable holonomy h', e Ew — &, is defined analogously
for p-almost every w and every o’ € W (w).

Using measurable stable and unstable holonomies, we can define the notions
of s-state, u-state, and su-state in the same way as in Sect. 2.1.6 since the
disintegration {m,, : w € 2} of the invariant measure m is only measurable
anyway.

In Lemma 4.2 below we will indeed show that small Lyapunov exponents
ensure the existence of measurable stable and unstable holonomies. In fact,
these maps will arise via projectivization from canonical holonomies defined
on suitably defined subsets.

The following subsets will play a key role. We define for N € Z and§ > 0,

K(N,8) = {w: |An(@)]*> < “ " forevery n > N}, (4.3)
Ku(N,8) ={w: |A_p(@)||> < 9" for every n > N}. (4.4)

Lemma 4.2 Assume that L(A, i) and § > 0 are such that2L(A, i) < o —86.
Then, for each N € Z., the limit

Hy 5= lim Ay (@)~ Ay (@)

exists uniformly for each w € Ky(N, 8) and & € W} (). Similarly, for each
N € Z, the limit

: ~ 1
HZ&) = nlggo A_p(@) A_p()

exists uniformly for each v € K, (N, §) and & € W} (w). Moreover, if ju has
bounded distortion, then the following integrability conditions hold:

/ log [H .. [l dju(w) < oo, 4.5)
o ,

/ log [H" () Nl di(@) < oo. (4.6)
o :
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Since each of the sets | )y Ks(N, 8) and |y Ky (N, 8) has full measure and
is T-invariant, it follows in particular that there are measurable stable and
unstable holonomies in the sense of Definition 4.1.

Proof In this proof, C will denote a positive constant that depends only on
|A]lc and 8. Conditions on it will be placed in several places, which leads to
finitely many adjustments.

Let H,". = A, (@)~ Ay() for & € W}, (w). Define

—1
s,n s,n s,n+1 s,n
8@,5) - <Hw,&)> <Ha),c7) - Ha),&)) ’ (47)
so that
s,n s,n _ s,n+1
2 (1d 4857 = H
We first will estimate ||8 5|l as follows. In the case where [Aj, (w)||*> <

@ e have
5" = An(w)” NA(T"®) AT w) — 1d) Ay ()
and therefore
18271 < Ce ™™ = Ce™™". (4.8)
The fact nll)ngo rll log ||Ay(w)|| = L(A, n) for pu-almostevery w € 2 implies

that % log ||A, (w)|| converges to L(A, ) in measure. Thus, the sets K (N, §)
defined in (4.3) are compact and increasing in N, and their union over N has
full measure.

For w € K (N, §), we have the uniform summability statement

o0
s,n

N A

n=N

Changing C if necessary, the estimate above in turn implies that

_ sk sk—i—l
_‘ H(H CH

k k+1
< |H) ||1_[||(H* R |

s,n
H Hw,(b
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n
Nexp (Z log(1 + ||6;;f;||>>

k=N

Nexp (C >l wu)

< CN, (4.9)

which implies for all n > N:

eCNe—Sn )

“Hsn _Hsn+lH_”Hsn~85n

w,w w,0

Hence {H »1n>0 is Cauchy sequence in SL(2, R) and is thus convergent. Let
us define
e . s,n
Htf),&) T nll)H;O Hw,d)
where the convergence is uniform on Kj (N 8). In particular, H; . depends

continuously on w € K (N, d) and @ € (w). Changing C 1f necessary,
(4.9) implies for the same w and @ that

loc

1An (@) Ap (@)l < eN (4.10)

foralln > 1.
To get the integrability condition (4.5), we define ¢ (w) = log ||A(w)|| and
assume without loss of generality that

2/ P(w)du < a — 8, .11
Q

because otherwise we may instead consider ¢ (w) = 1 log || A (w) || for some

large k, which must satisfy the condition above since fQ % log || Ak (w)|| dn
converges to L(A, w). It is straightforward to see that ¢ € C*(R2, R) since A
is a-Holder continuous and ||A(w)|| > 1 for all w € Q.

We want to estimate for some C > 0 the measure of the following set,

By = {w : log ||H(f),d)|| > CN for some & € W} (w)}.

Recall S,¢(w) = Y12 ¢ (T/w). We define for §' = 3,

/

1
Zn = {a):—Snd)(w)< ¢ foralanm}
n
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If w € Zi, then 2S,¢(w) < n(a — &) for all n > 0, which clearly implies
that || A, (w)||> < ¢~ for all n > 0. Thus by the computation leading to
(4.10), we have for all w € Z,

A, (@) 'Ap(w)|| < C forall @ € Wit (w) and for all n > 1.
Ifw e Z, withm > 1, then we set 0 < k& < m to be the largest integer
for which v ¢ Z;. A direct computation then shows that T*w € Z;, which
implies that for all ® € Wi (T*w),

1A (@) Ay (TFw)|| < C foralln > 1.

Combining || A, (w)|| < e forall 1 < n < m and for all w, we have for all
w € Zy and all ® € W} (o) that

| An (@) Ap(@)|| < €™ foralln > 1,

which clearly implies that log | H] .|| < Cm. Thus by choosing C appropri-
ately, we have

By C Q\Zn.

However, by (4.11) it is clear that

8}
> — 7.
4

Suppose that o has bounded distortion. Note that ¢ € C*(€2, R). Hence, by
Theorem 3.1, there exist C’ > 0 and n > 0 such that

> 1
\zy ¢ | {w: ‘;Snf(w)—/gqﬁdu
n=N

1
M{w: ‘—Snﬂw)—/ du
n Q

)
> 4_1} <C'e ™ foralln > 1.

Clearly, this implies that ©(By) < C’e™N for all N > 1, which in turn
implies the integrability statement (4.5) since

/Qlog”H(f)(wo)/\w’w”dﬂ:/;ZIOgHH:u’w(wO)Aw”dM

o

= 10g||HS (@) | du
NX::l /BN\BN+1 @@ 0N
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IA

w(Bn)CN

C'Ce "N

IA

8 e Tle

A

The case of K,(N,d8) can be done similarly after replacing A,(w) by
Ay (). O
Definition 4.3 For a periodic point p with period n, we let L(A, p) =
lim % log ||A,(p)| be the individual Lyapunov exponent of A at p. We say
pis y-bunched if 2L(A, p) < y < «.

Next, we show the following result, which says that «-bunched periodic

points are in the support of K(N, §) for suitable § > 0 and for large N. We
note that a similar result has appeared in [17].2

Lemma 4.4 Suppose (2, T) is a subshift of finite type and n has a local
product structure. Assume that 2L(A, i) < «. Let p be an a-bunched periodic
point. Then forevery 0 < §9 < min{ae —2L(A, n), « —2L(A, p)}, there exists
No € Z such that

p € supp (M|KS(N0,80)DK,,(N0,50)) . 4.12)

Proof Fix any number § so that 0 < § < min{fae —2L(A, n), @ —2L(A, p)}.
Then we have 2L(A, p) <o —§ and 2L(A, u) < o — §. Assume the period
of pisr.

Consider the family K (N, §) as in Proposition 4.2. By (4.10), we have for
allw € K(N,8),allw € W) (w),and all n > 1,

1A (@) An(@)]| < eV,
Recall (2.8) says (1)~ !(m+w) = W} .(»). Thus by definition of K, (N, §)
and the estimate above, for each 0 < §; < 4§, there exists N; > N such that
forallw € ()" (wt[K (N, 8)]) and all n > N, we have
1An(w)|)? < @30, (4.13)

Fix such a choice of ; and N;. By choosing N large, we may assume that
w(Kg(N,8)N[0;i]) > 0foreach 1 <i < ¢, which in turn implies that

w T (Ks(N, 8) N 105 i]7) = (K5 (N, 8) N[0 i]) > 0.

2 We would like to thank Clark Butler for pointing this out to us.
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By Corollary 2.5, for each n > 0, we have
+r—np+ ) +
w (T [ (Kg (N, )TN 05 po, ..., pal™) > 0. (4.14)
By the same argument as the one leading to (4.10), 2L(A, p) < o — §
implies that for each 0 < §, < §, we can find m € Z large enough so that

rm (@ <e" orwe I~ p). eriodicity ot p, we
|Arm(@)||* < e@0rm f T7""Wio.(T™ p). By periodicity of
have foreach! > 1 andeach 1 <k <[,

| Arm (TF @) ||? < @792 for all @ with T~ w € W (T p),

which in turn implies that foreach 1 < k </,
k—1
1Akrm @)I2 < T T 1A (T7™) (@) ||* < ek, (4.15)
Jj=0
For each [ € Z., we define the following s-locally saturated set,

D = @O N T (K (N, )TN [0; po, - - ., prem] ).

By (4.14), we have M(DQ_) > 0 and Dﬂr C [0; po, ..., pirm]). For each 0 <
83 < &, we can fix a N € Z, large enough so that the following holds true.
For all / large and for each w € D, we have for all N’ < n < Irm + N that

IAR @) < [ Akrm @)1 - [ Ap—trm (T ™ @) |* < @70,

where k is so chosen that 0 < n — Ny — krm < rm. On the other hand, if
n > Ilrm + N, then we have

1AL (@) * < | A1rm (@)1 - | Ap—1m (T )2
<N Apm@ A )" A (@)1 - | Aprm (@ A P12
N Ap— 1 (TT™ ) |12

We estimate each factor in the product above. First we consider the last
factor. The fact that w € Dﬂr implies that Tkrm(w) € Wi (@) for some
@' € Ky(N, §). Thus by (4.13) and the fact that n — [rm > N, we have

1 An—trm (T @) ||? < (@00 @=trm),
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For the second factor, the fact w € Dl+ implies that 7" (w A p) €
Wl‘(‘)c(Tl”"p). Thus by (4.15), we have foreach 1 <k </

| Akrm (@ A p)|I> < el@—02krm,

In particular, the second factor is taken care of by choosing k = /. Combining
the fact w € W' .(w A p) with the estimate above and using

0
Arm@) = [] Am (T o),
j=1-1

the same argument getting (4.10) yields
1Arm(@ A p)~" - Apm (@)1 < C.

Thus by setting §' = min{d;, 83}, we have for all large [ and n > Irm + N
that

A (@) < @0,

Combining the estimates in the case of N’ < n < [rm + Nj, we obtain for all
[ large, all o € D%, and all n > N’ that

1A (@) < @2,

which implies that Di C Ks(N',8) N [0; po, ... pim] for all large I. Note
that 0 < §; < 8,1 = 1,2, 3, are arbitrarily chosen, hence 8’ can be any
number in (0, §). In particular, we have for all §y € (0, ), there is a N’ such
that D, C K;(N', 80) N [0; po, - - . pirm] for all large /.

