
1

QM/MM Simulations on NVIDIA and AMD GPUs

Madushanka Manathunga,† Hasan Metin Aktulga,‡ Andreas W. Götz,∗,¶ and

Kenneth M. Merz, Jr.∗,†

†Department of Chemistry and Department of Biochemistry and Molecular Biology,

Michigan State University, East Lansing, Michigan 48824-1322, United States

‡Department of Computer Science and Engineering, Michigan State University, East

Lansing, Michigan 48824-1322, United States

¶San Diego Supercomputer Center, University of California San Diego, La Jolla,

California 92093-0505, United States

E-mail: agoetz@sdsc.edu; merz@chemistry.msu.edu

Abstract

We have ported and optimized the GPU accelerated QUICK and AMBER based ab

initio QM/MM implementation on AMD GPUs. This encompasses the entire Fock matrix

build and force calculation in QUICK including one-electron integrals, two-electron

repulsion integrals, exchange-correlation quadrature, and linear algebra operations.

General performance improvements to the QUICK GPU code are also presented.

Benchmarks carried out on NVIDIA V100 and AMD MI100 cards display similar

performance on both hardware for standalone HF/DFT calculations with QUICK and

QM/MM molecular dynamics simulations with QUICK/AMBER. Furthermore, with

respect to the QUICK/AMBER release version 21, significant speedups are observed for

QM/MM molecular dynamics simulations. This significantly increases the range of

scientific problems that can be addressed with open-source QM/MM software on state-

of-the-art computer hardware.

2

Introduction

The use of hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations has

become increasingly popular in different domains of computational chemistry and biology.

Such domains include computer aided drug discovery, investigating enzymatic reaction

mechanisms, predicting spectroscopic properties, etc.1–7 In QM/MM, the molecular system

under investigation is partitioned into two regions and one region is described by an

accurate quantum chemistry method while the other using a molecular mechanics force field.

This allows modeling and simulation of chemical reactions with sufficient accuracy at an

affordable computational cost. Often, the limiting factor to use large QM regions or carry out

longer time scale simulations is the cost of QM methods. Typically, computing QM forces

takes more than 95% of the total QM/MM time. In the recent past, various efforts have been

undertaken to develop computationally affordable novel QM methods8 or reimplement

traditional QM methods to harness the power of massively parallel CPU and GPU hardware

platforms.9–40 Most notably, a number of leading quantum chemistry software packages have

been empowered with GPU acceleration allowing users to achieve unprecedented simulation

speeds and model larger molecular systems efficiently. For instance, our own GPU

accelerated QUICK ab initio quantum chemistry and density functional theory package is

highly efficient on NVIDIA hardware.39,40 QM/MM simulations with QUICK/AMBER have

displayed respectable speedups of up to 53x for a single GPU with respect to a CPU core for

a moderate sized QM region size that was benchmarked at the time.41 However, the GPU

hardware landscape has started to significantly expand with new devices flowing in from

other vendors such as AMD and Intel. There is a growing demand for such devices due to

their attractive price to performance ratios. Therefore, in addition to supporting existing

NVIDIA hardware, enabling support for new GPU hardware has become important for

traditional computational chemistry software packages. In the present work, we attempt to

achieve this task by further improving the performance of QUICK on NVIDIA GPUs, and

3

porting and optimizing it on AMD cards. By making some necessary changes to AMBER, we

also enable more efficient QM/MM calculations on NVIDIA cards and add the ability to utilize

AMD GPUs for QM/MM simulations. The next sections of this manuscript are organized as

follows. First, we briefly present the theory of QM/MM and concepts of GPU computing. This

is followed by details of new improvements to QUICK that enable better performance on

NVIDIA cards. The porting of this QUICK version to AMD cards, optimization and changes to

AMBER are then discussed. Finally, we benchmark the performance of the latest QM/MM

implementation on NVIDIA cards against QUICK/AMBER v21,41 and on AMD cards.

Computational Methods

In QM/MM, the total energy of a system is given by42

 Etotal = EMM + EQM + EQM−MM (1)

where EMM is the standard MM energy for all atoms in the MM region and is a sum of bonded

and non-bonded energy terms. The term EQM represents the standard QM energy for all

atoms in the QM region. If we consider the Kohn-Sham (KS) formalism and the generalized

gradient approximation (GGA), the QM energy of a closed shell system is as follows:43

(2)

The terms in Eq. 2 account for nuclear-nuclear repulsion, the kinetic energy of electrons,

nuclear-electron attraction, electron-electron repulsion and the exchange correlation

potential, respectively. In the above equation, NQM is the number of QM atoms, ZA, ZB are

nuclear charges, RA and RB are positions of nuclei A and B, r represent the electronic

4

coordinates, ψi are spatial molecular orbitals, n is the number of occupied orbitals, and ρ is

the electron density. Hybrid GGA functionals include an appropriately scaled exchange term

that depends on the occupied orbitals. The equations are straight forward to extend for open-

shell systems using spin-polarized density functionals within an unrestricted KS formalism.

