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Abstract

We have ported and optimized the GPU accelerated QUICK and AMBER based ab
initio QM/MM implementation on AMD GPUs. This encompasses the entire Fock matrix
build and force calculation in QUICK including one-electron integrals, two-electron
repulsion integrals, exchange-correlation quadrature, and linear algebra operations.
General performance improvements to the QUICK GPU code are also presented.
Benchmarks carried out on NVIDIA V100 and AMD MI100 cards display similar
performance on both hardware for standalone HF/DFT calculations with QUICK and
QM/MM molecular dynamics simulations with QUICK/AMBER. Furthermore, with
respect to the QUICK/AMBER release version 21, significant speedups are observed for
QM/MM molecular dynamics simulations. This significantly increases the range of
scientific problems that can be addressed with open-source QM /MM software on state-

of-the-art computer hardware.



Introduction

The use of hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations has
become increasingly popular in different domains of computational chemistry and biology.
Such domains include computer aided drug discovery, investigating enzymatic reaction
mechanisms, predicting spectroscopic properties, etc.1-7 In QM/MM, the molecular system
under investigation is partitioned into two regions and one region is described by an
accurate quantum chemistry method while the other using a molecular mechanics force field.
This allows modeling and simulation of chemical reactions with sufficient accuracy at an
affordable computational cost. Often, the limiting factor to use large QM regions or carry out
longer time scale simulations is the cost of QM methods. Typically, computing QM forces
takes more than 95% of the total QM/MM time. In the recent past, various efforts have been
undertaken to develop computationally affordable novel QM methods® or reimplement
traditional QM methods to harness the power of massively parallel CPU and GPU hardware

platforms.?-40 Most notably, a number of leading quantum chemistry software packages have
been empowered with GPU acceleration allowing users to achieve unprecedented simulation
speeds and model larger molecular systems efficiently. For instance, our own GPU
accelerated QUICK ab initio quantum chemistry and density functional theory package is
highly efficient on NVIDIA hardware.3940 QM /MM simulations with QUICK/AMBER have
displayed respectable speedups of up to 53x for a single GPU with respect to a CPU core for
a moderate sized QM region size that was benchmarked at the time.#! However, the GPU
hardware landscape has started to significantly expand with new devices flowing in from
other vendors such as AMD and Intel. There is a growing demand for such devices due to
their attractive price to performance ratios. Therefore, in addition to supporting existing
NVIDIA hardware, enabling support for new GPU hardware has become important for
traditional computational chemistry software packages. In the present work, we attempt to

achieve this task by further improving the performance of QUICK on NVIDIA GPUs, and



porting and optimizing it on AMD cards. By making some necessary changes to AMBER, we
also enable more efficient QM /MM calculations on NVIDIA cards and add the ability to utilize
AMD GPUs for QM/MM simulations. The next sections of this manuscript are organized as
follows. First, we briefly present the theory of QM /MM and concepts of GPU computing. This
is followed by details of new improvements to QUICK that enable better performance on
NVIDIA cards. The porting of this QUICK version to AMD cards, optimization and changes to
AMBER are then discussed. Finally, we benchmark the performance of the latest QM/MM

implementation on NVIDIA cards against QUICK/AMBER v21,4l and on AMD cards.
Computational Methods

In QM/MM, the total energy of a system is given by42

Etotal = EMm + Eqm + EqM-MM (D)

where Emmis the standard MM energy for all atoms in the MM region and is a sum of bonded
and non-bonded energy terms. The term Eqm represents the standard QM energy for all
atoms in the QM region. If we consider the Kohn-Sham (KS) formalism and the generalized

gradient approximation (GGA), the QM energy of a closed shell system is as follows:43
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The terms in Eq. 2 account for nuclear-nuclear repulsion, the kinetic energy of electrons,
nuclear-electron attraction, electron-electron repulsion and the exchange correlation
potential, respectively. In the above equation, Nqm is the number of QM atoms, Za, Zs are

nuclear charges, R4 and Rp are positions of nuclei A and B, r represent the electronic



