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Abstract

In this paper we consider a non-local bistable reaction—diffusion equation which is a
simplified version of the wave-pinning model of cell polarization. In the small diffusion
limit, a typical solution u(x, t) of this model approaches one of the stable states of
the bistable nonlinearity in different parts of the spatial domain €2, separated by an
interface moving at a normal velocity regulated by the integral |, g u(x,t)dx. Inwhatis
often referred to as wave-pinning, feedback between mass-conservation and bistablity
causes the interface to slow and approach a fixed limit. In the limit of a small diffusivity
g2 &« 1, we prove that for any 0 < y < 1/2 the interface can be estimated within
O (g”) of the location as predicted using formal asymptotics. We also discuss the
sharpness of our result by comparing the formal asymptotic results with numerical
simulations.

Mathematics Subject Classification 35K57 - 35B25 - 35B40 - 35B30

1 Introduction

Scalar reaction—diffusion equations and systems can be useful in the modeling of phase
transition in various physical and biological systems. Of particular interest is the case of
bistable reaction diffusion equations for which (Fife and McLeod 1977) provided one
of the first rigorous treatments. The problem has since received considerable attention
in higher dimensions such as, for example, the analysis of generation and dynamics
of interfaces using comparison principle methods by Chen (1992) and the analysis of
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interface motion using level set and viscosity solution methods by Barles et al. (1992,
1993). Generalizations of these classical bistable reaction—diffusion equations that, for
example, incorporate non-local effects or replace the single reaction—diffusion equa-
tion with a system, are also known to exhibit phase transition phenomenon (Rubinstein
and Sternberg 1992; Chen et al. 2010; Cusseddu et al. 2019), though their rigorous
analysis is considerably less studied. For example, the formal analysis by Rubinstein
and Sternberg (1992), as well as the subsequent rigorous analysis by Chen et al. (2010),
illustrates that travelling front solutions to certain non-local scalar reaction—diffusion
systems can exhibit many similarities to their classical, local, counterparts.

In this paper we initiate a rigorous treatment of a non-local bistable reaction—
diffusion equation as an analytically tractable model of cell polarization (Mori et al.
2008, 2011). This model distills the complex biochemical circuitry leading to the
polarization of Rho GTPases to a two-species mass-conserved reaction—diffusion sys-
tem for the concentration of active and inactive GTPases. A delicate interplay between
bistability and mass conservation in this system can lead to the expansion and eventual
halting of an activated GTPase patch, a phenomenon which is commonly referred to
as wave-pinning. The relative simplicity of this two-species model, together with its
analytical tractability and the interpretability of its results, has made it an attractive
framework for cell-polarization models. More recent iterations of the wave-pinning
model have incorporated mechanochemical feedback (Zmurchok et al. 2020) and bulk-
surface coupling (Rétz and Roger 2012; Diegmiller et al. 2018; Cusseddu et al. 2019).
Within the context of bulk-surface coupling Giese et. al. have also probed the effects of
diffusion barriers and cell shape (Giese et al. 2015). We remark that alternative models
for cell-polarization specifically and cellular pattern formation in general have also
been proposed and this is an active area of research. See, e.g. the review articles (Jilkine
and Edelstein-Keshet 2011; Goryachev and Leda 2017; Rappel and Edelstein-Keshet
2017; Champneys et al. 2021).

In this paper we consider specifically the non-local reaction—diffusion equation

us(x,t) = eAu(x,t) —i—e_lf(u(x, t),v()), xe€, t>0, (1.1a)

V(1) = Mo — 157 Jq u(x. )dx, 1>0, (L1b)
duu(x,1) =0, x€dR, t>0, (l.lc)
u(x, 0) = up(x), xe, (1.1d)

where @ ¢ RY (N > 1) is a bounded domain with smooth boundary, My > O,
& > 0 are constants, and f(u, v) is a smooth function which is bistable in u with
additional properties to be made more precise below. The well-posedness of solution
to (1.1)is discussed in Sect. 1.1 below. This non-local equation is formally obtained by
taking the limit D — oo, often referred to as the shadow limit, in the mass-conserved
reaction—diffusion system

u,:eAu—l—e’lf(u,v), evy = DAv — f(u,v), xe€Q, t>0,

Opu = dyv =0, x €0, t>0,
u(x,0) =uglx), vx,0) =vylx), xe, t=0.

@ Springer



Front propagation in the shadow wave-pinning model Page3of31 72

Specifically, assuming D >> 1 we then consider the asymptotic expansion v(x, t) ~
vo(x,t)+--- from which we deduce the leading order expression Avy = 0. Together
with the homogeneous Neumann boundary conditions this implies that vg(x, ¢) is
spatially constant. Moreover, mass conservation

d
Z/g(u(x,t)—i—v(x,t))dx =

then implies that v = v(¢) where v(¢) is given by (1.1b). The analysis of wave-pinning
in these systems by Mori et al. (2011), as well as of its subsequent iterations (e.g.
Cusseddu et al. 2019; Zmurchok et al. 2020), primarily rely on numerical simulations
and the use of formal asymptotic methods in the sharp interface limit for which ¢ < 1.
Our goal in this paper is to initiate a rigorous treatment of front solutions to (1.1) by
rigorously demonstrating that such solutions converge to those obtained using formal
asymptotics as ¢ — 0T,

The remainder of this paper is organized as follows. We begin by first recalling in
Sect. 1.2 some preliminary properties of travelling front solutions in R! due to Fife and
McLeod (1977). After making precise assumptions about the initial condition u¢(x)
in Sect. 1.3 we will then state in Sect. 1.4 the leading order solution to (1.1) obtained
using formal asymptotic methods and describe in more detail the conditions for wave-
pinning to arise. This is accompanied with an illustrative example in Sect. 1.5 for
which we numerically simulate (1.1). In Sect. 1.6 we precisely state our assumptions
on the reaction-kinetics f (u, v) and state our main result in Theorem 2. In Sect. 2 we
prove convergence results for the scalar counterpart of (1.1) where v is a prescribed
function, which is subsequently used in the proof of Theorem 2 in Sect. 3.

Before proceeding further, we describe the most important assumptions on the reac-
tionkinetics f (u, v) in order to establish some common notations. The first assumption
we make is that for a range of v € [Vmin, Vmax] the function f(u, v) is bistable in u.
Specifically this means that f (-, v) has exactly three zeros 7~ (v) < O®w) < ht)
such that

fuhT@),v) <0 and f,(h°(v), v) > 0. (1.2)

These inequalities imply in particular that 2 (v) (resp. h%(v)) are stable (resp. unsta-
ble) with respect to the reaction kinetics. In addltlon we assume that the spatially
homogeneous steady states (u, v) = (hi(vo ), Y, ) where Uo is obtained by substi-
tutingu = hi(v0 ) into (1.1b), noting that | 2| = 1, and solving the resulting nonlinear
equation Uo + hi(vo ) = M), are linearly stable. We can derive an algebraic relation
for linear stability by letting u = hi(v0 )+ @ (x)e* where ¢ ; ; is the eigenfunction
satisfying —A¢; = pj¢; in Q and 9,¢; = 0 on 9. Since o = 0 and ¢g = 1
whereas ; > 0 and fQ ¢jdx = 0 for all remaining j > 1, substituting into (1.1a)
and linearizing yields two cases

b= fuhE @), v7) = fohE ), v5)), =0,
A==+ e fuhE ). ), j=z1
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When j > 1 we immediately deduce that A < 0 by the bistability of f(-, v) whereas
for j = 0 we deduce the linear stability condition

Fu* 5, v5) = o™ (), v) < 0. (1.3)
1.1 Existence and uniqueness result

Note that (1.1) can be rewritten into the following single, nonlocal parabolic equation

w(x, 1) = eAu(x, 1) + &' flulx, 1), My — g [qux,Ndx), x € Q, >0,
(1.42)

Opu(x,t) =0, xed, t>0,
(1.4b)

u(x, 0) = uo(x), x € Q.
(1.4c)

Since the integral term fQ u dx has better regularity than u«, one can apply the usual
semigroup argument to obtain existence and uniqueness of classical solution.

Theorem 1 For each nonneggtive up € C(Q), (1.4) has a unique classical solution
ue C(S x[0,00)NCE(Q x (0, 00)).

