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Abstract

We present the largest and most homogeneous collection of near-infrared (NIR) spectra of Type Ia supernovae
(SNe Ia): 339 spectra of 98 individual SNe obtained as part of the Carnegie Supernova Project-II. These spectra,
obtained with the FIRE spectrograph on the 6.5 m Magellan Baade telescope, have a spectral range of 0.8–2.5 μm.
Using this sample, we explore the NIR spectral diversity of SNe Ia and construct a template of spectral time series
as a function of the light-curve-shape parameter, color stretch sBV. Principal component analysis is applied to
characterize the diversity of the spectral features and reduce data dimensionality to a smaller subspace. Gaussian
process regression is then used to model the subspace dependence on phase and light-curve shape and the
associated uncertainty. Our template is able to predict spectral variations that are correlated with sBV, such as the
hallmark NIR features: Mg II at early times and the H-band break after peak. Using this template reduces the
systematic uncertainties in K-corrections by ∼90% compared to those from the Hsiao template. These
uncertainties, defined as the mean K-correction differences computed with the color-matched template and
observed spectra, are on the level of 4× 10−4 mag on average. This template can serve as the baseline spectral
energy distribution for light-curve fitters and can identify peculiar spectral features that might point to compelling
physics. The results presented here will substantially improve future SN Ia cosmological experiments, for both
nearby and distant samples.
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1. Introduction

Type Ia(SNe Ia) provide excellent luminosity distances
thanks to their empirically standardizable properties, such as
the correlations between the intrinsic peak luminosity and the
light-curve shape (Pskovskii 1977; Phillips 1993), as well as
the color (Tripp 1998). The comparison of the high-redshift
SNe Ia with the low-redshift sample led to the first evidence for
cosmic acceleration (Hamuy et al. 1996; Riess et al. 1998;
Perlmutter et al. 1999). By mapping out the expansion history
of the universe, SNe Ia have become an essential tool for
understanding the nature of dark energy (e.g., Riess et al. 2007;
Suzuki et al. 2012; Scolnic et al. 2018; Brout et al. 2022).

The precision of SN Ia cosmology is now limited by
systematic errors that cannot be reduced by simply observing
more SNe. These include uncertainties introduced by photo-
metric calibration, evolutionary effects, host-galaxy environ-
ment, and uncertain extinction laws. Observations in the near-
infrared (NIR) offer a promising direction to achieve more
accurate results for cosmology (e.g., Barone-Nugent et al.
2012; Burns et al. 2018; Stanishev et al. 2018; Avelino et al.
2019; Jones et al. 2022) with several advantages compared to
the optical.

The NIR region is less affected by dust extinction,
minimizing the reliance on uncertain dust laws (e.g., Cardelli
et al. 1989; Krisciunas et al. 2000; Johansson et al. 2021). The
bias toward low-reddening objects in high-redshift observa-
tions is also minimized in the NIR, reducing the systematic
differences between the colors of low- and high-redshift SN Ia
samples. Furthermore, both theory (Kasen 2006) and observa-
tions (Krisciunas et al. 2004; Wood-Vasey et al. 2008; Mandel
et al. 2009; Folatelli et al. 2010; Kattner et al. 2012) have
shown that SNe Ia have more uniform peak luminosities in the
NIR. Therefore, smaller light-curve-shape correction is needed
to standardize normal SNe Ia in the NIR (e.g., Krisciunas et al.
2004; Dhawan et al. 2018; Galbany et al. 2022), which could
reduce the systematic errors caused by potential evolutionary
effects.

Due to the lack of sufficient NIR data, the majority of the
empirical light-curve fitters currently available for SN cosmol-
ogy rely on optical data only and have not yet included NIR
coverage. The only three light-curve models that cover NIR so
far are SuperNovae in object-oriented Python (SNooPy; Burns
et al. 2011, 2014), the hierarchical Bayesian SED Model for
SNe Ia (BayeSN; Mandel et al. 2009, 2011, 2022), and
SALT3-NIR (Pierel et al. 2022).

K-corrections are necessary to allow for the comparison of
rest-frame magnitudes of objects at various redshifts (Oke &
Sandage 1968). Several efforts have been made to improve the
accuracy of the K-corrections for SNe Ia, such as the utilization
of the cross-filter K-corrections for high-redshift SNe Ia (Kim
et al. 1996) and the construction of time-series spectral
templates (Nugent et al. 2002; Hsiao et al. 2007) of the
spectral energy distribution (SED). Uncertainties in the K-
corrections, caused by intrinsic variations in the broadband
colors and spectral features, directly affect the error budget of
the distance measurements (e.g., Hsiao et al. 2007; Boldt et al.
2014).