The third term of Eq. 1, EQM−MM, is the QM/MM interaction energy between the atoms in

the QM region and the atoms in the MM region. For a non-polarizable pairwise additive force

field like AMBER,44 it consists of a non-bonded Lennard-Jones potential and the electrostatic

interaction between the QM charge density and the surrounding MM point charges:

EQM−MM
(3)

In Eq. 3, NMM is the number of MM atoms, εAk and σAk are Lennard-Jones parameters for types

of QM atoms A and MM atoms k, Rk are are positions of MM atoms, and Qk are point charges

of MM atoms. In mechanical embedding, the last term in Eq. 3 is omitted and the nuclear

charges ZA in the second term are replaced with an effective fixed point charge.

If the QM/MM boundary crosses a covalent bond, care has to be taken to saturate the

dangling bond of the QM region. In AMBER, this is achieved with an automated link atom

scheme that adds a hydrogen atom at a suitable position of the QM region and retains

bonded force field terms with at least one atom in the MM region.42,45

In QUICK v21.03, the two-electron repulsion integrals (ERI), exchange correlation (XC)

energy, XC potential and their nuclear gradients are computed on the GPU. One-electron

integrals (OEI) and their gradients are computed asynchronously on the CPU. This is the

version that is distributed with free and open-source AmberTools v21. The underlying

algorithm for computing OEI, ERI and their gradients is based on the recurrence relations

5

scheme developed by Obara-Saika, Head-Gordon and Pople (OSHGP).46,47 The MM terms are

handled by the Sander MD engine in AmberTools.

In the present work, we made significant performance improvements to code paths

computing some of the above terms. These include offloading of OEI and OEI gradient

calculations to the GPU, in addition to reimplementation of the ERI and ERI gradient device

kernels (functions executed on the GPU).

Before proceeding with the associated implementation details, it is important to visit the

fundamentals of GPU computing. GPUs use a single instruction multiple data paradigm for

executing code and performing work.48 The graphics processing chip of a GPU comprises a

set of execution units (streaming multiprocessors in NVIDIA terminology and compute units

in AMD terminology). When programming for GPUs, the work should be organized for and

mapped to threads. During code execution, the threads are assigned to execution units in

batches (warps in NVIDIA terminology and wave fronts in AMD terminology). The batch sizes

for NVIDIA and AMD hardware are 32 and 64, respectively. The execution units execute

batches of threads by issuing the same instruction to each thread. There are different

memory spaces on the GPU which are physically distinct from the CPU (or host) memory.

Global memory is the largest memory space available on a GPU. It is usually several GBs or

several dozens of GBs and is accessible by all threads located on all execution units. However,

global memory transactions carry a high latency in comparison to other memory operations.

A second type of memory space, shared memory, is available on each execution unit. Shared

memory can be accessed by threads executed on a given execution unit and the transactions

are faster than global memory transactions. A third type of memory space, registers, are

available for each thread. Register accesses are the fastest type of memory access. However,

only a limited number of registers are available for each thread. If the code being executed

requires more than the available number of registers, the additional memory requirement is

satisfied by spilling registers into a scratch space (local memory in NVIDIA terminology and

6

scratch space in AMD terminology) that has the same memory latency as global memory.

Additionally, two other read-only memory types, constant and texture memory, are available

on the GPU. The associated memory transactions are faster than global memory, but slower

than the register file. When porting a code to GPUs, care must be taken to 1) avoid thread

divergence, 2) minimize global memory transactions and hide memory latency using

appropriate strategies, 3) avoid register spillage. Adhering to such principles will ensure that

the code utilizes a high percentage of the peak hardware performance.

General performance improvements to QM/MM implementation

Computing OEIs on the GPU requires similar steps to computing ERIs. These involve

prescreening and presorting of OEIs on the host (i.e., CPU), uploading the data to the GPU,

computing primitive integrals, computing contracted integrals, and the KS matrix update.

OEI gradients can also be computed in an analogous manner. Prescreening of OEIs can be

achieved by considering the value of the overlap prefactor, that is 2.0π/(α + β)exp(−αβ/(α +

β)(A − B)2) where α and β are Gaussian exponents centered on atoms A and B. All OEIs that

have an overlap prefactor value less than a threshold are excluded.

The existing CPU based OEI code uses this procedure and the implementation is already in

place. For presorting, necessary code paths were implemented. Here, OEIs are sorted based

on the angular momentum and number of primitives. The sorted integral indices, the product

of overlap prefactor and contraction coefficients are then uploaded to the GPU. Source code

necessary for these tasks was implemented. OEIs are parallelized based on the number of

shells and atoms. To compute primitive integrals, it was necessary to implement device

kernels performing the vertical recurrence relation (VRR) algorithm.46,47 To achieve this

task, a Python based CUDA code generator and optimizer (QUICK-GenInt) was developed.