Proof Set X = C(Q) and
{D<—A> =0 €Mt WP @)1 Ap € C@, 1ug],5 =0}
Xip={p e C'(Q): d|,g =0}
The existence and uniqueness of a classical solution in the class
C([0. Timax): X) N CH((0, Tipax): X) N C((0, Tinax): D(—A))

defined on some maximal time interval [0, Tiax) is a consequence of semigroup theory
(Lunardi 1995, Theorem 7.1.5 and Proposition 7.1.10); See also (Lam and Lou 2022,
Theorem 5.1.2). Next, observe that Tj,,x = 400 since the solution remains bounded
for all time thanks to the bistable nonlinearity f. Finally, by observing that u, and

the nonlinearity f (u, My — ﬁ fQ udx) belongs to CBBI2(Q x [8, %]) for every

0 < &8 < 1, it follows from the Schauder estimates that u € C>!'(Q x [8, 1/8]) for
each0 <§ < 1. O

1.2 Travelling front solutions in R’

Let v € (Vmin, Vmax) and assume that a € R is sufficiently small so that f(u, v) —a is
bistable. Denote by hO(v; @) and h™(v; @) the unstable and stable zeros of fG,v)—a
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respectively. It can then be shown that (see Fife and McLeod 1977 for example)

qrr +agq, + f(g,v) —a =0, —00 < < 00, (1.5a)
q(0,v: a) = h’(v; a), q(r,v;a) — h¥(v;a), r — oo, (1.5b)

can be solved for a unique front profile q(r, v; a) and front speed o (v; a). Moreover,
it can be shown that ¢ (r, v; @) is monotone decreasing in  so that multiplying (1.5a)
by g, and integrating yields the explicit expression for the front speed

1 ht(via) .
L) — —a)du. 1.
a(v; a) T 4G v a)dr /h(v;a) (f(u,v) —a)du (1.6)

In addition to these properties we also have the following ordering property for the
front speed under the additional assumption that 9 f /dv > 0.

Lemma 1.1 Lef vnmin < V] < V2 < Umax and a € R be such that both f (-, v1) —a and
f (-, v2) —a are bistable. If 0 f /0v > 0 then «(v1; a) < a(v2; a).

Proof First, we assume in addition that 3 f/dv > 0. Let ¢;(r) = ¢(r, v;; a) and
o; = o(vi;a) foreachi = 1,2. Observe that d f/dv > 0 implies that h*(vi;a) <

h* (vy; @). Since q is strictly decreasing in r and g (£00; v2; @) > q(d00; v1; a), we
can perform a translation to find values | and r, such that

q1(r) = q2(r2),  qy(r) = q5(r2), ¢\ (r1) < g5 (r2).

From (1.5a) we then obtain

g5 (r2) — q7 (r) + (2 — a)qi(r) = f(qi(r), vi) — f(g2(r2), v2) <0, (1.7)

which implies o — a1 > 0.
For the general case d f /dv > 0, choose § > 0small and repeat the above arguments
to f + dv, and then let § — O. |

Remark 1.1 By differentiating f(h™* (v; a), v) — a = 0 with respect to a we readily
deduce that % < 0. On the other hand we similarly calculate % > 0.

Remark 1.2 The a-dependent reaction kinetics f(u, v) — a are important for the con-
vergence proof in Sect. 2; see also (Barles et al. 1993). When a = 0 we will write
a(v), h°(v), and h* (v) instead of «(v; 0), h%(v; 0), and A (v; 0) respectively.

1.3 Well-prepared initial conditions
By replacing x, 7, ¢ with x/|Q|"/N, t/|Q|'/VN, and ¢/|Q|'/V, respectively, we may

assume without loss of generality that €2 is of unit volume, e.g. |2] = 1. We will be
making this assumption for the remainder of the paper.
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Throughout this paper we will also assume that the initial condition uq(x) is well-
prepared in the following sense. We fix 29 C €2 and define the initial interface I'g =
0920\02 which we assume to be a Lipschitz surface intersecting 9€2 transversally.
More precisely, we assume that there exists a constant M > 1 such that the following
two conditions hold:

(L) For each xg € I'g there exists a neighborhood N C Q of xp such that the surface
o NN can be represented as the graph of a Lipschitz function. Specifically, up
to an orthogonal change of coordinates

Co NN ={(x",xy) e N x R|xy = Gy (x")},
where G, : N/ C RVN~! — Rsatisfies |Gy, (x) — Gy, (y)| < Molx — y| for all

x,yeN.
(T) For each xo € I'g N €2, using the same local coordinates as above, we have

Inae(xo) - (0,---,0, DT < My,

where nyq(xg) denotes the outer unit normal vector of d<2 at the point xo. Note
that (T) holds trivially if ['g N 92 is empty.

Next we let vg solve the algebraic equation
vo + [0/A™ (vo) + (1 — |R0DA™ (vo) = Mo, (1.8a)
where we assume that Qg and M are chosen in such a way that (1.8a) has a solution

in vg € (Umin, Vmax)- In terms of this value of vy and the geometric constraints on ¢
we then define the initial condition ug(x) by

+
uo(x) = {h (vo), x € Lo, (1.8b)

h=(vg), x € Q\Q.

Remark 1.3 With this choice of well-prepared initial conditions we bypass the question
of front generation and focus instead exclusively on front propagation.

Remark 1.4 The geometric constraints on the initial interface I'g are needed for the
proofs of Theorems 2 and 3. If I'¢ is a smooth surface, then we only need

[npa(xo) - nry| <1 forall xo € 'oN OS2,

where nr is the normal vector with respect to I'y.

We state, without proof, the following consequence of the geometric constraints on
Q0 and Iy (see Fig. 1 for an illustration).
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Fig. 1 Illustration of Lemma
1.2. The sets 92 and I'(y are
represented by the solid and
dash curves respectively. For
given x’ € g and p > 0, the
choice of B(xg, p) and B(Xq, p)
are displayed

Lemma 1.2 Let Q20 C Q and its boundary T'o = 02 satisfy the geometric constraints
(L) and (T) above. Then there exist p > 0 and Ko > 1 such that for any x' € Tgand

p e (0, B]’ there exists xo € 0, Xo € Q\ﬁo such that
B(xo, p) C R0, B(Xo, p) C 2\,
and
lx" — xol + |x" — %ol < Kop.

Here B(xg, po) = {x € RN ||x — xo| < po} and Ko only depends on 02 and the
constant M.

1.4 Leading order solution and wave-pinning

Using the method of matched asymptotic expansions we can formally derive a leading-
order approximation of solutions to (1.1) under the assumptions of a well-prepared
initial condition. We first state the following definition of a signed distance function
which we will use throughout the remainder of paper.

Definition 1 Let S C RY be arbitrary. The signed distance from 85 = S N Q\S is
then defined by

infycas lx =y, x € Q\S, (1.9)

dist(x, 0S) = .
—infyeps |x —y[, x €8.

Let 'y = 08 be the interface described in Sect. 1.3. For each ¢, we define the
domain () and value 9(¢) by solving the system

{ Q1) = {x € Q|dist(x, To) < [y a(d(r))dz}, (1.10a)
(1) = Mo — QIR (@0(0) — (1 = 1Q0)h™ (D)), (1.10b)

where «(+) is the front-speed given by (1.6) with a = 0. Note that Q(O) = Qo.
Equations (1.10a) and (1.10b) together constitute a differential algebraic equation
(DAE) which can in general be solved for 9(¢) and ©(¢) uniquely. We refer the reader
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to Appendix A for a reformulation of this DAE which more readily lends itself to
numerical calculation. Note that 9(0) = vg coincides with the value of vy chosen in
Sect. 1.3 above. The leading order asymptotic approximation for u® when ¢ < 1 is
then given in terms of fZ(t) and v(t) by

x. 1) = B B0 Ky () + ™ (D) Xy o0y (). (1.10¢)

where yxg(x) is the indicator function for any S C RN

Remark 1.5 If v(t) is prescribed independently of « in (1.1) then one can define Q(t)
by (1.10a) and the same leading-order solution (1.10c) can be obtained; see Sect. 2.

The formal construction of the approximation (1.10) relies solely on the bistability
of the reaction kinetics and the well-preparedness of the initial condition. If we assume
in addition that «’(v) > 0 and the existence of a V. € (Vmin, Vmax) such that a(v.) =
0, then solutions to (1.1) may exhibit wave-pinning (WP) in which the front slows
and approaches a fixed interface. The possibility of this behaviour is readily seen by
differentiating (1.10b) with respect to ¢ to get

v _ h+(f’(’)) —h” @) 10Q()\0Qa (5(1))
R Y S R (R T L

(1.11)

Observe that the denominator is strictly positive as a consequence of the linear
stability of the homogeneous steady states. Indeed, by differentiating the identity
f (h*(v), v) = 0 with respect to v and using the stability condition (1.3), we obtain

0= fulh™ ), VU= 4 £, (hF ), v) > fuh* @), v) (L= 1), (1.12)

In view of (1.2), it follows that dh* /dv > —1.