coordinates, i are spatial molecular orbitals, n is the number of occupied orbitals, and p is
the electron density. Hybrid GGA functionals include an appropriately scaled exchange term
that depends on the occupied orbitals. The equations are straight forward to extend for open-
shell systems using spin-polarized density functionals within an unrestricted KS formalism.
The third term of Eq. 1, Equ-mum, is the QM /MM interaction energy between the atoms in
the QM region and the atoms in the MM region. For a non-polarizable pairwise additive force
field like AMBER,#* it consists of a non-bonded Lennard-Jones potential and the electrostatic
interaction between the QM charge density and the surrounding MM point charges:
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In Eq. 3, Nmmis the number of MM atoms, €akand oakare Lennard-Jones parameters for types
of QM atoms A and MM atoms k, Rk are are positions of MM atoms, and Qkare point charges
of MM atoms. In mechanical embedding, the last term in Eq. 3 is omitted and the nuclear
charges Zain the second term are replaced with an effective fixed point charge.

If the QM/MM boundary crosses a covalent bond, care has to be taken to saturate the
dangling bond of the QM region. In AMBER, this is achieved with an automated link atom
scheme that adds a hydrogen atom at a suitable position of the QM region and retains

bonded force field terms with at least one atom in the MM region.424>

In QUICK v21.03, the two-electron repulsion integrals (ERI), exchange correlation (XC)
energy, XC potential and their nuclear gradients are computed on the GPU. One-electron
integrals (OEI) and their gradients are computed asynchronously on the CPU. This is the
version that is distributed with free and open-source AmberTools v21. The underlying

algorithm for computing OEI, ERI and their gradients is based on the recurrence relations



scheme developed by Obara-Saika, Head-Gordon and Pople (OSHGP).#6:47 The MM terms are

handled by the Sander MD engine in AmberTools.

In the present work, we made significant performance improvements to code paths
computing some of the above terms. These include offloading of OEI and OEI gradient
calculations to the GPU, in addition to reimplementation of the ERI and ERI gradient device
kernels (functions executed on the GPU).

Before proceeding with the associated implementation details, it is important to visit the
fundamentals of GPU computing. GPUs use a single instruction multiple data paradigm for
executing code and performing work.48 The graphics processing chip of a GPU comprises a
set of execution units (streaming multiprocessors in NVIDIA terminology and compute units
in AMD terminology). When programming for GPUs, the work should be organized for and
mapped to threads. During code execution, the threads are assigned to execution units in
batches (warps in NVIDIA terminology and wave fronts in AMD terminology). The batch sizes
for NVIDIA and AMD hardware are 32 and 64, respectively. The execution units execute
batches of threads by issuing the same instruction to each thread. There are different
memory spaces on the GPU which are physically distinct from the CPU (or host) memory.
Global memory is the largest memory space available on a GPU. It is usually several GBs or
several dozens of GBs and is accessible by all threads located on all execution units. However,
global memory transactions carry a high latency in comparison to other memory operations.
A second type of memory space, shared memory, is available on each execution unit. Shared
memory can be accessed by threads executed on a given execution unit and the transactions
are faster than global memory transactions. A third type of memory space, registers, are
available for each thread. Register accesses are the fastest type of memory access. However,
only a limited number of registers are available for each thread. If the code being executed
requires more than the available number of registers, the additional memory requirement is

satisfied by spilling registers into a scratch space (local memory in NVIDIA terminology and



scratch space in AMD terminology) that has the same memory latency as global memory.
Additionally, two other read-only memory types, constant and texture memory, are available
on the GPU. The associated memory transactions are faster than global memory, but slower
than the register file. When porting a code to GPUs, care must be taken to 1) avoid thread
divergence, 2) minimize global memory transactions and hide memory latency using
appropriate strategies, 3) avoid register spillage. Adhering to such principles will ensure that

the code utilizes a high percentage of the peak hardware performance.

General performance improvements to QM/MM implementation

Computing OEIs on the GPU requires similar steps to computing ERIs. These involve
prescreening and presorting of OEIs on the host (i.e.,, CPU), uploading the data to the GPU,
computing primitive integrals, computing contracted integrals, and the KS matrix update.
OEI gradients can also be computed in an analogous manner. Prescreening of OEIs can be
achieved by considering the value of the overlap prefactor, that is 2.0nr/(a + f)exp(-af/(a +
B)(A - B)2) where a and S are Gaussian exponents centered on atoms A and B. All OEIs that

have an overlap prefactor value less than a threshold are excluded.

