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Abstract
In this paper we consider a non-local bistable reaction–diffusion equation which is a
simplified version of thewave-pinningmodel of cell polarization. In the small diffusion
limit, a typical solution u(x, t) of this model approaches one of the stable states of
the bistable nonlinearity in different parts of the spatial domain !, separated by an
interfacemoving at a normal velocity regulated by the integral

∫
! u(x, t) dx . Inwhat is

often referred to aswave-pinning, feedback between mass-conservation and bistablity
causes the interface to slow and approach a fixed limit. In the limit of a small diffusivity
ε2 ! 1, we prove that for any 0 < γ < 1/2 the interface can be estimated within
O(εγ ) of the location as predicted using formal asymptotics. We also discuss the
sharpness of our result by comparing the formal asymptotic results with numerical
simulations.

Mathematics Subject Classification 35K57 · 35B25 · 35B40 · 35B30

1 Introduction

Scalar reaction–diffusion equations and systems can be useful in themodeling of phase
transition in various physical and biological systems.Of particular interest is the case of
bistable reaction diffusion equations for which (Fife and McLeod 1977) provided one
of the first rigorous treatments. The problem has since received considerable attention
in higher dimensions such as, for example, the analysis of generation and dynamics
of interfaces using comparison principle methods by Chen (1992) and the analysis of
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interface motion using level set and viscosity solution methods by Barles et al. (1992,
1993). Generalizations of these classical bistable reaction–diffusion equations that, for
example, incorporate non-local effects or replace the single reaction–diffusion equa-
tionwith a system, are also known to exhibit phase transition phenomenon (Rubinstein
and Sternberg 1992; Chen et al. 2010; Cusseddu et al. 2019), though their rigorous
analysis is considerably less studied. For example, the formal analysis by Rubinstein
and Sternberg (1992), aswell as the subsequent rigorous analysis byChen et al. (2010),
illustrates that travelling front solutions to certain non-local scalar reaction–diffusion
systems can exhibit many similarities to their classical, local, counterparts.

In this paper we initiate a rigorous treatment of a non-local bistable reaction–
diffusion equation as an analytically tractable model of cell polarization (Mori et al.
2008, 2011). This model distills the complex biochemical circuitry leading to the
polarization of Rho GTPases to a two-species mass-conserved reaction–diffusion sys-
tem for the concentration of active and inactiveGTPases. A delicate interplay between
bistability and mass conservation in this system can lead to the expansion and eventual
halting of an activated GTPase patch, a phenomenon which is commonly referred to
as wave-pinning. The relative simplicity of this two-species model, together with its
analytical tractability and the interpretability of its results, has made it an attractive
framework for cell-polarization models. More recent iterations of the wave-pinning
model have incorporatedmechanochemical feedback (Zmurchok et al. 2020) and bulk-
surface coupling (Rätz and Röger 2012; Diegmiller et al. 2018; Cusseddu et al. 2019).
Within the context of bulk-surface coupling Giese et. al. have also probed the effects of
diffusion barriers and cell shape (Giese et al. 2015).We remark that alternative models
for cell-polarization specifically and cellular pattern formation in general have also
been proposed and this is an active area of research. See, e.g. the review articles (Jilkine
and Edelstein-Keshet 2011; Goryachev and Leda 2017; Rappel and Edelstein-Keshet
2017; Champneys et al. 2021).

In this paper we consider specifically the non-local reaction–diffusion equation






ut (x, t) = ε$u(x, t)+ ε−1 f (u(x, t), v(t)), x ∈ !, t > 0, (1.1a)

v(t) = M0 − 1
|!|

∫
! u(x, t)dx, t > 0, (1.1b)

∂nu(x, t) = 0, x ∈ ∂!, t > 0, (1.1c)

u(x, 0) = u0(x), x ∈ !, (1.1d)

where ! ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary, M0 > 0,
ε > 0 are constants, and f (u, v) is a smooth function which is bistable in u with
additional properties to be made more precise below. The well-posedness of solution
to (1.1) is discussed in Sect. 1.1 below. This non-local equation is formally obtained by
taking the limit D → ∞, often referred to as the shadow limit, in the mass-conserved
reaction–diffusion system






ut = ε$u + ε−1 f (u, v), εvt = D$v − f (u, v), x ∈ !, t > 0,
∂nu = ∂nv = 0, x ∈ ∂!, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ !, t = 0.
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Specifically, assuming D ( 1 we then consider the asymptotic expansion v(x, t) ∼
v0(x, t)+· · · from which we deduce the leading order expression $v0 = 0. Together
with the homogeneous Neumann boundary conditions this implies that v0(x, t) is
spatially constant. Moreover, mass conservation

d
dt

∫

!

(
u(x, t)+ v(x, t)

)
dx = 0,

then implies that v = v(t)where v(t) is given by (1.1b). The analysis of wave-pinning
in these systems by Mori et al. (2011), as well as of its subsequent iterations (e.g.
Cusseddu et al. 2019; Zmurchok et al. 2020), primarily rely on numerical simulations
and the use of formal asymptotic methods in the sharp interface limit for which ε ! 1.
Our goal in this paper is to initiate a rigorous treatment of front solutions to (1.1) by
rigorously demonstrating that such solutions converge to those obtained using formal
asymptotics as ε → 0+.

The remainder of this paper is organized as follows. We begin by first recalling in
Sect. 1.2 some preliminary properties of travelling front solutions inR1 due to Fife and
McLeod (1977). After making precise assumptions about the initial condition u0(x)
in Sect. 1.3 we will then state in Sect. 1.4 the leading order solution to (1.1) obtained
using formal asymptotic methods and describe in more detail the conditions for wave-
pinning to arise. This is accompanied with an illustrative example in Sect. 1.5 for
which we numerically simulate (1.1). In Sect. 1.6 we precisely state our assumptions
on the reaction-kinetics f (u, v) and state our main result in Theorem 2. In Sect. 2 we
prove convergence results for the scalar counterpart of (1.1) where v is a prescribed
function, which is subsequently used in the proof of Theorem 2 in Sect. 3.

Before proceeding further, we describe themost important assumptions on the reac-
tion kinetics f (u, v) in order to establish some commonnotations. Thefirst assumption
we make is that for a range of v ∈ [vmin, vmax] the function f (u, v) is bistable in u.
Specifically this means that f (·, v) has exactly three zeros h−(v) < h0(v) < h+(v)
such that

fu(h±(v), v) < 0 and fu(h0(v), v) > 0. (1.2)

These inequalities imply in particular that h±(v) (resp. h0(v)) are stable (resp. unsta-
ble) with respect to the reaction kinetics. In addition we assume that the spatially
homogeneous steady states (u, v) = (h±(v±0 ), v

±
0 ), where v

±
0 is obtained by substi-

tuting u = h±(v±0 ) into (1.1b), noting that |!| = 1, and solving the resulting nonlinear
equation v±0 + h±(v±0 ) = M0, are linearly stable. We can derive an algebraic relation
for linear stability by letting u = h±(v±0 ) + φ j (x)eλt where φ j is the eigenfunction
satisfying −$φ j = µ jφ j in ! and ∂nφ j = 0 on ∂!. Since µ0 = 0 and φ0 = 1
whereas µ j > 0 and

∫
! φ j dx = 0 for all remaining j ≥ 1, substituting into (1.1a)

and linearizing yields two cases

{
λ = ε−1( fu(h±(v±0 ), v

±
0 ) − fv(h±(v±0 ), v

±
0 )), j = 0,

λ = −µ j + ε−1 fu(h±(v±0 ), v
±
0 ), j ≥ 1.
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When j ≥ 1 we immediately deduce that λ < 0 by the bistability of f (·, v) whereas
for j = 0 we deduce the linear stability condition

fu(h±(v±0 ), v
±
0 ) − fv(h±(v±0 ), v

±
0 ) < 0. (1.3)

1.1 Existence and uniqueness result

Note that (1.1) can be rewritten into the following single, nonlocal parabolic equation






ut (x, t) = ε$u(x, t)+ ε−1 f (u(x, t),M0 − 1
|!|

∫
! u(x, t)dx), x ∈ !, t > 0,

(1.4a)

∂nu(x, t) = 0, x ∈ ∂!, t > 0,

(1.4b)

u(x, 0) = u0(x), x ∈ !.

(1.4c)

Since the integral term
∫
! u dx has better regularity than u, one can apply the usual

semigroup argument to obtain existence and uniqueness of classical solution.

Theorem 1 For each nonnegative u0 ∈ C(!), (1.4) has a unique classical solution
u ∈ C(! × [0,∞)) ∩ C2,1(! × (0,∞)).

Proof Set X = C(!) and

{
D(−$) =

{
φ ∈ ⋂

p>1 W
2,p(!) : $φ ∈ C(!), ∂nφ

∣∣
∂!

= 0
}
,

X1/2 =
{
φ ∈ C1(!) : ∂nφ

∣∣
∂!

= 0
}

The existence and uniqueness of a classical solution in the class

C([0, Tmax); X) ∩ C1((0, Tmax); X) ∩ C((0, Tmax); D(−$))

defined on somemaximal time interval [0, Tmax) is a consequence of semigroup theory
(Lunardi 1995, Theorem 7.1.5 and Proposition 7.1.10); See also (Lam and Lou 2022,
Theorem 5.1.2). Next, observe that Tmax = +∞ since the solution remains bounded
for all time thanks to the bistable nonlinearity f . Finally, by observing that u, and
the nonlinearity f

(
u,M0 − 1

|!|
∫
! u dx

)
belongs to Cβ,β/2(! × [δ, 1

δ ]) for every
0 < δ < 1, it follows from the Schauder estimates that u ∈ C2,1(! × [δ, 1/δ]) for
each 0 < δ < 1. ,-

1.2 Travelling front solutions inR1

Let v ∈ (vmin, vmax) and assume that a ∈ R is sufficiently small so that f (u, v)− a is
bistable. Denote by h0(v; a) and h±(v; a) the unstable and stable zeros of f (·, v)− a
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respectively. It can then be shown that (see Fife and McLeod 1977 for example)

qrr + αqr + f (q, v) − a = 0, −∞ < r < ∞, (1.5a)

q(0, v; a) = h0(v; a), q(r , v; a) → h∓(v; a), r → ±∞, (1.5b)

can be solved for a unique front profile q(r , v; a) and front speed α(v; a). Moreover,
it can be shown that q(r , v; a) is monotone decreasing in r so that multiplying (1.5a)
by qr and integrating yields the explicit expression for the front speed

α(v; a) = 1∫ ∞
−∞ |qr (r , v; a)|2dr

∫ h+(v;a)

h−(v;a)
( f (u, v) − a)du. (1.6)

In addition to these properties we also have the following ordering property for the
front speed under the additional assumption that ∂ f /∂v ≥ 0.