The device kernels required to contract primitive integrals and update the KS matrix were

written manually. The performance bottleneck of the existing ERI kernels is the higher

7

register utilization of the associated VRR code. To address this problem, QUICK-GenInt was

extended to generate four center integral code paths. The generated VRR device kernels

were included in QUICK, compiled and profiled using the NVIDIA Nsight profiler on different

NVIDIA GPUs. This allowed us to systematically study the impact of the number of

intermediate variables on register usage and to select optimal code paths. Furthermore,

larger horizontal recurrence relation (HRR) device kernels were split and organized where

appropriate.

Support for AMD GPUs

For porting the QUICK CUDA code to AMD GPUs, translators provided in the HIP toolkit49

were used. After source to source translation, manual fixing of some code paths was

required. This is due to the fact that certain features available in the CUDA toolkit and NVIDIA

hardware were not yet available in AMD ROCm. Necessary changes to CMake and the Make

based build systems were also introduced. According to initial tests, the performance on

MI100 was ∼2x slower than on a V100 GPU. This was due to the higher register utilization

of kernels on AMD hardware. At this stage, we implemented different kernel versions and

profiled them. Based on the register utilization and run times, the most suitable code paths

were chosen. The performance of the kernels was systematically studied while varying

kernel launch parameters. Based on this study, optimal kernel launch parameters were

selected for the AMD version. For BLAS operations and matrix diagonalization, necessary

interfaces were written to rocBLAS and rocSolver libraries. Unfortunately, as of ROCm/5.3.0,

the symmetric matrix diagonalization routines of rocSolver were not optimized. Due to this

reason, the DSYEVD diagonalizer from the Magma library50,51 was integrated. For this task,

required functions were written and changes were made to the QUICK build system. Finally,

the CMake build system in AmberTools was updated with appropriate changes to compile

the Sander program with AMD HIP support.

8

Benchmarks

We now present the results of benchmark QM/MM MD simulations of a protein system, the

photoactive yellow protein (PYP) in bulk water (see Figure 1). This system has been used in

multiple QM/MM studies in the past.41,52 We considered three different QM regions of PYP.

The first, R1, contains a total of 22 atoms and includes the p-coumaric acid chromophore and

the S-C bond from the CYS69 residue. The second region, R2, contains all atoms in R1 and

additionally, the GLH46 and TYR42 residues. The total number of QM atoms in R2 is 49.

The third region, R4, has 159 atoms and contains THR50, ARG52, PHE62, VAL66, ALA67,

PRO68, THR70, PHE96, TYR98 in addition to all the atoms in R2. These QM regions contain

hydrogen link atoms whenever the QM/MM interface crosses a covalent bond. Note that the

nomenclature of QM regions is consistent with previous studies.41,52 The MM region of the

protein was represented by the ff99SB forcefield and the water molecules in the system by

SPC/Fw. A QM/MM electrostatics cutoff of 8 ̊ A, 0.5 fs time step, two different level of theories

(B3LYP/6-31G* and B3LYP/def2-SVP), electrostatic and mechanical embedding (EE and

ME) were employed in the simulations. Furthermore, conservative SCF convergence

thresholds and integral cutoffs (10−6 RMS threshold for density matrix convergence in the

SCF, 10−8 integral cutoff) were used when computing forces of the QM region. The suitability

of the cutoffs were checked by carrying out energy conservation tests (see section S1).

9

Figure 1: QM/MM setup used for benchmarks. Water box (left) and the protein highlighted
in orange are treated at MM level. The chromophore and selected residues in ball and stick
representation are treated at the QM level (R4 is shown as an example). Panels on right show
different QM regions.

In Table 1, we present the results of all simulations. Information on running simulations

and input files are provided in the SI. V100 runs were carried out on a single node containing

4 NVIDIA Volta V100-PCIe (32 GB) type GPUs, Intel Xeon(R) Platinum 8260 (2.40GHz) CPUs

and 178 GB memory. For A100 runs, a node containing 4 NVIDIA A100-SXM4 (80 GB) GPUs,

AMD EPYC 7713 (2.0 GHz) CPUs and 512 GB memory was used. Both nodes were located in

the high performance computing center (iCER HPCC) at Michigan State University.

Simulations on AMD GPUs were performed on the AMD cloud platform, specifically, on a

node containing 8 AMD Instinct MI100 (32 GB) type GPUs, AMD EPYC 7742 64-Core (2.25

GHz) CPUs and 512 GB memory. The code was compiled on NVIDIA platforms with

CUDA/11.4.2, GCC/9.3.0 and OpenMPI/4.0.3. The AMD version was compiled using

ROCM/5.3.0 with the same GCC and OpenMPI versions. Magma/2.6.2 was also used in the

AMD version. For each simulation, an equal number of CPU cores and GPUs was used. For

R4 (159 atoms)

R2 (49 atoms) R1 (22 atoms)

pCA + CYS69

GLH46

pCA + CYS69 TYR42

TYR98

PRO68

ARG52

VAL66

THR50

GLH46

TYR42

PHE96

PHE62

ALA67
pCA + CYS69

THR70

10

comparison, the V100/A100/MI100 GPUs have a peak FP64 performance of 7.8/9.7/11.5

TFLOPs and a global memory bandwidth of 0.9/1.6/1.2 TB/s.