By (1.11), we deduce that d 9 /dt is negatively proportional to the front speed which
in particular implies that dv/dt < 0 for U(t) 2 v, and this suggests three distinct
outcomes for the dynamics of the leading order solutions to (1.1): (I) Q(t) — @ in
finite time, (II) Q(t) — Q in finite time, or (III) a((¢)) — 0 and Q(t) — Qo C Q2
as t — oo. The particular outcome depends on the properties of the well-prepared
initial condition and, ignoring boundary effects, can be heuristically classified solely
by the values |2p| and M. To do so, we start by defining

M@, w)=v+whT)+ (1 —w)h (v) forv € [Vmin, Vmax], w € [0, 1],
(1.13)

in terms of which (1.10b) is equivalent to M (0(z), |Q(t) |) = My. Next, we calculate

oM _ dh™* +a )dh‘ oM ) — B ()
= w— —W)—, — = v)—h (v
En dv dv’ dw ’
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WP and Lipschitz Regions Zeros of f(u, v)

MV, 1Q])
2.00 - o k
ol 1754 — ho (v) .
=== h%v)
] 0.8
0.00 1.50 1 B it
0.05 ] )
1.25 el
$ 0.04 - 100 . :
0.03 075 - .
0.02 Ao-m=== N ] |
/- ~ e R E——— W .
0011 * > 0254 -~
K S SR P
0.00 : : - : : : 0.0 .
0.0 0.2 0.4 0.6 9 10 1 10 1
Ky v ‘;

Fig. 2 A Plot of the wave-pinning threshold (solid blue) for the nonlinearity specified in (1.14). wave-
pinning is formally known to occur for values of « and k1 below the solid blue curve. The rigorous results
in this paper are restricted to choices of kg and k1 below the dashed orange curve. The dot indicates the
values of k1 = 0.2 and kg = 0.01 used in B and C and for the simulations in the example of Sect. 1.5. B
Zeros h™ (v), ho(v), and ht(v) of (1.14). C Color plot of M (9, |f2|) showing trajectories of the leading
order solution (1.10) along its contours with each label coinciding with the possible outcomes of Proposition
1.1 (colour figure online)

both of which we observe to be positive. Since the dynamics of |f2(t)| and 0(¢) are
restricted to the contours M (v(z), Q(t)) = M/ we can immediately deduce a criteria
for each outcome (I), (II) and (III) based on whether vy < v, or vy > v, and whether
the contour intersects |§2| =0or |§2| = 1 (see Fig. 2c for an example). We summarize
this classification in the following proposition.

Proposition 1.1 The dynamics of the leading order solution (1.10) have the following
three outcomes depending on the parameters vy and || and are determined by the
value of M (v, |20|) defined by (1.13):

@D if Vmin + 7~ (Wmin) < M (vo, |R0]) < ve + h™ (ve) then §A2(t) — () in finite time,
(D) ifve +ht(ve) < M(vo, |0]) < Vmax + AT (Vmax) then Q(t) — S in finite time,
and
(D) if ve + A~ (ve) < M(vo, |R0]) < ve + AT (ve) then a(d(t)) — 0 and Q(t) —
Qoo C QLast — oo.

Note that in Case (III) above it is possible that Qo, = @ or Qs = €2, but the
convergence is not achieved in finite time. In particular, regardless of the outcome in
the above proposition we deduce the following properties of v(¢) and «(0(2)).

Lemma 1.3 Let v(t) solve (1.10a) and (1.10b) where Ty satisfies the geometric
assumptions in Sect. 1.3 and v(0) = vy € (Vmin, Vmax). THhen vmin < 0(t) < Umax and
a(0(t)) is of one sign for all t > 0.

1.5 Example
In this subsection, we illustrate the wave-pinning phenomenon in a two-dimensional

domain by numerically simulating (1.1) using the finite element method software Flex-
PDET7 (http://www.pdesolutions.com). Throughout our simulations we let the reaction
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M, 163]) Vi) |Q%(t)]

1.0 - - 0.40

13 — S_O'Oflt'
4 —== asymptotics

08 0.35 ymp
12

0.6 1

kel
0.4 n
0.2 10 <2 —— £=0.001
\ ——~ asymptotics
0.0 9.20

! o 1 2 3 4 s o 1 2 3 a4 s
(a) (B) ()

Fig. 3 Comparison of numerical and leading order asymptotic solutions. Parameter values used found in
the main body. A Numerically computed trajectory (vnum (), |S2num (¢)|) (dashed red) superimposed on a
colorplot of M (v, |Q|). B Comparison of vyum (1) (solid blue curve) and 0(¢) (dashed orange curve). The
horizontal orange dotted line indicates the value of v, = ¥(+00) (note that v, = 0(400) and |ﬁ(oo)|
are uniquely determined by (1.10b)). The horizontal blue dotted line indicates the O (¢) corrected vf after
taking the mean curvature dynamics into account and determined by solving by a(vS) = eRs l, where
T R? = Iﬁ(m)l. C Comparison of |Qpuym (¢)| (solid blue) and \fl(t)l (dashed orange) (colour figure online)

kinetics be of the commonly used form

2
Fu, v) = <K0+1’1—”’42>v—u. (1.14)

These reaction kinetics are known to satisfy the conditions for wave-pinning provided
that ko < «1/8 (Mori et al. 2011). Our proof of Theorem 2 applies in the more
restrictive parameter regime indicated in Fig.2a needed to satisfy assumption (1.16)
below. This region was numerically computed by enforcing that |dh™/dv| < 1 at
v = v, which guarantees the existence of a neighborhood (vpin, Umax) of v, for which,
in addition to the bistability condition, assumption (1.16) holds. Fixing x; = 0.2 and
ko = 0.01 we can then calculate 4~ (v) and A% (v) which we plotin Fig. 2b together with
the numerically calculated values v, & 9.4422, vpin & 9.1151, and vyax & 11.486.
In Fig.2c we plot M (v, |€20|) together with the critical value v, (dashed vertical
line) and three sample trajectories of |fZ(t)| versus () labelled according to the three
possible outcomes (I), (I), and (III) in Proposition 1.1.

To demonstrate the wave-pinning mechanism, and the accuracy of the leading order
solution (1.10), we consider an illustrative example for which we numerically solve
(1.1) using FlexPDE7 (http://www.pdesolutions.com) with ¢ = 0.001 and Q C R?
being a disk of unit area centred at the origin. We use (1.8b) as the initial condition
where ¢ is an ellipse centered at the origin with major- and minor-axis lengths of
a = 0.50777 and b = 0.24520 respectively. Choosing My = 9.7 then gives a value
of vg &~ 9.2 which is less than v, so that the leading-order theory predicts that v®
will increase toward v, and the area of the activated region will decrease. In Fig.3a
we indicate by a green and red dot the, respectively, initial and final (obtained by the
formal leading order theory) values of v® and the volume of the activated region. We
henceforth denote the numerically computed solution by upum (x, v, ) and vpym(7) in
terms of which we define the numerical activated region by
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t=0.10 t=0.80 t=1.20 t=5.00
0.50 0.50 0.50 0.50 4
0.25 - 0.25 0.25 0.25 4
0.00 0.00 0.00 0.00 -
~0.25 - —0.25 —0.25 —0.25 1
~0.50 ~0.50 ~0.50 ~0.50 1
-05 0.0 0.5 -05 0.0 0.5 -05 0.0 0.5
i I : a3
_1.01 1.0 1.04 1 i .04 !
S . ' I '
o [ I 1 1
X i i 1 H
S 0.5 0.5 1 0.5 1 054! T
1
i :
-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5
X X X X
r—‘—j T
1.0 1.0 1 1.0 1 1.0 1
-
=
s
S 0.5 0.5 1 0.5 1 0.5 1
-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5
y y y y

Fig. 4 Comparison of the numerically calculated solution upum(x, y, t) and the leading order asymptotic
theory. The top row shows a colorplot of upum(x, y, t) with the leading order trajectory superimposed as
the dashed white curve. In the middle and bottom rows we plot cross sections of unum (x, y, t) (solid blue)
and i (x, y, t) (dashed orange) along y = 0 (middle) and x = 0 (bottom). The time of each snapshot and
cross section is indicated at the top of each column (colour figure online)

[Xnum(t) = (a + 5(t))|/(a + 5(1)

[Viaum(t) = V() |/0(t) o 119mm(®)] = 18O 1/190)]
10

10°

-1 |
10 %
t

/—0— 0.2
10- 4 /—0— 05

—1

—— 2

—— 5

1072

10—3 4

10—4 4

1073

(a) (B) ()

Fig.5 Relative error between the numerically computed solution and the leading order asymptotic theory

Qnum (1) = {(LY) € Q| unum(x, y, 1) > % ( max upum(X, y, 1) + min_unum(x, y, t))}
(x,y)e (x,y)eQ

The numerically calculated values of vyym (f) and | Q2,um (1) | thus obtained are indicated
by the dashed red curve in Fig.3a which shows good agreement with the expected
behaviour of the leading order solution in that it follows a contour of M (9, |f2|).
Similarly, we compare vyym(#) and |Q2pum(?)] to their leading order counterparts in
Fig.3b, c respectively. In the top row of Fig.4 we plot, at the indicated values of
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t, a colorplot of the numerically computed solution upym(x, y, t) with the leading
order trajectory of the front superimposed and indicated by the dashed white line.
The remaining rows of Fig.4 show cross sections of unyym (solid blue) and & (dashed
orange) along y = 0 (middle row) and x = 0 (bottom row). Finally, in Fig. 6 we show
the evolution of the activated region over a longer timescale which suggests the front
evolves according to a volume-conserved mean curvature flow (Fig. 5).