As the next generation of space telescopes such as the James
Webb Space Telescope and the Nancy Grace Roman Space
Telescope (RST) look further to the red, an accurate description
of how the SN Ia SED varies in the NIR is important for a wide
range of applications. It is particularly crucial for any NIR
SN Ia dark energy experiments, whether explicit K-correction
calculations are needed or not. For example, in the case of
SALT3 (Kenworthy et al. 2021), an accurate underlying SED
model is required to evade K-correction calculation. However,
current NIR spectral templates have room for improvements.
For example, the NIR region of the spectral template of Hsiao
et al. (2007) and Hsiao (2009) is only based on 52 NIR spectra
of 30 SNe Ia compiled by Marion et al. (2009), a sample too
small to adequately capture intrinsic variations. Further
complicating the matter, the features in the regions of strong
telluric absorptions are completely obscured due to its narrow
range of redshifts in this sample.
As in the optical, the NIR spectral features of SNe Ia are

highly correlated with the light-curve shape, the primary
parameter (Hsiao 2009). The correlation is especially evident in
the H-band break (e.g., Hsiao et al. 2013; Ashall et al.
2019a, 2019b), the most prominent SN Ia spectral feature in the
NIR (Kirshner et al. 1973; Wheeler et al. 1998). This suggests
that the SEDs can be accurately predicted given only the light-
curve shape (Hsiao et al. 2007; Hsiao 2009). Characterizing the
NIR spectroscopic diversity of SNe Ia became one of the main
motivations for the second stage of the Carnegie Supernova
Project (CSP-II; Hsiao et al. 2019; Phillips et al. 2019).
CSP recognizes the potential of NIR observations and

contributed high-precision observations of hundreds of SNe Ia
over the past roughly two decades. The first phase of CSP
(CSP-I; 2004–2009; Hamuy et al. 2006) aimed to construct a
data set of both optical and NIR light curves in well-understood
and calibrated photometric systems (Contreras et al. 2010;
Stritzinger et al. 2011; Krisciunas et al. 2017) with telescopes
located at Las Campanas Observatory. A separate high-redshift
(0.1< z< 0.7) component of the project produced an NIR
Hubble diagram in the rest-frame i band and examined the
potential of shifting SN Ia cosmology toward the red (Freed-
man et al. 2009).
CSP-II (2011–2015) focused on building the low-redshift

optical and NIR anchor with an unbiased sample of SNe Ia in
the smooth Hubble flow (Phillips et al. 2019). A second
component of the project aimed to obtain a statistically
significant sample of NIR spectra (Hsiao et al. 2019) for SNe
of all types (e.g., Davis et al. 2019; Shahbandeh et al. 2022). In
collaboration with the Harvard–Smithsonian Center for Astro-
physics Supernova Group, a large sample was mainly acquired
using the then newly commissioned Folded-port InfraRed
Echellette (FIRE; Simcoe et al. 2013) mounted on the Magellan
Baade telescope. Over the course of the CSP-II campaign, 620
NIR spectra of 149 SNe Ia were obtained.
The CSP-II sample is much larger than those in previous

works (roughly an order of magnitude increase), and most
observations are accompanied by accurate photometry. The
vast majority of the SNe Ia have time-series NIR spectroscopic
observations and complementary photometry, such that the
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phases of the spectra and the light-curve-shape parameters of
the SNe Ia can be accurately determined. Another key
improvement is in the regions of strong telluric absorption.
The high throughput of FIRE, in combination with the large
aperture of Baade, provided an adequate signal to recover the
SN flux in the telluric regions for most of our spectra. Using
this data set, we construct NIR time-series spectral templates as
a function of phase and light-curve-shape parameter.

In this paper, we present the NIR spectra obtained by the
CSP-II and a new set of NIR spectral templates constructed
using this data set. Section 2 describes the selection criteria and
characteristics of the sample used. In Section 3, the
methodology of the template construction is described in
detail. The properties of the template and its impact on
cosmology are discussed in Section 4. Finally, a summary is
presented in Section 5. In this work, unless noted otherwise, the
phase is relative to the time of the rest-frame B-band light-curve
maximum.

2. Sample

In this section, we describe the data set used in this work.
The sample of NIR spectra comes entirely from the CSP-II
(Hsiao et al. 2019; Phillips et al. 2019). Approximately three-
quarters of SN Ia spectra were obtained using FIRE in the high-
throughput prism mode. In contrast with the majority of other
NIR spectrographs, this configuration of FIRE consistently
provides an adequate signal in the regions of heavy telluric
absorption to enable telluric corrections. Using the Pα P-Cygni
feature in our sample of type II SN (SN II) spectra, the telluric
corrections were shown to recover the feature to 10% precision
or better in 70% of our sample (Davis et al. 2019). The
conventional notion that features in the telluric regions can only
be obtained by space-based or airborne observatories is no
longer correct.