Comparison of simulations carried out using QUICK/AMBER v2141 and v23 on V100

platforms shows that the latter version is significantly faster than the former. The realized

speedup is between 1-2x for all QM regions. We attribute this performance enhancement to

improvements made to QUICK. Furthermore, comparison of speedups obtained for EE and

ME suggests that former is higher than the latter. This is due to the efficient computation of

OEI and OEI gradients on the GPU as a large number of nuclear attraction type integrals and

integral derivatives need to be computed with electrostatic embedding. Higher ps/day can

be obtained by employing A100 GPUs. The speedups observed for v23 runs on the A100 with

respect to the V100 varies between 1 to 2x, depending on the number of atoms and basis

functions in the system. This demonstrates that our code can efficiently make use of the

increased number of compute units and floating point performance of the A100 GPUs.

Performance comparisons between the V100 and MI100 runs lead to following

observations. In the smallest example, V100 runs are up to 2.3x faster with respect to MI100

runs. However, as the system size gets bigger, the performances become similar. The reasons

for this behaviour include the use of different linear solvers for matrix diagonalization and

differences in hardware platforms. To understand the performance of GPU kernels better,

we report kernel run times of all the important device kernels on the V100 and MI100 in

Table 2. Note that reported times are average kernel times of the first MD step of each

simulation, as reported by the Nsight (on NVIDIA) and the rocprof (on AMD) profiling

software. The results suggest that the performance of kernels on the two types of hardware

are similar except for XC gradient kernel (see section S2). V100 GPU has a peak FP64

capability up to 7.8 TFLOPS, 0.9 TB/s global memory bandwidth whereas for the MI100,

these are 11.5 TFLOPS and 1.2 TB/s respectively.53,54 Both types of hardware allows a

maximum of 255 registers per thread, and currently, this limits the performance of most of

11

our kernels. Interestingly, the kernels compiled for V100 utilize a lower number of registers

per thread in Table 1: Performance comparison (ps/day) of QM/MM MD simulations using

QUICK/AMBER v21.03 and v23.03 on different NVIDIA and AMD GPUs. The systems R1, R2

and R4 contain 22, 49 and 159 atoms respectively. The number of basis functions with 6-

31G* are 217, 440, 1206 and 244, 509 and 1479 with def2-SVP.

 R1 R2 R4

GPU QM/MM type # GPUs 6-31G* def2-SVP 6-31G* def2-SVP 6-31G* def2-SVP

v21.03
V100 EE 1 5.36 4.92 1.86 1.49 0.20 0.12

 2 8.74 7.94 3.30 2.60 0.37 0.23

 4 12.17 11.45 5.24 4.12 0.66 0.42

 ME 1 7.57 7.47 2.59 2.25 0.21 0.13

 2 11.01 11.19 4.40 3.87 0.40 0.26

 4 14.60 14.62 6.60 6.00 0.72 0.47

v23.03
V100 EE 1 7.09 7.69 3.04 2.82 0.37 0.25

 2 10.33 10.87 4.94 4.51 0.65 0.45

 4 13.60 14.00 6.96 6.52 1.04 0.73

 ME 1 7.73 7.76 3.14 2.88 0.38 0.26

 2 10.83 11.09 5.09 4.69 0.68 0.47

 4 14.15 14.20 7.26 6.78 1.12 0.78

A100 EE 1 9.83 9.83 4.17 4.03 0.60 0.42

 2 14.05 14.44 6.55 6.19 1.01 0.72

 4 16.57 17.15 9.32 8.79 1.55 1.13

12

 ME 1 9.95 9.99 4.25 4.07 0.62 0.44

 2 14.34 14.86 6.73 6.39 1.05 0.76

 4 17.03 17.46 9.59 9.14 1.64 1.19

MI100 EE 1 4.51 4.95 2.38 2.30 0.35 0.25

 2 5.57 6.15 3.43 3.40 0.58 0.42

 4 6.11 6.60 4.34 4.20 0.91 0.67

 ME 1 4.65 5.02 2.43 2.34 0.36 0.26

 2 5.67 6.21 3.56 3.50 0.63 0.44

 4 6.23 6.68 4.46 4.32 0.98 0.70

comparison to the MI100. This is most likely due to the maturity of the CUDA compiler.

Table 2: Average kernel times (s) of a single step of QM/MM MD simulations using
QUICK/AMBER v23.03 on NVIDIA V100 and AMD MI100 GPUs. The level of theory used is
B3LYP/def2-SVP.