Similarly, for each 0 < 8§y < 8, we can find a N” € Z, and a sequence
of u-locally saturated D' C K, (N", 80) N [—lrm; p_iym, ..., p—1, po] with
w(DL) > 0. Taking Ng = max{N’, N}, we have for all large /,

DL ND!. C K (No, o) N Ku(No, 80),

Dl_ N ID{I— C [=lrm; D—lrms -+ Plrm],

where the second line implies that D! N Dﬂr is contained in arbitrarily small
neighborhood of p as/ tends to infinity. Finally, combining that Dﬂr is s-locally
saturated in [0; po], DL s u-locally saturated in [0; pg], and (2.10), we have
for all / large,

w(@-ND,) >0,
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which then implies that p € supp (i|k, (No.50)NK.(No.80)) - This concludes
the proof since the choices of §yp and § such that 0 < dg < 6 < min{a —
2L(A, ), —2L(A, p)} are all arbitrary. |

4.2 Invariance principle and su-states

Let M be the Borel o -algebra of the subshift of finite type (2, T, ), where
w has a local product structure. Let A : 2 — SL(2, R) be a measurable map.
Then the following invariance principle is due to Ledrappier [33], see also
[3,39]:

Proposition 4.5 Let B C M be a o-algebra such that

(1) T~'B € Bmod0and {T"B : n € 7} generates M mod 0.
(2) the o-algebra generated by A is contained in B mod 0.

If L(A, u) = 0, then for any (T, A)-invariant measure m on 2 x RP!
that projects to | in the first component, the disintegration {my}eecq is B-
measurable mod 0.

Definition 4.6 We say that a function defined on 2 only depends on the future
(resp., past) if it is constant on every local stable (resp., unstable) set.

The following consequence of Proposition 4.5 is due to [7]. We sketch a
proof for the reader’s convenience.

Proposition 4.7 Suppose A only depends on the future and L(A, u) = 0.
Then for every (T, A)-invariant measure m on Q x RP! that projects to u in
the first component, its disintegration only depends on the future for ju-almost
every € .

Proof Let B € M be the o-algebra generated by sets {W}! () : w € QJ.
It is clear that the sets W} (w) are mutually disjoint. Thus, D € B if and
only if for each w € Q, either W} (w) N D = @ or W} (w) S D. Since
TB is the o-algebra generated by {TW (w) : @ € L}, it is clear that
B C TB, or equivalently T='B C B. More generally, 7" is generated
by {T" W}, .(w) : @ € }. Now for any cylinder [n; [] C €, itis clear that it is
T" B-measurable for some large n € Z. . Since M is generated by cylinders,
we then have that {T" B : n € Z} generates M mod 0. The result then follows
from Proposition 4.5 and the straightforward fact that A is B-measurable if
and only if A depends on the future. O

An immediate consequence of Proposition 4.7 is that if A is constant along
the local stable set and L(A, n) = 0, then for every (T, A)-invariant measure
m on  x RP! that projects to u in the first component, its disintegration is
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constant on the local stable set W} () for u-almost every € Q. Indeed, we
just need to define " = ¢ (w) to be the sequence for which w), = w_, for all
n € 7 and set

Q=0 =¢):0weQ).

Then p is again an ergodic measure of (', T) which has a local product
structure. Set A’(w') = A(¢(w)) so that A" depends only on the past. Then it
is a standard result that L(A’, u) = L(A, n) = 0 and m is (T, A’)-invariant
ifitis (T, A)-invariant. Now the conclusion follows from Proposition 4.7.
We have the following consequence regarding the existence of su-states.

Proposition 4.8 Suppose the cocycle map A is measurable, satisfies the inte-
grability condition f glog |A(w)||du < oo, and admits measurable canonical
stable and unstable holonomies which satisfy the integrability conditions (4.5)
and (4.6). If L(A, u) = 0, then every (T, A)-invariant measure m on 2 x RP!
that projects to | in the first component has a disintegration that is almost
surely invariant under the stable and unstable holonomies.

Proof First we consider the s-invariance. For simplicity, we define ¢(w) =
@) A w, which depends only on the future. We define a new cocycle map as
follows:

A) = H},, 10y - Al®) - H) (4.16)

(), ®°
It is clear that A is conjugate to A via the stable holonomy. By the condition
(4.5) and the definition of A, we then obtain fQ log |A(w)||dn < oo and
L(A, @) = 0. On the other hand, by conditions (i)—(ii) of the definition of
stable holonomy, we have that

A@) = H}yy pra) - A@) - H) )

- H;wvw(Tw) ‘ H;Yp(w),Ta) - A(p(w))
= H7 y(w).o(Tw) " Al@(@)),

which implies that A(w) depends only on the future. Thus Proposition 4.7
implies that we have for every (T, A)-invariant measure m that projects to i
in the first component, its disintegration only depends on the future.

Now let m be a (T, A)-invariant measure that projects to w in the first
component. Let {m,, : ® € Q}beadisintegration of m. Thus A(w)m, = mry,
for w-almost every w. We define

Mgy = (H;’(p(w))*mw, we Q. 4.17)
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One readily checks that A(a))*ﬁzw = M7 (y). Thus the family of conditional
measures {ii,, : @ € Q} is a disintegration of a (T, A)-invariant measure 7.
Thus m,, depends only on the future. In other words, for p-almost every w,
we have for each o’ € W} () that

(Hj),ga(w))*mw = (Hz)/,(p(w/))*mw/- (4.18)

Since ¢(w) = ("), by condition (i) of the definition of stable holonomy we
have

my = (H(; Hs/,(p(w/))*mw’ = (H(f)/’w)*ma)’- 4.19)

()0 Mo
In other words, {m,, : @ € R} is s-invariant p-almost everywhere, concluding
the proof of the s-invariance.

As for the u-invariance, we just need to conjugate A to a new A via the
unstable holonomy so that A is constant along the local unstable set W}/ ()
for p-almost every w € 2. Then by repeating the same argument above and
using the remark following Proposition 4.7, we obtain that m,, is u-invariant
n-almost everywhere. This completes the proof. O

Lemma 4.9 Assume that L(A, u) = 0and w has the bounded distortion prop-
erty. Then there exists a full measure set K C 2 on which one has measurable
stable and unstable holonomies. Moreover, every (T, A)-invariant measure
m on Q x RP! that projects to p in the first component has a continuous,
su-invariant disintegration over supp(u|x) N K.

Proof Since L(A, n) = 0, Lemma 4.2 applies and yields for each § with
0 < § < «a, the sets Ks(N, §), K, (N, §) along with continuous families of
holonomies satisfying the estimates required to apply Proposition 4.8. Thus,
applying Proposition 4.8, choose a (T, A)-invariant measure m on Q x RP! and
consider its disintegration {m}, which is invariant almost everywhere with
respect to the stable and unstable holonomies. Recall that both |y o Ks(N, 8)
and |y Ku(N, 8) have full measure. We let

K5 = (U K, (N, 5)) N (U K, (N, 3)) . (4.20)

N>0 N=>0

As in [7], we can now produce a disintegration {m,,} over supp(u|k;) N K,
which is holonomy-invariant and continuous. For the reader’s convenience we
give the argument. In the following argument, we will work in the full measure
set K5 so that the stable and unstable holonomies are defined on the local stable
and unstable set of w € K3, respectively.
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Foreachw € Ky, if m,, already exists for some o’ € Wi . (@) from the orig-
inal disintegration of m above, then we may define m: , via H* (@', @")xm,y
foreach w” € W} (w).If m,y does not exist from the original disintegration of
mforall ' € W (w), then W () is a u-zero measure set and we may pick
any probability measure m}, and extend via m} , = H*(w, »"),m;, for each

"€ W (w). Clearly, the new family m}, is invariant under the stable holon-
omy at every @ € Kg. On the other hand, due to the almost sure invariance
of the original disintegration m,, of m, the new family m’, coincides with m,,
for pu-almost every w in K, and hence it also coincides with m,, for p-almost
every w. In particular, m} is again a disintegration of m. Similarly, we may
construct another dlslntegratlon my, of m which is invariant under the unstable
holonomy at every w € K. Note that the set K = {w e Ks : = m}} has
full p-measure. _

Clearly, foreach 1 < j < £, [0; j1N K~has full -measure in [0; j]. By
the local product structure of w, [0; j] N K has full = x u*—measure in
[0; j]. Thus by Fubini’s theorizm, for ™ -almost every o™ € [0; j]~, we have
that 7 [({ow~} x [0; j11) N K] has full x*-measure in [0; j]*. Note for each
w € [0; j] with 7~ (w) = w~, we have ™ x [0; j]T = W{(‘)C(a)). Thus for
each 1 < j < ¢, we may choose an o) € [0; j]1 N K5 such that

wt (7 (W@ N B)) = 1t (10; 1),

By the definition of ™, we then have that

7

I_l
~

U (a)(j)) N K)):|

j=1
14
(U (W (@) N K))
j=l1

wtqo; jpt =1. (4.21)

Il
~.
i MN
N

In other words, for z1-almost every w € K5, we have @) Aw € Wi (a)(“)O) )n
K. Now for each w € K s, we define

~s _ 1758 . _ qgs L pgu ol
My @0 Aw, @ mw(“’o)/\w_Hw(‘uo)Aw,w Hw(")O),w(‘“O)/\a) mw(“’O)'

Recall that by the proof of Lemma 4.7, the stable and unstable holonomies
are continuous on each local stable and unstable set, respectively. Thus the
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equalities in the definition of m, above imply that for each 1 < j < ¢, we
have that 2}, is continuous in w at [0; j] N K. Thus 7}, is continuous on K.
Clearly, the construction also implies that i}, is s-invariant. On the other hand,
by invariance with respect to stable holonomies, we have that for each w such
that @) A @ € Wiee (@) N K4, we have
mi’ - H(f)(wo)/\a),a) ' mtuo(“’O)Aa) - Has)(“’O)Aa),a) ' mio(‘”o)/\a) - mi’)

Thus, we have m} = m;, for p-almost every @ € Ks, and we obtain an s-
invariant and continuous disintegration {s2; } of m. Producing in an analogous
fashion a u-invariant and continuous disintegration {m} }, we find that m} =
m in supp(u|g;) N K by continuity and almost everywhere coincidence. This
produces an su-invariant continuous disintegration {m,,} over supp(u|g;) N Ks
by setting m,, = m;,. By continuity, we also have invariance under (7', A),
thatis, A(w)m, = mr, for every w € supp(i|k;) N Ks. Clearly, any K can
be chosen to be the desired K. |

4.3 Application of conformal barycenter

Let H € C be the upper-half plane, ID the open unit disk, and S! = 9D
the unit circle. It is a standard result that the Mobius transformation asso-
ciated with an element of the group SU(1, 1) preserves S! and D. Here

P = (‘ib) e SuU(, 1) if |a|2 — |b|2 = 1 and the Mobius transformation

ba
associated with itis P -z = %. It is a standard result that SU(1, 1) is
conjugate to SL(2, R) through the SL(2, C)-matrix Q = 1_—+ll (% _l.i ), that is,

0*SU(1, 1)Q = SL(2, R). In fact, we have the following commutative dia-
gram:

H——5H (4.22)

where all transformations are Mobius transformations, as well as homeomor-
phisms. Moreover, Q is a homeomorphism between their boundaries, that is,
a homeomorphism from RP! = R U {oo} = dH to S! = 9ID. We need the
following proposition from [25, Proposition 1].

