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Abstract. The reactive force field (ReaxFF) interatomic potential is a
powerful tool for simulating the behavior of molecules in a wide range of
chemical and physical systems at the atomic level. Unlike traditional
classical force fields, ReaxFF employs dynamic bonding and polariz-
ability to enable the study of reactive systems. Over the past couple
decades, highly optimized parallel implementations have been developed
for ReaxFF to efficiently utilize modern hardware such as multi-core pro-
cessors and graphics processing units (GPUs). However, the complexity
of the ReaxFF potential poses challenges in terms of portability to new
architectures (AMD and Intel GPUs, RISC-V processors, etc.), and limits
the ability of computational scientists to tailor its functional form to their
target systems. In this regard, the convergence of cyber-infrastructure for
high performance computing (HPC) and machine learning (ML) presents
new opportunities for customization, programmer productivity and per-
formance portability. In this paper, we explore the benefits and limi-
tations of JAX, a modern ML library in Python representing a prime
example of the convergence of HPC and ML software, for implement-
ing ReaxFF. We demonstrate that by leveraging auto-differentiation,
just-in-time compilation, and vectorization capabilities of JAX, one can
attain a portable, performant, and easy to maintain ReaxFF software.
Beyond enabling MD simulations, end-to-end differentiability of trajec-
tories produced by ReaxFF implemented with JAX makes it possible
to perform related tasks such as force field parameter optimization and
meta-analysis without requiring any significant software developments.
We also discuss scalability limitations using the current version of JAX
for ReaxFF simulations.

Keywords: reactive molecular dynamics - HPC/ML software - auto-
differentiation - hardware portability
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1 Introduction

Molecular dynamics (MD) simulations are widely used to study physical and
chemical processes at the atomistic level in fields such as biophysics, chemistry
and materials science. Compared to quantum mechanical (QM) MD simulations,
which involve solving the Schrodinger’s equation, classical MD simulations are
cost-effective. They enable the study of large systems over significantly long
time frames by making certain approximations. In this approach, the atomic
nucleus and its electrons are treated as single particle. The atomic interactions
are governed by a force field (FF), a set of parameterized mathematical equations
that capture known atomic interactions such as bonds, angles, torsions, van der
Waals, and Coulomb interactions. To ensure the predictive power of empirical
force fields, they must be fitted to reference data obtained through high-fidelity
quantum mechanical computations and/or experimental studies.

Classical MD models typically adopt static bonds and fixed partial charges
which make them unsuitable for studying reactive systems. To remedy these
limitations, different reactive force fields have been developed [26,29,10]. In this
paper, we focus on the ReaxFF, which is one of the most impactful and widely
used reactive force fields [29,25]. It allows bonds to form and break throughout
the simulation and dynamically calculates partial charges using suitable charge
models. Due to the dynamic nature of bonds and partial charges, ReaxFF is
significantly more complex and computationally expensive than classical force
fields.

1.1 Related Work

To enable large-scale and long duration simulations, several ReaxFF implementa-
tions with different features and architectural support have been developed over
the past couple decades. PuReMD has shared and distributed-memory versions
for both CPUs and GPUs (CUDA-based), all of which are maintained sepa-
rately [3,2,14], and several of these versions have been integrated into LAMMPS
and AMBER [18]. More recently, to ensure hardware portability and simplify
code maintenance and performance optimizations, a Kokkos-based implementa-
tion of ReaxFF has been developed in LAMMPS [28]. Kokkos is a performance
portable programming model and allows the same codebase implemented using
its primitives to be compiled for different backends. The current ReaxFF /Kokkos
software also supports distributed-memory parallelism. In addition to the above
open-source software, SCM provides a commercial software that includes ReaxFF
support [21].