While Figs.3 and 4 show good qualitative agreement between the numerically
computed solution and the leading order asymptotic theory, there are some clear quan-
titative discrepancies. Although subtle, we first note that there appears to be a slight
mismatch when comparing the numerical and leading order asymptotic solutions in
Fig.3b, c. This discrepancy is due to higher-order corrections to the leading-order
asymptotic theory which we expect to be of order O(¢). Indeed, based on numer-
ical experiments (see Fig.6) as well as past results on travelling front solutions to
bistable reaction—diffusion systems (e.g. Rubinstein and Sternberg 1992; Barles et al.
1993), we expect that as v®(r) approaches its limiting value, the front will undergo a
volume-conserved mean curvature flow over a slower timescale. As a consequence,
we anticipate that the mismatch observed in Fig. 3 is of order ¢ and sufficient to coun-
teract the tendency of the mean curvature flow to shrink the activated region further.
An approximation to the corrected limiting value of v®(¢) can be obtained by first
noting that, to leading order, the limiting volume of the activated region can be found
by substituting 9(r) = v, into (1.10b) and solving for |[Q(c0)| = lim_ oo |2()].
Since the subsequent volume-preserving mean-curvature flow ultimately leads to a
ball of radius R, = (|Q(w)|/n)]/2, we deduce vi = lim;_, o v°(f) must solve
a() = eR; ! In Fig.3b we plotted both v, (dotted orange) and vZ (dotted blue)
showing good agreement with the limiting behaviour of v and v* respectively. Finally,
in Fig. 5a, b we show the results of repeating our numerical calculations for additional
values of ¢ = 0.002, 0.005, 0.006, 0.008, 0.01 to calculate the relative error with the
leading order asymptotic theory. We observe that while the relative error increases for
larger values of ¢, it still remains O (¢). However, this is not the case for Fig. Sc.

In addition to the discrepancies in Fig. 3 discussed above, we also observe in Fig. 4
that when ¢t = 5 there is a mismatch between the numerical and leading-order asymp-
totic solutions near the extremities of the activated region along y = 0. This mismatch
is in part due to the higher-order mean curvature effects discussed above, though we
expect this to play only a secondary role. Instead, we expect that this mismatch is pri-
marily due to the formation of a cusp in the leading order front evolution which first
occurs around ¢ = 2. Indeed, at points where such a cusp emerges the asymptotic solu-
tion obtained using the method of matched asymptotic expansions is no longer valid.
This discrepancy is in fact captured in our main result of Theorem 2 for which the error
to the leading-order asymptotic theory is proven to be O(g") for any y € (0, 1/2).
In Fig. 5S¢ we plot the relative error between the numerically calculated location of the
front along y = 0 and the leading order location of the front given by x = a + §(¢)
where 5(¢) is the solution to (A.1). Interestingly, we observe from these plots that the
relative error is of order ¢ for smaller values of t whereas it becomes sub-linear as ¢
increases before becoming approximately of order /¢ att = 5.
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t=5 t=10 t=20 t=100 t=500
0.5 1 0.5 1 0.5 1 0.5 1 0.51
0.0 1 0.0 1 0.0 1 0.0 1 0.01
—-0.5 A —-0.5 A —-0.5 A —-0.5 - —0.5 -
-05 00 05 -05 0.0 05 -05 0.0 05 -05 0.0 05 -0.5 0.0 0.5

Fig. 6 Long time behaviour of the numerical solution considered in the example demonstrating volume-
preserving mean curvature flow

1.6 The main result

The above example illustrates that the leading order approximation (1.10) is in good
agreement with direct numerical simulations of (1.1). This example also suggests that
forafixed T > 0, 0(¢) uniformly approximates v* (¢) in [0, T'], while Z(x, 7) uniformly
approximates u® (x, t) away from the leading order front interface in Q x [0, T']. We
make these observations rigorous in Theorem 2 which relies on the following four
assumptions:

(A1) There exists a pair vmin < VUmax such that for all v € [Vmin, Umax] the nonlinearity
£ (-, v) is bistable with zeros A~ (v) < h°(v) < ht(v) and such that the spatially
homogeneous steady states u = h* (v) are linearly stable.

(A2) There exists a unique value v, € (Unmin, Umax) sSuch that a(v.) = 0 where « is
the front speed given by (1.6).

(A3) The nonlinearity f(u, v) satisfies

of/ov>0 forallu and v € [Vmin, Vmax]- (1.15)
(A4) There exists a6 € (0, 1) such that
|hE (1) — hE ()] < (1 —6)|vy —va|  forall v € [Vmin, Umax]. (1.16)

(A5) The domain 2 is convex.

Assumptions (A1)-(A3) are needed for wave-pinning to occur, though we note that
(A3) can be weakened provided o (vy) < «(vz) for all vi, v2 € (VUmin, Vmax) With
v1 < v3. On the other hand assumption (A4) is a technical assumption that is needed
for the proof of Theorem 2. The convexity of €2 in assumption (A5) is introduced to
simplify the treatment of boundary conditions in our construction of sub- and super-
solutions in Sect. 2; see Remark 2.3. Finally we choose an A > 0 such that

sup |ht) —h ()| <A and |a(vi) —a(v)] < Alv; — vy
V1,02 €(Vmin, Vmax)

(1.17)
for all vy, v2 € [Umin, Umax]. Such an A exists due to the smoothness of A* and «.
The following theorem is our main result and it provides quantitative estimates on

the accuracy of the leading order solution constructed in (1.10).
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Theorem 2 Let f(u, v) satisfy assumptions (A1)—(A4), and let Q satisfy assumption
(AS). Suppose that the initial condition uq is given by (1.8b) such that the initial
activated region QQq satisfies the Lipschitz and transversalzty conditions (L) and (T) in
Sect. 1.3. Then, for each T > 0 and y € (0, 2) there exists an e1 > 0 and K; > 0
such that for all ¢ € (0, e1] and any solution (u®(x, t), v¥) of (1.1), we have

sup v (1) — 0(1)| < Kye”, (1.18a)
te[0,T]
h= (1)) — K1&¥ <u(x,t) <hT(0@t)) + Kie¥ inQ x[0,T],
(1.18b)

and

uf (x, 1) = hT (1) < Kye¥ in{(x,1) |0 <t < T, dist(x,To) < [y a(d(r))dt — K17},
(1.19a)

luf (x, 1) —h™ (D(0)] < Kye¥ in{(x,1) |0 <t < T, dist(x,To) > [y a(d(r))dt + K17},
(1.19b)

where 0(t) is given by (1.10b).

Note that above theorem treats the regime where the interface is driven by a constant-
in-space normal velocity modulated by the level of v®(¢). Such a regime takes place at
a faster timescale then mean curvature and domain geometry effects. In this regime,
the activated region at time ¢ is defined by its distance to the initial interface I'y.
In particular, the initial activated region €2 is not assumed to be be connected. We
prove Theorem 2 in Sect. 3 below. The proof relies crucially on the local convergence
properties of appropriate sub- and super-solutions to a scalar counterpart of (1.1),
which we analyze in Sect. 2 below.

2 Local convergence of a scalar PDE with time dependent
nonlinearity

In this section we consider the following scalar counterpart to (1.1)

i =eAi+e  f(i7,0(0), xeQ, >0, (2.1a)
At =0, x €, >0, (2.1b)
i(x, 0) = iio(x), xeQ, t=0, (2.1c)

where we assume that the nonlinearity f (u, v) satisfies the bistability assumption (A1)
and where v(¢) is a prescribed function satisfying

Ve Cl([O, 00)) and vpin < 0(f) < Vmax for all £ > 0. (2.2a)

Inaddition welet Qg C Q andits boundary I'g = 92 satisfy the geometric constraints
(L) and (T) set forth in Sect. 1.3. We then assume that the initial condition o (x) is
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given by

R (©(0)), x € Qo,

— i~ = (2.2b)
h=(0(0)), x e Q\Q.

o(x) =

We are here interested in the limiting behaviour of solutions to (2.1) when ¢ <« 1. To
precisely state our main theorem for this section we first state the following definitions.