The features in the telluric regions are crucial, as they will
inevitably be shifted into observed filters when we study SNe Ia
at a range of redshifts. This was the main difficulty in obtaining
accurate NIR K-correction uncertainties in past studies (e.g.,
Boldt et al. 2014). For this reason, as well as to ensure the
homogeneity of the data set, we opted to only include FIRE
spectra taken in the prism mode31for this work. This amounts
to an initial sample of 461 NIR spectra of 142 SNe Ia, which
we narrowed through the selection criteria described below.
The spectra observed in FIRE prism mode have an approximate
wavelength coverage from 0.8–2.5 μm, and resolutions of
R∼ 500, 450, and 300 in the J, H, and K bands, respectively.
Details of the observations and data reduction can be found in
Hsiao et al. (2019).

2.1. Selection Criteria

With the goal of constructing spectral templates as a function
of the color-stretch parameter (sBV; Burns et al. 2014) and
phase, the following selection criteria were applied in this
order:

1. Spectra of SNe Ia that belong to one of the following
peculiar subgroups: 02cx-like (Li et al. 2003), 02ic-like
(Hamuy et al. 2003), 03fg-like (Howell et al. 2006), and
Ca-strong (Galbany et al. 2019) were removed due to

their peculiar spectral features. This step excludes 39

spectra of 14 SNe.
2. Each SN must have a reliable time of the B-band

maximum (TBmax ), and each spectrum must have a phase

that is less than or equal to 100 days. This step further

excludes 83 spectra of 30 SNe Ia.
3. Each spectrum was visually inspected for significant host-

galaxy contamination by comparing with spectra in a

similar parameter space. This final step further excludes

eight spectra of four SNe.

Out of the initial 461 spectra of 142 SNe, 331 spectra of 94

SNe Ia remain after the three-step sample cut. Figure 1

illustrates the change of sample size after applying each

selection criterion. All spectra that passed through the first two

steps, 339 spectra of 98 SNe, are available in the CSP

website.32A log of these spectra is listed in Appendix A.
TBmax and the sBV of the sample SNe were obtained by fitting

multiband CSP light curves using SNooPy with max_model.

An arbitrary cutoff phase was set at 100 days relative to the B-

band maximum, well past the phase range relevant for light-

curve fitting.
The peculiar SNe Ia were identified based on their light

curves and optical spectra. Note that spectra of the slow-

declining 91T-like (Filippenko et al. 1992a; Phillips et al.

1992) and fast-declining 91bg-like (Filippenko et al. 1992b;

Leibundgut et al. 1993) SNe Ia were kept in the sample

intentionally for the following reasons: (1) Their NIR spectral

features, while extreme, were shown to extend the properties of

normal SNe Ia (e.g., Hoeflich et al. 2002; Hsiao et al. 2015;

Phillips et al. 2022). (2) Studies have shown that 91bg-like and

fast-declining SNe Ia in general are standardizable and do not

impact Hubble constant measurements significantly (e.g.,

Burns et al. 2014; Hoogendam et al. 2022; Phillips et al.

2022; Yang et al. 2022). (3) The inclusion of these SNe will

help broaden the sBV baseline since they are on the edges of the

distribution.
Only eight spectra show significant host contamination.

These are usually SNe Ia situated close to the host-galaxy core

and taken at late phases when the background flux is

comparable to or higher than the SN itself. The effects are

shallow spectral slope and more diluted spectral features

especially toward the red end. These were easy to identify

through visual inspection and comparison to other spectra at

similar phases. They also showed up as outliers during the

Figure 1. The number of spectra and SNe Ia as each selection criterion is
applied.

31
Note that a few FIRE spectra obtained by the CSP-II were taken in the

echelle mode.
32

https://csp.obs.carnegiescience.edu/data
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dimensionality reduction step (Section 3.2) if there were
included.

2.2. Sample Characteristics

The final sample of spectra that passed the selection criteria
(331 spectra of 94 SNe) cover a wide range of heliocentric
redshift, sBV, and phase (see Figure 2). A full range in sBV and
phase is desirable as the goal here is to build a set of spectral
templates as a function of sBV and phase. A wide range in
redshift is also useful as spectral features are shifted out of
regions that are heavily affected by telluric absorption. The
sample SNe cover a heliocentric redshift range of
0.003� z� 0.087 with a median of 0.021 and a color-stretch
range of 0.48� sBV� 1.30 with a median of 0.97. The r-band
absolute magnitudes of the host galaxies are obtained using
the Z-PEG (Le Borgne & Rocca-Volmerange 2002) SED
software following the procedure described in Uddin et al.
(2017).