Proposition 4.10 For each probability measure v on the unit circle S' con-
taining no atom of mass > %, there is an unique point B(v) € D, called the
conformal barycenter of v, so that the map v — B(v) is invariant under
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the Mobius transformation of SU(1, 1), that is, B(P,v) = P - B(v) for each
P e SU(, 1).

Lemma 4.11 Let (2, T, ), A, and K C 2 be as in Lemma 4.9. Then there
exists a family of A-invariant, su-invariant measures i, over supp(it|g) N K
such that for each w € supp(u|x) N K, my, is supported by at most two points
of CP!.

Proof We start with the continuous disintegration {m,, : @ € Q} of m over
w € supp(u|x) N K that we constructed as stated in Lemma 4.9. To produce
the family of measures {1}, we divide it into three different cases.

If i1, has an atom z(w) € RP! of mass > 1/2, we letri, = 8;(w)» thatis, the
Dirac measure (mass one) supported in this point z(w). By invariance of 7,
under the holonomies, it is clear that if 12,, has such a point z(w), then so does
my foreach pointw’in Wi (w)UW} (w). Moreover, z(w') = H(jj,a/ (z(w)) for
* € {s, u}, which exactly implies that 8, is invariant under the holonomies.
Similarly, by invariance of i, under A(w), we have that mr», has such a
point mass for all n € Z and A(®)+0;(w) = 8;(Tw)-

If m,, contains two atoms of mass 1/2 each, we set m,, = . Similar to
the argument of the case (1) above, we have that m,, falls into this case for
each point o’ in W} (w) U Wi (@) U Orb(w) and 11, is invariant under the
holonomies and A(w).

In all other cases, by Proposition 4.10, we define 11, to be the Dirac measure
supported at

z2(w) := 0~ B(Quiy,) € H, (4.23)

where B(Q ) is the conformal barycenter of the measure Q.1 of the unit
circle S'. Note again by holonomy invariance, if w is not in the two cases
above, then neither is m,, for each point o in W} () U W}’ (@) U Orb(w).
Moreover, for " € W} (w), we have QH ot ’w,Q_1 e SU(1, 1) which together
with Proposition 4.10 and the holonomy invariance of 71, implies that

H;, - 2@) = Hy, - (071 - B(Quiitw))
=07 '(0H} 07" - B(Quiiy)
= 07" B((QH}, 0. Quiy)
= 0" B((QH,, ;0™ Qi)
= 07" B(Qu(H, i)
= 07" B(Quiity)
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which in turn implies that 7 (w) is invariant under the stable holonomy. By a
similar argument we can establish the invariance under the unstable holonomy
and under A(w). O

4.4 Local su-invariance

In this subsection, we drop the assumption that p has bounded distortion
and assume only that it has a local product structure. Note that to ensure the
existence of the su-state when only assuming that the Lyapunov exponent
is small, we need the bounded distortion property of u so that we have the
integrability conditions on the measurable stable and unstable holonomies. But
to prove our main results concerning the positivity of the Lyapunov exponent,
we actually only need a “local su-state” for which a local product structure
suffices.

We adapt the techniques from [39] to produce a certain disintegration of
m that has local su-invariance. Throughout this subsection, we assume A €
CY(2, SL(2, R)) to be such that L(A, i) = 0 and we fix a § with % <§<a.

We start with the following consequence of the proof of Lemma 4.2. Recall
that K (N, §) was defined in (4.3).

I:emma 4.12 Let (2, T, 1), A, and 5 be above. Then there exists a C
C (8, N) so that the following holds true. For all o € K (N, ), all &
Wi (), and all j > 0, we have

S

HS = lim H! exists and || Hy. <C. (429

TiwTid nosoo Tid,Tiw j(T),Tja)”

Proof By (4.9), we have that

s _ . s,n CN
IH 0 =1 Jim HZ? < e,

A direct computation shows that

HY = Aj@H A ()7

Tio,Tiw
which implies the existence of

S e . s,n
Hyjorio = W Hrig 15, and
NS o ol < WHTS ol 1A @) - 1A @)
In particular, for all 0 < j < N, we have

1HY. o il < €N (4.25)
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Fixa j > N. Then we have ||[Aj(w)|?> < ¢®~%/ since w € K, (N, 8). Using
(4.8), a direct computation shows that

1857 =114 @)85" 7 Aj (@)~

< Cel@ D) f@=8)nt)) y—atn-t)

Ti&Tiw

— Col@20)j ,~bn
< Ce %,

where the last inequality follows from the fact 26 > «. Combining (4.24) and
the proof of (4.9), we obtain for all j > N

I\ T’a’ riol = ”H wa” eXp (C Z ”5” ||) < Ce*N. (4.26)
n=N

Combining (4. .25) and (4. 26), we clearly obtain the latter half of (4.24), where
we may take C = max{e3CN, Ce2CN). m|

So we may choose N large so that K (N, §) = Kg(N,8) N K, (N, §) (which
were defined in (4.3)) has measure sufficiently close to 1 and w(K (N, é) N
[0; j]) > Oforall 1 < j < £. We set Kg = K(N,8) N[0; j]fort € {s, u}
and K/ = K! n K.

Lemma 4.13 Let (2, T, 1), A, § be as in Lemma 4.12 and let K (N, §) be as
above. Then for every (T, A)-invariant measure m that projects to ju on the first
component, there is a disintegration {m,, : v € Q} of m that is su-invariant
for u-almost every w € K(N, §).

Proof We only consider the case of s-invariance, as u-invariance can be estab-
lished in a completely analogous way. We break the argument into three steps.
Step 1. As in the proof of Proposition 4.7, the first step is to construct a certain
o-algebra B to which we can apply the invariance principle as formulated
in Proposition 4.5. By 4. 9) K (N, d) is s-saturated. Slmllarly, K, (N 8) 18
u-saturated. Fix a a)f € K/ and set § = Wil (w/) N K/. For each o' € S,
we define (o) = 1if T(W} (o)) N Wloc(a)”) = @ for some o’ € S;
otherwise, we define 2 < r(w’) € Z4 U {00} be the largest number such that
TH W (@) N W (o) =D forall @’ € Sandforall 0 < i < r(w'). Now
we define the o -algebra B € M to be the one generated by the family

(T'(W (@) 10/ €8S, 0<i <r()}

By our definition of r(w’), it is clear that the sets in the family above are
mutually disjoint. Thus, 3 contains all B € M such that for all " € S and all
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0 <i < r(w),either BN T"(Wﬁ)c(w’)) = Jor Tj(Wl‘Z)C(a)’)) C B. First we
claim that B satisfies condition (1) of Proposition 4.5. The proof is analogous
to the one of Proposition 4.7. Indeed, T B is the o-algebra generated by

(TN WS ()0 €S, 0<i <r(@)),

which is again a family of mutually disjoint sets. Since 7" (“’/)(Wl“oc(a)’ )) €
Wi .(@") for some w” € S, one readily checks that B € B implies B €
T B. Hence, we have that T3 contains B, or equivalently, T-'B C B. More
generally, for all n > 1, we have that 7" B is generated by {Ti+"(Wls0C(a>’ )
o' €8, 0=<i<r(o)}, which implies that 7", n > 1 generates M mod
0. Indeed, since M is generated by cylinders, we just need to show that all
[k; 1] are contained in T" B for some large n. Taking any n > |k|, it is clear
that [k;[] € T"B

Step I1. Similarly to the proof of Proposition 4.8, our second step is to conjugate
A to some A, which is measurable with respect to B. We define A by

Alw) = H = A(T'o) 4.27)

;a)’Ti—H /A(CU)H

Tiw w

if o € T'(Wj.()) for some &' € S (so thatw € Wi (T'w') )and 0 < i <
r(w'); and

A(w) := A(w) otherwise. (4.28)
Clearly, if we set B(w) as

HS . .. weTl (W €S, and0 <
Bw) = | Horior @ €T (Wipe(@)). & J =@y )
I, otherwise,

then A(w) = B(Tw)A(w)B(w)~!. In other words, A is conjugate to A via
B. Combining this With the fact that o’ € § C K (N, §) agd Lemma 4.12,
we have ||B(w)|| < C for all w € 2. In particular, flog |A|ldpn < oo and
L(A, ) = 0. By definition, A is constant on Ti(Wls()c(w/)) for any @’ € S and
any 0 < i < r(’), which clearly implies that A is B-measurable.

Step 111. Following the second half of the proof of Proposition 4.8, for any
given disintegration {m,, : @ € 2} of m, we can set

ey = B(@); 'my, o € Q. (4.30)

Then it becomes a disintegration of a (7', A)—invariant measure /2. We can now
apply Proposition 4.5 to (B, A, m,) and obtain that {r1,} is B-measurable. In
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particular, 71, is constant on Ti(Wl‘Z)C (o)) forallew’ € Sandall0 <i < r(o).
Taking i = 0, then a similar proof to (4.19) yields

(H) )smey =mg forallo,& € Wi (o) andall o’ € S (4.31)

Thus we have obtained s-invariance for all points in

W@ : @ € Wi (@)},

weS

which contains

U Wi :oe Wi ()nki)
werL(’)C(wj)ﬂKj

By local product structure of p and following the proof of (4.21), we have
that the set above is a full measure subset of K/. Since 1 < j < ¢ is arbitrar-
ily chosen, we thus obtain s-invariance of {m} on a full measure subset of
K (N, ). O

Now we can apply the proof of Lemmas 4.9 and 4.11 (replacing K5 by
K (N, §)) to obtain the following corollary.

Corollary 4.14 Using the setup of Lemma 4.13, there is a disintegration {1}
of m so that w +— my, is continuous and su-invariant on supp(K (N, §)) N
K (N, 8). Moreover, there is family of measures {1} that is su-invariant on
supp(K (N, 8)) N K(N, §) and for each w, supp(m,,) contains at most two
points.

The main goal of the present Sect. 4 is to obtain the following corollary.

Corollary 4.15 Suppose (2, T) is a subshift of finite type and n is a T-
ergodic measure that has a local product structure. Let A : Q2 — SL(2, R)
be a cocycle map so that L(A, u) = 0. Then for every periodic point p (of
period n) such that 2L(A, p) < % there exists a set Z, C CP!, invariant
under complex conjugation and under A, (p), and consisting of either one or
two points, with the following property. Let q be another periodic point such
that2L(A, q) < 5. If po = qo, then

Hy 40 p(Zg) = H}, 40 (Zp). (4.32)

Proof Since L(A, u) =0and L(A, p) < %, by Lemma 4.4, we clearly have
that p € supp(u|g (v.s)) N Ks(N, 8) for some § < § < a. Thus we may apply
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Corollary 4.14 to obtain the measure 7, defined at p whichis A, (p)-invariant
and su-invariant. Hence, if we define

Zp = {z(p),2(p) : z(p) € supp(ifi )},

then Z, consists of at most two points. Moreover, it is clear that Z, is su-
invariant, A(p)-invariant, and invariant under complex conjugation.