The success of ML techniques in fields such as computer vision and nat-
ural language processing has triggered its wide-spread use also in scientific
computing. Specifically, in molecular modeling and simulation, a new class of
force fields called machine learning potentials (MLP) such as SNAP [27], the
Behler/Parrinello potential [7], SchNet [24], OrbNet [?], and NequIP [6] has
emerged. More recently, we started witnessing an increase in the number of sci-
entific applications adopting ML libraries such as Tensorflow [1], PyTorch [17],
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and JAX [9], not only for ML approaches but as a general purpose programming
model even when using conventional techniques. This can be attributed to the
convenience of advanced tools developed around these programming models and
libraries such as auto-differentiation, auto-vectorization, and just-in-time compi-
lation. Such tools have enabled fast prototyping of new ideas as well as hardware
portability without sacrificing much computational efficiency.

Intelligent-ReaxFF [12] and JAX-ReaxFF [13] implementations both lever-
age modern machine learning frameworks. However, they are both primarily
designed for force field fitting, and as such they are designed to work with molec-
ular systems typically containing tens of atoms, and they cannot scale beyond
systems with more than a couple hundred atoms. More importantly, they both
lack molecular dynamics capabilities.

1.2 Owur Contribution

The aforementioned features of ML cyber-infrastructure are highly attractive
from the perspective of MD software, considering the fact that existing force
field implementations are mostly written in low-level languages and tuned to
the target hardware for high performance. As such, we introduce a portable,
performant, and easy-to-maintain ReaxFF implementation in Python built on
top of JAX-MD [23]. This new implementation of ReaxFF is

— easy-to-maintain because it only requires expressing the functional form of
the potential energy for different atomic interactions in Python. MD simula-
tions require calculation of forces which are calculated by taking the gradient
of the potential energy with respect to atom positions at each time step. This
can simply be accomplished with a call to the grad( ) function in JAX,

— hardware portable because for its functional transformations, JAX uses
XLA (Accelerated Linear Algebra) [22], which is a domain specific com-
piler for vector and matrix operations. Since XLA has high performance
implementations across different CPUs (x86_64 and ARM) as well as GPUs
(Nvidia and AMD), porting our ReaxFF implementation does not require
any additional coding,

— performant because we ensure that our underlying ReaxFF interaction
lists are suitable for vectorization, and we leverage just-in-time compilation
effectively through a carefully designed update/reallocation scheme,

— versatile because we designed our implementation such that the same in-
teraction kernels can be re-used in either a single high performance run
(needed for long MD simulations) or multiple small single-step runs (needed
for parameter optimization) settings. This allows our implementation to be
suitable for force field training as well. Also, it simplifies the study of new
functional forms for various interactions in the ReaxFF model.
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2 Background

2.1 ReaxFF Overview

ReaxFF uses the bond order concept to determine the interaction strength be-
tween pairs of atoms given their element types and distances, and then applies
corrections to these initial pairwise bond orders based on the information about
all surrounding atoms. The corrected bond order is used as the main input for
the energy terms such as bond energy (Epond), valence angle energy (E\), and
torsion angle energy (Fiors). To account for atoms that may not attain their
optimal coordination, additional energy terms such as under-/over-coordination
energies, coalition, and conjugation energies are used, which we denote as Fother
for simplicity. The van der Waals energy (Eyawaas) and electrostatic energy
terms (Ecoulomb) constitute the non-bonded terms. Since bond orders are dy-
namically changing, an important pre-requisite for calculation of electrostatic
energy is the charge equilibration procedure which dynamically assigns charges
to atoms based on the surroundings of each atom. For systems with hydro-
gen bonds, a special energy term (Epm.bond) is applied. Bonded interactions are
typically truncated at 5 A, hydrogen bonds are effective up to 7.5 A, and the
non-bonded interaction cutoff is typically set to 10-12 A. Eq. (1) sums up the
various parts that constitute the ReaxFF potential energy, and we summarize
the dependency information between them in Fig. 1.