Definition 2 For a given 0 < 0 < % and ¢ > 0 we define the following subsets of €2

Qf, (1) = {x € Q|dist(x, [o) < [y a(3())dT — &%}, (2.3)
Q. , (1) = {x € Q|dist(x, o) > [y a(D(1))dT + £}, (2.4)

where dist(x, I'p) is the signed distance function so that dist(x, ['g) < 0 in €.

Remark 2.1 Letting ¢ — 0 in the definition of Q;’fc (t) we obtain an analogue of the

leading-order activated region (1) considered in Sect. 1.4. Indeed, the same asymp-
totic methods can be used to derive a leading order approximation of the form (1.10c)
for (2.1). In this sense Qj’a (1) and fz;o (t) are, respectively, subsets of the leading
order activated and inactivated regions which closely (within O (%)) approximate
their leading order counterparts.

In terms of these definitions we have the following theorem whose proof will be
the focus of the remainder of this section.

Theorem 3 Let T > 0, Q a convex subset of RN with smooth boundary, and let Qo C
Q and assume that its boundary T'g C 02 satisfies the Lipschitz and transversality
conditions (L) and (T) in Sect. 1.3. If u® (x, t) satisfies (2.1) where v(t) satisfies (2.2a)
and the initial condition uo(x) is given by (2.2b), then for each o € (0, ) and
B € (0, 1/2) there exists an ¢y > 0 and Ky > 0 such that for all ¢ € (0, &3]

sup @S (x, 1) — hH ()| < KpeP, (2.5)
0eQf ;

sup  |@f(x, 1) — h™(0(1))| < KeP, (2.6)
0€Q ¢

and

h= (1)) — Kae < u®(x,1) < hT(5(2)) + Kae  forall (x,1) € Q x [0, T].
.7

~ 4 ..
Here Q0 1 is given by

0, ={rne@x(0.Tlxe 0} 2.8)
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Remark 2.2 The bounds (2.5) and (2.6) in particular imply that for each o € (0, 1/2)
the interface of the activated region can be located within an error of O (¢?) from the
limiting ¢ — O problem.

Remark 2.3 The convexity assumption here is used in the verification of the subso-
lution. When the domain is convex, the spherically symmetric subsolution always
has positive outward normal derivatives, thus satisfying differential inequality on the
boundary. If the domain is nonconvex but is of class C?2, then the same holds true
provided the subsolution is supported on balls of sufficiently small radius. In such a
case, one can possibly modify the arguments and remove the convexity assumption in
this paper.

Our first lemma addresses the global bounds (2.7).

Lemma2.1 Let T > 0 be given and suppose that u® satisfies (2.1) with assumptions
(2.2). Then there exists an €3 > 0 and K3 > 0 such that for all ¢ € (0, &3]

h=(0(1)) — Kze < ii(x,1) < hT(3@1t)) + Kze  forall (x,1) € Q x [0, T].
(2.9)

Proof Let g~ () = h~(¥(t)) — K3e and g+ () = hT(3(r)) + K3¢ where K3 > Oisa

large constant to be specified later. Since f, (k¥ (9(¢)), 7(t)) < 0 we can find y’ > 0
and &3 > 0 such that

F& @), 50) = f(g* (), 0@) = f(h* @), 5(1) < —y'Kze forO0 <1 <T, ande € (0,e3].

Using the fact that |%| = % %| is uniformly bounded in & we may specify K3 > 0
sufficiently large so that
dg 1o +
— =& , V),
7 fg". v

and therefore g™ (¢) is a supersolution of (2.1). Since also g7 (0) > 2™ (9(0)) > iip(x),
we conclude by the maximum principle that u®(x,t) < gV (¢) for all (x,1) € Q x
[0, T]. The proof of the lower bound u®(x, t) > g~ (¢) is similar and is omitted. 0O

The proof of the bounds (2.5) is more intricate and we proceed by first constructing
a class of radially symmetric sub- and super-solutions to (2.1).

Definition 3 For each § > 0 we define 15(z) to be the smooth real-valued function
satisfying

ns(z) =z, forz > —§/2,
=8 < ns(z) < —=8/2, for —6 <z <-6/2, (2.10)
ns(z) = =4, for z < —8.
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wix, t) = n(|x = Xo| — pa(t) + 6) . poXr )
h*(V; €F) 1
q(=€P=1,V; €P) 1
q(—eP~=112,V; €F) 4
6 4
q(0, v; €f)
0 4
0021 q(ef=1,v; €P) 4
— . = e8) e ;
-26 -3612 -6 0 —2¢P —3eP2 —¢P 0
|x = Xxo| = p1(t) [x = Xo| = p1(t)
(a) (B)

Flg 7 Sketches of A the cut-off function w(x,?) defined by (2.10) and (2.13). B The sub-solution

XO 20 (x, t) from Lemma 2.2. We remind the reader that p1 (t) = pg + fO a(v(7), & )dr

Definition4 Let 8 > 0, pp > 0,7 > 0,7 € C'([0, T), and x( € Q be given.
(1) Define T, T, € [0, T] by

T, = sup {T/ €[0,T1| po —i—féa(f)(t),sﬂ)dr > 3¢f foralls € [0, T/]} ,

(2.11)
T, = sup {T’ € [0, T1| po — [y a(¥(r), —eP)dr > 3e# forallt € [0, T’]} ,
(2.12)
where we set T, and T, to zero if their corresponding sets are empty.
(2) Let 8§ = & and define w(x, t) and W(x, t) by
w1 =ns (1x = ol = po — fy a(@(0), Py dr +8)  forxe®, 1€[0,T;],
(2.13)
i, 1) = —ns (Ix = xol = po + [ @(B(r), ~ef)dz +8) forx e Q, re0,Fl.
(2.14)
(3) Define <1>x0 oo (X5 1) and dDXO o (X, 1) by

®f (1) = q( Lw(x, 1), 5(1): sﬁ) for (x,1) € @ x [0, Tp], (2.15)

By 60 = q (67N, 1), 00 —eP)  for (v € %[0, 7.1, 2.16)

where g (r, v; a) is the travelling front profile satisfying (1.5).

A plot of the function w(x, ¢) is shown in Fig. 7a whereas Fig. 7b shows a sketch

&
of @3-
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Lemma2.2 Let B € (0,1/2), po >0, T >0,v € Cl([O, T1), and xo € 2 be given.
Then there exists an €3 > 0 such that for all ¢ € (0, €3] the function Qio,po defined in
(2.15) above satisfies

0 S,y — EADE L —e I F(@E L B(D) <0 inQx [0, T],

(2.17a)
WPy =0 on Q2 x [0, T.].

(2.17b)

Furthermore, the constant €3 > 0 depends on B but is independent of xo, po.

Proof Obviously <ch0, oo (X5 1) is smooth in \{xo}. Moreover, the definition of T

and w(x, ) imply that w(x, 1) = —e? in a neighborhood of x( so that in particular
®F ,, (x, 1) is smooth for all (x, 1) € Q x [0, T¢].

From the well known properties of the front profile ¢ (see for instance Fife and
McLeod 1977) we can find an rg > 0 and v > 0 such that for all! v e [Vmin» Vmax]
and a in a neighborhood of zero,

\gr(r. v @) + g (r, v @) < eV forall |r| > ro. (2.18)
For convenience, we also define the function
t
p1(t) = po + f a(i(1), eP)dr, (2.19)
0
as well as the operator
Llpl = dip — eAd — &' f(¢. D(1)). (2.20)

In terms of the radial coordinate p(x) = |x — xg| we directly calculate that

LIV, ol =aqu i + 7 g [wy — e(wpp + 1w,) + o] + 67 g (1= wp?) — &P
2.21)

where @ = «(3(r); €#) and that ¢ and all its derivatives are evaluated at (r, v; a) =
(e w(x, 1), 0(r); ?). We show (2.17a) by calculating the sign of the right-hand-side
of (2.21) in three separate cases. Throughout the proof we use

QU% +lgr| + 1grr| + | < Co  everywhere,

where Cj is a generic constant that is independent of €.