The existing CPU based OEI code uses this procedure and the implementation is already in
place. For presorting, necessary code paths were implemented. Here, OEls are sorted based
on the angular momentum and number of primitives. The sorted integral indices, the product
of overlap prefactor and contraction coefficients are then uploaded to the GPU. Source code
necessary for these tasks was implemented. OEls are parallelized based on the number of
shells and atoms. To compute primitive integrals, it was necessary to implement device
kernels performing the vertical recurrence relation (VRR) algorithm.4647 To achieve this
task, a Python based CUDA code generator and optimizer (QUICK-Genlnt) was developed.
The device kernels required to contract primitive integrals and update the KS matrix were

written manually. The performance bottleneck of the existing ERI kernels is the higher



register utilization of the associated VRR code. To address this problem, QUICK-GenInt was
extended to generate four center integral code paths. The generated VRR device kernels
were included in QUICK, compiled and profiled using the NVIDIA Nsight profiler on different
NVIDIA GPUs. This allowed us to systematically study the impact of the number of
intermediate variables on register usage and to select optimal code paths. Furthermore,
larger horizontal recurrence relation (HRR) device kernels were split and organized where
appropriate.

Support for AMD GPUs

For porting the QUICK CUDA code to AMD GPUs, translators provided in the HIP toolkit4?
were used. After source to source translation, manual fixing of some code paths was
required. This is due to the fact that certain features available in the CUDA toolkit and NVIDIA
hardware were not yet available in AMD ROCm. Necessary changes to CMake and the Make
based build systems were also introduced. According to initial tests, the performance on
MI100 was ~2x slower than on a V100 GPU. This was due to the higher register utilization
of kernels on AMD hardware. At this stage, we implemented different kernel versions and
profiled them. Based on the register utilization and run times, the most suitable code paths
were chosen. The performance of the kernels was systematically studied while varying
kernel launch parameters. Based on this study, optimal kernel launch parameters were
selected for the AMD version. For BLAS operations and matrix diagonalization, necessary
interfaces were written to rocBLAS and rocSolver libraries. Unfortunately, as of ROCm/5.3.0,
the symmetric matrix diagonalization routines of rocSolver were not optimized. Due to this
reason, the DSYEVD diagonalizer from the Magma library®>%>1 was integrated. For this task,
required functions were written and changes were made to the QUICK build system. Finally,
the CMake build system in AmberTools was updated with appropriate changes to compile

the Sander program with AMD HIP support.



Benchmarks

We now present the results of benchmark QM/MM MD simulations of a protein system, the
photoactive yellow protein (PYP) in bulk water (see Figure 1). This system has been used in
multiple QM/MM studies in the past.*1.52 We considered three different QM regions of PYP.
The first, R1, contains a total of 22 atoms and includes the p-coumaric acid chromophore and
the S-C bond from the CYS69 residue. The second region, R2, contains all atoms in R1 and
additionally, the GLH46 and TYR42 residues. The total number of QM atoms in R2 is 49.

The third region, R4, has 159 atoms and contains THR50, ARG52, PHE62, VAL66, ALA67,
PRO68, THR70, PHE96, TYR98 in addition to all the atoms in R2. These QM regions contain
hydrogen link atoms whenever the QM /MM interface crosses a covalent bond. Note that the
nomenclature of QM regions is consistent with previous studies.*52 The MM region of the
protein was represented by the ff99SB forcefield and the water molecules in the system by
SPC/Fw. A QM/MM electrostatics cutoff of 8 °A, 0.5 fs time step, two different level of theories
(B3LYP/6-31G* and B3LYP/def2-SVP), electrostatic and mechanical embedding (EE and
ME) were employed in the simulations. Furthermore, conservative SCF convergence
thresholds and integral cutoffs (10-¢ RMS threshold for density matrix convergence in the
SCF, 10-8integral cutoff) were used when computing forces of the QM region. The suitability

of the cutoffs were checked by carrying out energy conservation tests (see section S1).
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Figure 1: QM /MM setup used for benchmarks. Water box (left) and the protein highlighted
in orange are treated at MM level. The chromophore and selected residues in ball and stick
representation are treated at the QM level (R4 is shown as an example). Panels on right show
different QM regions.