Esystem = Ebond + Eval + Etors + EH—bond
+ EvdWaals + ECoulomb + Eother~

(1)

2.2 JAX and JAX-MD Overview

Since the new ReaxFF implementation is developed in JAX-MD, important
design and implementation decisions were based on how JAX and JAX-MD
work. As such, we first briefly describe these frameworks.

JAX [9] is a machine learning framework for transforming numerical functions.
It implements the Numpy API using its own primitives and provides high order
transformation functions for any Python function written using JAX primitives.
The most notable of these transformation functions are automatic differentiation
(grad), vectorization on a single device to leverage SIMD parallelism (vmap), par-
allelization across multiple devices (pmap), and just-in-time compilation (JIT).
These transformations can be composed together to enable more complex ones.
JAX uses XLA, a domain specific compiler for linear algebra, under the hood
to achieve hardware portability. This allows any Python code written in terms
of JAX primitives to be seamlessly compiled for CPUs, GPUs, or TPUs. Since
XLA is also used extensively to accelerate Tensorflow models, XLA is supported
for almost all modern processors, including GPUs by Nvidia and AMD. With



End-to-end Differentiable Reactive MD 5

Atom
Positions
Nonbonded Bonded
Interaction List Interaction List
Determine
Charge bond orders
Equilibration (BO)
3-body and 4-body
Interaction Lists
Correct BO for Determine
local angles and
overcoordination torsions
l Y l 1
E E E Egona E E.
Coulomb vdWaals 'HBond Valence Torsion
. . system
Nonbonding Bonding Y

Fig. 1. Task dependency graph for calculations performed in ReaxFF.

JIT, XLA could apply performance optimizations targeted specifically for the
selected device. The main limitation of JAX is that it expects the input data to
the transformed functions to have fixed sizes. This allows XLA to adopt more
aggressive performance optimizations during compilation, but when the size of
the input data changes, the code needs to be recompiled.

JAX-MD [23] is an MD package built in Python using JAX. It is designed
for performing differentiable physics simulations with a focus on MD. It sup-
ports periodic and non-periodic simulation environments. JAX-MD employs a
scalable 3D grid-cell binning based algorithm to construct the neighbor list for
atoms in a given system. It includes integrators for various kinds of ensembles
as well as Fast Inertial Relaxation Engine (FIRE) Descent [8] and Gradient
Descent based energy minimizers. Various machine learning potentials such as
the Behler-Perrinello architecture [7] and graph neural networks including the
Neural Equivariant Interatomic Potentials (NequlP) [6], based on the GraphNet
library [5], are also readily available. When combined with the capabilities of
JAX, this rich ecosystem enables researchers to easily develop and train hybrid
approaches for various chemistry and physics applications.
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3 Design and Implementation

In this section, we describe the overall design considerations and present the final
design for our ReaxFF implementation in JAX-MD. To simplify the design and
ensure modularity, generation of the interaction lists have been separated from
the computation of partial energy terms. For overall efficiency and scalability,
special consideration has been given to memory management.

3.1 Memory Management

To avoid frequent re-compilations, sizes of input to JAX’s transforming functions
must be known and fixed. As such, we separate the logic for handling the in-
teraction list generation into allocate and update parts. The allocate function
estimates the sizes of all interaction lists (see Fig. 2) and allocates the needed
memory with some buffer space (default 20%). Due to its dynamic nature, JAX
transformations such as vmap and jit cannot be applied to the allocate function.
The update function works with the already-allocated interaction lists, and fills
them based on atom positions while preserving their sizes. Since the update
function works on arrays with static sizes, JAX transformations such as vmap
and jit can be and are applied to this function. For effective use of vmap, the
update function also applies padding when necessary. Finally, while filling in the
interaction lists, it also checks whether the utilization of the space allocated for
each list falls below a threshold mark (default 50%) where the utilization is the
ratio of the true size to the total size. If it does, a call to the allocate function is
triggered to shrink the interaction lists as shown in Algorithm 1, which in turn
causes JAX to recompile the rest of the code since array dimensions change.