1 By (Al), such an exponent v exist for each v € [Vmin, Vmax], and is the root of some quadratic equation.
By continuity argument, v can be chosen uniformly in v.
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Case 1. p(x) — p1(t) > —%5/3: In this case w(x, 1) = p(x) — p1(t) + &P so that

w, = —a, wy, = 1, wy, =0, and therefore
dv N-—1
_ _ B
LIP3 0] =qv TR gr —el7. (2.22)

Moreover p(x) > p1(t) — %8‘3 > %8’3 where we have used the definition of T for
the second inequality. In particular we deduce from (2.22) that for e3 > 0 sufficiently
small and € € (0, &3],

LD

X0,P0

1< Co+3Co(N—DeP —ef~1 <0 fort €0, T,],

where we used 0 < B < % to deduce the final inequality.
Case 2. p(x) — p1(t) < —2&P: In this case w(x, 1) = —&” is a constant so we have

d
LIO8 | = gy

X0, 0 dt + gil%‘a + eichrr - 5ﬁ7] . (223)

For sufficiently small ¢ > 0 we have |r| = | " lw(x, 1)| = |¢#~!| > rg so that (2.18)

<e NCo+ e,

‘871%'0“ + )8ilqrr

where the last inequality follows from the choice of 0 < B < 1/2. We can then deduce
from (2.23) that

LIS, 1< Cote ' (Co+ De ™ —ef~1 <0,
for ¢ € (0, 3], provided &3 is sufficiently small.
Case 3. —2¢f < p(x) — p1(1) < —%8ﬁ2 In this case from the definition of w(x, 1)

we deduce that w(x,t) < —%sﬁ . Choosing ¢ > 0 sufficiently small so that |r| =

18-
le w(x, 1) > %aﬂ_l > ro we deduce from (2.18) that |g, | + |g,-| < 2¢”2"¢ ' On
the other hand we also have that p(x) > p(¢) — 2¢P > P where the final inequality
follows from the definition of 7. Putting these together into (2.21) we obtain that

1

1 _
LIO° 1=Cotele 2" _ef1 <o

X0,00

’

fore € (0, £3], where the last inequality again follows from the choice of 0 < § < 1/2
and &3 to be sufficiently small.

Choosing ¢ > 0 to be sufficiently small so that Cases 1-3 hold we thus deduce
(2.17a). Finally, the boundary condition (2.17b) follows from 8,1<cho, 20 (x,t) =
p’lapcbe (x,1)(x — xg) - n < 0 where the inequality follows from the convex-

X050
ity of €2 and because @7, is decreasing radially from xo € €2. O

An analogous argument also yields the following result.
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Lemma23 Let 8 € (0,1/2), p0 >0, T > 0,and v € Cl([O T1), and xo € 2 be
given. Then there exists €3 > 0 small such that for ¢ € (0, €3], the function e

defined in (2.16) above satisfies o
9D, —eADE—eT F(DEB(1) =0 inQx [0, Ty,
(2.24)
I ®E, =0 on 32 x [0, T .
(2.25)

The following result is an immediate consequence of the comparison principle.

Corollary 2.1 Fix B € (0, %), T > 0,0 € CL([0,T]), and xo € Q. There exists
&4 € (0, &3] such that if

iig = h*(@(0); ) in B(xo, po) NQ, and iig = h™(§(0); 0) in 2\B(xo, po),
(2.26)

for some pg > 4¢P and ¢ € (0, e4), then there exists a K4 > 0 independent of xo such
that

i (x, 1) = hH (0(1); 0) — KgeP,  (x,1) € B(xo, po + [y ¢ (0(1)) dT — (K4 + 2)eP)
x[0, 7.1, (2.27)

where T is given by (2.11).

Proof of Corollary 2.1 Let <I>x0 po (X5 1) be given by (2.15). By Lemma 2.2 it follows
thatL[CDXO po] <0in 2 x [0, T;], and 0,, D <0ondR2x[0, T;]. Note that T, > 0
since pg > 4¢P,

To apply the comparison principle, it remains to show that

XO po =

iy > CIDfCO,pO(-, 0) in . (2.28)
We have, on the one hand

io(x) = hH(@(0); ) = supq(r, 5(0); ) = @°
reR

o po(x, 0) forx € B(xg, po).

On the other hand, we have w(x, 0) > &P in Q\ B (x0, po) so that

(x,0) < g(e#~1, 5(0): %) = k= (5(0): £f) + 0™ ) in Q\B(x0. po)-

XO 00

Now, because A~ = inf (v, vmax] dah (v; a)la=0 < O (see Remark 1.1), we deduce
that

(x,0) < h™(5(0);: 0) + A"e + 0(*F)

xo £0
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+ 0@ < h™(©(0);0) < dig(x) in 2\B(x0. po).

for ¢ € (0, 4], with &4 sufficiently small and where we have used 8 € (0, 1/2) in the
second inequality. This proves (2.28). Having verified the initial conditions, we can

apply the comparison principle to deduce that u®(x, 1) > @3, (x, 1) in & x [0, T¢].

To prove (2.27) we first note that for ¢ > 0 sufficiently small
t t B
f a(0(1); efydr — 2¢P > / a(0(1))dt — (K4 +2)eP  forr €0, T,
0 0

in which we choose any K4 > T A where A > 0 is the Lipschitz constant of « (v, a)
in a. Hence

B (xo, po + [La(i(r))dr — (Ra+ 2)eﬂ) CB (xo, po + Ji a(i(e); ey dr — 2sﬂ) .

This implies that for any x € B(xo, po + [y @(3(x))dt — (K4 + 2)eP) we have
w(x, 1) < —& and in particular
i, 1) = g(—eP 7 50 ) = @0 6F) + 0
= Wt (@5(1); 0) + AP + 0(*) + 0@,

where AT = infye (. vma) %h“‘(v; a)|a=0 < 0. Increasing Ky if necessary so that
K4 > |AT| and further reducing &4 > 0 then proves (2.27). O

Proposition2.1 Let0 <o < B < % and T > 0 be fixed. Then there exists an &5 > 0
such that for all € € (0, e1]

inf (@ (. 1) — RN ((); 0)) > —KaeP  fort €10, T1, (2.29)
Qs
sup (i°(-, 1) —h™(5(1); 0)) < Kae? fort €[0,T1, (2.30)
Qio(t)

where Qfa (t) are given in (2.3) and (2.4).

Proof We will only prove (2.29) since the proof of (2.30) following analogously.
We assume, in addition, that fot a(v(r))dt does not change sign for ¢+ € [0, T].
With some minor modifications, the same proof can be extended to the case where
fot a(v(t))dt changes sign finitely many times. In light of Lemma 1.3 the assumption
that fot a(v(t))dt does not change sign is enough for our purpose.

In view of Corollary 2.1 it suffices to show that

t
Qf,mc U B <x0, 00(x0) +/ a(@(r))dt — (K4 + 2)8*9) (2.31)
0
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where po(xg) = max{p > 0| B(xg, p) C R0} and the union is taken over all xy € Qg
such that

po(xo) > peP,  where 7 = max{4, K4 + 2}.

The proof is divided into two cases depending on whether fot a(v(t))dt is nonneg-
ative or nonpositive which corresponds, respectively, to an expanding or contracting
activated region.
Case 1. fé a(v(r))dt = 0 fort € [0, T]: To prove (2.31), we first deduce, by the
positivity of f(; a(v(t))dt and the definition of T, that T, = T for all (xg, po(x0))
appearing in the union in (2.31). Now, choose any #; € [0, 7] and let x| € Q;TU (t1)
and note that by definition this implies dist(x, [y) < fotl a(v(1))dt — €. We have
to consider three subcases depending on the range of dist(xy, ['p).

Case 1a. If dist(xy, ') < —ﬁsﬁ then we can simply choose xo = x1 for which we
clearly have po(xo) > pe? and x; € B(xo, po(x0) + ' (D(1))dT — (K4 + 2)e?).

Case 1b. On the other hand if dist(x;, I'9) > O then choose x’ € I’y such that
|x;—x’| = dist(x}, ['p). By Lemma 1.2 there exists an xg € 29 such that B (xo, ﬁeﬁ) C
Qo and |xg — x| < KopeP. In particular, po(xo) > pe?. By the triangle inequality
we then have, for ¢ € (0, &5],

— tl
Ix1 — xo| < |xo — x| + |x1 — x| < Kope? +/ a(U(r))dr — &°
0
1 _
< po(xo) + f a(B(v))dt — (K4 +2)eP,
0

where the final inequality follows provided &5 is chosen sufficiently small so that
g5 < [(Ko — )p + K4 + 217/~ which we remark, importantly, is independent
of xg.