The majority of the SNe Ia (70%) in this sample were
discovered by untargeted searches. This is the result of the
survey strategy of CSP-II, designed to avoid bias toward bright
and large host galaxies (Phillips et al. 2019). As shown in the
bottom panels of Figure 2, SNe from untargeted searches
extend out to higher redshifts and cover a wider range of the
host-galaxy absolute magnitude compared to those from
targeted searches. They also have a similar distribution in sBV
except for a possible excess at the bright and slowly declining
end. The normalized distributions of the full CSP-II SNe Ia
sample (combined “Physics” and “Cosmology” samples from
Phillips et al. 2019) are also shown in Figure 2. The selected
sample for the template is representative of the full CSP-II
sample in terms of sBV.

Next, we examine the distribution of the sample spectra and
SNe in phase−sBV space (see Figure 3). Unsurprisingly, most
spectra were taken near maximum light and belong to normal-
bright SNe Ia. The sample spectra have a median sBV of 0.98
and a median phase of 14 days. Figure 3 then identifies the data
that would provide the most improvement for the next iteration

of template building: NIR spectra of fast-declining SNe in
general, particularly at late phases. These observations are
naturally difficult as these SNe are rare, intrinsically faint, and
fade more rapidly than normal-bright SNe.
Our approach is to model the dependence of spectroscopic

properties on phase and sBV as a hypersurface in the phase−sBV
space (Section 3.3). The dearth of data in certain regions and
the over-reliance on individual well-observed SNe (e.g.,
SN 2012fr has 25 spectra in the sample) may produce potential
biases if the data represent the extremes in the respective bins.
The best way to improve this is a larger sample that fills in the
phase−sBV space. To characterize this potential bias, we
compare the templates built with and without the 25 spectra
of SN 2012fr in Section 4.1.

2.3. Spectrophotometric Accuracy

Since there are no spectrophotometric standard stars in the
NIR that can be observed by FIRE, flux calibration was done
using telluric standards (Hsiao et al. 2019). Each standard is an
A-type main-sequence star similar to Vega (A0 V star)
observed at a similar airmass, usually immediately before or
after the science observation. The flux calibration is performed
simultaneously with the telluric correction given the B and V
magnitudes of the A0 V star, following the procedures outlined
by Vacca et al. (2003). Here, we examine the spectro-
photometric accuracy of our sample NIR spectra calibrated
using this method in terms of the relative colors. Note that the
vast majority of the spectra were observed at parallactic angle
to prevent the change of spectroscopic colors caused by the
slit loss.
To assess the spectrophotometric accuracy after flux

calibration, the synthetic broadband Y− J and J−H colors
measured directly from the spectra are compared to those from
the corresponding light curves. All spectra were corrected for
Milky Way (MW) extinction using the Schlafly & Finkbeiner
(2011) dust map and the Fitzpatrick (1999) law assuming
RV= 3.1. Spectroscopic colors were then measured from
synthetic photometry using YJH filters. Due to the design of

Figure 2. Characteristics of the selected sample of NIR spectra. The top panels present the distributions of spectra in redshift, sBV, host-galaxy r-band absolute
magnitude, and phase; the bottom panels show the distributions of SNe in redshift, sBV, host-galaxy r-band absolute magnitude, as well as the number of spectra per
SN. The green and orange distributions represent SNe discovered by targeted and untargeted surveys, respectively. The median value of each total distribution is
indicated with a vertical dashed–dotted line. For comparison, the distributions (normalized to peak) of the full CSP-II SNe Ia sample from Phillips et al. (2019) are
plotted with dashed lines in the lower panels.

4

The Astrophysical Journal, 948:27 (24pp), 2023 May 1 Lu et al.



CSP-II, the photometric coverage has typically nightly cadence

in the optical but has large gaps in the NIR (Phillips et al.

2019). Here, we took advantage of the simultaneous optical-to-

NIR light-curve fitting of SNooPy, using the SNooPy models

to interpolate the sparse data in the NIR. The MW extinction-

corrected Y− J and J−H colors interpolated to the dates of the

spectroscopic observations were then taken as the comparison

photometric colors.

Figure 3. Two-dimensional histogram of the spectra/SNe in (phase, sBV) with marginal distributions. The bin size is 5 days for phase and 0.05 for sBV. Each non-
empty bin has a black label to show the number of spectra, with an additional red label beneath indicating the number of SNe if there are more than one spectrum that
belongs to the same SN. The gray filled distribution represents the most well-sampled SN 2012fr in the selected data set.