Algorithm 1 General structure of computations in an MD simulation.
1: interLists <— Create the interaction lists using the allocate function
2: for timestep = 1,2,... do
3: Calculate forces
4 Update positions using the calculated forces
5 overflow < Update the interaction lists
6 if overflow then
7 interLists «<— Reallocate based on the most recent utilizations
8
9:

end if
end for

Another important aspect of our memory management scheme is the filtering
of interaction lists. In ReaxFF, while bonds are calculated dynamically, not all
bonds are strong enough to be chemically meaningful, and therefore they are
ignored (a typical bond strength threshold is 0.01). This has ramifications for
higher-order interactions such as 3-body, 4-body, and H-bond interactions as
well because they are built on top of the dynamically generated bond lists. As
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Fig. 2. Flow graph describing the generation of the interaction lists.

we discuss in more detail below, the acceptance criteria for each interaction is
different. For 3-body and 4-body interactions, acceptance criteria depends on the
strength of bonds among the involved atoms as well as force field parameters spe-
cific to that group of atoms; for H-bonds, it is a combination of acceptor-donor
atom types and bond strengths. However, the steps for filtering all interaction
lists are similar and can be implemented as a generic routine with a candidate
interaction list and an interaction-specific acceptance criterion. The interactions
that require filtering and their relevant input data are shown as yellow nodes in
Fig. 2. First, the candidate interaction list is populated. Then, candidates get
masked based on the predefined acceptance criterion. Finally, the candidate list
is pruned and passed onto its corresponding potential energy computation func-
tion. While actually pruning the candidate list might be seen as an overhead, we
note that the number of unaccepted 3-body and 4-body interactions are so high
that simply ignoring them during the potential energy computations introduce
a significant computational overhead. Also, the memory required to keep the
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unfiltered 3-body and 4-body interaction lists would limit the scalability of our
implementation for GPUs due to their limited memory resources.

The filtering logic discussed above is JAX-friendly because the shapes of the
intermediate (candidate) and final (pruned) data structures are fixed. As such,
vmap and jit transformations can be applied to the filtering procedure, too.
As with un-pruned lists, filtered interaction list generation also keeps track of
utilization of the relevant lists and sets the overflow flag, when necessary.

3.2 Generation of Interaction Lists

Rcutoff
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O cutoff
O © O ©
O O O
O o P O
e} O
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o o | o o o
(@]
O O ©

Fig. 3. Illustration of grid-cell neighbor search used to generate neighbor lists.

Pair-wise Bonded Interactions: In ReaxFF, bond order (BO) between atom
pairs are at the heart of all bonded potential energy computations. The BOs
are computed in two steps. First, uncorrected BOs are computed according to
Eq. (2), where r;; is the distance between the atom pair -3, and rJ, r7, and ™
are the ideal bond lengths for o-0, o-7 and 7-7 bonds, respectively.

!/ g s T

rij Pboy Tij Pboy
= €XP |Pbo; - E + exp Pbos * E (2)
Pbog
res
+ exp [pms : (;fﬂ) } .
o