Case 1c. Finally, if —pe? < dist(x, I'g) < O then for & € (0, &5],

n

n — _
pelf +/ a(i(r))dt > —dist(xy, Tp) +/ a(¥(1)dr > &% > (Ko + Kq + 3)eP,
0 0
(2.32)
where the first strict inequality follows from the definition of Q:O (t1) and the second
by assuming &5 < [(15() + Do+ K4 +2]71/®#=9) We then choose x’ € 'y such that
lx; — x| = pef and using Lemma 1.2 we obtain an xo € ¢ such that B (xy, pef) c

Qo and |xg — x'| < KopeP. As above we may assume that in fact pg(xg) = pe?. By
the triangle inequality and (2.32) above we deduce

_ ul _
Ix1 — xo| < |xo — x| + |x1 — x| < (1 + Ko)pe? < pef + / a(¥(1))dt — (K4 +2)eP
0

In summary, the inclusion (2.31) holds for all £ € (0, e5] where &5 = [(Ko + 1)p +
K4+ 2] V-2,
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Case 2. fot a((r))dt <0fort e [0, T]:Lett; € [0, T]and x| € Q;fc (t1) be given.
It follows that x; € Q¢ and moreover letting xo = x; and py = |dist(xy, [o)| we
observe from (2.3) that

t
oo > &% — / 1 a(v(r))dr. (2.33)
0

In particular, since 0 < B, by choosing a sufficiently small value of ¢ we can guarantee
that pg > p.
We claim that it is enough to show that

t
,00+/ a@;eP)dr > (K4 +2)e?  fort € [0, 1]. (2.34)
0

Indeed, if we suppose that (2.34) is true for the moment, then #; > T, and

N _
x| =x9 €B <x0, 00(x0) +/ a(U(t))dt — (K4 +2)8ﬁ> .
0

To show (2.34), observe that for ¢t € [0, t1], we have

t t
po—i—/ a(@: efydr > / [a(B(7); e?) — a(B(r)]dT + £°
0 0

> —APT + 0(*P) + 6% > (Ka +2)e?  forallt € [0, 1],

where we used (2.33) to get the first inequality, A is the Lipschitz constant of « (v; a)
in a, and where ¢ € (0, 1) is chosen to get the final inequality, with &5 > 0 being
reduced further from Case 1 above if necessary. O

Proof of Theorem 3 We again assume that fot a(v(t)) dt does notchange signin [0, T'].
The global bounds (2.7) are _proved in Lemma 2.1 above. To prove (2.5) it therefore
suffices to show there exist K, > 0 so that

i (x, 1) = kT @) — KaeP for (x, 1) € @ ;. (2.35)
and
i (x, 1) < h~ (@) + KaeP for (x, 1) € @ ;. (2.36)

These are direct consequences of Proposition 2.1. This completes the proof of Theorem
3. O

3 Proof of Theorem 2

Having established Theorem 3 in Sect. 2 above we turn now to the proof of Theorem 2.
LetT > 0and y € (0, 1/2) be given, and fix 8,0 suchthat) <y <o < 8 < 1/2.
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In addition, fix

_ 8K(A 4 2K»e)?

B K
0

3.1)

where &5 is the (T-dependent) constant in Theorem 3, 6 € (0, 1) is the constant in
(1.16) of assumption (A4), A > 0 is the constant in (1.17), and where we define

K =sup|{x € Q|dist(x, ['g) = s}| . 3.2)
seR

In view of Lemma 1.3 we have vy < 0(f) < vmax for all £ > 0 and hence there
exists an 0 < &1 < min{ey, €3, &4, €5} such that for all ¢ € (0, &1]

Umin < 0() £ 6" eB" < vmax  forall s € [0, T).
Define
T (¢) = sup{t € [0, T] | 8 (7) — 0(7)| < e”eP" forall0 <t <1} (3.3)
and note that T'(¢) > 0 for all ¢ € (0, £1] since v®(0) = v(0). We will show that in

factT(e) =T.
Let uf (x, t) be the unique solution of

duf = eAut. + e fus, 0(1) £e7eP?), inQx(0,T],
ou’ =0, on Q2 x (0, T, (3.4)
uq (x,0) = up(x), in Q.

For each 1 € [0, T, define (1), 2 (), and Q0(1) by

Qf (1) = {x € Q| dist(x, Tg) < [y a(d(r) — e”ePT)dr — €%}, fort € [0, T],

(3.5)

Q. (1) = {x € Q|dist(x, To) > [ a(d(r) +&”eB)dr + &7}, forr €[0, T,
(3.6)

Q0L (1) = \[QF, (1) UL, ()], fort € [0, T].
(3.7)

We refer the reader to Fig. 8 for an illustration of these three regions. Reducing ¢
further if needed, we may apply Theorem 3 to 1 to deduce that for all # € [0, T'] and
e € (0, &1,

sup [uf (1) —hH (@) + 7P+ sup [uf (1) — ht (D) —e¥eP!)| < KaeP.
Qo) Qo)

(3.8)
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Sketch of ué, (x, t), U (x, t), and d(x, t)
h*(U(t) + £¥eBt) Tmmmmmmmmm e mm oo s -—- U5 (xt)
h+(V(t) — U(x, t)
h+(\;(t)—€VeBt) B e e . UE— (X' t)

h = (V(t) + e¥eBt)

: N
h= (V) :
h=(0(t) — evePt) -

Qo)

Fig.8 Sketch of the leading order solution i (x, t) given by (1.10c), e-dependent solutions u4_ (x, r) satis-
fying (3.4), and the regions Q;"a (1), an (1), and Q;U () used in the proof of Theorem 2

Next we observe that assumption (A3) and the definition of 7'(¢) imply that for all
g€ (0,e3]andt € [0, T,] we have

FWs (x, 1), v5(t)) > fWs (x,1), 0(t) — &’ eB), (3.9)
Fs (x, 1), v5(1) < fuf(x, 1), 0(t) + &”eB). '

By regarding u®(x, t) as the solution of a single parabolic equation with Neumann
boundary conditions (with v®(7) being a given parameter), and regarding uf, ,

u® as
the super and subsolution of the same equation (thanks to (3.9)), we may apply the
comparison principle to obtain

u® (x,1) <u®(x,1) <u’(x,1) forall (x,7) € 2 x[0,T(¢)] and ¢ € (0, &1].

(3.10)

The definition of v*(r) in (1.1) together with definition (1.10b) of 0(¢) and (1.10c)
then imply that for all ¢ € (0, e1] and r € [0, T (¢)]

(1) — 3(1)] = l/ W (x, 1) — (x. 1)) dx
Q

E/A |u8—ﬁ|dx+/ |u8—12|dx+/: |u® — | dx
Qo0 Qo) Q2,1

=1 +1_+ 1. (3.1D)
We now estimate each term in (3.11), starting with 7. By (3.8) and (3.10) we
deduce that for all ¢ € (0, e1]and ¢ € [0, T (¢)]

(1) — e”eB') — KaeP < uf(x,1) < ht (@) + &7 eP!) + Kae?  forx € QF, ().
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Note that i (x, 1) = h*(0(t)) for x € 7, (1) since Q) € @, (t) by Lemma 1.1.
In particular

sup  |u — @] < max {uﬁ(a(t) — 7By — KaeP — hE B, [hH (B(1) + 67 eB) + Kash — h+(ﬁ(t))|]
xeQif (1)
<(1—0)"eP" + K26 fort € [0, T(e)] and ¢ € (0, &1],
where we used (1.16) in assumption (A4). Since § > y > 0, and possibly reducing &
1

so that &) < (I?{leeBT/3)m, we deduce that for all € € (0, e1] and ¢ € [0, T'(¢)]

sup  |uf(x, 1) — x, 1)] < (1 — %9)8%3’.
xeQf, (1)

In particular, for all ¢ € (0, 1] we have

1| < |§2;U(t)|(1 _ ge)gye‘” forz € [0, T(&)], (.12)
and similarly also

1| < |Q;G(t)|(1 - %e)gVer for ¢ € [0, T(s)]. (3.13)

Next we estimate Iy. To this end we first observe that for ¢ € (0, ¢&1], and ¢ €
[0, T (e)] we have

sup |uf(x, 1) — i€ (x, )| < |hH () + &¥eP) — = (D(r) — &”eP)| + 2Kre < A + 2Ks¢),
xeQ

(3.14)

where the first inequality follows from (3.10), (2.7), and the triangle inequality while
the second inequality follows from (1.17). Moreover, by the definition of Qg we have
that

t
Q0,0 < K [/ [ (D(v) + &7 eBT) — a(i(r) — e ePT)]dT + 28"}
0

t
< KA/ 27 eBT dt + 2K &°
0

0

<— VB4 2Ke” fort€[0,T] and ¢ € (0, &1],
4(A 4+ 2K5¢1)

where we used the definition (3.2) of K for the first inequality, the bound (1.17) in the
second inequality, and the definition (3.1) of B for the final inequality. Reducing &
further if necessary we deduce that for all € € (0, £1],

1Q0 (1) < 0 Bt forg €10, T ()]
STV T 3(A + 2Ka8) ' '
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and in particular

e ~ A0 ” 4 Bt
[Io] < lu® —uldx < Q2 , (O)I(A+2K2e1) < 56”@ fort € [0, T'(s)],
@0, ’
(3.15)

where we used (3.14) in the second inequality.
Substituting (3.12), (3.13) and (3.15) into (3.11), we deduce that

e (1) — D] < (|sz|(1 - %9) + %) 7B < (1= 10)e? B fort € [0, T(e)],
(3.16)

where we used the fact that [Q (7)| + |2, (t)| < || = 1. The definition (3.3) of
T (¢), together with (3.16) above, imply that 7 (¢) = T for otherwise it would be
inconsistent with the maximality of 7 (¢). In particular this establishes (1.18a) with
K1 = 87 Furthermore, the bounds (3.10) hold for all € [0, T'] so that applying
the global estimate (2.7) of Theorem 3 to u%_(x, t) and u® (x, t) then yields the global
estimate (1.18b).