Figure 4. Comparison between the observed spectroscopic and photometric colors for the selected sample, color-coded by phase. Both are corrected for MW
extinction. The solid lines in the top panels correspond to the ideal one-to-one correlations. The resulting rms is approximately 0.2 mag in both Y − J and J − H, and
represents the upper bound in the spectrophotometric uncertainty, as this figure includes the uncertainty in the light-curve interpolation. In the bottom panels, the
horizontal solid and dashed lines represent the mean and the dispersion of the residuals, respectively, with the values printed in the lower-left corner.

5
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The comparison between the observed spectroscopic and
photometric colors is shown in Figure 4. The rms of the
difference between spectroscopic and photometric colors is
around 0.2 mag in both Y− J and J−H, with the mean
systematic difference within 0.1 mag. Furthermore, Hsiao et al.
(2019) showed that the median color differences between 13
NIR spectra and well-sampled light curves are 0.08 mag in
Y− J and 0.03 mag in J−H. This indicates that the spectro-
photometric accuracy of this sample of NIR spectra (without
the contribution of the interpolation uncertainty) is roughly at
the 10%–20% level.

Another way to examine the spectroscopic colors is to look
at their evolution over time. Figure 5 shows the resulting time
evolution of the spectroscopic Y− J and J−H colors. There is
clear evidence that the color evolution depends heavily on the
sBV parameter, indicating that the spectroscopic colors are
accurate enough to preserve such a signal. To avoid incurring
further uncertainty from the interpolation of sparse data and the
narrower phase coverage of SNooPy, we chose not to match
the spectroscopic colors to the photometric colors in this work.

3. Methods

The goal of this work is to empirically construct a set of NIR
spectral templates of SNe Ia based on observed data. The
templates aim to quantify the following spectral properties: the
time evolution, the correlation with a light-curve-shape
parameter, and the remaining diversity in the form of statistical
flux uncertainties. A summary of the procedure is outlined here,
and the details are given below.

1. The spectra that satisfy the selection criteria are organized
onto a common rest-frame wavelength grid (Section 3.1).

2. Principal component analysis (PCA; Pearson 1901) is
performed in order to reduce the dimensionality of the
data set and characterize the spectral properties
(Section 3.2).

3. Gaussian process regression (GPR; Rasmussen &
Williams 2006) is then employed to model the depend-
ence of the PCA results on phase and a light-curve-shape
parameter (Section 3.3).

The final result can be used to reconstruct the normalized SN Ia
SED, as well as the associated uncertainties, given the phase
and the light-curve shape of a SN Ia. The focus of building the
template was placed on the spectral features, since in SN Ia
cosmological studies, the broadband colors can be corrected by
matching photometric colors but the spectral features cannot.
Alternatively, we also explored a neural network approach

using a conditional variational autoencoder (cVAE). The cVAE
approach is able to produce promising results similar to those
from the PCA+GPR method while being more flexible; see
Appendix B for a discussion of the advantages and disadvan-
tages of this proposed method.

3.1. Data Preparation

As the entire data set is observed with a single instrument
and configuration by design, it is possible to create a common
rest-frame wavelength grid that is representative of the pixel
grid and can minimize the interpolation uncertainties. First, an
average wavelength grid is determined by taking the mean
calibrated wavelength of the sample spectra at each pixel in the
observer frame. This wavelength grid was then de-redshifted by
the median redshift of the sample (zmedian= 0.021). Finally, the
sampling frequency of the grid was doubled by adding a mid-
point between neighboring points, forming a rest-frame
wavelength grid with 3673 wavelength points. The resulting
wavelength interval ranges from ∼3Å in the Y band to ∼9Å in
the K band.
All sample spectra were de-redshifted to the rest frame and

corrected for MW extinction using the Schlafly & Finkbeiner
(2011) dust map and the Fitzpatrick (1999) law assuming
RV= 3.1. They were then interpolated onto the common
wavelength grid described above. Note that, to prevent
spurious flux values from dominating the PCA, sigma-clipping
was performed before the interpolation, removing all flux
values 5σ above or below the local mean with an average
window size of 100Å.
If PCA is performed directly on the observed spectra

covering so wide of a wavelength range as the NIR, the
principal components (PCs) would be dominated by regions of
relatively high intrinsic flux (e.g., the z and Y bands) and
spurious variations (e.g., the telluric regions and at the edges of
the spectra). The model SEDs need to include the more subtle
variations of the spectral features. To achieve this, dimension-
ality reduction was performed in seven wavelength regions.
The wavelength regions were somewhat arbitrarily defined but
designed to correspond to the zYJHK33filters with some

Figure 5. Time evolution of the sample spectroscopic colors in rest frame. The
spectra were corrected for MW extinctions. The points are color-coded by the
sBV of the SNe. To aid the visualization, Gaussian process regression (GPR) fits
of the phase and sBV dependence are plotted as solid curves. The flux
calibration of the spectra is accurate enough to preserve these correlations.