After uncorrected bond orders are computed, the strength of BO;j is corrected
based on the local neighborhood of atoms ¢ and j. The corrected BO (BO;;)
represents the coordination number (i.e., number of bonds) between two atoms.
Corrected bonds below a certain threshold get discarded as they do not corre-
spond to chemical bonds. Hence, they do not contribute to the total energy.
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To calculate uncorrected BO, for each atom in a given system, their neighbors
are found using a grid-cell binning based neighbor search algorithm (Fig. 3).
This allows us to generate the bonded neighbor lists in O(Nk) where N is the
number of atoms and k is the average number neighbors per atom. The side
length of the grid cell is set to 5.5 A, as a buffer space of 0.5 A is added
to the 5 A actual bonded interaction cutoff to avoid frequent updates to the
neighbors list. Since the cell size is almost the same as the bonded interaction
cutoff, neighbor search only requires checking the nearby 32 grid cells. Neighbor
information is stored in a 2D format where the neighbors of atom i are located
on ith row with padding and alignment, as necessary. This format which is very
similar to the ELLPACK format [31] is highly amenable for vectorization and
memory coalescing on modern GPUs. It also simplifies bond order corrections
because the neighbor indices for a given atom are stored consecutively. As will
be discussed later, it also helps creating 3-body (for valency) and 4-body (for
torsion) interactions since they use BOs as the main input. After creating the 2D
neighbor array, BO terms are calculated and pairs with small BOs are filtered
out as described above.

Filtered bonded
interactions

o [T K] momitorn [0

® @ (®
O—O O—D
3-body interaction 4-body interaction

Fig. 4. Atoms and their interactions involved in formation of the 3-body and 4-body
interactions.

Higher Order Bonded Interactions: After pruning the bonded interactions,
3-body and 4-body interaction lists are generated (Fig. 4). For each atom, every
two neighbor pairs are selected to form the candidate list for 3-body interactions.
In a system with N atoms and k neighbors per atom, there will be O (Nk?)
candidates. Then the candidates are masked and filtered based the involved BO
terms to form the final array with shape M x 3 where M is the total number
of interactions and columns are atom indices. After that, the finalized 3-body
interaction list is used to generate the candidates for the 4-body interactions.
For each 3 body interaction i-j-k, neighbors of both j and k are explored to
form the 4-body candidate list and then the candidates get filtered based on the
4-body specific mask.

When the molecule involves hydrogen bonds, the hydrogen interaction list is
built using the filtered bonded and non-bonded interactions. A hydrogen bond
can only be present if there are hydrogen donors and acceptors. While the accep-
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tor and the hydrogen are covalently bonded (short range), the acceptor bonds to
the hydrogen through a dipole-dipole interaction, therefore it is long ranged (up
to 7.5 A). Hence, to find all possible hydrogen bonds involving a given hydrogen
atom, both its bonded neighbors and non-bonded neighbors are scanned. Using
the appropriate masking criterion, the final interaction list is formed to be used
for potential energy calculations.

Filtered bonded Filtered nonbonded
interactions interactions

Atom i

’ Acceptor
Donor H (ith atom)

Fig. 5. Atoms and their interactions involved in formation of hydrogen bonds.

Non-Bonded Interactions: In ReaxFF, non-bonded interactions are effective
up to 10-12 A, and they are smoothly tapered down to 0 beyond the cutoff.
Similar to the pair-wise bonded interactions, the long range neighbor lists are
also built using the grid-cell binning approach, this time using a buffer distance
of 1 A to avoid frequent neighbor updates. The neighbors are again stored in
a 2D array similar to the ELLPACK format. This simplifies accessing the long
range neighbors of a given atom while building the Hydrogen bond interactions
list (as shown in Fig. 5). Also, the sparse matrix-vector multiplication kernel
(SpMV) required for the dynamic charge calculation becomes simpler and more
suitable for GPUs [30].

The non-bonded interaction list is used to compute van der Waals and
Coulomb energy terms. While E,qwaais computation is relatively simple as it
only involves the summation of the pair-wise interaction energies, Fcoulomb I'e-
quires charges to be dynamically computed based on a suitable charge model
such as the charge equilibration (QEq) [20], electronegativity equalization (EE)
[16], or atom-condensed Kohn-Sham density functional theory approximated to
second order (ACKS2) method [32]. Our current JAX-based implementation
relies on the EE method.