 R1 R2 R4
 Kernel name V100 MI100 V100 MI100 V100 MI100

OEI 0.02 0.02 0.10 0.09 1.10 1.08

OEI gradient 0.07 0.09 0.33 0.44 3.35 4.45
ERI 0.09 0.12 0.35 0.42 5.89 6.09
ERI gradient 1.47 2.00 5.43 6.24 58.53 56.03
XC 0.10 0.12 0.19 0.24 0.90 1.14
XC gradient 0.34 0.09 0.68 0.20 4.07 2.08

Conclusions and future directions

In the presented work, we made significant improvements to the performance of the

QUICK/AMBER QM/MM implementation and enabled support for AMD GPUs. The

benchmark results show that realized speedups on NVIDIA GPUs are multi-fold with respect

to the previous release version. Performance on the MI100 GPU is similar to that of the V100

for moderate sized QM regions. Using our latest implementation, AMBER users will be able

13

to carry out more efficient QM/MM simulations on a wider range of hardware choices. As for

the future directions of this project, room for performance optimization should be explored

further. This will be mostly on the QUICK side. ERI gradient calculations are currently the

most expensive task in QM/MM, and the bottleneck of these kernels is the higher register

utilization on both NVIDIA and AMD GPUs. Re-implementation of such kernels will help

reducing kernel run times on both hardware. Furthermore, the Fock matrix build can be

further accelerated by implementing dedicated algorithms for Coulomb and exchange

contributions and density fitting algorithms. Currently, the diagonalizer routines in the

rocSolver library are not well optimized and due to this reason, the AMD version makes use

of matrix diagonalizer routines from the Magma library. The performance of these routines

in future ROCm releases should be tested and support for rocSolver diagonalization should

be enabled. Another avenue worth exploring is implementing a mixed precision DFT version

in QUICK. In principle, such a version should deliver ∼2x performance boost with sufficient

accuracy for MD simulations.

Data and Software Availability

The features described here will be available in QUICK-23.03 and AmberTools23 official

release versions. The latest version of QUICK is available on GitHub

(https://github.com/merzlab/QUICK). AmberTools can be downloaded from the AMBER

webpage (http://ambermd.org/AmberTools.php). Input files for QM/MM simulations

reported in this work are available in supporting information.

Acknowledgement

We thank Gina Sitaraman, Mahdieh Ghazimirsaeed, Leopold Grinberg, Trinayan Baruah from

AMD and Kyle Jacobs, Kristopher Keipert from NVIDIA for their useful comments on

http://ambermd.org/AmberTools.php

14

technical aspects of our GPU code. We also thank Chip Freitag, Nicholas Curtis, Bryce Mackin,

Pak Nin Lui and the AMD corporation for providing access to computer resources. M.M. and

K.M.M., Jr. are grateful to the Department of Chemistry and Biochemistry and high-

performance computer center (iCER HPCC) at the Michigan State University. This research

was supported by the National Science Foundation Grant OAC-1835144 and CSSI

Frameworks Grant 2209717. This work also used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by the National Science Foundation

(Grant No. ACI-1053575, resources at the San Diego Supercomputer Center through award

TG-CHE130010).

Supporting Information Available

Details on energy conservation tests, performance analysis of XC gradient kernel, running

QM/MM simulations on NVIDIA and AMD GPUs, input files for QM/MM simulations reported

in this work (qmmm inputs.zip).

References

(1) Lipparini, F.; Mennucci, B. Hybrid QM/classical models: Methodological advances and

new applications. Chem. Phys. Rev. 2021, 2, 041303.

(2) Tzeliou, C. E.; Mermigki, M. A.; Tzeli, D. Review on the QM/MM Methodologies and

Their Application to Metalloproteins. Molecules 2022, 27.

(3) Manathunga, M.; Götz, A. W.; Merz Jr., K. M. Computer-aided drug design,

quantummechanical methods for biological problems. Curr. Opin. Struct. Biol. 2022, 75,

102417.

15

(4) Morzan, U. N.; Alonso de Arminõ, D. J.; Foglia, N. O.; Ram´ırez, F.; González Lebrero, M.

C.; Scherlis, D. A.; Estrin, D. A. Spectroscopy in Complex Environments from QM-MM

Simulations. Chem. Rev. 2018, 118, 4071–4113.

(5) Quesne, M. G.; Borowski, T.; de Visser, S. P. Quantum Mechanics/Molecular Mechanics

Modeling of Enzymatic Processes: Caveats and Breakthroughs. Chem. Eur. J. 2016, 22,

2562–2581.

(6) van der Kamp, M. W.; Mulholland, A. J. Combined Quantum Mechanics/Molecular

Mechanics (QM/MM) Methods in Computational Enzymology. Biochemistry 2013, 52,

2708–2728.

(7) Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem.,

Int. Ed. 2009, 48, 1198–1229.

(8) Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.;

Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. Wiley

Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1493.

(9) Walker, R. C., Götz, A. W., Eds. Electronic Structure Calculations on Graphics Processing

Units: From Quantum Chemistry to Condensed Matter Physics; Wiley: West Sussex,

England, 2016.

(10) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units. 2.

Direct Self-Consistent-Field Implementation. J. Chem. Theory Comput. 2009, 5, 1004–

1015.

(11) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical Processing Units. 3.

Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular

Dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628.

16

(12) Seritan, S.; Bannwarth, C.; Fales, B. S.; Hohenstein, E. G.; Kokkila-Schumacher, S.

I. L.; Luehr, N.; Snyder, J. W.; Song, C.; Titov, A. V.; Ufimtsev, I. S.; Martinez, T. J. TeraChem:

Accelerating electronic structure and ab initio molecular dynamics with graphical

processing units. J. Chem. Phys. 2020, 152, 224110.