33
z as Sloan Digital Sky Survey z, YJH as CSP-II du Pont + RetroCam YJH

(Phillips et al. 2019), and K as CSP-I du Pont + WIRC KS (Contreras et al.
2010). The CSP filter functions are available on the web at https://csp.obs.
carnegiescience.edu/data/filters and in the Python package SNooPy (Burns
et al. 2011).
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overlap. The overlapping region ranges from ∼90Å between
W1 and W2 to ∼370Å between W6 and W7, with roughly 50
sampling points in each. The seven wavelength regions are
presented graphically in the top panel of Figure 6 and tabulated
in Table 1.

Additional selection criteria were imposed on the sample
spectra in each wavelength region:

1. Each spectrum must have a median signal-to-noise ratio
(S/N)� 3.

2. In the telluric regions, W4 and W6, spectra that are over-
or under-corrected for telluric absorptions were excluded
by visual inspection.

3. In region W7 (K band), spectra with spurious flux values
at the edge of the detector were excluded by visual
inspection.

Separating a spectrum into wavelength regions has the added
benefit that if the spectrum, for example, has poor telluric
corrections, we do not have to discard other wavelength regions
containing useful information. Approximately two-thirds of the
sample have reliable telluric corrections, consistent with what
we found in our SN II sample using the Paα feature (Davis
et al. 2019).

The distributions of the S/N in each region are presented in
the lower panels of Figure 6, and the final sample count and

median S/N in each wavelength region are tabulated in
Table 1. The S/N is highest in the Y band and decreases toward
the blue and the red. As expected, the lowest sample count and
S/N are found in the telluric regions, W4 and W6, with the
median S/N staying above 10.

Figure 6. Top panel: definition of the wavelength regions. W1, W2, W3, W5, and W7 roughly correspond to the zYJHK filters (dark-gray solid curves), respectively,
while W4 and W6 correspond to regions of strong atmosphere telluric absorptions (light-gray lines on top; de-redshifted by the median redshift of the SNe sample
z = 0.021). A spectrum of SN 2012fr at +13 days past B-band maximum (red line) is plotted for illustration. Bottom panels: the distribution of the signal-to-noise ratio
(S/N) of each wavelength region. The dashed–dotted horizontal lines mark the median S/N. The dashed horizontal lines mark the selection criterion of S/N � 3. The
gray stacked distributions in W4 and W6 represent the spectra that have poor telluric corrections. The gray stacked distribution in W7 (K band) indicates the spectra
with spurious flux at the edge.

Table 1

Wavelength Regions for Dimensionality Reduction

Region Filtera λstart λend Median Sampleb NPC
c

(μm) (μm) S/N Counts

W1 z 0.8100 0.9328 35 331 11

W2 Y 0.9240 1.1072 47 331 11

W3 J 1.0925 1.3041 31 327 10

W4d L 1.2865 1.4423 14 220 5

W5 H 1.4198 1.7314 27 328 10

W6d L 1.6931 1.9361 16 238 6

W7 K 1.8989 2.3300 20 291 8

Notes.
a
Corresponding filter overlapping the most with the defined wavelength

region.
b
Number of spectra after additional selection in each region; see Section 3.1.

c
Number of PCs kept for template construction; see Section 3.4.

d
Regions of strong telluric absorptions.
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3.2. Dimensionality Reduction

An SN Ia spectrum contains a large number of elements, but
they do not vary independently. Spectral variations are largely
captured by only a few parameters (e.g., Nugent et al. 1995). It
is thus possible to drastically reduce the dimensionality of
SN Ia spectroscopic data, and PCA was chosen as the statistical
technique for this purpose. It is widely used for modeling the
SN spectra (e.g., Hsiao et al. 2007; Davis et al. 2019;
Shahbandeh et al. 2022). PCA produces an orthogonal set of
eigenvectors or PCs ranked by their eigenvalues, which give a
measure of the amount of data variation they capture. In this
work, the matrix diagonalization was done using the Python
package scikit-learn (Pedregosa et al. 2011).