Since ¢ is also a periodic point such that L(A, g) < 5, we can certainly
find % < & < «a so that both p and g belong to supp(u|x (n.,s)) N K(N, 8).
Thus Z, and Z, are both defined. By su-invariance of Z, and pp = qo, we

have
Hcl;,qu(Z‘I) = H;,q/\p(zp)

as desired. |

5 Positivity of the Lyapunov exponent I

Throughout this section we assume that & C A” is a subshift of finite type
and u is a T-ergodic probability measure that is fully supported on €2 and has
a local product structure. We fix a non-constant f € C%(€2, R) and consider
the one-parameter family of Schrodinger cocycles (7, A¥). We shall apply
the techniques from Sect. 4 to study the positivity property of the Lyapunov
exponent.

In Sect. 5.1, we show under a very general condition that the set of energies
with zero Lyapunov exponent is a discrete set. In Sect. 5.2, we apply the same
techniques to the scenario where we have global existence of holonomies and
obtain a stronger result for the corresponding Schrodinger cocycles. Namely,
we show that under the same general condition, the set of energies with zero
Lyapunov exponent is a finite set. Global existence of the holonomies may be
obtained if the || - || o norm of the sampling function is small or if the sampling
function is locally constant.

5.1 General case: positivity away from a discrete set

Throughout this subsection, we assume that Eg € R is an accumulation point
of

Zy={E:L(E) =0}.
Clearly,

Eoex, (5.1)
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since Zy C ¥ and X is closed.

Definition 5.1 We say that a periodic point ¢ is y-bunched at E if
2L(AF, q) <y <a. 5.2)

We fix p to be a periodic point that is 5-bunched at Eg. We let n, denote
the period of p.

Lemma 5.2 L(A®0, p) = 0. In particular, Ey € o(Hp).

Proof Let E, — Eo, E, # E¢ be a sequence in Zy. Recall from (5.1) that
E() € X.

Assume that p is hyperbolic for Eg (i.e., the matrix Afg (p), which serves
as the monodromy matrix at energy Eq for the periodic potential associated
with p, is hyperbolic). Then p is still hyperbolic and 5-bunched in a small
neighborhood J of Ey. Let Ey € o (H,y) for some o’ € Q2. By Proposition 2.10
and by choosing § > 0 small, we have J N o (H,) # & for any w such that
Orb(w) N Bs(w') # @. On the other hand, by Proposition 2.7 there is an
r = r(8) so that for any I} = [0,n;] € Z, there is a periodic orbit g with
period ny = ny +r + 1 so that d(T/q, T/p) < S forall 1 < j < n
and d(T"1 7" 1g, ') < 8. An immediate consequence is that o (H,) N J #
@. Moreover, as n| goes to infinity, it clearly holds that L(AZ, ¢) tends to
L(AE, p) uniformly for all E € J. In particular, by choosing n; large, we
have that ¢ is 5-bunched for all E € J as well. We fix such a periodic point g.

Clearly, po = go. Thus we may define

E .__ u,E s, E
HE = HL  Hy gy (5.3)

s, E u,E . .
foreach E € J. Here H),',», and H, ., are the holonomies corresponding

to AF, which are well-defined since both p and ¢ are 5-bunched through J.
Moreover, they are holomorphic on J since they are limits of uniformly con-
vergent sequences of holomorphic functions H*"(E) or H*"(E) on J. Thus
we have that E — HF is analytic. Let Z, = Z,(Ey) be as in Corollary 4.15.
By passing to a subsequence, we may assume that

{s(En)} for all n,
Zp(En) = {{u(En))} for all n, or (5.4)
{(s(E,), u(E,)} foralln.

Thus, we may extend the definition of Z,(E) to all E € J so that Z,(E)
consists of one or two functions that are analytic on J. By Corollary 4.15,

Z,(E) :=HE . Z,(E) (5.5)
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is invariant under the monodromy matrix of ¢ for infinitely many E,. By
analyticity, it follows that Z,(E) is invariant by the monodromy matrix of
q for every E € J. Since Z,(E) is real, so is Z,(E), which implies that
the absolute value of the trace of the monodromy matrix of ¢ cannot become
smaller than 2 anywhere in J. Since J is open and E € o (H,) cannot be an
isolated point, we must have J N o (H,;) = &, which contradicts our choice
of g. It follows that p is not hyperbolic for Ey. In particular, Eg € o (Hp). O

Choose a small open disk D C C around Ej such that p is 5-bunched for

all energies E in the closed disk D. Recall that by Proposition 2.11, A(E) =
Tr(A fp (p)) is monotonic on each connected component of A~1(=2,2). Thus

we may also assume that D is small enough so that, through D\{Eo}, A(E)
is different from —2, 2, 0. According to Sect. 2.2, if Ey ¢ 9(o (H))), we can
then define two holomorphic functions u, s : D — CP!, distinct everywhere,
such that u(E) and s(E) are eigendirections of AE (p); otherwise we can
still define holomorphic functions u, s on the ramlﬁed (at Eo) double cover
ofw : D — D, giving (distinct) eigendirections when E € D\{Ep)}, but
taking as value at Ey the single real eigendirection of An;’( p). Moreover, for
n(E) € R, s(E) and u(E’) are real if and only if JT(E) not in the interior of
o(Hp).

Lemma 5.3 If q is a periodic point that is 5-bunched through E € D and
qi = pj forsomei, j, theno(Hp) N D = o(Hy;) N D.

Proof Since o (H,) = o(Hrn,) for any w and for any n, we may assume
that pg = go. Then similarly to the proof of Lemma 5.2, we define HE =
H;;\lf,’q . H;:gAp for E € D. Since Ey € o(Hp), we consider two different
cases.

If Eg ¢ 0(0(Hp)), then D No(H,) = D N R by our choice of D, and

Z,(Ey) is anonempty subset of {u(Ej), s (Ey)}. Following the same argument
that showed that quo (¢) has a real eigendirection in the proof of Lemma 5.2,
we obtain that A fq (q) of the present lemma has a non-real eigendirection for
all E € D N R. This implies that D N R € o (H,), and the claim follows in
this case.

If Eg € d(o(Hp)), then by our choice of D we have D N X, is either
[Eg, E4) or (E_, Ep], where

(E_,E+)=DnNR. (5.6)
For simplicity, we will assume thatint DNY = [Eyp, E4). Recall  : D— D

is the double cover map of D ramified at Ey. For each n, choose a preimage
E, € n~Y(E,). Then Z,(Ey) is a subset of {u(E,), s(E,)}. As in the proof
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of Lemma 5.2 and up to replacing E,, by a subsequence, Z,(E,) is always of
the form Z » (En), where

(s(E)} forall E € D,
Z,(E) = { {u(E)) forall E € D, or (5.7)
{(s(E),u(E)} forall E € D.

Notice that if JT(E ) € (E_, Ep), then Z p(E ) consists of real directions; if
n(E ) € (Eg, E4+),then Z » (E ) consists of non-real directions. We again define

Z,(E) = H"B) . 7 ().

Then Z p(E ) is invariant under AZ;E) (¢) whenever E = E,,. By the fact that
H™) y, and s are all holomorphic on 13, it follows that Z p(E ) is invariant

under AZQ(E) (g) for all E € D. This implies that qu (g) has at least one real
eigendirection for £ € (E_, Eg) and has at least one non-real eigendirection
for E € (Eyp, E). This can only happen when D No (H,) = [Eo, E4), and
the claim follows in this case. O

Lemma 5.4 If q is any periodic point, then o (Hy) N D = o (Hp,) N D.

Proof Fix an arbitrary periodic point ¢g*. Let us say that a periodic point ¢
is (€,0)-good, 0 < 6 < € < 1, if it spends at least a 1 — € proportion of
its iterates within distance § of p, and at least a € /2 proportion of its iterates
within distance § of g*. By Proposition 2.7 and similar to the argument leading
to the choice of g in the proof of Lemma 5.2, we see that the set of (¢, §)-good
periodic points is not empty for any choice of 0 < § < € < 1. Moreover, if €
is sufficiently small, then an (¢, §)-good ¢ is 5-bunched for energies E € D.
Moreover, since certain iterates of g are close to p, we clearly have ¢; = p;
for some i, j. By Lemma 5.3, it then holds that o (H,) N D = o (H,) N D for
all such ¢’s. We fix such a small € for the remainder of this proof.

First we show o (Hy+) N D € o (Hp) N D. If this is not true, then there is
some Ey € (0 (Hy+) N D)\o (Hp). In particular, we have

¢ ;= min{d(Eq, 0 (Hp)), d(Ey, D)} > 0.
Then for an (e, §)-good periodic point g, we also have that
¢ =min{d(Ey, o (Hy)),d(Eop, dD)} > 0.

By Proposition 2.10 and the fact that Orb(g) N Bs(¢™) # @ for (¢, §)-good
points, we have for sufficiently small § and an (e, §)-good periodic point g
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that
o (Hy+) S Bs (o (Hy)).

Clearly, this implies that d (Eo, 0 (Hy)) < % and we obtain a contradiction. So
the first part follows.

Now we show o (Hp,) N D C o (Hy+) N D. Suppose this is not the case. By
the first part, there is an Eg € (0 (H),) N D)\o (Hy+). In particular, we have

& := min{d(Eo, o (H,+)), d(Eg, 0D)} > 0.

Notice that Orb(g*) N Bs(T™q) # @ for an (¢, §)-good periodic point p and
for some m € Z. Thus by Proposition 2.10, and by choosing § small (the
smallness of which is independent of ¢ or ¢*), we have

o(Hrng) S Be (0 (Hyr)).

Since o (Hymg) = 0 (Hy,) and Eg € o (H,) N D = o (Hy) N D, we obtain

g
d(Eo, o(Hy»)) < 5.

which is a contradiction and the lemma follows. O

By (2.17), the spectrum X is the closure of the union of the spectra of
periodic points. Thus Lemma 5.4 implies that ¥ N D = o (H),) N D. For each
T-ergodic measure v on €2, we let X, denote the set such that o (H,) = %,
for v almost every w; see, for example, [32].

Lemma 5.5 Forany T-ergodic measure v on 2, we have ¥, N D = o (Hp,) N
D. Moreover, L(AE; v) =0 forall E € o(Hp) N D. In particular, L(E) =0
for all such E’s.

Proof Since we have o (H,,) € ¥ foreachw € Qand ¥XND = o (H,)ND, it
clearly holds that X,V D C o (H,)ND.Onthe other hand, if E ¢ X, then the
sequence {AL (T"w)} ez is uniformly hyperbolic for v-almost every w € €,
which in turn implies that L(AE; v) > 0; see, for example, [43, Theorem 3].
Thus L(AE; v) = 0implies that E € X,. So we only need to prove the second
part of the lemma.

Assume that the statement is false. In other words, we have L(Af; v) > 0
for some E € o(H,) N D. By [30, Theorem 3], for each € > 0, there is
a periodic point ¢ € 2 so that |L(AE;v) — L(AE, q)| < €. Thus there is
periodic point ¢ € 2 so that L(A®, ¢) > 0. In particular, E ¢ o (Hy), which
contradicts Lemma 5.4, concluding the proof. O
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Lemma 5.6 Let Eg be an accumulation point of Zy = {E : L(E) = O}.
Assume that there exists a periodic point p that is 5-bunched at Eq. Then

(1) The connected component I of Eq in the spectrum is isolated,
(2) L(AE;v) =0 forall E € I and all T-ergodic measure v on Q.