The EE method involves assigning partial charges to individual atoms while
satisfying constraints for both the net system charge and the equalized atom
electronegativities. For a given system with n atoms, let the charges and the
positions be q = (¢1,42,-.-,qn) and R = (r1,79,...,7,), respectively. The elec-
tronegativity constraint can be formalized as follows

€1 =€ ="-"=€¢=¢,
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where ¢; is the electronegativity of atom 4 and € is the average electronegativity.
The net system charge constraint is expressed as

n
Z i = Qnet,
=1

where gnet is the net system charge. The constraints and the parameterized long
range interactions can be expressed as a set of linear equations with the partial
charges q being the solution to

ol [e] =]

where x is an n x 1 vector of target electronegativities and H is a symmetric
n X n matrix describing the interactions between atoms. H; ; is defined as

Hij=06;;-n+(1—3dij;) Fij

where §; ; is the Kronecker delta operator and 7; is the idempotential. Lastly,
F; ; is defined as

Ti,j < Rcutoff

otherwise

where 7; ; is the distance between atom 4 and j, 7; ; is the pair-wise shielding
term, and Rcutom iS the long range cutoff.

Since the size of the above linear system is (n + 1) x (n + 1), it is pro-
hibitively expensive to solve it with direct methods when n is becomes large
(beyond a few hundred). Hence, we employ an iterative sparse linear solver. The
iterative solvers available in JAX only expect a linear operator as a function
pointer that can perform the matrix-vector multiplication. This allows us to de-
fine the SpMV operation directly using the non-bonded neighbor lists provided
in an ELLPACK-like format described earlier without applying any transforma-
tions. Another optimization to accelerate the charge equilibration is to use initial
guesses to warm start the iterative solver. Since the charges fluctuate smoothly
as the simulation progresses, we use the cubic spline extrapolation to produce
the initial guesses based on past history [2].

3.3 Force Field Training

Predictive capabilities of empirical force fields are arguably more important than
their performance. For this, it is crucial for force field parameters to be optimized
using high-fidelity quantum mechanical training data. In contrast to MD simu-
lations involving a single system iterated over long durations, this optimization
process typically involves executing several (on the order of hundreds to thou-
sands, depending on the model and target systems) small molecular systems
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Algorithm 2 Gradient-based parameter optimization.
0 < Initialize the model parameters
training set <— Align the training set by padding with dummy atoms
lossFunction < Create a loss function by utilizing vmap(energyFunction)
calculateGradients < jit(grad(lossFunction))
while stopping criterion not met do
X, Y; < Sample a minibatch of data from the training set
Create the interaction lists for X;
g « calculateGradients(0, interLists, Y;)
0 < Update the model parameters using g
: end while

[

for a single step using different parameter sets in a high-throughput fashion.
While evolutionary algorithms have traditionally been used for Reax force field
optimizations, as JAX-ReaxFF [13] and Intelligent-ReaxFF [12] have recently
demonstrated, using gradient-based optimization techniques can accelerate the
training process by two to three orders of magnitude. However, the gradient in-
formation needed for force field optimization is much more complex than that
of MD simulation — one needs to calculate the derivative of the fitness func-
tion which is typically formulated as a weighted sum of the difference between
predicted and reference quantities over all systems in the training dataset with
respect to parameters to be optimized (which is usually on the order of tens of
parameters for ReaxFF). While this would be a formidable task using analytical
or numerical techniques, the auto-differentiation capabilities of JAX enable us to
easily repurpose the above described ReaxFF MD implementation for parame-
ter optimization. By composing different transformations, a simple loss function
defined for a single sample can extended to work for a batch of training data
as shown in Algorithm 2. To fully take advantage of SIMD parallelism, espe-
cially on GPUs, we ensure that different molecules in the training dataset are
properly divided into small batches. To reduce the number of dummy atoms and
the amount of padding within each batch, the training set could be clustered
based on how much computation they require. Given the allocate/update mech-
anism described in Section 3.1, the different sizes of interaction lists for different
molecular systems in a batch data does not cause additional challenges.