As mentioned in Section 3.1, the data were separated into
wavelength regions in order to capture subtle variations. In
each wavelength region, flux elements were placed on a
uniform wavelength grid and normalized to have the same
integrated flux in the region before PCA. Our chosen light-
curve parameter is the color-stretch parameter sBV, since
Δm15(B) and SALT x1 do not reliably classify fast decliners
(Burns et al. 2014). The PCA operation has no knowledge of
the phase and sBV labels for each spectrum nor the wavelength
value for each flux element.

The resulting PCs are presented in Figure 7. Note that, in the
figure, the PCs in the overlapped area between neighboring
wavelength regions are not expected to be connected, since
PCA is independently performed in each region. In regions
W1–W6, it takes less than five PCs to capture >90% of the
variations. Regions W2 and W3 (Y and J bands), in particular,
only required two PCs each, indicating that the spectra are
rather uniform. On the other hand, W7 (K band) requires six
PCs to reach 90% of the variation, perhaps hinting at
substantial diversity.

Figure 7 also shows the reconstructed spectra of 2σ variation
on top of the mean spectrum. Familiar spectral features in the
NIR then emerge, such as the Ca II IR triplet in W1 (z band),
Mg II in W2 (Y band), the H-band break in W5 (H band), and
Co II in W7 (K band). Another example of the captured
information can be found in PC1 and PC3 of W1 and W2,
which appear to describe the strength and velocity of the
spectral features, respectively, in both regions.

Each input spectrum can then be projected onto a PC in the
multidimensional data space, providing an associated projec-
tion value. Mathematically, each input spectrum f m of n flux
elements is then represented by the sum of all PCs ξ i weighted
by the projections pi,m:

å x= +
=

f fp . 1m
i

n

i m i
1

, mean ( )

The projections are shown in Figure 8 with respect to phase and

sBV. It is clear that the first several PCs in all regions have

strong dependence on phase and sBV. The dependence is the

weakest in the telluric regions W4 and W6 because of the lower

S/N of the input data and the general lack of strong features.

W5 (H band) shows particularly strong dependence in the top

four PCs, giving confidence that the most prominent spectral

features in the NIR can be well predicted with light curves

alone. This offers the motivation for the next step: modeling the

dependence of spectral properties, represented by the PC

projections, as a hypersurface in phase-sBV space.

3.3. Modeling Parameter Dependence

In the previous step, the spectral data have been reduced in
dimensionality such that each spectrum is represented by a few
PC projections. Here, we will determine the dependence of the
spectral properties on phase and sBV. The method chosen to
map the projection hypersurface in phase-sBV space is GPR.
GPR has been shown to be successful at interpolating

supernova light-curve data with intermittently missing data
(e.g., Vincenzi et al. 2019; Pessi et al. 2022). The data
characteristics are similar here (Figure 3). It also has the
advantage of producing an uncertainty estimate to the
hypersurface, which allows for the construction of not only
the spectral templates but also the statistical flux uncertainties.
In this work, GPR was performed using the Python package
scikit-learn (Pedregosa et al. 2011). An example of the
resulting hypersurface is shown in Figure 9, successfully
capturing the spectral properties as a function of phase and sBV.
The kernel setup for the GPR in this work was a constant

kernel multiplied by a radial-basis function (RBF) kernel plus a
white noise kernel.34The hyperparameters are optimized by
maximizing the log-marginal likelihood. The details of the
initial hyperparameter setting and optimal values can be found
in Appendix C. Before performing GPR, the projection outliers
were excluded by clipping spectra with projection values 5σ
above or below the mean. The remaining projection values
were then normalized to range from 0–1 to ensure consistency
across all wavelength regions and PCs while maintaining a
uniform kernel setup.
With the hypersurface in hand, one can obtain the modeled

PC projection value and the associated uncertainties for each
PC in each wavelength region, given the phase and sBV. Once it
was decided which PCs are to be included, template spectra
were then constructed via reverse transformation to return the
projections to flux space. Finally, the spectra from individual
wavelength regions were merged by matching the integrated
flux in the overlapping regions and using the weighted average
flux.35Now the question becomes: what is the minimum
number of PCs necessary to describe the spectroscopic
diversity and how to select them efficiently? This is addressed
in Section 3.4.
An important feature of the new template is flux uncertainty

estimation, indicating the confidence of the SED prediction.
For example, the lack of data in certain parameter space
translates to larger uncertainties in the template. The flux
uncertainties were determined using procedures similar to the
template spectra construction and a Monte Carlo approach.
First, for each wavelength region and PC, the PC projection
value was independently re-sampled 1000 times, assuming that
the GPR hypersurface uncertainty has a Gaussian distribution.
Crucially, we included all top 20 PCs for the uncertainty
estimate, regardless of whether the PCs were included in the
template construction. This is because those PCs not included
in the template construction represent the observed SED
variations that were not captured by the template. Each set of
the re-sampled PC projections was then reverse transformed to
the original flux space. The ratio of the template flux over the
standard deviation of the re-sampled fluxes at each wavelength
was then taken as the “S/N.” Finally, the S/Ns in the seven