Proof By Lemma 5.2, Eg € o(H)). Let I be the connected component of
o (H)) that contains Ey. Notice that p is %—bunched for every E € [ since
L(AE, p) =0on I.Let S be the set of accumulation points of Z N1 Itis
clearly a closed and non-empty subset of / since Eg € S. Moreover, applying
Lemma 5.5 to any E € S, we see that there is open disk D around E so that
L(E) = 0 on o(Hp,) N D which contains I N D. This implies / N D C §.
Thus § is open in I as well. Thus we have § = I. Clearly I € X. Applying
Lemma 5.5 to the boundary points of /, we obtain ¥ N D = o (H,) N D for
some disk D around the boundary points. Thus, / is an isolated component of
¥. Applying Lemma 5.5 to all E € I again, we obtain that L(A*, v) = 0 for
all E € I and for all T-ergodic measure v on 2. O

We have now collected all the tools to prove our main theorem.

Proof of Theorem 1.1 Suppose to the contrary that there are Eg € {E :
L(E) =0}and E,, € {E : L(E) = 0}\{Eo}, n € Z4, such that E,, — E
as n — oo. Since L(Ey) = 0, we can choose a %—bunched periodic point
by [30, Theorem 3]. It now follows from Lemma 5.6 that Ej belongs to a
non-degenerate compact interval I, which is a connected component of X,
as well as of all periodic spectra o (H),). In particular, for the fixed point of
T, the unique connected component of its spectrum is an interval of length
4. Since having such a connected component is only possible for constant
periodic potentials by Proposition 2.13, it follows that the potential associated
with each periodic point must be constant. This implies that f itself must be
constant; contradiction. O

5.2 Special cases: positivity away from a finite set

In this subsection we consider sampling functions f : Q@ — R for which
we have global existence of the holonomies in the sense that the cocycle AZ
admits canonical holonomies as defined in Sect. 2.1.5 for all £ in a complex
neighborhood of the convex hull/ € C of the spectrum X /. Since AE depends
on E holomorphically, we obtain that the holonomies are holomorphic on ¢/
as well. In this case, we are able to improve the result we obtained in Sect. 5.1.

There are two types of f for which we have such global existence of
holonomies. One is the set of f € C*(€2, R) for which AF is fiber bunched in
the sense of Definition 5.7 below for every E in the convex hull of the spectrum
Y. Such an f will be called globally fiber bunched (or just globally bunched).
The other is the set of locally constant f’s.
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5.2.1 Fiber bunching and existence of holonomies

Definition 5.7 We say that A € C¥(2, SL(2, C)) is fiber bunched if there
exists ng > 1 such that for every w € €2, we have

| Ang (@)[1* < €. (5.8)

Equivalently, there is 6 < « such that ||A,,0(a))||2 < 0 for every w € Q.

Note that fiber bunching is clearly a C%-open condition. A fiber bunched
cocycle has canonical holonomies as defined in Sect. 2.1.5. In fact, we can run
the proof of Lemma 4.2 to show that for o’ € W} (®), HZ;’) = A_, ()7L
A_,(w) converges uniformly on €2 to the unstable holonomy H (Z,w/' Similarly

forw’ € W} (w), we have that HZ’,’Z}' = A, ()" A, (w) converges uniformly
on €2 to the stable holonomy H o Indeed, to obtain the uniform convergence
to holonomies, the only condition we used in the proof of Lemma 4.2 is the
condition in (4.3), which is exactly the fiber bunching condition (5.8). We
also note the following: If A’ € C*(2, SL(2, C)), t in some domain U C
C, is a continuous family such that t +> A’(w) is holomorphic for every
w € Q and A’ is fiber bunched for every 7, then the stable and unstable
holonomies depend holomorphically on ¢. Indeed, in this case, the holonomies
are limits of uniformly convergent sequences of holomorphic functions. In
particular, we may consider Schrédinger cocycles A€ with sampling function
f e CYRQ,R). If || flloo is sufficiently small, then AE is fiber bunched in a
complex neighborhood of the convex hull of the spectrum X. To see this, we
first see that (f _01) is fiber bunched for all E € [—2, 2] since they are all
elliptic or parabolic. By openness of fiber bunching, we then have that A¥ is
fiber bunched for all E in a complex neighborhood of [—2, 2] provided || f|so
is sufficiently small. If necessary, we can then choose || f||oo sSmaller so that
the convex hull of X ¢ is contained in such an open neighborhood. Thus f is
globally bunched.

5.2.2 Locally constant cocycles

The other class for which the canonical holonomies exist for obvious reasons
is defined as follows.

Definition 5.8 We say that A : Q@ — SL(2, R) is locally constant if there
exists a no such that for each v € 2, A(w) depends only on the cylinder set

[—n02 w—no’ sy wn()]-

Evidently, locally constant cocycles are «-Holder continuous for all @ >
0. Locally constant cocycles might not be fiber bunched. However, the
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holonomies exist trivially. Indeed, if A is locally constant, then there is a
ng € Z4 so that for all w and all n > ng we have

Hr,n g0
w,wt T Tw,wt’

where 7 € {s, u} and o* € W (w). Thus H ! "0 are exactly the holonomies.

Now we consider Schrodinger cocycles AE W1th potential f : Q@ — R. If
there is a ng € Zy such that f(w) depends only on [—ng; w_p, . .., @p,l,
then A® is locally constant for all E € C. In other words, a locally constant
sampling function induces locally constant Schrodinger cocycle maps.

5.2.3 Energies admitting an su-state

Again, our objective is to study the energies for which L(E) = L(AE, n) =0.
We will point out how the desired statements will follow by simple special-
ization of the proofs of the lemmas in Sect. 4.

Assume that A € C(§2, SL(2, R)) has canonical holonomies H} T o+ Where
T € {s, u}. Recall that an su-state for A is a (T, A)-invariant measure m with
a disintegration {m, : w € 2} that is invariant under the cocycle and the
holonomies. In particular, for p-almost every w € €2, we have

(D) A(w)smy = mre,

@) (Hcf)’a),)*mw = myy forevery o’ € W} (w).
(3) (HY )«mey = mgy forevery o € Wi (o).
Then we have the following invariance principle:

Proposition 5.9 If L(A, u) = 0, then there exists an su-state for A.

Proof This follows from Proposition 4.7, noting that the canonical holonomies
exist and are continuous on €2, and therefore the conditions (4.5) and (4.6) are
automatically satisfied. O

One of the main properties of su-states is the following.

Proposition 5.10 If m is an su-state, then it admits a disintegration for which
the conditional measures m,, depend continuously on w and are both s-
invariant and u-invariant.

Proof We take an su-state m. Then we run the proof of Lemma 4.9 where we
constructed the disintegration m which is continuous on supp(K;s) N Ks. In the
present setting, we have K5 = 2 since we have canonical holonomies. The
result follows. O

By continuity and almost everywhere coincidence, all the invariance prop-
erties in the definition of su-states may then hold true for every w € Q2. From
now on, we always choose such a disintegration for an su-state m.
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5.2.4 Finiteness of the set of energies admitting su-states

Now we return to the Schrodinger case. Recall that by general principles,
L(E) =0implies E € ¥ C R. Since each of these real energies gives rise to
an su-state for A, let us consider the following set (whose dependence on 1
and f we leave implicit):

F ={E € X : there is an su-state for AE}. (5.9)

Lemma 5.11 SupposethatO < o < land f € C*(R2, R) is globally bunched
or locally constant. Assume that F is infinite. Let p,q € 2 be two periodic
points of T. Then o (H),) = o (Hy).

Proof First, we consider the case that p; = ¢; for some i, j € Z. Since
o(Hy,) = o(Hrny) for any w and for any n, we may assume that py = qo.
Recall in this case there is a unique g A p € W} (g) N W;i .(p). Assume that
np is the period of p and n, is the one of ¢. By our choice of f, we may choose
¥ C R to be a compact interval containing the spectrum ¥ and & < C to
be a complex neighborhood of ¥ where AZ has canonical holonomies for all
E € U. Recall that under the conditions of the present lemma, the holonomies
are holomorphic functions on /.

By the arguments in the proof of Lemma 4.9, Corollary 4.15, and the exis-
tence of canonical holonomies, we can find for each periodic w € €2, a subset
Z, C CP! consisting of at most two points that is invariant under A(w) and
the holonomies. In particular, for the periodic point p with period n,, Z, is
invariant under A, » (p) and

Hls,’qu(Zp) = H; (Z,4) whenever qo = po. (5.10)

\qAp
Note thatif Tr(A, ,(P) # 0, then Z, must be a subset of the eigendirections of
Ap,(p).In particular, for A, »(p) with nonzero trace, A, »(p) is elliptic if and
only if Z, is non-real. We let {s(E), u(E)} denote the pair of eigendirections
of Afp (p). Note that both s (E) and u(E) are continuous on ¥ and analytic on

each spectral gap or on the interior of each connected component of o (H)).
We define

E _ puE s, E
H™ = Hgpq - Hplgnp: (5.11)

which are holomorphic in E on a complex neighborhood U/ of %.
Let Ep be an accumulation point of F. Then, similarly to the proof of

Lemma 5.2 or 5.3, we can find a sequence {E,},>1 in F so that E, — Ej,

@ Springer



908 A. Avila

E, # Eo, and

{s(E,)} foralln > 1,
Zy(Ey) = { {u(Ey)} foralln > 1, or (5.12)
{s(E,),u(E,)} foralln > 1.

Thus we may extend the domain of Z,(-) from {E,, n > 1} to Y. Then we
define

Z,(E) := HE(Z,(E)) (5.13)

and we get that Z,(E,) is invariant under Af; (g) for all n > 1. By the
continuity and analyticity properties of HZ, s(E), and u(E), we obtain the
following conclusions: if Ey is in a spectral gap, then Z, (E) is invariant under
qu” (g) for all E in the closure of that spectral gap; if Ey is the interior of a
connected component of o (H),), then Z, (E) is invariant under qu" (g) for all
E in that connected component.

Now by the same arguments as in the proof of Lemma 5.2, if Eg is in a
spectral gap of H),, then it is away from o (H,) with a uniform distance for all
periodic points g. But Eg € X since it is an accumulation point of F. Thus Eg
can be approximated by o (H,) for a certain choice of g, a contradiction. We
may conclude that Ey € o (H)p). So we may let I C o (H)) be the connected
component containing Ey. Now we claim that

Z,(E) = HY(Z,(E)) is invariant under qu () forall E € £. (5.14)

If Eq is in the interior of /, we have already obtained that Zq (E) is invariant
under A fq (g) forall E € I.1If Eg belongs to the boundary of /, then similarly
to the proof of Lemma 5.3, there is an open disk D centered at Ey with ramified
(at Eg) double cover 7 : D — D so that s and u are holomorphic on D. Thus
we may assume Z,(E) = ZP(E) where E € 7~ Y(E) and

{s(E)} forall E € D,
Z,(E) = Y {u(E)} forall E € D, or (5.15)
{(s(E),u(E)} forall E € D.