Lemma 1.1 Let vmin < v1 < v2 < vmax and a ∈ R be such that both f (·, v1)−a and
f (·, v2) − a are bistable. If ∂ f /∂v ≥ 0 then α(v1; a) ≤ α(v2; a).

Proof First, we assume in addition that ∂ f /∂v > 0. Let qi (r) ≡ q(r , vi ; a) and
αi ≡ α(vi ; a) for each i = 1, 2. Observe that ∂ f /∂v > 0 implies that h±(v1; a) <
h±(v2; a). Since q is strictly decreasing in r and q(±∞; v2; a) > q(±∞; v1; a), we
can perform a translation to find values r1 and r2 such that

q1(r1) = q2(r2), q ′
1(r1) = q ′

2(r2), q ′′
1 (r1) ≤ q ′′

2 (r2).

From (1.5a) we then obtain

q ′′
2 (r2) − q ′′

1 (r1)+ (α2 − α1)q ′
1(r1) = f (q1(r1), v1) − f (q2(r2), v2) ≤ 0, (1.7)

which implies α2 − α1 ≥ 0.
For the general case ∂ f /∂v ≥ 0, choose δ > 0 small and repeat the above arguments

to f + δv, and then let δ → 0. ,-

Remark 1.1 By differentiating f (h±(v; a), v) − a = 0 with respect to a we readily
deduce that dh±

da < 0. On the other hand we similarly calculate dh0
da > 0.

Remark 1.2 The a-dependent reaction kinetics f (u, v)− a are important for the con-
vergence proof in Sect. 2; see also (Barles et al. 1993). When a = 0 we will write
α(v), h0(v), and h±(v) instead of α(v; 0), h0(v; 0), and h±(v; 0) respectively.

1.3 Well-prepared initial conditions

By replacing x , t , ε with x/|!|1/N , t/|!|1/N , and ε/|!|1/N , respectively, we may
assume without loss of generality that ! is of unit volume, e.g. |!| = 1. We will be
making this assumption for the remainder of the paper.
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Throughout this paper we will also assume that the initial condition u0(x) is well-
prepared in the following sense. We fix !0 ⊂ ! and define the initial interface +0 =
∂!0\∂! which we assume to be a Lipschitz surface intersecting ∂! transversally.
More precisely, we assume that there exists a constantM0 > 1 such that the following
two conditions hold:

(L) For each x0 ∈ +0 there exists a neighborhoodN ⊂ ! of x0 such that the surface
+0 ∩ N can be represented as the graph of a Lipschitz function. Specifically, up
to an orthogonal change of coordinates

+0 ∩ N = {(x ′, xN ) ∈ N ′ × R | xN = Gx0(x
′)},

where Gx0 : N ′ ⊂ RN−1 → R satisfies |Gx0(x)− Gx0(y)| ≤ M0|x − y| for all
x, y ∈ N ′.

(T) For each x0 ∈ +0 ∩ ∂!, using the same local coordinates as above, we have

|n∂!(x0) · (0, · · · , 0, 1)T | ≤ M−1
0 ,

where n∂!(x0) denotes the outer unit normal vector of ∂! at the point x0. Note
that (T) holds trivially if +0 ∩ ∂! is empty.

Next we let v0 solve the algebraic equation

v0 + |!0|h+(v0)+ (1 − |!0|)h−(v0) = M0, (1.8a)

where we assume that !0 and M0 are chosen in such a way that (1.8a) has a solution
in v0 ∈ (vmin, vmax). In terms of this value of v0 and the geometric constraints on !0
we then define the initial condition u0(x) by

u0(x) =
{
h+(v0), x ∈ !0,

h−(v0), x ∈ !\!0.
(1.8b)

Remark 1.3 With this choice ofwell-prepared initial conditionswe bypass the question
of front generation and focus instead exclusively on front propagation.

Remark 1.4 The geometric constraints on the initial interface +0 are needed for the
proofs of Theorems 2 and 3. If +0 is a smooth surface, then we only need

|n∂!(x0) · n+0 | < 1 for all x0 ∈ +0 ∩ ∂!,

where n+0 is the normal vector with respect to +0.

We state, without proof, the following consequence of the geometric constraints on
!0 and +0 (see Fig. 1 for an illustration).

123



Front propagation in the shadow wave-pinning model Page 7 of 31 72

Fig. 1 Illustration of Lemma
1.2. The sets ∂! and +0 are
represented by the solid and
dash curves respectively. For
given x ′ ∈ +0 and ρ > 0, the
choice of B(x0, ρ) and B(x̂0, ρ)
are displayed

Lemma 1.2 Let !0 ⊂ ! and its boundary +0 = ∂! satisfy the geometric constraints
(L) and (T) above. Then there exist ρ > 0 and K̄0 > 1 such that for any x ′ ∈ +0 and
ρ ∈ (0, ρ], there exists x0 ∈ !0, x̂0 ∈ !\!0 such that

B(x0, ρ) ⊂ !0, B(x̂0, ρ) ⊂ !\!0,

and

|x ′ − x0| + |x ′ − x̂0| ≤ K̄0ρ .

Here B(x0, ρ0) = {x ∈ RN
∣∣|x − x0| < ρ0} and K̄0 only depends on ∂! and the

constant M0.

1.4 Leading order solution and wave-pinning

Using themethod ofmatched asymptotic expansionswe can formally derive a leading-
order approximation of solutions to (1.1) under the assumptions of a well-prepared
initial condition. We first state the following definition of a signed distance function
which we will use throughout the remainder of paper.

Definition 1 Let S ⊂ RN be arbitrary. The signed distance from ∂S = S ∩ !\S is
then defined by

dist(x, ∂S) =
{
inf y∈∂S |x − y|, x ∈ !\S,
− inf y∈∂S |x − y|, x ∈ S.

(1.9)

Let +0 = ∂!0 be the interface described in Sect. 1.3. For each t , we define the
domain !̂(t) and value v̂(t) by solving the system

{
!̂(t) ≡

{
x ∈ ! | dist(x,+0) <

∫ t
0 α(v̂(τ ))dτ

}
, (1.10a)

v̂(t) = M0 − |!̂(t)|h+(v̂(t)) −
(
1 − |!̂(t)|

)
h−(v̂(t)), (1.10b)

where α(·) is the front-speed given by (1.6) with a = 0. Note that !̂(0) = !0.
Equations (1.10a) and (1.10b) together constitute a differential algebraic equation

(DAE) which can in general be solved for v̂(t) and !̂(t) uniquely. We refer the reader

123
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to Appendix A for a reformulation of this DAE which more readily lends itself to
numerical calculation. Note that v̂(0) = v0 coincides with the value of v0 chosen in
Sect. 1.3 above. The leading order asymptotic approximation for uε when ε ! 1 is
then given in terms of !̂(t) and v̂(t) by

û(x, t) = h+(v̂(t))χ!̂(t)(x)+ h−(v̂(t))χ!\!̂(t)(x), (1.10c)

where χS(x) is the indicator function for any S ⊂ RN .

Remark 1.5 If v(t) is prescribed independently of u in (1.1) then one can define !̂(t)
by (1.10a) and the same leading-order solution (1.10c) can be obtained; see Sect. 2.

The formal construction of the approximation (1.10) relies solely on the bistability
of the reaction kinetics and the well-preparedness of the initial condition. If we assume
in addition that α′(v) ≥ 0 and the existence of a vc ∈ (vmin, vmax) such that α(vc) =
0, then solutions to (1.1) may exhibit wave-pinning (WP) in which the front slows
and approaches a fixed interface. The possibility of this behaviour is readily seen by
differentiating (1.10b) with respect to t to get

d v̂
dt

= − h+(v̂(t)) − h−(v̂(t))

1+ |!̂(t)| dh+dv

∣∣
v̂(t) +

(
1 − |!̂(t)|

) dh−
dv

∣∣
v̂(t)

|∂!̂(t)\∂!|α(v̂(t)).

(1.11)

Observe that the denominator is strictly positive as a consequence of the linear
stability of the homogeneous steady states. Indeed, by differentiating the identity
f (h±(v), v) = 0 with respect to v and using the stability condition (1.3), we obtain

0 = fu(h±(v), v) dh
±

dv + fv(h±(v), v) > fu(h±(v), v)
( dh±

dv + 1
)
. (1.12)

In view of (1.2), it follows that dh±/dv > −1.
By (1.11), we deduce that d v̂/dt is negatively proportional to the front speed which

in particular implies that d v̂/dt ≶ 0 for v̂(t) ≷ vc and this suggests three distinct
outcomes for the dynamics of the leading order solutions to (1.1): (I) !̂(t) → ∅ in
finite time, (II) !̂(t) → ! in finite time, or (III) α(v̂(t)) → 0 and !̂(t) → !∞ ⊂ !

as t → ∞. The particular outcome depends on the properties of the well-prepared
initial condition and, ignoring boundary effects, can be heuristically classified solely
by the values |!0| and M0. To do so, we start by defining

M(v,w) = v + wh+(v)+ (1 − w)h−(v) for v ∈ [vmin, vmax], w ∈ [0, 1],
(1.13)

in terms of which (1.10b) is equivalent to M(v̂(t), |!̂(t)|) = M0. Next, we calculate

∂M
∂v

= 1+ w
dh+

dv
+ (1 − w)

dh−

dv
,

∂M
∂w

= h+(v) − h−(v),

123
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Fig. 2 A Plot of the wave-pinning threshold (solid blue) for the nonlinearity specified in (1.14). wave-
pinning is formally known to occur for values of κ0 and κ1 below the solid blue curve. The rigorous results
in this paper are restricted to choices of κ0 and κ1 below the dashed orange curve. The dot indicates the
values of κ1 = 0.2 and κ0 = 0.01 used in B and C and for the simulations in the example of Sect. 1.5. B
Zeros h−(v), h0(v), and h+(v) of (1.14). C Color plot of M(v̂, |!̂|) showing trajectories of the leading
order solution (1.10) along its contours with each label coincidingwith the possible outcomes of Proposition
1.1 (colour figure online)

both of which we observe to be positive. Since the dynamics of |!̂(t)| and v̂(t) are
restricted to the contours M(v̂(t), !̂(t)) = M0 we can immediately deduce a criteria
for each outcome (I), (II), and (III) based on whether v0 < vc or v0 > vc and whether
the contour intersects |!̂| = 0 or |!̂| = 1 (see Fig. 2c for an example). We summarize
this classification in the following proposition.