(13) Seritan, S.; Bannwarth, C.; Fales, B. S.; Hohenstein, E. G.; Isborn, C. M.; Kokkila-

Schumacher, S. I. L.; Li, X.; Liu, F.; Luehr, N.; Snyder Jr., J. W.; Song, C.; Titov, A. V.;

Ufimtsev, I. S.; Wang, L.-P.; Martinez, T. J. TeraChem: A graphical processing unit

accelerated electronic structure package for large-scale ab initio molecular dynamics.

Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1494.

(14) Andrade, X.; Aspuru-Guzik, A. Real-Space Density Functional Theory on Graphical

Processing Units: Computational Approach and Comparison to Gaussian Basis Set

Methods. J. Chem. Theory Comput. 2013, 9, 4360–4373.

(15) Ku¨hne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.;

Laino, T.; Khaliullin, R. Z.; Schu¨tt, O.; Schiffmann, F.; Golze, D.; Wilhelm, J.; Chulkov, S.;

Bani-Hashemian, M. H.; Weber, V.; Borˇstnik, U.; Taillefumier, M.; Jakobovits, A. S.;

Lazzaro, A.; Pabst, H.; Mu¨ller, T.; Schade, R.; Guidon, M.; Andermatt, S.; Holmberg, N.;

Schenter, G. K.; Hehn, A.; Bussy, A.; Belleflamme, F.;

Tabacchi, G.; Glöß, A.; Lass, M.; Bethune, I.; Mundy, C. J.; Plessl, C.; Watkins, M.;

VandeVondele, J.; Krack, M.; Hutter, J. CP2K: An electronic structure and molecular

dynamics software package - Quickstep: Efficient and accurate electronic structure

calculations. J. Chem. Phys. 2020, 152, 194103.

(16) Eriksen, J. J. Efficient and portable acceleration of quantum chemical many-body

methods in mixed floating point precision using OpenACC compiler directives. Mol.

Phys. 2017, 115, 2086–2101.

(17) Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J. E.;

17

Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.;

Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.;

Nakata, H.; Pham, B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L. B.;

Ruedenberg, K.; Sattasathuchana, T.; Schmidt, M. W.;

Shen, J.; Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez Vallejo, J. L.;

Westheimer, B.; W loch, M.; Xu, P.; Zahariev, F.; Gordon, M. S. Recent developments in

the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152,

154102.

(18) DePrince, A. E. I.; Hammond, J. R. Coupled Cluster Theory on Graphics Processing Units

I. The Coupled Cluster Doubles Method. J. Chem. Theory Comput. 2011, 7, 1287–1295.

(19) A. Eugene DePrince, I.; Kennedy, M. R.; Sumpter, B. G.; Sherrill, C. D. Density-fitted

singles and doubles coupled cluster on graphics processing units. Mol. Phys. 2014, 112,

844–852.

(20) Ma, W.; Krishnamoorthy, S.; Villa, O.; Kowalski, K. GPU-Based Implementations of the

Noniterative Regularized-CCSD(T) Corrections: Applications to Strongly Correlated

Systems. J. Chem. Theory Comput. 2011, 7, 1316–1327.

(21) Bhaskaran-Nair, K.; Ma, W.; Krishnamoorthy, S.; Villa, O.; van Dam, H. J. J.; Apra, E.;

Kowalski, K. Noniterative Multireference Coupled Cluster Methods on Heterogeneous

CPU–GPU Systems. J. Chem. Theory Comput. 2013, 9, 1949–1957.

(22) Ma, W.; Krishnamoorthy, S.; Villa, O.; Kowalski, K.; Agrawal, G. Optimizing tensor

contraction expressions for hybrid CPU-GPU execution. Cluster Comput. 2013, 16, 131–

155.

(23) Fales, B. S.; Curtis, E. R.; Johnson, K. G.; Lahana, D.; Seritan, S.; Wang, Y.; Weir, H.;

Martinez, T. J.; Hohenstein, E. G. Performance of Coupled-Cluster Singles and Doubles

18

on Modern Stream Processing Architectures. J. Chem. Theory Comput. 2020, 16, 4021–

4028.

(24) Peng, C.; Calvin, J. A.; Valeev, E. F. Coupled-cluster singles, doubles and perturbative

triples with density fitting approximation for massively parallel heterogeneous

platforms. Int. J. Quantum Chem. 2019, 119, e25894.

(25) Peng, C.; Lewis, C. A.; Wang, X.; Clement, M. C.; Pierce, K.; Rishi, V.; Pavosevic, F.;

Slattery, S.; Zhang, J.; Teke, N.; Kumar, A.; Masteran, C.; Asadchev, A.; Calvin, J. A.; Valeev,

E. F. Massively Parallel Quantum Chemistry: A high-performance research platform for

electronic structure. J. Chem. Phys. 2020, 153, 044120.

(26) Perera, A.; Bartlett, R. J.; Sanders, B. A.; Lotrich, V. F.; Byrd, J. N. Advanced concepts in

electronic structure (ACES) software programs. J. Chem. Phys. 2020, 152, 184105.