In Table 1, we present the results of all simulations. Information on running simulations
and input files are provided in the SI. V100 runs were carried out on a single node containing
4 NVIDIA Volta V100-PCle (32 GB) type GPUs, Intel Xeon(R) Platinum 8260 (2.40GHz) CPUs
and 178 GB memory. For A100 runs, a node containing 4 NVIDIA A100-SXM4 (80 GB) GPUs,
AMD EPYC 7713 (2.0 GHz) CPUs and 512 GB memory was used. Both nodes were located in
the high performance computing center (iCER HPCC) at Michigan State University.
Simulations on AMD GPUs were performed on the AMD cloud platform, specifically, on a
node containing 8 AMD Instinct MI100 (32 GB) type GPUs, AMD EPYC 7742 64-Core (2.25
GHz) CPUs and 512 GB memory. The code was compiled on NVIDIA platforms with
CUDA/11.4.2, GCC/9.3.0 and OpenMPI/4.0.3. The AMD version was compiled using
ROCM/5.3.0 with the same GCC and OpenMPI versions. Magma/2.6.2 was also used in the

AMD version. For each simulation, an equal number of CPU cores and GPUs was used. For



comparison, the V100/A100/MI100 GPUs have a peak FP64 performance of 7.8/9.7/11.5
TFLOPs and a global memory bandwidth of 0.9/1.6/1.2 TB/s.

Comparison of simulations carried out using QUICK/AMBER v214! and v23 on V100
platforms shows that the latter version is significantly faster than the former. The realized
speedup is between 1-2x for all QM regions. We attribute this performance enhancement to
improvements made to QUICK. Furthermore, comparison of speedups obtained for EE and
ME suggests that former is higher than the latter. This is due to the efficient computation of
OEI and OEI gradients on the GPU as a large number of nuclear attraction type integrals and
integral derivatives need to be computed with electrostatic embedding. Higher ps/day can
be obtained by employing A100 GPUs. The speedups observed for v23 runs on the A100 with
respect to the V100 varies between 1 to 2%, depending on the number of atoms and basis
functions in the system. This demonstrates that our code can efficiently make use of the
increased number of compute units and floating point performance of the A100 GPUs.

Performance comparisons between the V100 and MI100 runs lead to following
observations. In the smallest example, V100 runs are up to 2.3x faster with respect to MI1100
runs. However, as the system size gets bigger, the performances become similar. The reasons
for this behaviour include the use of different linear solvers for matrix diagonalization and
differences in hardware platforms. To understand the performance of GPU kernels better,
we report kernel run times of all the important device kernels on the V100 and MI100 in
Table 2. Note that reported times are average kernel times of the first MD step of each
simulation, as reported by the Nsight (on NVIDIA) and the rocprof (on AMD) profiling
software. The results suggest that the performance of kernels on the two types of hardware
are similar except for XC gradient kernel (see section S2). V100 GPU has a peak FP64
capability up to 7.8 TFLOPS, 0.9 TB/s global memory bandwidth whereas for the MI100,
these are 11.5 TFLOPS and 1.2 TB/s respectively.>354 Both types of hardware allows a

maximum of 255 registers per thread, and currently, this limits the performance of most of
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our kernels. Interestingly, the kernels compiled for V100 utilize a lower number of registers

per thread in Table 1: Performance comparison (ps/day) of QM/MM MD simulations using

QUICK/AMBER v21.03 and v23.03 on different NVIDIA and AMD GPUs. The systems R1, R2

and R4 contain 22, 49 and 159 atoms respectively. The number of basis functions with 6-

31G* are 217,440, 1206 and 244, 509 and 1479 with def2-SVP.