Proposition 1.1 The dynamics of the leading order solution (1.10) have the following
three outcomes depending on the parameters v0 and |!0| and are determined by the
value of M(v0, |!0|) defined by (1.13):

(I) if vmin + h−(vmin) < M(v0, |!0|) < vc + h−(vc) then !̂(t) → ∅ in finite time,
(II) if vc+h+(vc) < M(v0, |!0|) < vmax+h+(vmax) then !̂(t) → ! in finite time,

and
(III) if vc + h−(vc) < M(v0, |!0|) < vc + h+(vc) then α(v̂(t)) → 0 and !̂(t) →

!∞ ⊂ ! as t → ∞.

Note that in Case (III) above it is possible that !∞ = ∅ or !∞ = !, but the
convergence is not achieved in finite time. In particular, regardless of the outcome in
the above proposition we deduce the following properties of v̂(t) and α(v̂(t)).

Lemma 1.3 Let v̂(t) solve (1.10a) and (1.10b) where +0 satisfies the geometric
assumptions in Sect. 1.3 and v̂(0) = v0 ∈ (vmin, vmax). Then vmin < v̂(t) < vmax and
α(v̂(t)) is of one sign for all t ≥ 0.

1.5 Example

In this subsection, we illustrate the wave-pinning phenomenon in a two-dimensional
domain by numerically simulating (1.1) using the finite elementmethod software Flex-
PDE7 (http://www.pdesolutions.com). Throughout our simulations we let the reaction

123
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Fig. 3 Comparison of numerical and leading order asymptotic solutions. Parameter values used found in
the main body. A Numerically computed trajectory (vnum(t), |!num(t)|) (dashed red) superimposed on a
colorplot of M(v̂, |!̂|). B Comparison of vnum(t) (solid blue curve) and v̂(t) (dashed orange curve). The
horizontal orange dotted line indicates the value of vc = v̂(+∞) (note that vc = v̂(+∞) and |!̂(∞)|
are uniquely determined by (1.10b)). The horizontal blue dotted line indicates the O(ε) corrected vε

c after
taking the mean curvature dynamics into account and determined by solving by α(vε

c ) = εR−1
c , where

πR2
c = |!̂(∞)|.C Comparison of |!num(t)| (solid blue) and |!̂(t)| (dashed orange) (colour figure online)

kinetics be of the commonly used form

f (u, v) =
(

κ0 +
κ1u2

1+ u2

)
v − u. (1.14)

These reaction kinetics are known to satisfy the conditions for wave-pinning provided
that κ0 < κ1/8 (Mori et al. 2011). Our proof of Theorem 2 applies in the more
restrictive parameter regime indicated in Fig. 2a needed to satisfy assumption (1.16)
below. This region was numerically computed by enforcing that |dh±/dv| < 1 at
v = vc which guarantees the existence of a neighborhood (vmin, vmax) of vc for which,
in addition to the bistability condition, assumption (1.16) holds. Fixing κ1 = 0.2 and
κ0 = 0.01we can then calculate h±(v) and h0(v)whichweplot in Fig. 2b togetherwith
the numerically calculated values vc ≈ 9.4422, vmin ≈ 9.1151, and vmax ≈ 11.486.
In Fig. 2c we plot M(v0, |!0|) together with the critical value vc (dashed vertical
line) and three sample trajectories of |!̂(t)| versus v̂(t) labelled according to the three
possible outcomes (I), (II), and (III) in Proposition 1.1.

To demonstrate the wave-pinningmechanism, and the accuracy of the leading order
solution (1.10), we consider an illustrative example for which we numerically solve
(1.1) using FlexPDE7 (http://www.pdesolutions.com) with ε = 0.001 and ! ⊂ R2

being a disk of unit area centred at the origin. We use (1.8b) as the initial condition
where !0 is an ellipse centered at the origin with major- and minor-axis lengths of
a = 0.50777 and b = 0.24520 respectively. Choosing M0 = 9.7 then gives a value
of v0 ≈ 9.2 which is less than vc so that the leading-order theory predicts that vε

will increase toward vc and the area of the activated region will decrease. In Fig.3a
we indicate by a green and red dot the, respectively, initial and final (obtained by the
formal leading order theory) values of vε and the volume of the activated region. We
henceforth denote the numerically computed solution by unum(x, y, t) and vnum(t) in
terms of which we define the numerical activated region by
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Fig. 4 Comparison of the numerically calculated solution unum(x, y, t) and the leading order asymptotic
theory. The top row shows a colorplot of unum(x, y, t) with the leading order trajectory superimposed as
the dashed white curve. In the middle and bottom rows we plot cross sections of unum(x, y, t) (solid blue)
and û(x, y, t) (dashed orange) along y = 0 (middle) and x = 0 (bottom). The time of each snapshot and
cross section is indicated at the top of each column (colour figure online)

Fig. 5 Relative error between the numerically computed solution and the leading order asymptotic theory

!num(t) =
{
(x, y) ∈ !

∣∣∣∣ unum(x, y, t) >
1
2

(
max

(x,y)∈!
unum(x, y, t)+ min

(x,y)∈!
unum(x, y, t)

)}
.

The numerically calculated values of vnum(t) and |!num(t)| thus obtained are indicated
by the dashed red curve in Fig. 3a which shows good agreement with the expected
behaviour of the leading order solution in that it follows a contour of M(v̂, |!̂|).
Similarly, we compare vnum(t) and |!num(t)| to their leading order counterparts in
Fig. 3b, c respectively. In the top row of Fig. 4 we plot, at the indicated values of
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t , a colorplot of the numerically computed solution unum(x, y, t) with the leading
order trajectory of the front superimposed and indicated by the dashed white line.
The remaining rows of Fig. 4 show cross sections of unum (solid blue) and û (dashed
orange) along y = 0 (middle row) and x = 0 (bottom row). Finally, in Fig. 6 we show
the evolution of the activated region over a longer timescale which suggests the front
evolves according to a volume-conserved mean curvature flow (Fig. 5).

While Figs. 3 and 4 show good qualitative agreement between the numerically
computed solution and the leading order asymptotic theory, there are some clear quan-
titative discrepancies. Although subtle, we first note that there appears to be a slight
mismatch when comparing the numerical and leading order asymptotic solutions in
Fig. 3b, c. This discrepancy is due to higher-order corrections to the leading-order
asymptotic theory which we expect to be of order O(ε). Indeed, based on numer-
ical experiments (see Fig. 6) as well as past results on travelling front solutions to
bistable reaction–diffusion systems (e.g. Rubinstein and Sternberg 1992; Barles et al.
1993), we expect that as vε(t) approaches its limiting value, the front will undergo a
volume-conserved mean curvature flow over a slower timescale. As a consequence,
we anticipate that the mismatch observed in Fig. 3 is of order ε and sufficient to coun-
teract the tendency of the mean curvature flow to shrink the activated region further.
An approximation to the corrected limiting value of vε(t) can be obtained by first
noting that, to leading order, the limiting volume of the activated region can be found
by substituting v̂(t) = vc into (1.10b) and solving for |!̂(∞)| = limt→∞ |!̂(t)|.
Since the subsequent volume-preserving mean-curvature flow ultimately leads to a
ball of radius Rc = (|!̂(∞)|/π)1/2, we deduce vε

c = limt→∞ vε(t) must solve
α(vε

c ) = εR−1
c . In Fig. 3b we plotted both vc (dotted orange) and vε

c (dotted blue)
showing good agreement with the limiting behaviour of v̂ and vε respectively. Finally,
in Fig. 5a, b we show the results of repeating our numerical calculations for additional
values of ε = 0.002, 0.005, 0.006, 0.008, 0.01 to calculate the relative error with the
leading order asymptotic theory. We observe that while the relative error increases for
larger values of t , it still remains O(ε). However, this is not the case for Fig. 5c.

In addition to the discrepancies in Fig. 3 discussed above, we also observe in Fig. 4
that when t = 5 there is a mismatch between the numerical and leading-order asymp-
totic solutions near the extremities of the activated region along y = 0. This mismatch
is in part due to the higher-order mean curvature effects discussed above, though we
expect this to play only a secondary role. Instead, we expect that this mismatch is pri-
marily due to the formation of a cusp in the leading order front evolution which first
occurs around t = 2. Indeed, at points where such a cusp emerges the asymptotic solu-
tion obtained using the method of matched asymptotic expansions is no longer valid.
This discrepancy is in fact captured in our main result of Theorem 2 for which the error
to the leading-order asymptotic theory is proven to be O(εγ ) for any γ ∈ (0, 1/2).
In Fig. 5c we plot the relative error between the numerically calculated location of the
front along y = 0 and the leading order location of the front given by x = a + ŝ(t)
where ŝ(t) is the solution to (A.1). Interestingly, we observe from these plots that the
relative error is of order ε for smaller values of t whereas it becomes sub-linear as t
increases before becoming approximately of order

√
ε at t = 5.
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Fig. 6 Long time behaviour of the numerical solution considered in the example demonstrating volume-
preserving mean curvature flow

1.6 Themain result

The above example illustrates that the leading order approximation (1.10) is in good
agreement with direct numerical simulations of (1.1). This example also suggests that
for a fixed T > 0, v̂(t) uniformly approximates vε(t) in [0, T ], while û(x, t) uniformly
approximates uε(x, t) away from the leading order front interface in ! × [0, T ]. We
make these observations rigorous in Theorem 2 which relies on the following four
assumptions:

(A1) There exists a pair vmin < vmax such that for all v ∈ [vmin, vmax] the nonlinearity
f (·, v) is bistable with zeros h−(v) < h0(v) < h+(v) and such that the spatially
homogeneous steady states u = h±(v) are linearly stable.