Then we define
Z,(E) == H"B)(Z,(E)), (5.16)
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so that Z p(E ) is invariant under AZ;E)(q) for infinitely many E, € D. By
the fact that H™), s, and u are holomorphic on [), we obtain that Zq (E’) is

invariant under AZ;E)(q) forall E € D. Descending to D, we obtain that
Z,(E) = HE(Z,(E)) (5.17)

is invariant under qu (¢) forall E € D. In particular, Z,(E) is invariant under
Af (q) forall E € (Eg — p, Eg + p), where p > 0 is the radius of D.

y the analysis above, we obtain that no matter whether Eq belongs to the
boundary or to the interior of /, after a finite number of continuations, we get
that Z,(E) is invariant under qu (q) for all E € X, as claimed. As in the

proof of Lemma 5.3, and by the fact that H” is real for E real, we obtain that
Z,(E) and Z,(E) are simultaneously real or non-real forall £ € ¥ 2 X.
This clearly implies that

o (Hp) = o (H,) whenever py = qo. (5.18)

Now we remove the condition p; = g; for some i, j € Z. As in the proof
of Lemma 5.4, we can find a periodic point p’ with some iterates very close
to p and some very close to ¢. In particular, p! = p; for some i, j € Z and
P, = qm for some k,m € 7Z. Thus by the first case we consider above, we
have

o(Hp) =o0(Hy) =0(Hy). (5.19)
This concludes the proof. O
5.2.5 Proof of Theorem 1.3

Theorem 1.3 is an immediate consequence of the following theorem.

Theorem 5.12 Suppose 0 < o < 1 and let f € C*(2,R) be globally
bunched or locally constant. If the periodic spectra associated with periodic
points of T in Q are not all identical, then {E : L(E) = 0} is finite.

Proof As{E : L(E) = 0} C F, the statement follows from Lemma 5.11. O

Remark 5.13 Theorem 5.12 is particularly easy to apply when 7 has a fixed
point, as the latter property ensures the presence of a constant potential and all
one needs to do in order to show that not all periodic spectra are the same is
to use the non-constancy of the sampling function to produce a non-constant
periodic potential. However, there are certainly cases of interest where the
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base dynamics given by T is fixed-point-free. In this case Theorem 5.12 still
provides a direct tool for proving that {E£ : L(E) = 0} is finite for many
globally bunched or locally constant f € C*(€2, R), one just needs to take a
closer look at the resulting periodic spectra.

Remark 5.14 Consider (Q%1, Ty, u) and assume that we can lift 4™ to an
ergodic measure p on (£2,7) that has a local product structure. Then all
our main results of this section, in particular Theorem 1.1 and Theorem 1.3,
can be applied to f € C*(Q™, R). Indeed, such an f can be lifted to an
f € C%(Q,R) that depends only on the future. Then all our results follow

since L, AE=D) = L(u*, AE-1),.

6 Positivity of the Lyapunov exponent 11

We first show that in the scenario of Sect. 5.2, we may remove the finite
exceptional set for an open and dense subset of sampling functions. Then we
apply similar arguments to the general case discussed in Sect. 5.1 and obtain
that for a residual set of sampling functions, the discrete exceptional set can be
removed. Throughout this section, we again assume that (2, 7') is a subshift
of finite type with a fully supported ergodic measure w that has a local product
structure. Note that for 0 < o < 1, the space C*(£2, SL(2, R)) is a Banach
space with the C“ norm defined by

[A(w) — A(@)]
[Allo, = [[Alloc + sup 7 o
w#o’ (C(), C())

; (6.1)
where ||A| o is the standard C? norm ||A|e = Sup,ecq IlA(w)||. Similarly,
the space C%(£2, R) is a Banach space with a C* norm that can be defined
analogously. We say that a subset of C* (2, SL(2, R)) has codimension infinity
if it is locally contained in finite unions of closed submanifolds with arbitrary
codimension. The same notion can be defined when we consider a subspace
or an open subset of C*(€2, SL(2, R)).

6.1 Special cases: uniform positivity in a dense open set

In this subsection, we assume that A € C%(£2, SL(2, R)) is fiber bunched
or locally constant, and hence admits canonical holonomies by our earlier
discussion.

We first introduce the follow notion of typical cocycles.

Definition 6.1 We say A is typical if there are two periodic points p and ¢
with periods n ), and n, such that py = g and the following properties hold:
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(1) An,(p) # I and Tr(A, () # 0.

(2) Let {s(p), u(p)} < CP! be the set of eigendirections of Ap,(p). Then
there is no Z, C {s(p), u(p)} so that H;Ap’q . H;’q/\p - Zp is invariant

under Anq @).

Since the definition involves two periodic points p and g, we may more
precisely say that A is typical with respect to (p, q). Note that A might be
typical with respect to many other pairs of periodic points as well. Clearly,
the defining conditions of a typical cocycle are open in the C° topology. Thus
they are open in the C* topology as well.

The notion of a typical cocycle in the present scenario was first introduced
in [7,8]. Our version is slightly different from theirs. It is adapted for the proof
of Theorem 1.5 below. In particular, employing the arguments from [7,8], one
can show the following result. We only sketch the proof for the convenience
of the reader.

Proposition 6.2 The set of typical cocycles as defined above forms a C*-open
and dense subset in the set of fiber bunched (resp., locally constant) cocycles.
Moreover, the complement of the set of typical cocycles has codimension infin-

iry.
Proof Following the arguments from [7,8], for each fixed pair of periodic
points p and g with pg = g, the complement of the set cocycles satisfying

conditions (1) and (2), denoted by B,, ,, is seen to be contained in the union
of a finite number of sets of the form

{A:H(A) =0},

where each A — H(A) is a C! submersion when restricted to suitable sets of
C%(2, SL(2, R)). Thus for each fixed pair (p, g), one can show that B), ; is
a submanifold of C*(£2, SL(2, R)) with positive codimension. Note that the
complement of the set of typical cocycles is

ﬂ By

p,q€Per(T): po=qo

Since there are infinitely many such pairs (p, g), the set above is contained in a
subset of C¥(€2, SL(2, R)) with codimension infinity. Thus, the complement
of the set of typical cocycles has codimension infinity and the set of typical
cocycles is open and dense. O

Remark 6.3 Let us mention that one can have the following type of perturba-
tion from [7,8]: for each fixed pair of periodic points p and g with py = qo,
one can modify the values of A at other points without changing its values at
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p and g as well as without changing its holonomies on the local stable and
unstable sets of these two points.

We first note the following consequence of our proof of Lemma 5.11, which
also recovers one of the results in [7]:

Lemma 6.4 Assume that the fiber bunched or locally constant A € C%(L2,
SL(2, R)) is typical. Then L(A, u) > 0. In particular, there is an open and
dense subset G of fiber bunched or locally constant cocycles whose complement
has codimension infinity and L(A, ) > O forall A € G.

Proof Assume that L(A, n) = 0. Let p and g be two periodic points satisfy-
ing the conditions in the definition of typical cocycles. Then by the proof of
Lemma 5.11, we know that there is a set Z,, C CP! consisting of at most two
points with the following properties:

(1) Zp is invariant under A, , (p),

(2) H;/\p,q . Hls,qup - Zp 1s invariant under A, (q).

Since p and g satisfy the conditions stated in the definition of typical cocycles,
we have that Anp (p) # I and Tr(Anp (p)) # 0. Thus property (1) implies
that Z, is a subset of {s(p), u(p)}. As a consequence, property (2) contradicts
condition (2) of the definition of typical cocycles, concluding the proof. O

Remark 6.5 Although Proposition 6.2 and Lemma 6.4 are stated for the space
of general cocycles, C*(€2, SL(2, R)), they hold true if one restricts to the
subspace of Schrodinger cocycles, that is, cocycles taking the form

Note that this subspace is equivalent to the space C*(£2, R). Indeed, it is not
difficult to see that the perturbation argument used in the proof of Proposi-
tion 6.2 works equally well when considering Schrodinger coccyles.

We note the following consequence of [4, Theorem 2.8].

Proposition 6.6 Suppose (2, T) is a subshift of finite type and w is T -ergodic
with a local product structure. Let f € C¥(Q2, R) be globally fiber bunched
or locally constant. Then E +— L(E) is continuous on R.

Indeed, [4, Theorem 2.8] implies that the Lyapunov exponent is continu-
ous on the subspace of C*(£2, SL(2, R)) of globally fiber bunched or locally
constant cocycles. If f € C*(€2, R) is globally fiber bunched or locally con-
stant, then there is a connected compact interval 3 that contains the spectrum
Y = Xy so that AE is fiber bunched or locally constant for all E 3. Thus
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L(E) is continuous on 3. On the other hand, L(E) is smooth outside of the
spectrum as (T, AF) is uniformly hyperbolic for E ¢ ¥ and the Lyapunov
exponent is pluriharmonic on the set of uniformly hyperbolic cocycles. Thus
L(E) is continuous on R.

Proof of Theorem 1.5 We focus on the case where f is globally fiber bunched
as the proof in the locally constant case is completely analogous.

Fix an f € C*(£2,R) that is non-constant and globally fiber bunched.
Thus we may find a compact connected interval 3 whose interior contains the
spectrum X ¢ so that AE=1) s fiber bunched for each E € 3. Note that fiber
bunching is a C° open condition and

VE : JAE=I) — AE=D)| = | fi — frllco- (6.2)

Thus, for any open neighborhood U/ € C*(2, R) of f that is sufficiently
small, we have for each g € U that £, C 3 and A®~®) is fiber bunched
for all E € 3. In the remaining part of the proof, we fix such a I/ and work
inside it.

If o(Hp, r) = o(Hy, ) for all periodic points p and g, then by total dis-
connectedness of €2, we can modify the value of f at ¢ without changing
its value along the orbit of p. On the other hand, if we choose E on the
boundary of the spectrum of o (Hy, ), we can certainly perturb f to g so that
L(A'E=8 4) > 0. Thus we may perturb f to a g that is arbitrarily close to
S with the property o (H), o) # o(H, ). Then we can instead work with g.
Moreover, when perturbing f to g, we can certainly choose p and g so that
Po = 40-

Thus, we may assume without loss of generality that f is such that
o(Hp, r) # o(Hy, y) for suitably chosen periodic points p and g such that
Po = qo. As described in Sect. 2.2, we again let {s(E), u(E)}gex be the
pair of functions associated with the eigendirections of Afl]f:_f )( p). Define

HE = H;’Ai’q . H;”gAp. Then by the proof of Lemma 5.11, if we define

Z,(E) to be
{s(E)} forall E € 3,
Z,(E) = { {u(E)) forall E € 3, or (6.3)
{(s(E),u(E)} forallE e,
then the set

[Ees:al D) HE - Z,(E) = HE - 7,(B)) (6.4)

@ Springer



914 A. Avila

is finite. On the other hand, the set

np

{E es: A () =+ or Tr(AE (p) = 0} (6.5)
is finite as well. Combining the facts above, we then have that
By = {E e¥: A% jsnot typical} (6.6)

is finite. Note that forall E ¢ By, AE=1) is typical with respect to (p, ¢). By
Remark 6.3 we can modify the values of AE~/) at different points and keep
its values at p and ¢, as well as their holonomies. In particular, by Remark 6.5,
after a finite number of perturbations, we can perturb f to g with the following
properties. There is a pair of periodic points (p’, ¢') with pj = g/, and AE~8)
is typical with respect to (p, ¢) for all E ¢ B and typical with respect to
(P, q") for all E € By. Thus we have that A£~8) is typical for all E € .
By the fact that the defining properties of typical cocycles are open conditions
with respect to the C” topology, property (6.2), and the compactness of T, we
obtain a neighborhood U/, C U of g so that for each h € U, we have

LA™ 1y > 0forall E € 3.