4 Experimental Results

4.1 Software and Hardware Setup

To verify the accuracy of the presented JAX-based ReaxFF implementation,
simulations were performed using molecular systems shown in Table 1. The
Kokkos-based LAMMPS implementation of ReaxFF was chosen for validation
and benchmarking comparisons due to its maturity and maintenance. For this
purpose, we used the most recent stable release of LAMMPS (git tag sta-
ble_23Jun2022_update3), and experimented on both Nvidia and AMD GPUs.
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LAMMPS was built using GCC v10.3.0, OpenMPI v4.1.1, and CUDA v11.4.2
for the Nvidia GPUs, and with ROCm v5.3.0, aomp v16.0, and OpenMPI v4.1.4
for the AMD GPUs (using device-specific compiler optimization flags for both).
For the JAX experiments, Python v3.8, JAX v0.4.1, and JAX-MD v0.2.24 were
paired with CUDA v11.4.2 for the Nvidia GPUs, and ROCm v5.3.0 for the AMD
GPUs. Hardware details are presented in Table 2. The compute nodes at the
Michigan State University High-Performance Computing Center (MSU-HPCC)
and the AMD Cloud Platform are used for the experiments.

Name Chem. Rep. N Sim. Box (A) Force Field
Water H>O 2400 29.0 x 28.9 x 29.3 [11]
Silica  SiO» 6000  36.9 x 50.7 x 525 [11]

Table 1. Molecular systems used in the performance evaluation section, with the third
column (N) indicating the number of atoms, the fourth one denoting the dimensions
of the rectangular simulation box, and the last column showing the force field used to
simulate the system.

GPU CPU Cluster

A100 Intel Xeon 8358 (64 cores) MSU-HPCC

V100 Intel Xeon Platinum 8260 (48 cores) MSU-HPCC

MI210 AMD EPYC 7742 (64 cores) AMD Cloud Platform
MI100 AMD EPYC 7742 (64 cores) AMD Cloud Platform

Table 2. Hardware details of the platforms used for performance experiments.

4.2 Validation of MD Capabilities

Fig. 6 shows that the JAX-based ReaxFF energies almost perfectly match those
from LAMMPS in actual MD simulations. The deviation only becomes visible
after 2000 MD steps which is inevitable due to machine precision limitations. The
relative energy difference is around 10~7 for both the water and silica systems.

4.3 Performance and Scalability

We compare the performance of JAX-based ReaxFF to Kokkos/ReaxFF package
in LAMMPS on both Nvidia and AMD GPUs. While Kokkos/ReaxFF supports
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Fig. 6. Comparison of absolute (top plots) and relative difference (bottom plots) in
potential energies for NVE simulations with a time step of 0.2 fs and a CG solver with
le-6 tolerance for the charge calculation.

MPT parallelism, we use a single GPU for all tests. Kokkos/ReaxFF incurs min-
imal communication overheads when there is a single MPI process. The perfor-
mance comparison on AMD GPUs is possible through Kokkos” ROCm backend
support, as well as the availability of JAX/XLA on AMD GPUs.

To create systems with varying size, the molecular systems shown in Table 1
have been periodically replicated along the x, y, and z dimensions. The number
of atoms vary from 2400 to 19200 for the water systems and from 6000 to 24000
for the silica systems. For each experiment, NVE simulations with a time step of
0.2 fs were run for 5000 steps, and the average time per step in ms was reported.
For both the Kokkos and JAX-based implementations, the buffer distance for
the non-bonded interactions was set to 1 A. While reneighboring is done every 25
MD steps for Kokkos, the JAX implementation keeps track of how much atoms
move since the last neighborhood update and only reneighbors when atoms move
more than the buffer distance. As suggested by the Kokkos documentation, the
half-neighbor list option is used.