(A2) There exists a unique value vc ∈ (vmin, vmax) such that α(vc) = 0 where α is
the front speed given by (1.6).

(A3) The nonlinearity f (u, v) satisfies

∂ f /∂v ≥ 0 for all u and v ∈ [vmin, vmax]. (1.15)

(A4) There exists a θ ∈ (0, 1) such that

|h±(v1) − h±(v2)| < (1 − θ)|v1 − v2| for all v ∈ [vmin, vmax]. (1.16)

(A5) The domain ! is convex.

Assumptions (A1)-(A3) are needed for wave-pinning to occur, though we note that
(A3) can be weakened provided α(v1) ≤ α(v2) for all v1, v2 ∈ (vmin, vmax) with
v1 ≤ v2. On the other hand assumption (A4) is a technical assumption that is needed
for the proof of Theorem 2. The convexity of ! in assumption (A5) is introduced to
simplify the treatment of boundary conditions in our construction of sub- and super-
solutions in Sect. 2; see Remark 2.3. Finally we choose an A > 0 such that

sup
v1,v2∈(vmin,vmax)

|h+(v1) − h−(v2)| ≤ A and |α(v1) − α(v2)| ≤ A|v1 − v2|

(1.17)

for all v1, v2 ∈ [vmin, vmax]. Such an A exists due to the smoothness of h± and α.
The following theorem is our main result and it provides quantitative estimates on

the accuracy of the leading order solution constructed in (1.10).
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Theorem 2 Let f (u, v) satisfy assumptions (A1)–(A4), and let ! satisfy assumption
(A5). Suppose that the initial condition u0 is given by (1.8b) such that the initial
activated region !0 satisfies the Lipschitz and transversality conditions (L) and (T) in
Sect. 1.3. Then, for each T > 0 and γ ∈ (0, 1

2 ), there exists an ε1 > 0 and K̄1 > 0
such that for all ε ∈ (0, ε1] and any solution (uε(x, t), vε) of (1.1), we have

sup
t∈[0,T ]

|vε(t) − v̂(t)| ≤ K̄1ε
γ , (1.18a)

h−(v̂(t)) − K̄1ε
γ ≤ uε(x, t) ≤ h+(v̂(t))+ K̄1ε

γ in ! × [0, T ],
(1.18b)

and






|uε(x, t) − h+(v̂(t)| ≤ K̄1ε
γ in {(x, t) | 0 ≤ t ≤ T , dist(x,+0) <

∫ t
0 α(v̂(τ )) dτ − K̄1ε

γ },
(1.19a)

|uε(x, t) − h−(v̂(t)| ≤ K̄1ε
γ in {(x, t) | 0 ≤ t ≤ T , dist(x,+0) >

∫ t
0 α(v̂(τ )) dτ + K̄1ε

γ },
(1.19b)

where v̂(t) is given by (1.10b).

Note that above theorem treats the regimewhere the interface is driven by a constant-
in-space normal velocity modulated by the level of vε(t). Such a regime takes place at
a faster timescale then mean curvature and domain geometry effects. In this regime,
the activated region at time t is defined by its distance to the initial interface +0.
In particular, the initial activated region !0 is not assumed to be be connected. We
prove Theorem 2 in Sect. 3 below. The proof relies crucially on the local convergence
properties of appropriate sub- and super-solutions to a scalar counterpart of (1.1),
which we analyze in Sect. 2 below.

2 Local convergence of a scalar PDE with time dependent
nonlinearity

In this section we consider the following scalar counterpart to (1.1)





ũt = ε$ũ + ε−1 f (ũ, ṽ(t)), x ∈ !, t > 0, (2.1a)

∂nũ = 0, x ∈ ∂!, t > 0, (2.1b)

ũ(x, 0) = ũ0(x), x ∈ !, t = 0, (2.1c)

wherewe assume that the nonlinearity f (u, v) satisfies the bistability assumption (A1)
and where ṽ(t) is a prescribed function satisfying

ṽ ∈ C1([0,∞)) and vmin < ṽ(t) < vmax for all t ≥ 0. (2.2a)

In additionwe let!0 ⊂ ! and its boundary+0 = ∂!0 satisfy the geometric constraints
(L) and (T) set forth in Sect. 1.3. We then assume that the initial condition ũ0(x) is
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given by

ũ0(x) =
{
h+(ṽ(0)), x ∈ !0,

h−(ṽ(0)), x ∈ !\!0.
(2.2b)

We are here interested in the limiting behaviour of solutions to (2.1) when ε ! 1. To
precisely state ourmain theorem for this sectionwe first state the following definitions.

Definition 2 For a given 0 < σ < 1
2 and ε > 0 we define the following subsets of !

!̃+
ε,σ (t) ≡ {x ∈ ! | dist(x,+0) <

∫ t
0 α(ṽ(τ ))dτ − εσ }, (2.3)

!̃−
ε,σ (t) ≡ {x ∈ ! | dist(x,+0) >

∫ t
0 α(ṽ(τ ))dτ + εσ }, (2.4)

where dist(x,+0) is the signed distance function so that dist(x,+0) < 0 in !0.

Remark 2.1 Letting ε → 0 in the definition of !̃+
ε,σ (t) we obtain an analogue of the

leading-order activated region !̂(t) considered in Sect. 1.4. Indeed, the same asymp-
totic methods can be used to derive a leading order approximation of the form (1.10c)
for (2.1). In this sense !̃+

ε,σ (t) and !̃−
ε,σ (t) are, respectively, subsets of the leading

order activated and inactivated regions which closely (within O(εσ )) approximate
their leading order counterparts.

In terms of these definitions we have the following theorem whose proof will be
the focus of the remainder of this section.

Theorem 3 Let T > 0, ! a convex subset of RN with smooth boundary, and let !0 ⊂
! and assume that its boundary +0 ⊂ ∂!0 satisfies the Lipschitz and transversality
conditions (L) and (T) in Sect. 1.3. If ũε(x, t) satisfies (2.1) where ṽ(t) satisfies (2.2a)
and the initial condition ũ0(x) is given by (2.2b), then for each σ ∈ (0,β) and
β ∈ (0, 1/2) there exists an ε2 > 0 and K̄2 > 0 such that for all ε ∈ (0, ε2]

sup
(x,t)∈!̃+

ε,σ,T

|ũε(x, t) − h+(ṽ(t))| < K̄2ε
β , (2.5)

sup
(x,t)∈!̃−

ε,σ,T

|ũε(x, t) − h−(ṽ(t))| < K̄2ε
β , (2.6)

and

h−(ṽ(t)) − K̄2ε ≤ uε(x, t) ≤ h+(ṽ(t))+ K̄2ε for all (x, t) ∈ ! × [0, T ].
(2.7)

Here !̃±
ε,σ,T is given by

!̃±
ε,σ,T =

{
(x, t) ∈ ! × [0, T ]| x ∈ !̃±

ε,σ (t)
}
. (2.8)
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Remark 2.2 The bounds (2.5) and (2.6) in particular imply that for each σ ∈ (0, 1/2)
the interface of the activated region can be located within an error of O(εσ ) from the
limiting ε → 0 problem.

Remark 2.3 The convexity assumption here is used in the verification of the subso-
lution. When the domain is convex, the spherically symmetric subsolution always
has positive outward normal derivatives, thus satisfying differential inequality on the
boundary. If the domain is nonconvex but is of class C2, then the same holds true
provided the subsolution is supported on balls of sufficiently small radius. In such a
case, one can possibly modify the arguments and remove the convexity assumption in
this paper.

Our first lemma addresses the global bounds (2.7).

Lemma 2.1 Let T > 0 be given and suppose that ũε satisfies (2.1) with assumptions
(2.2). Then there exists an ε3 > 0 and K̄3 > 0 such that for all ε ∈ (0, ε3]

h−(ṽ(t)) − K̄3ε ≤ ũε(x, t) ≤ h+(ṽ(t))+ K̄3ε for all (x, t) ∈ ! × [0, T ].
(2.9)

Proof Let g−(t) = h−(ṽ(t))− K̄3ε and g+(t) = h+(ṽ(t))+ K̄3ε where K̄3 > 0 is a
large constant to be specified later. Since fu(h±(ṽ(t)), ṽ(t)) < 0 we can find γ ′ > 0
and ε3 > 0 such that

f (g+(t), ṽ(t)) = f (g+(t), ṽ(t)) − f (h+(ṽ(t)), ṽ(t)) ≤ −γ ′ K̄3ε for 0 ≤ t ≤ T , and ε ∈ (0, ε3].

Using the fact that | dg+dt | = | ∂h+∂v
d ṽ
dt | is uniformly bounded in ε wemay specify K̄3 > 0

sufficiently large so that

dg+

dt
≥ ε−1 f (g+, ṽ),

and therefore g+(t) is a supersolution of (2.1). Since also g+(0) > h+(ṽ(0)) ≥ ũ0(x),
we conclude by the maximum principle that uε(x, t) ≤ g+(t) for all (x, t) ∈ ! ×
[0, T ]. The proof of the lower bound uε(x, t) ≥ g−(t) is similar and is omitted. ,-

The proof of the bounds (2.5) is more intricate and we proceed by first constructing
a class of radially symmetric sub- and super-solutions to (2.1).

Definition 3 For each δ > 0 we define ηδ(z) to be the smooth real-valued function
satisfying






ηδ(z) = z, for z ≥ −δ/2,
−δ ≤ ηδ(z) ≤ −δ/2, for − δ ≤ z ≤ −δ/2,
ηδ(z) = −δ, for z ≤ −δ.

(2.10)
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Fig. 7 Sketches of A the cut-off function w(x, t) defined by (2.10) and (2.13). B The sub-solution
4ε
x0,ρ0 (x, t) from Lemma 2.2. We remind the reader that ρ1(t) ≡ ρ0 +

∫ t
0 α(ṽ(τ ), εβ ) dτ

Definition 4 Let β > 0, ρ0 > 0, T > 0, ṽ ∈ C1([0, T ]), and x0 ∈ ! be given.