(27) Apra, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T. P.;

Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J.; Anisimov, V.; Aquino, F. W.; Atta-Fynn,

R.; Autschbach, J.; Bauman, N. P.; Becca, J. C.; Bernholdt, D. E.;

Bhaskaran-Nair, K.; Bogatko, S.; Borowski, P.; Boschen, J.; Brabec, J.; Bruner, A.; Cauët,

E.; Chen, Y.; Chuev, G. N.; Cramer, C. J.; Daily, J.; Deegan, M. J. O.; Dunning, T. H.; Dupuis,

M.; Dyall, K. G.; Fann, G. I.; Fischer, S. A.; Fonari, A.; Fruchtl, H.; Gagliardi, L.; Garza, J.;

Gawande, N.; Ghosh, S.; Glaesemann, K.; Götz, A. W.; Hammond, J.; Helms, V.; Hermes, E.

D.; Hirao, K.; Hirata, S.; Jacquelin, M.; Jensen, L.; Johnson, B. G.; Jonsson, H.; Kendall, R.

A.; Klemm, M.; Kobayashi, R.; Konkov, V.;

Krishnamoorthy, S.; Krishnan, M.; Lin, Z.; Lins, R. D.; Littlefield, R. J.; Logsdail, A. J.;

Lopata, K.; Ma, W.; Marenich, A. V.; Martin del Campo, J.; Mejia-Rodriguez, D.;

Moore, J. E.; Mullin, J. M.; Nakajima, T.; Nascimento, D. R.; Nichols, J. A.; Nichols, P. J.;

Nieplocha, J.; Otero-de-la Roza, A.; Palmer, B.; Panyala, A.; Pirojsirikul, T.; Peng, B.;

Peverati, R.; Pittner, J.; Pollack, L.; Richard, R. M.; Sadayappan, P.; Schatz, G. C.; Shelton,

19

W. A.; Silverstein, D. W.; Smith, D. M. A.; Soares, T. A.; Song, D.; Swart, M.; Taylor, H. L.;

Thomas, G. S.; Tipparaju, V.; Truhlar, D. G.; Tsemekhman, K.; Van Voorhis, T.; Vazquez-

Mayagoitia, A.; Verma, P.;

Villa, O.; Vishnu, A.; Vogiatzis, K. D.; Wang, D.; Weare, J. H.; Williamson, M. J.;

Windus, T. L.; Wolinski, K.; Wong, A. T.; Wu, Q.; Yang, C.; Yu, Q.; Zacharias, M.;

Zhang, Z.; Zhao, Y.; Harrison, R. J. NWChem: Past, present, and future. J. Chem. Phys.

2020, 152, 184102.

(28) Williams-Young, D. B.; de Jong, W. A.; van Dam, H. J. J.; Yang, C. On the Efficient

Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters.

Front. Chem. 2020, 8.

(29) Kowalski, K.; Bair, R.; Bauman, N. P.; Boschen, J. S.; Bylaska, E. J.; Daily, J.; de Jong, W. A.;

Dunning, T. J.; Govind, N.; Harrison, R. J.; Ke¸celi, M.; Keipert, K.; Krishnamoorthy, S.;

Kumar, S.; Mutlu, E.; Palmer, B.; Panyala, A.; Peng, B.; Richard, R. M.; Straatsma, T. P.;

Sushko, P.; Valeev, E. F.; Valiev, M.; van Dam, H. J. J.; Waldrop, J. M.; Williams-Young, D.

B.; Yang, C.; Zalewski, M.; Windus, T. L. From NWChem to NWChemEx: Evolving with

the Computational Chemistry Landscape. Chem. Rev. 2021, 121, 4962–4998.

(30) Kussmann, J.; Ochsenfeld, C. Hybrid CPU/GPU Integral Engine for Strong-Scaling

Ab Initio Methods. J. Chem. Theory Comput. 2017, 13, 3153–3159.

(31) Laqua, H.; Thompson, T. H.; Kussmann, J.; Ochsenfeld, C. Highly Efficient, Linear-

Scaling Seminumerical Exact-Exchange Method for Graphic Processing Units. J. Chem.

Theory Comput. 2020, 16, 1456–1468.

(32) Kussmann, J.; Laqua, H.; Ochsenfeld, C. Highly Efficient Resolution-of-Identity Density

Functional Theory Calculations on Central and Graphics Processing Units. J. Chem.

Theory Comput. 2021, 17, 1512–1521.

20

(33) Miao, Y.; Merz Jr, K. M. Acceleration of Electron Repulsion Integral Evaluation on

Graphics Processing Units via Use of Recurrence Relations. J. Chem. Theory Comput.

2013, 9, 965–976.

(34) Miao, Y.; Merz Jr, K. M. Acceleration of High Angular Momentum Electron Repulsion

Integrals and Integral Derivatives on Graphics Processing Units. J. Chem. Theory

Comput. 2015, 11, 1449–1462.