While written in Python using JAX primitives, the proposed implementation
is faster when the system size is small on all GPUs. As the number of atoms
increases, while the time increases linearly for the JAX implementation, the
Kokkos one increases sublinearly. The sublinear scaling for Kokkos indicates that
it cannot fully utilize the resources when the problem size is small unlike JAX.
As the problem size increases, Kokkos starts to utilize the GPU better and yield
better performance. The Kokkos implementation achieves up to 3.2x speedup
for the largest water systems on AMD GPUs (MI100 and MI210). On Nvidia
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GPUs (V100 and A100), it is around 2.3x faster for the same water system with
19200 atoms. For the silica systems where there are no hydrogen bonds, Kokkos
is around 2x faster on the AMD GPUs and 1.5x on the Nvidia GPUs. On the
other hand, when the problem size is small, JAX achieves up to 1.8x speedup
on an A100 GPU.

Water Systems
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Fig. 7. Average time per MD step (in ms) for the water systems with varying sizes.

4.4 Training

To demonstrate the training performance of the described implementation, we
trained the ReaxFF parameters on the public QM9 dataset of about 134k relaxed
organic molecules made up of H, C, N, O, and F atoms, with each molecule
containing up to nine non-hydrogen atoms [19]. All systems are calculated at
the B3LYP/6-31G(2df,p) level of theory. To simplify the dataset, we removed
the molecules that contain F atoms which resulted in around 130k molecules.
During optimization, 80% of the data is used for training and the remaining
20% for testing. The training is done using the AdamW optimizer [15] from the
Optax library [4] with a batch size of 512 and the learning rate is set to 0.001.

The ReaxFF model is typically fit to the training data containing relative
energy differences between molecules with the same type of atoms (different
conformations and configurations) and the energies of the individual atoms get
canceled out. Since the QM9 dataset only contains the absolute energies, we
added a new term to the ReaxFF potential to remedy the energy shifts caused
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Fig. 8. Average time per MD step (in ms) for the silica systems with varying sizes.

by the self-energies of the individual atoms.

Esystem = EReaxFF + Eself—energy

> (3)
Eself—energy = Z Si
i=1

In Eq. (3), Freaxrr is the original ReaxFF potential designed to capture
the interaction related terms and FEgelfcnergy 18 the newly added parameterized
self-energy term to capture the energy shifts, and s; is the self energy of atom
1 solely determined by the atom type. Hence, the new term only contains 4
parameters as there are 4 atom types in the modified QM9 dataset. In total,
around 1100 ReaxFF parameters are optimized during the training. The training
is performed on an A100 GPU with each epoch taking approximately 8 seconds.
Fig. 9 shows the mean absolute error (MAE) per epoch. Since the ReaxFF model
has a relatively small number of parameters compared to most modern ML
methods, the training and test MAE perfectly overlap throughout the training.
The final MAE of the model on the test data is 3.6 kcal/mol. While this is
higher than the ideal target of 1 kcal/mol error, we note that this is a straight
optimization without any fine-tuning to demonstrate the capabilities of the new
ReaxFF implementation.

5 Conclusion

With the accelerator landscape changing rapidly and becoming more complex,
cross platform compilers gain more importance as they enable the same codebase
to be used on different architectures. By leveraging modern machine learning
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Training ReaxFF on QM9 Dataset
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Fig. 9. Training progress of the ReaxFF model on the QM9 dataset, with the final
MAE on the test data being 3.6 kcal/mol.

cyber-infrastructure, we developed a new JAX-based ReaxFF implementation
that is easy-to-maintain, hardware portable, performant, and versatile. Using
auto-differentiation, forces in MD simulations are computed directly from en-
ergy functions implemented in Python without requiring any extra coding. It
also allows the same code to be used for both MD simulations and parameter op-
timization which are both essential to study any system of interest with ReaxFF.
While Kokkos is an another cross-plotform solution, it lacks auto-differentiation
and batching optimization capabilities. Although it is more performant for bigger
molecules, the JAX implementation is faster for small ones while also providing
new functionalities.
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