(1) Define Tε, T̂ε ∈ [0, T ] by

Tε = sup
{
T ′ ∈ [0, T ]

∣∣ ρ0 +
∫ t
0 α(ṽ(τ ), εβ) dτ > 3εβ for all t ∈ [0, T ′]

}
,

(2.11)

T̂ε = sup
{
T ′ ∈ [0, T ]

∣∣ ρ0 −
∫ t
0 α(ṽ(τ ),−εβ) dτ > 3εβ for all t ∈ [0, T ′]

}
,

(2.12)

where we set Tε and T̂ε to zero if their corresponding sets are empty.
(2) Let δ = εβ and define w(x, t) and ŵ(x, t) by

w(x, t) = ηδ

(
|x − x0| − ρ0 −

∫ t
0 α(ṽ(τ ), εβ) dτ + δ

)
for x ∈ !, t ∈ [0, Tε],

(2.13)

ŵ(x, t) = −ηδ

(
|x − x0| − ρ0 +

∫ t
0 α(ṽ(τ ),−εβ) dτ + δ

)
for x ∈ !, t ∈ [0, T̂ε].

(2.14)

(3) Define 4ε
x0,ρ0(x, t) and 4̂ε

x0,ρ0(x, t) by

4ε
x0,ρ0(x, t) = q

(
ε−1w(x, t), ṽ(t); εβ

)
for (x, t) ∈ ! × [0, Tε], (2.15)

4̂ε
x0,ρ0(x, t) = q

(
ε−1ŵ(x, t), ṽ(t);−εβ

)
for (x, t) ∈ ! × [0, T̂ε], (2.16)

where q(r , v; a) is the travelling front profile satisfying (1.5).

A plot of the function w(x, t) is shown in Fig. 7a whereas Fig. 7b shows a sketch
of 4ε

x0,ρ0 .
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Lemma 2.2 Let β ∈ (0, 1/2), ρ0 > 0, T > 0, ṽ ∈ C1([0, T ]), and x0 ∈ ! be given.
Then there exists an ε3 > 0 such that for all ε ∈ (0, ε3] the function 4ε

x0,ρ0 defined in
(2.15) above satisfies






∂t4
ε
x0,ρ0 − ε$4ε

x0,ρ0 − ε−1 f (4ε
x0,ρ0 , ṽ(t)) ≤ 0 in ! × [0, Tε],

(2.17a)

∂n4
ε
x0,ρ0 ≤ 0 on ∂! × [0, Tε].

(2.17b)

Furthermore, the constant ε3 > 0 depends on β but is independent of x0, ρ0.

Proof Obviously 4ε
x0,ρ0(x, t) is smooth in !\{x0}. Moreover, the definition of Tε

and w(x, t) imply that w(x, t) ≡ −εβ in a neighborhood of x0 so that in particular
4ε

x0,ρ0(x, t) is smooth for all (x, t) ∈ ! × [0, Tε].
From the well known properties of the front profile q (see for instance Fife and

McLeod 1977) we can find an r0 > 0 and ν > 0 such that for all1 v ∈ [vmin, vmax]
and a in a neighborhood of zero,

|qr (r , v; a)| + |qrr (r , v; a)| ≤ e−ν|r | for all |r | ≥ r0. (2.18)

For convenience, we also define the function

ρ1(t) ≡ ρ0 +
∫ t

0
α(ṽ(τ ), εβ) dτ, (2.19)

as well as the operator

L[φ] ≡ ∂tφ − ε$φ − ε−1 f (φ, ṽ(t)). (2.20)

In terms of the radial coordinate ρ(x) = |x − x0| we directly calculate that

L[4ε
x0,ρ0 ] = qv d ṽ

dt + ε−1qr
[
wt − ε

(
wρρ + N−1

ρ wρ

)
+ α

]
+ ε−1qrr

(
1 − |wρ |2

)
− εβ−1.

(2.21)

where α = α(ṽ(t); εβ) and that q and all its derivatives are evaluated at (r , v; a) =
(ε−1w(x, t), ṽ(t); εβ). We show (2.17a) by calculating the sign of the right-hand-side
of (2.21) in three separate cases. Throughout the proof we use

∣∣∣qv d ṽ
dt

∣∣∣ + |qr | + |qrr | + |α| ≤ C0 everywhere,

where C0 is a generic constant that is independent of ε.

1 By (A1), such an exponent ν exist for each v ∈ [vmin, vmax], and is the root of some quadratic equation.
By continuity argument, ν can be chosen uniformly in v.
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Case 1. ρ(x) − ρ1(t) ≥ − 3
2ε

β : In this case w(x, t) = ρ(x) − ρ1(t) + εβ so that
wt = −α, wρ = 1, wρρ = 0, and therefore

L[4ε
x0,ρ0 ] = qv

d ṽ
dt

− N − 1
ρ(x)

qr − εβ−1. (2.22)

Moreover ρ(x) ≥ ρ1(t) − 3
2ε

β ≥ 3
2ε

β where we have used the definition of Tε for
the second inequality. In particular we deduce from (2.22) that for ε3 > 0 sufficiently
small and ε ∈ (0, ε3],

L[4ε
x0,ρ0 ] ≤ C0 + 2

3C0(N − 1)ε−β − εβ−1 ≤ 0 for t ∈ [0, Tε],

where we used 0 < β < 1
2 to deduce the final inequality.

Case 2. ρ(x) − ρ1(t) ≤ −2εβ : In this case w(x, t) ≡ −εβ is a constant so we have

L[4ε
x0,ρ0 ] = qv

d ṽ
dt

+ ε−1qrα + ε−1qrr − εβ−1. (2.23)

For sufficiently small ε > 0 we have |r | = |ε−1w(x, t)| = |εβ−1| ≥ r0 so that (2.18)

∣∣∣ε−1qrα
∣∣∣ +

∣∣∣ε−1qrr
∣∣∣ ≤ ε−1(C0 + 1)e−νεβ−1

,

where the last inequality follows from the choice of 0 < β < 1/2.We can then deduce
from (2.23) that

L[4ε
x0,ρ0 ] ≤ C0 + ε−1(C0 + 1)e−νεβ−1 − εβ−1 ≤ 0,

for ε ∈ (0, ε3], provided ε3 is sufficiently small.
Case 3. −2εβ < ρ(x) − ρ1(t) < − 3

2ε
β : In this case from the definition of w(x, t)

we deduce that w(x, t) ≤ − 1
2ε

β . Choosing ε > 0 sufficiently small so that |r | =
|ε−1w(x, t)| ≥ 1

2ε
β−1 ≥ r0 we deduce from (2.18) that |qr |+ |qrr | ≤ 2e− 1

2 νεβ−1
. On

the other hand we also have that ρ(x) > ρ1(t)− 2εβ > εβ where the final inequality
follows from the definition of Tε. Putting these together into (2.21) we obtain that

L[4ε
x0,ρ0 ] = C0 + ε−1e− 1

2 νεβ−1 − εβ−1 ≤ 0,

for ε ∈ (0, ε3], where the last inequality again follows from the choice of 0 < β < 1/2
and ε3 to be sufficiently small.

Choosing ε > 0 to be sufficiently small so that Cases 1–3 hold we thus deduce
(2.17a). Finally, the boundary condition (2.17b) follows from ∂n4

ε
x0,ρ0(x, t) =

ρ−1∂ρ4ε
x0,ρ0(x, t)(x − x0) · n ≤ 0 where the inequality follows from the convex-

ity of ! and because 4ε
x0,ρ0 is decreasing radially from x0 ∈ !. ,-

An analogous argument also yields the following result.
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Lemma 2.3 Let β ∈ (0, 1/2), ρ0 > 0, T > 0, and ṽ ∈ C1([0, T ]), and x0 ∈ ! be
given. Then there exists ε3 > 0 small such that for ε ∈ (0, ε3], the function 4̂ε

x0,ρ0
defined in (2.16) above satisfies






∂t4̂
ε
x0,ρ0 − ε$4̂ε

x0,ρ0 − ε−1 f (4̂ε
x0,ρ0 , ṽ(t)) ≥ 0 in ! × [0, T̂ε],

(2.24)

∂n4̂
ε
x0,ρ0 ≥ 0 on ∂! × [0, T̂ε].

(2.25)

The following result is an immediate consequence of the comparison principle.

Corollary 2.1 Fix β ∈ (0, 1
2 ), T > 0, ṽ ∈ C1([0, T ]), and x0 ∈ !0. There exists

ε4 ∈ (0, ε3] such that if

ũ0 ≥ h+(ṽ(0); εβ) in B(x0, ρ0) ∩ !, and ũ0 ≥ h−(ṽ(0); 0) in !\B(x0, ρ0),
(2.26)

for some ρ0 ≥ 4εβ and ε ∈ (0, ε4], then there exists a K̄4 > 0 independent of x0 such
that

ũε(x, t) ≥ h+(ṽ(t); 0) − K̄4ε
β , (x, t) ∈ B(x0, ρ0 +

∫ t
0 α(ṽ(τ )) dτ − (K̄4 + 2)εβ)

×[0, Tε], (2.27)

where Tε is given by (2.11).

Proof of Corollary 2.1 Let 4ε
x0,ρ0(x, t) be given by (2.15). By Lemma 2.2 it follows

thatL[4ε
x0,ρ0 ] ≤ 0 in!× [0, Tε], and ∂n4

ε
x0,ρ0 ≤ 0 on ∂!× [0, Tε]. Note that Tε > 0

since ρ0 ≥ 4εβ .
To apply the comparison principle, it remains to show that

ũ0 ≥ 4ε
x0,ρ0(·, 0) in !. (2.28)

We have, on the one hand

ũ0(x) ≥ h+(ṽ(0); εβ) ≥ sup
r∈R

q(r , ṽ(0); εβ) ≥ 4ε
x0,ρ0(x, 0) for x ∈ B(x0, ρ0).

On the other hand, we have w(x, 0) ≥ εβ in !\B(x0, ρ0) so that

4ε
x0,ρ0(x, 0) ≤ q(εβ−1, ṽ(0); εβ) = h−(ṽ(0); εβ)+ O(e−νεβ−1

) in !\B(x0, ρ0).