(35) Johnson, K. G.; Mirchandaney, S.; Hoag, E.; Heirich, A.; Aiken, A.; Martinez, T. J.

Multinode Multi-GPU Two-Electron Integrals: Code Generation Using the Regent

Language. J. Chem. Theory Comput. 0, 0, null.

(36) Barca, G. M. J.; Alkan, M.; Galvez-Vallejo, J. L.; Poole, D. L.; Rendell, A. P.; Gordon, M. S.

Faster Self-Consistent Field (SCF) Calculations on GPU Clusters. J. Chem.

Theory Comput. 2021, 17, 7486–7503.

(37) Seidl, C.; Barca, G. M. J. Q-Next: A Fast, Parallel, and Diagonalization-Free Alternative to

Direct Inversion of the Iterative Subspace. J. Chem. Theory Comput. 2022, 18, 4164–

4176.

(38) Vallejo, J. L. G.; Barca, G. M.; Gordon, M. S. High-performance GPU-accelerated evaluation

of electron repulsion integrals. Mol. Phys. 2022, 0, e2112987.

(39) Manathunga, M.; Miao, Y.; Mu, D.; Götz, A. W.; Merz Jr., K. M. Parallel Implementation of

Density Functional Theory Methods in the Quantum Interaction Computational Kernel

Program. J. Chem. Theory Comput. 2020, 16, 4315–4326.

(40) Manathunga, M.; Jin, C.; Cruzeiro, V. W. D.; Miao, Y.; Mu, D.; Arumugam, K.;

Keipert, K.; Aktulga, H. M.; Merz Jr., K. M.; Götz, A. W. Harnessing the Power of Multi-

GPU Acceleration into the Quantum Interaction Computational Kernel Program. J.

Chem. Theory Comput. 2021, 17, 3955–3966.

21

(41) Cruzeiro, V. W. D.; Manathunga, M.; Merz Jr., K. M.; Götz, A. W. Open-Source

Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK. J. Chem. Inf.

Model. 2021, 61, 2109–2115.

(42) Götz, A. W.; Clark, M. A.; Walker, R. C. An extensible interface for QM/MM molecular

dynamics simulations with AMBER. J. Comput. Chem. 2014, 35, 95–108.

(43) Pople, J. A.; Gill, P. M.; Johnson, B. G. Kohn—Sham density-functional theory within a

finite basis set. Chem. Phys. Lett. 1992, 199, 557–560.

(44) Ponder, J.; Case, D. A. Force fields for protein simulations. Adv. Prot. Chem. 2003,

66, 27–85.

(45) Walker, R. C.; Crowley, M. F.; Case, D. A. The implementation of a fast and accurate

QM/MM potential method in Amber. J. Comput. Chem. 2008, 29, 1019–1031.

(46) Obara, S.; Saika, A. Efficient recursive computation of molecular integrals over Cartesian

Gaussian functions. J. Chem. Phys. 1986, 84, 3963–3974.

(47) Head-Gordon, M.; Pople, J. A. A method for two-electron Gaussian integral and integral

derivative evaluation using recurrence relations. J. Chem. Phys. 1988, 89, 5777–5786.

(48) Professional CUDA C Programming, 1st ed.; Wrox Press Ltd.: GBR, 2014.

(49) AMD, HIP Programming Guide v4.5. https://rocmdocs.amd.com/en/latest/

Programming_Guides/HIP-GUIDE.html.

(50) Tomov, S.; Dongarra, J.; Baboulin, M. Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Comput. 2010, 36, 232–240, Parallel Matrix

Algorithms and Applications.

(51) Brown, C.; Abdelfattah, A.; Tomov, S.; Dongarra, J. J. Design, Optimization, and

22

Benchmarking of Dense Linear Algebra Algorithms on AMD GPUs. 2020 IEEE High

Performance Extreme Computing Conference, HPEC 2020, Waltham, MA, USA,

September 22-24, 2020. 2020; pp 1–7.

(52) Isborn, C. M.; Götz, A. W.; Clark, M. A.; Walker, R. C.; Martinez, T. J. Electronic Absorption

Spectra from MM and ab Initio QM/MM Molecular Dynamics: Environmental Effects on

the Absorption Spectrum of Photoactive Yellow Protein. J. Chem.

Theory Comput. 2012, 8, 5092–5106.

(53) NVIDIA, NVIDIA Tesla V100 GPU Architecture. https://images.nvidia.

com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, accessed

11/08/2022.

(54) AMD, AMD Instinct MI100 Accelerator. https://www.amd.com/system/files/

documents/instinct-mi100-brochure.pdf, accessed 11/08/2022.

TOC Graphic

B3LYP/def2 - SVP QM/MM
3.4 X

AmberTools23

V100 V100 MI100
A100

AmberTools21

2.0 X 2.0 X

1.0 X
PYP - R4

	Abstract
	Introduction
	Computational Methods
	General performance improvements to QM/MM implementation
	Support for AMD GPUs

	Benchmarks
	Conclusions and future directions
	Data and Software Availability
	Acknowledgement
	Supporting Information Available
	References
	TOC Graphic