Finally, we prove (1.19). Using (1.17), and enlarging K if necessary, we have

t
=x € Q| dist(x, I'p) < / a(d(r))dr — IEISV} cQf, ) forallt €[0,T], e € (0, e],
0
(3.17)

where we remind the reader that0 < y <o < 8 < % By the Lipschitz continuity of

h™*(v) and (3.8) we deduce that for all € [0, T] and & € (0, &1]

luf, — R @) + [u® — kT (B(1)| < K1e¥  whendist(x, [o) < [y a(d(v))dt — K e”,
(3.18)
where we have also used the set inclusion (3.17). Having already established that
T (¢) = T we see that the inequalities in (3.10) hold for 2 x [0, T'] provided ¢ € (0, &1].
Combining (3.10) and (3.18), we therefore deduce thatforall# € [0, T]and e € (0, 1]

u® —ht (D) < Kie” whendist(x, [o) < [y a(d(z))dt — Kie”, t € [0, T,
(3.19)

which proves the first estimate of (1.19). The second one can be established in an
analogous manner and we omit the details.

4 Discussion

In this paper we have initiated a rigorous study of the limiting behaviour of solutions
to the non-local problem (1.1) when ¢ < 1. Formal asymptotic calculations suggest
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that this system exhibits growing or shrinking activated regions with a common nor-
mal velocity o (depending on the level of v(¢)) over an O (1) timescale. For spatial
dimension N > 2, it is expected that, over a slower 0 (e~ 1) timescale, higher order
effects lead to a volume-preserving mean curvature flow (see Fig.6) that possibly
interacts with the boundary 9$2; see (Chen et al. 2010) for a discussion on volume-
preserving mean curvature flow in the volume-preserving Allen-Cahn equation, as
well as (Mugnai et al. 2016) and the references therein for the mathematical aspects of
volume-preserving mean curvature flow. In this paper we have focused on the leading
order dynamics over an O (1) timescale. Specifically, in Theorem 2, we have shown
that for any 7 > 0 and y € (0, 1/2) the values of u®(x, t) and v?(¢) are within O (e?)
of those predicted by the formal asymptotics forall # € [0, T] and x € 2 outside of an
O (g”) boundary layer near the interface between activated and inactivated regions. In
particular, these quantitative results rigorously locate the front interface within O (7).
These results also rigorously justify the wave-pinning behaviour previously predicted
by formal asymptotics and numerical simulations.

One of the key steps in the proof of Theorem 2 was the construction of two bounding
solutions u% (x, r) satisfying the scalar equation (2.1). For a bistable potential that is
independent of (x, 7), Chen (1992) proved the generation of interface and the motion
by normal velocity via super/subsolution method. On the other hand for a bistable
potential with (x, ¢) dependence, the limiting behavior of solutions has been previously
established in Barles et al. (1993) using viscosity solutions methods; see also (Alfaro
et al. 2008). Our contribution in Sect. 2 is to obtain a quantitative estimate of the
transition between the two stable states within O (¢”) distance of the limiting interface
when ¢ — 0.

An interesting feature of (1.1) is that the leading order interface may potentially
lose regularity by forming cusps, even if the initial interface is smooth. This happens
when the interface touches the boundary or when the curvature of the interface blows
up at an interior point. In such a case the error of order ¢” with y € (0, 1/2) seems
to be sharp. Here we refer to Fig. 5S¢, which measures roughly the maximum distance
dmax of the reaction—diffusion interface with the one predicted by the leading order
theory. For ¢+ = 0.2, 0.5, 1 the leading order interface is regular and dmax = O(¢),
whereas for r = 2, 5 the leading order interface has a cusp and dp,x is of fractional
order in ¢.

Next, we discuss the assumption on the initial data to be of bang-bang type for our
results. For Theorem 3 it is possible to relax the initial data to g € C L(Q) and

|Vyiio] > 0 when iig = h°(5(0)).

In this case, one can define 'y = {x € Q‘ iio(x) = h%(©(0))}, and follow the argu-
ments in Chen (1992) to prove the generation of interface. For Theorem 2 concerning
the nonlocal equation (1.1), however, the situation is more complicated. Although one
might also expect the generation of interface to be valid, it is not clear in general how
to characterize the exact initial location of the generated interface in terms of the initial
data ug(x) and v(0) = My — ﬁ fQ ug(x) dx. This is the main reason we required
that the initial data being of bang-bang type in Theorem 2.
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In contrast, the assumption (A5) on the domain convexity is not necessary. In fact,
our arguments can be adapted to treat nonconvex domains with C? boundary. This
can be done by enforcing an upper bound on the radius of the super/subsolutions
constructed in Sect. 1.5. Finally we conclude by drawing attention to assumption (A4)
that is necessary for proving Theorem 2 but is not necessary for wave-pinning. We
suggest the weakening of this assumption as a further open problem for which different
techniques than those used in this paper may be needed.
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Appendix A. The differential algebraic equation and its solvability

In this appendix we reformulate the system (1.10) as a differential algebraic equation
(DAE) that more easily lends itself to numerical calculations and analysis. To this end
we first define

Wi(s) = |{x € Q|dist(x, I'g) < s}|.
Since s is the distance of the interface from its initial position, it is easy to see that

ds/dt indicates its speed which, by the method of matched asymptotic expansions,
corresponds to «. Specifically, we deduce that (1.10) is equivalent to the system

j—j =a(V(s)),t>0; s0)=0, (A.la)
V(s)+ W(s)hT(V(s)) + (1 — W(s)h™ (V(s)) = M. (A.1b)

It is then straightforward to recover v(¢) and Q(t) by using
0(t) = V(s(), Q1) = {x € Q|dist(x, To) < s(1)},

from which #(x, t) is then obtained using (1.10c). While solving the DAE (A.1) is
a relatively simple task, the calculation of W (s) may be more difficult depending on
properties of the initial interface I'g. However, this reformulation has the benefit that
once the initial interface I'g is known, W (s) can be precomputed for a sufficiently
large range of s values.

In addition to simplifying numerical calculation of the leading order solution, it
is also easier to deduce the existence of solutions to (A.1). It suffice to show that
the right hand side of (A.la) is Lipschitz in s. To show this we first define G :
(Vmin, Ymax) X (0, 1) — R by

G(x,y) =x+yht(x)+ (1 —yh (x) =y(h" () +x) + 1 —y)(h~ (x) +x)
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Then for xo > x; we calculate

G(x2,y) = Glx1,y) =y(2 =) fy (14 L lors-sya ) ds

+ (=02 =30 fy (14 G lonsrimgm ) ds

> Coy(x2 —x1) + Co(l — y)(x2 — x1) = Co(x2 — x1),

where the first inequality follows from (1.12) and in particular dh*/dv > —1. On the
other hand

G(x,y2) = G(x, y1) < [hF(x) =~ (lly2 = y1l < Aly2 = yil.
Now let s1 and s, satisfy (A.1b) and assume that V (s3) > V (s1). Then
GV (s2), W(s1)) = G(V(s1), W(s1) = G(V(s2), W(s1)) — G(V(s2), W(s2)),
with which the above inequalities give
ColV(s2) = Vsl < AW (s2) = W(sp)l. (A2)

Now from the definition of W (s) we deduce |W (s2) — W(s1)| < Ci|s2 — 51| for some
constant C; > 0 depending only on I'g. From (1.17) we then deduce
2

C
la(V(s2)) —a(V(s))| = AV (s2) = V(sD| = :

ls2 — s1]. (A.3)
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