Now, because A− = infv∈[vmin,vmax]
d
da h

−(v; a)|a=0 < 0 (see Remark 1.1), we deduce
that

4ε
x0,ρ0(x, 0) ≤ h−(ṽ(0); 0)+ A−εβ + O(ε2β)
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+ O(e−νεβ−1
) ≤ h−(ṽ(0); 0) ≤ ũ0(x) in !\B(x0, ρ0),

for ε ∈ (0, ε4], with ε4 sufficiently small and where we have used β ∈ (0, 1/2) in the
second inequality. This proves (2.28). Having verified the initial conditions, we can
apply the comparison principle to deduce that ũε(x, t) ≥ 4ε

x0,ρ0(x, t) in ! × [0, Tε].
To prove (2.27) we first note that for ε > 0 sufficiently small

∫ t

0
α(ṽ(τ ); εβ) dτ − 2εβ ≥

∫ t

0
α(ṽ(τ )) dτ − (K̄4 + 2)εβ for t ∈ [0, Tε],

in which we choose any K̄4 ≥ T A where A > 0 is the Lipschitz constant of α(v, a)
in a. Hence

B
(
x0, ρ0 +

∫ t
0 α(ṽ(τ )) dτ − (K̄4 + 2)εβ

)
⊂ B

(
x0, ρ0 +

∫ t
0 α(ṽ(τ ); εβ) dτ − 2εβ

)
.

This implies that for any x ∈ B(x0, ρ0 +
∫ t
0 α(ṽ(τ )) dτ − (K̄4 + 2)εβ) we have

w(x, t) ≤ −εβ and in particular

ũε(x, t) ≥ q(−εβ−1, ṽ(t); εβ) ≥ h+(ṽ(t); εβ)+ O(e−νεβ−1
)

= h+(ṽ(t); 0)+ A+εβ + O(ε2β)+ O(e−νεβ−1
),

where A+ = infv∈(vmin,vmax)
d
da h

+(v; a)|a=0 < 0. Increasing K̄4 if necessary so that
K̄4 > |A+| and further reducing ε4 > 0 then proves (2.27). ,-

Proposition 2.1 Let 0 < σ < β < 1
2 and T > 0 be fixed. Then there exists an ε5 > 0

such that for all ε ∈ (0, ε1]

inf
!̃+

ε,σ (t)

(
ũε(·, t) − h+(ṽ(t); 0)

)
≥ −K̄4ε

β for t ∈ [0, T ], (2.29)

sup
!̃−

ε,σ (t)

(
ũε(·, t) − h−(ṽ(t); 0)

)
≤ K̄4ε

β for t ∈ [0, T ], (2.30)

where !̃±
ε,σ (t) are given in (2.3) and (2.4).

Proof We will only prove (2.29) since the proof of (2.30) following analogously.
We assume, in addition, that

∫ t
0 α(ṽ(τ ))dτ does not change sign for t ∈ [0, T ].

With some minor modifications, the same proof can be extended to the case where∫ t
0 α(ṽ(τ ))dτ changes sign finitely many times. In light of Lemma 1.3 the assumption
that

∫ t
0 α(ṽ(τ ))dτ does not change sign is enough for our purpose.

In view of Corollary 2.1 it suffices to show that

!̃+
ε,σ (t) ⊂

⋃
B

(
x0, ρ0(x0)+

∫ t

0
α(ṽ(τ )) dτ − (K̄4 + 2)εβ

)
(2.31)
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where ρ0(x0) = max{ρ > 0 | B(x0, ρ) ⊂ !0} and the union is taken over all x0 ∈ !0
such that

ρ0(x0) ≥ ρεβ , where ρ = max{4, K̄4 + 2}.

The proof is divided into two cases depending on whether
∫ t
0 α(ṽ(τ ))dτ is nonneg-

ative or nonpositive which corresponds, respectively, to an expanding or contracting
activated region.
Case 1.

∫ t
0 α(ṽ(τ )) dτ ≥ 0 for t ∈ [0, T ]: To prove (2.31), we first deduce, by the

positivity of
∫ t
0 α(ṽ(τ ))dτ and the definition of Tε, that Tε = T for all (x0, ρ0(x0))

appearing in the union in (2.31). Now, choose any t1 ∈ [0, T ] and let x1 ∈ !̃+
ε,σ (t1)

and note that by definition this implies dist(x1,+0) <
∫ t1
0 α(ṽ(τ ))dτ − εσ . We have

to consider three subcases depending on the range of dist(x1,+0).
Case 1a. If dist(x1,+0) ≤ −ρεβ then we can simply choose x0 = x1 for which we

clearly have ρ0(x0) ≥ ρεβ and x1 ∈ B(x0, ρ0(x0)+
∫ t1
0 α(ṽ(τ ))dτ − (K̄4 + 2)εβ).

Case 1b. On the other hand if dist(x1,+0) ≥ 0 then choose x ′ ∈ +0 such that
|x1−x ′| = dist(x1,+0). ByLemma1.2 there exists an x0 ∈ !0 such that B(x0, ρεβ) ⊂
!0 and |x0 − x ′| ≤ K̄0ρεβ . In particular, ρ0(x0) ≥ ρεβ . By the triangle inequality
we then have, for ε ∈ (0, ε5],

|x1 − x0| ≤ |x0 − x ′| + |x1 − x ′| ≤ K̄0ρεβ +
∫ t1

0
α(ṽ(τ ))dτ − εσ

≤ ρ0(x0)+
∫ t1

0
α(ṽ(τ ))dτ − (K̄4 + 2)εβ ,

where the final inequality follows provided ε5 is chosen sufficiently small so that
ε5 ≤ [(K̄0 − 1)ρ + K̄4 + 2]−1/(β−σ ) which we remark, importantly, is independent
of x0.

Case 1c. Finally, if −ρεβ < dist(x1,+0) < 0 then for ε ∈ (0, ε5],

ρεβ +
∫ t1

0
α(ṽ(τ ))dτ ≥ −dist(x1,+0)+

∫ t1

0
α(ṽ(τ ))dτ > εσ > (K̄0 + K̄4 + 3)εβ ,

(2.32)

where the first strict inequality follows from the definition of !̃+
ε,σ (t1) and the second

by assuming ε5 ≤ [(K̄0 + 1)ρ + K̄4 + 2]−1/(β−σ ). We then choose x ′ ∈ +0 such that
|x1 − x ′| = ρεβ and using Lemma 1.2 we obtain an x0 ∈ !0 such that B(x0, ρεβ) ⊂
!0 and |x0 − x ′| ≤ K̄0ρεβ . As above we may assume that in fact ρ0(x0) = ρεβ . By
the triangle inequality and (2.32) above we deduce

|x1 − x0| ≤ |x0 − x ′| + |x1 − x ′| ≤ (1+ K̄0)ρεβ ≤ ρεβ +
∫ t1

0
α(ṽ(τ ))dτ − (K̄4 + 2)εβ

In summary, the inclusion (2.31) holds for all ε ∈ (0, ε5] where ε5 = [(K̄0 + 1)ρ +
K̄4 + 2]−1/(β−σ ).
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Case 2.
∫ t
0 α(v(τ )) dτ ≤ 0 for t ∈ [0, T ]: Let t1 ∈ [0, T ] and x1 ∈ !̃+

ε,σ (t1) be given.
It follows that x1 ∈ !0 and moreover letting x0 = x1 and ρ0 = |dist(x1,+0)| we
observe from (2.3) that

ρ0 > εσ −
∫ t1

0
α(ṽ(τ ))dτ. (2.33)

In particular, since σ < β, by choosing a sufficiently small value of εwe can guarantee
that ρ0 ≥ ρ.

We claim that it is enough to show that

ρ0 +
∫ t

0
α(ṽ; εβ) dτ > (K̄4 + 2)εβ for t ∈ [0, t1]. (2.34)

Indeed, if we suppose that (2.34) is true for the moment, then t1 ≥ Tε, and

x1 = x0 ∈ B
(
x0, ρ0(x0)+

∫ t1

0
α(ṽ(τ )) dτ − (K̄4 + 2)εβ

)
.

To show (2.34), observe that for t ∈ [0, t1], we have

ρ0 +
∫ t

0
α(ṽ; εβ) dτ >

∫ t

0
[α(ṽ(τ ); εβ) − α(ṽ(τ )] dτ + εσ

≥ −AεβT + O(ε2β)+ εσ > (K̄4 + 2)εβ for all t ∈ [0, t1],

where we used (2.33) to get the first inequality, A is the Lipschitz constant of α(v; a)
in a, and where ε ∈ (0, ε1) is chosen to get the final inequality, with ε5 > 0 being
reduced further from Case 1 above if necessary. ,-
Proof of Theorem 3 Weagain assume that

∫ t
0 α(ṽ(τ )) dτ does not change sign in [0, T ].

The global bounds (2.7) are proved in Lemma 2.1 above. To prove (2.5) it therefore
suffices to show there exist K̄2 > 0 so that

ũε(x, t) ≥ h+(ṽ(t)) − K̄2ε
β for (x, t) ∈ !̃+

ε,σ,T , (2.35)

and

ũε(x, t) ≤ h−(ṽ(t))+ K̄2ε
β for (x, t) ∈ !̃−

ε,σ,T . (2.36)

These are direct consequences of Proposition 2.1. This completes the proof of Theorem
3. ,-

3 Proof of Theorem 2

Having established Theorem 3 in Sect. 2 above we turn now to the proof of Theorem 2.
Let T > 0 and γ ∈ (0, 1/2) be given, and fix β, σ such that 0 < γ < σ < β < 1/2.
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In addition, fix

B = 8K (A + 2K̄2ε2)
2

θ
, (3.1)

where ε2 is the (T -dependent) constant in Theorem 3, θ ∈ (0, 1) is the constant in
(1.16) of assumption (A4), A > 0 is the constant in (1.17), and where we define

K = sup
s∈R

|{x ∈ ! | dist(x,+0) = s}| . (3.2)

In view of Lemma 1.3 we have vmin < v̂(t) < vmax for all t ≥ 0 and hence there
exists an 0 < ε1 ≤ min{ε2, ε3, ε4, ε5} such that for all ε ∈ (0, ε1]

vmin < v̂(t)± εγ eBt < vmax for all t ∈ [0, T ].