By Proposition 6.6, L(A*~) is continuous on R. On the other hand, it
is well known that (7, A€~") is uniformly hyperbolic outside of ¥ and
L(AE=M 1) tends to oo as | E| tends to 0o. Combining all these statements,
we find that for each i € Uy, we have

inf LLAEM, 1) > 0.
EeR
This concludes the proof. O

6.2 General case: full positivity for generic sampling functions

In this subsection, we return to the general setting of Theorem 1.1. Note that
in this case we have neither the canonical holonomies, nor global existence of
holonomies. Moreover, the discrete set can in principle be infinite. To remove
the discrete exceptional set, the price we need to pay is that we can only do it
for C*-generic sampling functions. For the remaining part of the section, we
fix 0 < o < 1 and consider the space C*(£2, SL(2, R)).

We start with a new definition of typical cocycles that is adapted for the
purpose of this section.
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Definition 6.7 We say A € C*($2, SL(2, R)) is typical if there are two peri-
odic points p and g with periods n, and ny, respectively, such that pg = go
and the following properties hold:

(1) p and g are 5-bunched, thatis, 2L(A, p) < § and 2L(A, q) < §.

(2) An,(p) # I and Tr(Ay, (p)) # 0.

(3) Let {s(p),u(p)} < CP! be the set of eigendirections of Ap,(p). Then
there isno Z, C {s(p), u(p)} so that H;Ap’q . H;’qu - Zp 1s invariant

under An, (q).

Note that the existence of the holomomies of p and ¢ in condition (3) is
guaranteed by condition (1). As in the previous subsection, we may also say
that A is typical with respect to (p, q), as the definition involves p and q.

Define

Ty :={A € C*(Q,SL(2,R)) : A is a typical cocycle} . 6.7)

It is a standard fact that A +— L(A, u) is upper-semicontinuous on
C%(R2, SL(2, R)). In particular, the set

Ly = {A € C%(Q,SL(2, R)) : 2L(A, p) < %} (6.8)

is open in C*(£2, SL(2, R)). Again by [30, Theorem 3], if 2L(A, n) < %,
there exists a periodic point p suchthat2L(A, p) < %, thatis, p is 5-bunched.
Then, as in the proof of Lemma 5.2, we may use the specification property
to produce infinitely many pairs of 5-bunched periodic points (p, g) so that

Ppo = qo- In particular, similarly to Proposition 6.2, we have the following:

Proposition 6.8 Suppose (2, T) is a subshift of finite type and n is a T-
ergodic measure that has a local product structure. Consider the space
C¥(2,SL(2,R)) for a > 0 and let 1, and L, be defined as above. Ty N L,
forms an open and dense subset of L. Moreover, Ly\7, has codimension

infinity in L.

Similarly to Lemma 6.4, Proposition 6.8 has the following consequence,
which has appeared in [39]. For simplicity, we define

Py ={A € C*(Q,SL(2,R)) : L(A, n) > 0}. (6.9)
Lemma 6.9 We have 7, < P,. In other words, L(A, ;1) > 0 for each A

that is typical. Moreover, the set Py contains an open and dense subset of
CY(2, SL(2, R)) and the complement of Py has codimension infinity.
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Proof If A ¢ Ly, then L(A, n) > 7 > 0.1f A € L, is typical, then we may
apply the proof of Lemma 6.4 to get L(A, u) > 0. However, here we have to
use the full strength of Sect. 5.1. Specifically, 5-bunching of p and g and the
proof of Lemma 4.2 guarantee the existence of the holonomies associated with
p and g. Then Lemmas 4.4 and 4.9 and Corollary 4.15 can be used to guarantee
the existence and holonomy-invariance of Z, and Z,. Once we have all these
tools, the proof of L(A, i) > 0 is then identical to the proof of Lemma 6.4.

Next, we want to show that the set P, contains an open and dense set. To
this end, we fix any A € C*(€2, SL(2, R)). If there is an open neighborhood
Uy of A such that for each B € Uy, L(B, ) > %, then there is nothing
we need to say. Otherwise, in any open neighborhood I/ of A, we can find a
B € L,. Then by Proposition 6.8 and the proof above, we can find an open
set V C U N7, which implies that L(B, n) > 0 foreach B € V.

Finally, it is clear that the complement of P is contained in £, \ 7y, which
has codimension infinity in £, . Hence, the complement of 7P, has codimension
infinity in C*(€2, SL(2, R)) as well. O

Note that this is an improved version of Lemma 6.4, as here we remove the
assumption of global bunching or local constancy of f.

Now we are ready to generically remove the discrete set that appeared in
Theorem 1.1.

Proof of Theorem 1.4 By Remark 6.5 and via the arguments from the proof
of Lemma 6.9 we can show that the set

= {f € C(Q,R): L(AY), ;1) = 0) (6.10)
has codimension infinity in C% (€2, R). In other words, Z,, is locally contained
in finite unions of closed submanifolds with arbitrary codimension. More pre-

cisely, for each k € Z and each f € Z,, we can find an open neighborhood
Uy of f and submanifolds M, 1 < j < m, each with codimension k, so that

(Z,NUy) C U (6.11)

On the other hand, if we define the set 3, to be
By :={g e C*Q,R): E—ge Z,forsome E € R}, (6.12)
then for each g € By, wecan find f € Z, and E € Rsothat g = E — f.

Thus By is locally contained in finite unions of submanifolds of arbitrary
codimension as well. Indeed, for the g and f above, we may just assume that
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f is the one in (6.11). Thus for a fixed k € Z, for each M in (6.11), the set
Nj:={heC*Q,R):h—E € M; forsome E € R}

may be viewed as a submanifold of C* (€2, R) with codimension k — 1 whose
local charts can be obtained from those of M; and E € R. In particular, it
is nowhere dense if k > 2. On the other hand, (6.11) clearly implies that the
open neighborhood

Uy =Us +E :={h e C*(QR) : h— E €Uy}

of g satisfies

(Bo NUp) < | N

j=1

Since g € By and k € Z4 can be arbitrarily chosen, we obtain that B, is
nowhere dense. Equivalently, we may say that the complement 3 of B, is
residual in C* (€2, R). By definition of By, we have for each f € B that

LAY=D )y > 0forall E € R,

concluding the proof. |

Remark 6.10 Similarly to Remark 5.14, all the main results in this section can
be applied to Holder continuous sampling functions defined on (Q*, T, u™),
where the lift u of u* has a local product structure. Indeed, in this case,
CY(Q™, R) can be considered as a closed subspace of C%(2, R) whose ele-
ments depend only on the future. All the perturbations can then be performed
within this subspace.

7 Applications

All of the results of this paper may be applied to Holder continuous cocycles
defined over any transitive Anosov diffeomorphism (or transitive, uniformly
expanding differentiable map), where u is taken to be the equilibrium state
of a Holder continuous potential. By a standard technique one can reduce the
cocycles in question to Holder continuous cocycles over a subshift of finite type
via a Markov partition; see, for example, [14,31]. Although the applicability is
much wider, we will focus on a particular case as follows. It is standard result
that if an invariant measure 1 of a C? transitive Anosov diffeomorphism (or a
C? transitive, uniformly expanding map) is absolutely continuous with respect
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to the volume measure, then it is an equilibrium state of a Holder continuous
potential; see, for example, [14].

To illustrate this, we choose three differential models that have been widely
studied in both the dynamical systems and mathematical physics communities.
The first type of model is given by linear expanding maps of the circle,

T:R/Z — R/Z, Tx=kx, k>2, (7.1)

and the measure is taken to be the Lebesgue measure m on R/Z. One may find
some existing results for this case in [6,9,12,18,22,36,40,42,44]. In particular,
the case k = 2 corresponds to the doubling map, which is the most difficult
map to study within this family of maps, as it is the least mixing among them.
The second type is given by hyperbolic automorphisms of R¢ /Z¢, where p is
taken to be the Lebesgue measure m on R? /Z<. The most intensively studied
case is the famous Arnold cat map, where

T:R?/7?> - R?/7°, T = G i) (7.2)

and p is taken to be the Lebesgue measure m on R?/Z?. One may find earlier
results for this case in [12,18,36,42]. It is clear that both linear expanding
maps of the circle and hyperbolic toral automorphisms meet all the conditions
necessary to apply our main theorems in Sects. 5 and 6. In particular, they all
have a fixed point.

Our theorems then yield the following results. To unify the statements, we
let (2, T, ) be any of the following: (R/Z, T, m), where Tyx = kx and
k > 2 is an integer; (]Rd /Zd, Ta, m) where d > 2 and T}y is the hyperbolic
toral automorphism generated by some hyperbolic A € SL(d, Z). Recall that
for a sampling function f, we set L(E) = L(AE-D), ) and define

Zy:={E:L(E)=0} CR. (7.3)
ForO <a <landA > 0,we CY(Q,R) ={f € C*(Q2,R) : | flloo < A}.

Theorem 7.1 Let (2, T, u) be as above and let 0 < a < 1. For all non-
constant f € C*(2,R), Zy is a discrete set. Moreover, Zy = & for f’sina
residual subset of C* (K2, R). There is Ay = Lo(a) > O such that Zy is a finite
set for all non-constant f € CK‘O(Q, R). Finally, there is an open and dense
subset O% ofC;L"O(Q, R) such that for all f € O%, infger L(E) > 0.

If we introduce a coupling constant A , then we have the following immediate
consequence of Theorem 7.1.
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Corollary 7.2 Let (2, T, ) and o be as in Theorem 7.1. Fix a non-constant
f € C¥(2,R). Then Z;y is a discrete set for all .. > 0. Moreover, there is a
2o = Ao(ll flloo, @) > O such that Z,y is finite for all 0 < A < Xy.

Remark 7.3 To the best of our knowledge, if we take T to be the doubling map
for d = 1 or the Arnold cat map for d > 2, then the results we stated in Theo-
rem 7.1 and Corollary 7.2 are the first global results that do away with smallness
or largeness assumptions for the coupling constant. In the large coupling
regime, Herman’s subharmonicity trick [28] can be applied (for trigonometric
polynomials), and in the (perturbatively!) small coupling regime, the perturba-
tive analysis of Chulaevsky—Spencer [18] and Sadel-Schulz—Baldes [35,36]
can be applied. Other methods get around changing the coupling constant by
changing the base dynamics instead, specifically to increase its hyperbolicity;
compare Bourgain—Bourgain—Chang [9] and Bjerklov [6].