R1 R2 R4
GPU QM/MMtype #GPUs 6-31G* def2-SVP  6-31G* def2-SVP  6-31G* def2-SVP
v21.03
V100 EE 1 5.36 4.92 1.86 1.49 0.20 0.12
2 8.74 7.94 3.30 2.60 0.37 0.23
4 12.17 11.45 5.24 4.12 0.66 0.42
ME 1 7.57 7.47 2.59 2.25 0.21 0.13
2 11.01 11.19 4.40 3.87 0.40 0.26
4 14.60 14.62 6.60 6.00 0.72 0.47
v23.03
V100 EE 1 7.09 7.69 3.04 2.82 0.37 0.25
2 10.33 10.87 4.94 451 0.65 0.45
4 13.60 14.00 6.96 6.52 1.04 0.73
ME 1 7.73 7.76 3.14 2.88 0.38 0.26
2 10.83 11.09 5.09 4.69 0.68 0.47
4 14.15 14.20 7.26 6.78 1.12 0.78
A100 EE 1 9.83 9.83 4.17 4.03 0.60 0.42
2 14.05 14.44 6.55 6.19 1.01 0.72
4 16.57 17.15 9.32 8.79 1.55 1.13

11



ME 1 9.95 9.99 4.25 4.07 0.62 0.44

2 14.34 14.86 6.73 6.39 1.05 0.76

4 17.03 17.46 9.59 9.14 1.64 1.19

MI100 EE 1 451 4.95 2.38 2.30 0.35 0.25
2 5.57 6.15 3.43 3.40 0.58 0.42

4 6.11 6.60 4.34 4.20 0.91 0.67

ME 1 4.65 5.02 2.43 2.34 0.36 0.26

2 5.67 6.21 3.56 3.50 0.63 0.44

4 6.23 6.68 4.46 4.32 0.98 0.70

comparison to the MI100. This is most likely due to the maturity of the CUDA compiler.

Table 2: Average kernel times (s) of a single step of QM/MM MD simulations using
QUICK/AMBER v23.03 on NVIDIA V100 and AMD MI100 GPUs. The level of theory used is
B3LYP/def2-SVP.

R1 R2 R4
Kernel name V100 MI100 V100 MI100 V100 MI100
OEI 0.02 0.02 0.10 0.09 1.10 1.08
OEl gradient  0.07 0.09 0.33 0.44 3.35 4.45
ERI 0.09 0.12 0.35 0.42 5.89 6.09
ERI gradient  1.47 2.00 5.43 6.24 5853 56.03
XC 0.10 0.12 0.19 0.24 0.90 1.14

XC gradient 0.34 0.09 0.68 0.20 4.07 2.08
Conclusions and future directions

In the presented work, we made significant improvements to the performance of the
QUICK/AMBER QM/MM implementation and enabled support for AMD GPUs. The
benchmark results show that realized speedups on NVIDIA GPUs are multi-fold with respect
to the previous release version. Performance on the MI100 GPU is similar to that of the V100

for moderate sized QM regions. Using our latest implementation, AMBER users will be able
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to carry out more efficient QM /MM simulations on a wider range of hardware choices. As for
the future directions of this project, room for performance optimization should be explored
further. This will be mostly on the QUICK side. ERI gradient calculations are currently the
most expensive task in QM/MM, and the bottleneck of these kernels is the higher register
utilization on both NVIDIA and AMD GPUs. Re-implementation of such kernels will help
reducing kernel run times on both hardware. Furthermore, the Fock matrix build can be
further accelerated by implementing dedicated algorithms for Coulomb and exchange
contributions and density fitting algorithms. Currently, the diagonalizer routines in the
rocSolver library are not well optimized and due to this reason, the AMD version makes use
of matrix diagonalizer routines from the Magma library. The performance of these routines
in future ROCm releases should be tested and support for rocSolver diagonalization should
be enabled. Another avenue worth exploring is implementing a mixed precision DFT version
in QUICK. In principle, such a version should deliver ~2x performance boost with sufficient

accuracy for MD simulations.

Data and Software Availability

The features described here will be available in QUICK-23.03 and AmberTools23 official
release versions. The latest version of QUICK is available on GitHub
(https://github.com/merzlab/QUICK). AmberTools can be downloaded from the AMBER

webpage (http://ambermd.org/AmberTools.php). Input files for QM/MM simulations

reported in this work are available in supporting information.
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