Define

T (ε) ≡ sup{t ∈ [0, T ]
∣∣ |vε(τ ) − v̂(τ )| < εγ eBτ for all 0 ≤ τ ≤ t}. (3.3)

and note that T (ε) > 0 for all ε ∈ (0, ε1] since vε(0) = v̂(0). We will show that in
fact T (ε) = T .

Let uε
±(x, t) be the unique solution of






∂t uε
± = ε$uε

± + ε−1 f (uε
±, v̂(t)± εγ eBt ), in ! × (0, T ],

∂nuε
± = 0, on ∂! × (0, T ],

uε
±(x, 0) = u0(x), in !.

(3.4)

For each t ∈ [0, T ], define !̂+
ε (t), !̂

−
ε (t), and !̂0

ε(t) by

!̂+
ε,σ (t) ≡ {x ∈ ! | dist(x,+0) <

∫ t
0 α(v̂(τ ) − εγ eBτ )dτ − εσ }, for t ∈ [0, T ],

(3.5)

!̂−
ε,σ (t) ≡ {x ∈ ! | dist(x,+0) >

∫ t
0 α(v̂(τ )+ εγ eBτ )dτ + εσ }, for t ∈ [0, T ],

(3.6)

!̂0
ε,σ (t) ≡ !\[!̂+

ε,σ (t) ∪ !̂−
ε,σ (t)], for t ∈ [0, T ].

(3.7)

We refer the reader to Fig. 8 for an illustration of these three regions. Reducing ε1
further if needed, we may apply Theorem 3 to uε

± to deduce that for all t ∈ [0, T ] and
ε ∈ (0, ε1],

sup
!̂+

ε,σ (t)

|uε
+(·, t) − h+(v̂(t)+ εγ eBt )| + sup

!̂+
ε,σ (t)

|uε
−(·, t) − h+(v̂(t) − εγ eBt )| ≤ K̄2ε

β .

(3.8)
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Fig. 8 Sketch of the leading order solution û(x, t) given by (1.10c), ε-dependent solutions uε
±(x, t) satis-

fying (3.4), and the regions !̂+
ε,σ (t), !̂

0
ε,σ (t), and !̂−

ε,σ (t) used in the proof of Theorem 2

Next we observe that assumption (A3) and the definition of T (ε) imply that for all
ε ∈ (0, ε3] and t ∈ [0, Tε] we have

{
f (uε

−(x, t), v
ε(t)) > f (uε

−(x, t), v̂(t) − εγ eBt ),
f (uε

+(x, t), v
ε(t)) < f (uε

+(x, t), v̂(t)+ εγ eBt ).
(3.9)

By regarding uε(x, t) as the solution of a single parabolic equation with Neumann
boundary conditions (with vε(t) being a given parameter), and regarding uε

+, u
ε
− as

the super and subsolution of the same equation (thanks to (3.9)), we may apply the
comparison principle to obtain

uε
−(x, t) ≤ uε(x, t) ≤ uε

+(x, t) for all (x, t) ∈ ! × [0, T (ε)] and ε ∈ (0, ε1].
(3.10)

The definition of vε(t) in (1.1) together with definition (1.10b) of v̂(t) and (1.10c)
then imply that for all ε ∈ (0, ε1] and t ∈ [0, T (ε)]

|vε(t) − v̂(t)| =
∣∣∣∣

∫

!
(uε(x, t) − û(x, t)) dx

∣∣∣∣

≤
∫

!̂+
ε,σ (t)

|uε − û| dx +
∫

!̂−
ε,σ (t)

|uε − û| dx +
∫

!̂0
ε,σ (t)

|uε − û| dx

= I+ + I− + I0. (3.11)

We now estimate each term in (3.11), starting with I+. By (3.8) and (3.10) we
deduce that for all ε ∈ (0, ε1] and t ∈ [0, T (ε)]

h+(v̂(t) − εγ eBt ) − K̄2ε
β ≤ uε(x, t) ≤ h+(v̂(t)+ εγ eBt )+ K̄2ε

β for x ∈ !̂+
ε,σ (t).

123



72 Page 26 of 31 D. Gomez et al.

Note that û(x, t) = h+(v̂(t)) for x ∈ !̂+
ε,σ (t) since !̂(t) ⊂ !̂+

ε,σ (t) by Lemma 1.1.
In particular

sup
x∈!̂+

ε,σ (t)

|uε − û| ≤ max
{
|h+(v̂(t) − εγ eBt ) − K̄2ε

β − h+(v̂(t))|, |h+(v̂(t)+ εγ eBt )+ K̄2ε
β − h+(v̂(t))|

}

≤ (1 − θ)εγ eBt + K̄2ε
β for t ∈ [0, T (ε)] and ε ∈ (0, ε1],

where we used (1.16) in assumption (A4). Since β > γ > 0, and possibly reducing ε1

so that ε1 ≤ (K̄−1
2 θeBT /3)

1
β−γ , we deduce that for all ε ∈ (0, ε1] and t ∈ [0, T (ε)]

sup
x∈!̂+

ε,σ (t)

|uε(x, t) − û(x, t)| ≤
(
1 − 2

3θ
)
εγ eBt .

In particular, for all ε ∈ (0, ε1] we have

|I+| ≤ |!̂+
ε,σ (t)|

(
1 − 2

3θ
)
εγ eBt for t ∈ [0, T (ε)], (3.12)

and similarly also

|I−| ≤ |!̂−
ε,σ (t)|

(
1 − 2

3θ
)
εγ eBt for t ∈ [0, T (ε)]. (3.13)

Next we estimate I0. To this end we first observe that for ε ∈ (0, ε1], and t ∈
[0, T (ε)] we have

sup
x∈!

|uε(x, t) − ûε(x, t)| ≤ |h+(v̂(t)+ εγ eBt ) − h−(v̂(t) − εγ eBt )| + 2K̄2ε ≤ A + 2K̄2ε1,

(3.14)

where the first inequality follows from (3.10), (2.7), and the triangle inequality while
the second inequality follows from (1.17). Moreover, by the definition of !0

ε we have
that

|!̂0
ε,σ (t)| ≤ K

[∫ t

0
[α(v̂(τ )+ εγ eBτ ) − α(v̂(τ ) − εγ eBτ )] dτ + 2εσ

]

≤ K A
∫ t

0
2εγ eBτ dτ + 2K εσ

≤ θ

4(A + 2K̄2ε1)
εγ eBt + 2K εσ for t ∈ [0, T ] and ε ∈ (0, ε1],

where we used the definition (3.2) of K for the first inequality, the bound (1.17) in the
second inequality, and the definition (3.1) of B for the final inequality. Reducing ε1
further if necessary we deduce that for all ε ∈ (0, ε1],

|!̂0
ε,σ (t)| ≤ θ

3(A + 2K̄2ε1)
εγ eBt for t ∈ [0, T (ε)],
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and in particular

|I0| ≤
∫

!̂0
ε,σ (t)

|uε − û| dx ≤ |!̂0
ε,σ (t)|(A + 2K̄2ε1) ≤ θ

3
eγ eBt for t ∈ [0, T (ε)],

(3.15)

where we used (3.14) in the second inequality.
Substituting (3.12), (3.13) and (3.15) into (3.11), we deduce that

|vε(t) − v̂| ≤
(
|!|

(
1 − 2

3θ
)
+ θ

3

)
εγ eBt ≤ (1 − 1

3θ)ε
γ eBt for t ∈ [0, T (ε)],

(3.16)

where we used the fact that |!+
ε (t)| + |!−

ε (t)| ≤ |!| = 1. The definition (3.3) of
T (ε), together with (3.16) above, imply that T (ε) = T for otherwise it would be
inconsistent with the maximality of T (ε). In particular this establishes (1.18a) with
K̄1 = eBT . Furthermore, the bounds (3.10) hold for all t ∈ [0, T ] so that applying
the global estimate (2.7) of Theorem 3 to uε

+(x, t) and u
ε
−(x, t) then yields the global

estimate (1.18b).
Finally, we prove (1.19). Using (1.17), and enlarging K̄1 if necessary, we have

{
x ∈ !

∣∣ dist(x,+0) <

∫ t

0
α(v̂(τ )) dτ − K̄1ε

γ

}
⊂ !̂+

ε,σ (t) for all t ∈ [0, T ], ε ∈ (0, ε1],

(3.17)

where we remind the reader that 0 < γ < σ < β < 1
2 . By the Lipschitz continuity of

h+(v) and (3.8) we deduce that for all t ∈ [0, T ] and ε ∈ (0, ε1]

|uε
+ − h+(v̂(t))| + |uε

− − h+(v̂(t))| ≤ K̄1ε
γ when dist(x,+0) <

∫ t
0 α(v̂(τ )) dτ − K̄1ε

γ ,

(3.18)

where we have also used the set inclusion (3.17). Having already established that
T (ε) = T we see that the inequalities in (3.10) hold for!×[0, T ] provided ε ∈ (0, ε1].
Combining (3.10) and (3.18),we therefore deduce that for all t ∈ [0, T ] and ε ∈ (0, ε1]

|uε − h+(v̂(t))| ≤ K̄1ε
γ when dist(x,+0) <

∫ t
0 α(v̂(τ )) dτ − K̄1ε

γ , t ∈ [0, T ],
(3.19)

which proves the first estimate of (1.19). The second one can be established in an
analogous manner and we omit the details.

4 Discussion

In this paper we have initiated a rigorous study of the limiting behaviour of solutions
to the non-local problem (1.1) when ε ! 1. Formal asymptotic calculations suggest
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that this system exhibits growing or shrinking activated regions with a common nor-
mal velocity α (depending on the level of v(t)) over an O(1) timescale. For spatial
dimension N ≥ 2, it is expected that, over a slower O(ε−1) timescale, higher order
effects lead to a volume-preserving mean curvature flow (see Fig. 6) that possibly
interacts with the boundary ∂!; see (Chen et al. 2010) for a discussion on volume-
preserving mean curvature flow in the volume-preserving Allen-Cahn equation, as
well as (Mugnai et al. 2016) and the references therein for the mathematical aspects of
volume-preserving mean curvature flow. In this paper we have focused on the leading
order dynamics over an O(1) timescale. Specifically, in Theorem 2, we have shown
that for any T > 0 and γ ∈ (0, 1/2) the values of uε(x, t) and vε(t) are within O(εγ )

of those predicted by the formal asymptotics for all t ∈ [0, T ] and x ∈ ! outside of an
O(εγ ) boundary layer near the interface between activated and inactivated regions. In
particular, these quantitative results rigorously locate the front interface within O(εγ ).
These results also rigorously justify the wave-pinning behaviour previously predicted
by formal asymptotics and numerical simulations.