Remark 7.4 Taking the doubling map as an example, we give two sample
computations. First, we show how to reduce a Holder continuous cocycle on
R/Z x R? to one on © x RZ, where € is the full shift, which is in particular a
subshift of finite type. Let Q1 = {0, 1} and (Q, T, u™) be the one-sided
Bernoulli shift. Here we choose u™ = @ where 1(0) = (1) = % Then it
is well know that the map

o+

.ot + “n

7:Q" > R/Z, w |—>E T
n=0

codes the dynamics of doubling map (R/Z, T», m) to that of (1, Ty, u™)
since T, omr = m o Ty and meu™ = m. In particular, for any cocy-
cle map A : R/Z — SL(2,R), we set AT : QF — SL(2,R) where
AT = A o 7, and we then have by construction L(A, m) = L(A™, u™).
Now we consider the full shift space (2, T, u) whose one-sided shift is
(@1, Ty, uT), as described above. By setting A(w) = AT (71 w), we clearly
have L(T, A) = L(Ty, A™). Itis clear that A is a-Holder continuous as long
as AT is, since d(mTw, @) < d(w, ®). So we just need to show that the
Holder continuity can be carried over from A to A™. This in turn follows from
the following straightforward estimate:

lrot — ot <d(wt, o782,

In particular, ¢-Holder continuity of A implies (o log 2)-Holder continuity of
AT since

AT (") — AT (@) = [A(wo™) — A@@a™)]|

<Clrot —a&d™|*
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< Cd(a)+, &')-i—)a log2.

Next, we compute some explicit choices for the value of Ag appearing in
Theorem 7.1 and Corollary 7.2, when the base dynamics in question are given
by the doubling map. Clearly, the above process still works if we replace A :
R/Z — SL(2,R)by f : R/Z — R.Given f € C*(R/Z, R), we may instead
consider the corresponding f € C*1°22(Q2, R). In particular, || floo = || f lloo-
We want to find a Ag so that f is globally bunched if || f|lco < Ao. In other
words,

E, . _ (E— flw) -1
A(“’)_( 1 o)

is fiber bunched for all £ € [—2 — || f|lco, 2 + || flloo]- To simplify the com-
putation, we ensure that ﬁper bunchin_g is satisfied with ng = 1. That it, we
want forall £ € [—2 — || flloos 2 + || f lloc] that

log2
3 o

IR

IAEOlloe < €2 =22
Recall the fiber bunching condition is only assumed to ensure the existence of
stable and unstable holonomies. Thus, by the construction of the holonomies
from the proof of Lemma 4.2, it is clear that we may reduce the condition
above to the following condition. For each E € [—2 — || flloos 2 + || flloo],
there is a P(E) € SL(2, R) so that

IP(E) ' AR () P(E)|l0o < 27. (7.4)

First, we take care of the E’s that are away from £2. For each E € (-2, 2), a
direct computation shows that

P(E)™! (’f _01> P(E) € SO2,R)

which has norm one and where

V2 : 0
| @-ev1
P(E) = E 4—EV4

V-t V2

If we choose Ag so that for all E € [—2 + Ag, 2 — Ag] and all |A| < Ag, we

have
1 (20
HP(E) (0 0) P(E)

<271,
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then we have (7.4) forany || flleo = Il flloo < Aoandall E € [—2+1g, 2—Ag].
It is straightforward to see that

A
P(E)™! (8 8) P(E) = (_ EX 8) .
Ji_E?

Thus we have fiber bunching for all £ € [—2 4 X, 2 — Ag] if for all such E’s
and for all |A| < Ao, we have

o

|,\|+‘ <27 1.

EX
V4 — E?
Since the supremum of the left hand is attained at A = Ag and £ = 2 — Ao,

one can check that it suffices to have

A 2
—O < 22 —1,
VAo — A3

which in turn can be guaranteed, for example, by the condition 3./A¢ < 27—1.
In particular, if we choose any

Ao +

27 —1)2
0<ng< D0 1.5)
9
then we have fiber bunching for all E € [-2+ X0, 2— Ap] and for all || f||co <
Ao.
Now we take care of the energies E € [-2—Ag, —2+Xo]U[2— X0, 24+ Xo].
Take E = 2 for example. Then we have

1 (2-1 1 —a
o' (170)o=(o7):

where a > 0 and

4
Ja
It is easy to see that we have
1
6=
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On the other hand, we can see via a straightforward computation that

G-

%0 00
“oo)er=(53)

Thus it suffices to choose a > 0 and Ag > 0 so that for all |A| < Ag, we have

Al

1+a+— + A <22,
a

which may be guaranteed by
A0 a
a+—+xr <22 —1.
a

Clearly, we may choose a = %(2% — 1). Itis then easy to see that if we choose
any Xg such that

(27 — 1)
0< i< T’ (7.6)
then we have fiber bunching for all £ € [2 — Ag, 2 + A¢] and for all f with
Il flloo < Xo. A similar computation shows that the Ay in (7.6) works for
E € [-2 — 1o, —2 + o] as well. Combining (7.5) and (7.6), we see that in
the statement of Theorem 7.1 and Corollary 7.2 for the doubling map, we may
choose

22 — 1)

Ao =
0 9

Remark 7.5 The computation of Ao in Remark 7.4 actually works for AF
defined on any subshift of finite type (€2, 7, ). Moreover, since we do not
have the coding process as in Remark 7.4, we have that f € C*(Q2, R) is
globally bunched if

(e — 1)

[ flloo < Ao = 5

(7.7)

In particular, this value of Ao works for Theorem 7.6 below.

Let us now apply our results to Markov chains. We consider the full shift
(.AZ, T), where A ={1,...,£}. Let P = (P;j)1<i, j<¢ be a stochastic matrix,
in other words, P;; > 0 and Z§=1 P;j = 1. Assume that P is irreducible, that
is, for all i, j € A, there is n € Z such that the (i, j)-entry of P" is positive.
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Then there is a unique probability vector p = (p1, ... pe) (i.e., pi > 0 and

S, pi = 1)suchthat °f_, p; Pij = p;. Now we define the measure y on
A% via

n—1

(105 ko, - kn]) = prg [ | Prckic- (7.8)
i=0

Such a measure p is called a Markov measure. By a standard result, the topo-
logical support of w is a subshift of finite type €2 with the adjacency matrix
A = (a;j) such that a;; = 1 whenever p;; > 0 and g;; = 0 otherwise. Thus
we may instead consider the space (2, T, u). Moreover, u is T-ergodic if and
only if P isirreducible. Consider its associated one-sided space (T, Ty, u™).
It is a standard result that u™ is the unique equilibrium state of the potential
d(@T) = —log Pwar o} which is locally constant; see, for example, [41].
Thus by Lemma 3.4, i« has the bounded distortion property, and hence a local
product structure as well.

Theorem 7.6 Let (2, T, ) be a Markov chain as described above. Fix 0 <
o < 1. Then we have the following statements:

(a) There is a residual set G* € C*(2, R) such that Zy = & forall f € G*.

(b) There are Ly = ro(a) > 0 and an open dense subset O% C C‘A)‘0 (2, R)
such that for each f € O% we have inf ger L(E) > 0.

Ifin addition (2, T) has a fixed point (which happens if and only if P;; > 0
for some 1 < i <U{), the following stronger statements hold true:

(c) Zy is a discrete set for all non-constant f € C*(2,R) and it is a finite
set for all non-constant f € ij‘()(Q, R) or for all non-constant f that are
locally constant.

(d) Inparticular, Z;y is discrete for all A > 0 and finite for all0 < A < Ag for
allnon-constant f € C*(2, R). If f is locally constant and non-constant,
then Z, ¢ is a finite set for all > > 0.

Remark 7.7 Reiterating what we said in Remark 5.13, even if (€2, T') does not
have a fixed point (i.e., when P;; = 0 for every 1 <i < £), we can work with
periodic spectra of higher periods and test for non-coincidence of two of them.
In concrete cases this procedure is easy to implement and will in many cases
lead to the desired result. For instance, we can apply it to the last example we
present in the end of this section.

Note that the Anderson model is a special case of the Markov chains
described above, provided that the single-site measure is supported on a finite
set. Indeed, such models may be generated as follows. Let u be a probability
measure on the full shift space A% that is generated by a single site mea-
sure i{i} = p; where p = (p1, ... pe) is a probability vector. It is clearly a
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Markov chain with the same probability vector and with the stochastic matrix
pij = pj- Thus, we have the following corollary of Theorem 7.6.

Corollary 7.8 Consider the full shift space (A”, T, ), where u = i and
(L is a probability measure on A = {1, ...4} that has full support. Then all
the conclusions that we stated in Theorem 7.6 hold true. In particular, if f is
locally constant and non-constant, then 2,y is a finite set for all A > 0.

In particular, the Anderson model is generated by a sampling function
f : A% — R that depends only the Oth position. Note that such a function is in
particular locally constant. Corollary 7.8 implies the finiteness of Z; ¢ for all
such f’s that are non-constant. Of course, in this case, the celebrated Fursten-
berg’s Theorem yields uniform positivity of the Lyapuonv exponent. However,
the finiteness of Z ¢ for all non-constant locally constant f : A% — R already
may not be directly obtained from Furstenberg’s Theorem. Moreover, our
result is basically sharp. Indeed, there are plenty of examples where Z ¢ is not
empty for locally constant and non-constant f : A2 — R, see [15]. Neverthe-
less, the finiteness of Z can already be a starting point to prove full spectral
localization.

For the reader’s convenience, we provide an example with the property
Zy¢ # J, where f is a non-constant locally constant function defined over
a Markov chain. To give such an example, let us show that the well-known
random dimer model (cf., e.g., [5,26]) is covered by our framework. The
random dimer model arises from the standard Bernoulli-Anderson model by
doubling up the sites. That is, with {w,},ez 1.i.d. random variables taking
two different values, say 0 and A with probability 0 < p < 1 and 1 — p,
the potentials are given by V,(2n) = V,(2n + 1) = w,. To realize these
potentials in our framework, consider the subshift of finite type 2 over the
alphabet {1, 2, 3, 4} with the adjacency matrix

0010
0001
a=11100l (7.9)

1100

The measure u is the Markov measure generated by the following probability
vector and the stochastic matrix

0 0 10

pl—ppl—p 0 0 01
=(Z, 2 P = . 7.10
L (2 2 2 2 ) pl—p00 (7.10)

pl—p00
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The sampling function f : € — R is generated by f : {1,2, 3,4} > {0, A},
f()y = f3) =0, f(2) = f(4) = A via f(w) = f(wp) which is locally
constant. It is readily checked that the resulting model is indeed the random
dimer model. It is well known, and in fact easy to see, that for —2 < A <

2, Af,Eif)(a)) is bounded for all n at energies 0 and A. Thus {0, A} C Z.
Although this system has no fixed point, we do have that f is constant on
the orbit of w € Q where wy, = 1, wr,+1 = 3. Note that in statement of
Theorems 1.1 and 5.12 , the fixed point is only there to produce a constant
potential V,,(n). Thus, Theorem 7.6 can still be applied to obtain the finiteness
of Z¢. However, for this model, we can provide more information. It actually
follows from Furstenberg’s Theorem that the Lyapunov exponent is positive
away from these two energies {0, A}. This shows that in this particular case
Zy =1{0,A}.
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