One of the key steps in the proof of Theorem2was the construction of two bounding
solutions uε

±(x, t) satisfying the scalar equation (2.1). For a bistable potential that is
independent of (x, t), Chen (1992) proved the generation of interface and the motion
by normal velocity via super/subsolution method. On the other hand for a bistable
potentialwith (x, t) dependence, the limiting behavior of solutions has been previously
established in Barles et al. (1993) using viscosity solutions methods; see also (Alfaro
et al. 2008). Our contribution in Sect. 2 is to obtain a quantitative estimate of the
transition between the two stable states within O(εγ ) distance of the limiting interface
when ε → 0.

An interesting feature of (1.1) is that the leading order interface may potentially
lose regularity by forming cusps, even if the initial interface is smooth. This happens
when the interface touches the boundary or when the curvature of the interface blows
up at an interior point. In such a case the error of order εγ with γ ∈ (0, 1/2) seems
to be sharp. Here we refer to Fig. 5c, which measures roughly the maximum distance
dmax of the reaction–diffusion interface with the one predicted by the leading order
theory. For t = 0.2, 0.5, 1 the leading order interface is regular and dmax = O(ε),
whereas for t = 2, 5 the leading order interface has a cusp and dmax is of fractional
order in ε.

Next, we discuss the assumption on the initial data to be of bang-bang type for our
results. For Theorem 3 it is possible to relax the initial data to ũ0 ∈ C1(!) and

|∇x ũ0| > 0 when ũ0 = h0(ṽ(0)).

In this case, one can define +0 = {x ∈ !
∣∣ ũ0(x) = h0(ṽ(0))}, and follow the argu-

ments in Chen (1992) to prove the generation of interface. For Theorem 2 concerning
the nonlocal equation (1.1), however, the situation is more complicated. Although one
might also expect the generation of interface to be valid, it is not clear in general how
to characterize the exact initial location of the generated interface in terms of the initial
data u0(x) and v(0) = M0 − 1

|!|
∫
! u0(x) dx . This is the main reason we required

that the initial data being of bang-bang type in Theorem 2.
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In contrast, the assumption (A5) on the domain convexity is not necessary. In fact,
our arguments can be adapted to treat nonconvex domains with C2 boundary. This
can be done by enforcing an upper bound on the radius of the super/subsolutions
constructed in Sect. 1.5. Finally we conclude by drawing attention to assumption (A4)
that is necessary for proving Theorem 2 but is not necessary for wave-pinning. We
suggest theweakening of this assumption as a further open problem forwhich different
techniques than those used in this paper may be needed.
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Appendix A. The differential algebraic equation and its solvability

In this appendix we reformulate the system (1.10) as a differential algebraic equation
(DAE) that more easily lends itself to numerical calculations and analysis. To this end
we first define

W (s) ≡ |{x ∈ ! |dist(x,+0) < s}|.

Since s is the distance of the interface from its initial position, it is easy to see that
ds/dt indicates its speed which, by the method of matched asymptotic expansions,
corresponds to α. Specifically, we deduce that (1.10) is equivalent to the system

ds
dt

= α(V (s)), t > 0; s(0) = 0, (A.1a)

V (s)+W (s)h+(V (s))+ (1 − W (s))h−(V (s)) = M0. (A.1b)

It is then straightforward to recover v̂(t) and !̂(t) by using

v̂(t) = V (s(t)), !̂(t) =
{
x ∈ ! |dist(x,+0) < s(t)

}
,

from which û(x, t) is then obtained using (1.10c). While solving the DAE (A.1) is
a relatively simple task, the calculation of W (s) may be more difficult depending on
properties of the initial interface +0. However, this reformulation has the benefit that
once the initial interface +0 is known, W (s) can be precomputed for a sufficiently
large range of s values.

In addition to simplifying numerical calculation of the leading order solution, it
is also easier to deduce the existence of solutions to (A.1). It suffice to show that
the right hand side of (A.1a) is Lipschitz in s. To show this we first define G :
(vmin, vmax) × (0, 1) → R by

G(x, y) ≡ x + yh+(x)+ (1 − y)h−(x) = y
(
h+(x)+ x

)
+ (1 − y)

(
h−(x)+ x

)
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Then for x2 > x1 we calculate

G(x2, y) − G(x1, y) = y(x2 − x1)
∫ 1
0

(
1+ dh+

dv |sx2+(1−s)x1

)
ds

+ (1 − y)(x2 − x1)
∫ 1
0

(
1+ dh−

dv |sx2+(1−s)x1

)
ds

>C0y(x2 − x1)+ C0(1 − y)(x2 − x1) = C0(x2 − x1),

where the first inequality follows from (1.12) and in particular dh±/dv > −1. On the
other hand

G(x, y2) − G(x, y1) ≤ |h+(x) − h−(x)||y2 − y1| ≤ A|y2 − y1|.

Now let s1 and s2 satisfy (A.1b) and assume that V (s2) > V (s1). Then

G(V (s2),W (s1)) − G(V (s1),W (s1)) = G(V (s2),W (s1)) − G(V (s2),W (s2)),

with which the above inequalities give

C0|V (s2) − V (s1)| < A|W (s2) − W (s1)|. (A.2)

Now from the definition ofW (s)we deduce |W (s2)−W (s1)| < C1|s2 − s1| for some
constant C1 > 0 depending only on +0. From (1.17) we then deduce

|α(V (s2)) − α(V (s1))| ≤ A|V (s2) − V (s1)| ≤ A2C1

C0
|s2 − s1|. (A.3)

References

Alfaro M, Hilhorst D, Matano H (2008) The singular limit of the Allen–Cahn equation and the FitzHugh–
Nagumo system. J Differ Equ 245(2):505–565

Barles G, Bronsard L, Souganidis PE (1992) Front propagation for reaction–diffusion equations of bistable
type. Ann Inst H Poincaré C Anal Non Linéaire 9(5):479–496

Barles G, Soner HM, Souganidis PE (1993) Front propagation and phase field theory. SIAM J Control
Optim 31(2):439–469

Champneys AR, Al Saadi F, Breña-Medina VF, Grieneisen VA, Marée AF, Verschueren N, Wuyts B (2021)
Bistability, wave pinning and localisation in natural reaction–diffusion systems. Phys D 416:132735

Chen X (1992) Generation and propagation of interfaces for reaction–diffusion equations. J Differ Equ
96(1):116–141

Chen X, Hilhorst D, Logak E (2010) Mass conserving Allen–Cahn equation and volume preserving mean
curvature flow. Interfaces Free Bound 12(4):527–549

Cusseddu D, Edelstein-Keshet L, Mackenzie JA, Portet S, Madzvamuse A (2019) A coupled bulk-surface
model for cell polarisation. J Theor Biol 481:119–135

Diegmiller R, Montanelli H, Muratov CB, Shvartsman SY (2018) Spherical caps in cell polarization.
Biophys J 115(1):26–30

Fife PC, McLeod JB (1977) The approach of solutions of nonlinear diffusion equations to travelling front
solutions. Arch Ration Mech Anal 65(4):335–361

Giese W, Eigel M, Westerheide S, Engwer C, Klipp E (2015) Influence of cell shape, inhomogeneities and
diffusion barriers in cell polarization models. Phys Biol 12(6):066014

123



Front propagation in the shadow wave-pinning model Page 31 of 31 72

Goryachev AB, Leda M (2017) Many roads to symmetry breaking: molecular mechanisms and theoretical
models of yeast cell polarity. Mol Biol Cell 28(3):370–380

Jilkine A, Edelstein-Keshet L (2011) A comparison of mathematical models for polarization of single
eukaryotic cells in response to guided cues. PLoS Comput Biol 7(4):e1001121

Lam K-Y, Lou Y (2022) Introduction to reaction–diffusion equations: theory and applications to spatial
ecology and evolutionary biology. Lecture notes on mathematical modelling in the life sciences.
Springer, Cham

Lunardi A (1995) Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser
classics. Birkhäuser, Basel [2013 reprint of the 1995 original] [MR1329547]

Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity from a bistable reaction–
diffusion system. Biophys J 94(9):3684–3697

Mori Y, Jilkine A, Edelstein-Keshet L (2011) Asymptotic and bifurcation analysis of wave-pinning in a
reaction–diffusion model for cell polarization. SIAM J Appl Math 71(4):1401–1427

Mugnai L, Seis C, Spadaro E (2016) Global solutions to the volume-preserving mean-curvature flow. Calc
Var Partial Differ Equ 55(1):Art. 18, 23

PDE Solutions Inc. Flexpde 7. http://www.pdesolutions.com
Rappel W-J, Edelstein-Keshet L (2017) Mechanisms of cell polarization. Curr Opin Syst Biol 3:43–53
Rätz A, Röger M (2012) Turing instabilities in a mathematical model for signaling networks. J Math Biol

65(6):1215–1244
Rubinstein J, Sternberg P (1992) Nonlocal reaction–diffusion equations and nucleation. IMA J Appl Math

48(3):249–264
Zmurchok C, Collette J, Rajagopal V, Holmes WR (2020) Membrane tension can enhance adaptation to

maintain polarity of migrating cells. Biophys J 119(8):1617–1629

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://www.pdesolutions.com

	Front propagation in the shadow wave-pinning model
	Abstract
	1 Introduction
	1.1 Existence and uniqueness result
	1.2 Travelling front solutions in R1
	1.3 Well-prepared initial conditions 
	1.4 Leading order solution and wave-pinning
	1.5 Example
	1.6 The main result

	2 Local convergence of a scalar PDE with time dependent nonlinearity
	3 Proof of Theorem 2
	4 Discussion
	Acknowledgements
	Appendix A. The differential algebraic equation and its solvability
	References