34
The initial length scales for the RBF kernel adopted in this work are 10 and

0.1 for phase and sBV, respectively.
35

Linear weights were assigned to the flux points such that the spectrum edges
have the lowest weights.
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Figure 7. The first 10 PCs and the reconstructed spectra in each wavelength region. The PCs are ranked by the amount of data variation they describe (labeled on top
of each panel in percent variation per PC and the cumulative percent variation). The solid curve on the bottom of each panel is the PC. The rainbow-colored curves are
the PC-reconstructed spectra with 2σ variation on top of the mean (dashed curve).
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wavelength regions were merged by taking the weighted mean
in the overlapping areas. An example of the template
construction and the merging process can be found in
Figure 10. Note that the choice of the number of iterations is
based on the convergence of the median S/N.

The PCA+GPR method we have presented here is robust,
but has some limitations. First, it requires interpolations of the
flux and their uncertainties onto a common wavelength grid
prior to PCA. Second, PCA is a linear transformation and may
require more dimensions to fully capture the variations in

Figure 8. The projections of the input spectra onto the first 10 PCs. They are plotted with respect to the phase and color-coded using their sBV values. The solid lines
connect the spectra of the same SN. In the higher-ranking PCs, the projections are highly correlated with phase and sBV in many PCs and wavelength regions, for
example, PC2 and PC3 in W5 (H band) and PC1 and PC2 in W2 (Y band).
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complex data distributions. Third, GPR results are sensitive to
the kernel design (e.g., Stevance & Lee 2023). Furthermore, the
dimension reduction and template generation parts do not
communicate with each other, for example, one cannot improve
the other iteratively. In Appendix B, we show that the neural
network approach using cVAE can circumvent some of these
drawbacks and achieve similar results. However, the spectral
features in the telluric region are not well modeled with the
cVAE approach compared with the current method.

3.4. Strategies for Selecting PCs

We considered three strategies for selecting the PCs for
template construction:

1. Use the first N PCs and keep N fixed for all wavelength
regions.

2. Use the first N PCs that capture a total variance that
exceeds a fixed threshold in each wavelength region.

3. Use only the PCs with GPR coefficient of determination
(R

2
) scores that exceed a fixed threshold in each

wavelength region.

The R
2 measures how well the GPR hypersurface predicts

the PC projections of sample spectra and is defined as follows:

= -
å -

å -
R

p p

p p
1 , 2

i i i

i i
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where p
i
observed is the PC projection of the ith spectrum; p

i
expected

is the GPR predicted PC projection given the same phase and

sBV values of the i
th spectrum; and pobserved is the mean of the

PC projections of the sample spectra. A larger R2 value means

that the GPR hypersurface captures more of the data variance.

A value of R2 approaching 0 means that the predictions are

close to the mean of projections and largely independent of the

parameters.

To compare the three strategies quantitatively, we utilized
the χ2 test:

åc
s
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where f
i
observed is the observed spectrum flux of the ith

spectrum, f
i
expected is the predicted template spectrum flux

given the same phase and sBV values of the i
th spectrum, and the

observed flux errors were used as the uncertainties σi. Note that

the template uncertainties are not considered since they might

be correlated with the observed flux uncertainties. Each

f
i
observed used for the test was color-corrected to match the

color of f
i
expected before the comparison. The degrees of

freedom (dof) were taken as the number of flux points minus

the number of PCs used. Excluding the spectra with poor

telluric correction and spurious flux values at the K-band edge

(see Section 3.1), 225 observed spectra among the sample were

used for the χ2 test.
Each wavelength region requires a different number of PCs

to reach a total variance threshold. For example, the telluric
regions W4 and W6, as well as W7 (K band) require more PCs
to capture 95% of the data variance than the other regions; see
panel (a) of Figure 11. As expected, the GPR R2 scores are the
highest for the top-ranking PCs, as shown in panel (b) of
Figure 11. However, they are not ordered perfectly, revealing
some lower-ranked PCs with strong dependence on phase and
sBV. Note that the GPR R2 scores are generally lower in the
telluric regions W4 and W6. While this result may be revealing
real spectral behavior, it more likely points to the observational
challenges in these regions.
The performance of the three proposed PC selection

strategies was then assessed via the χ2 test. In panel (c) of
Figure 11, we plot the average number of PCs required across
wavelength regions versus the median reduced χ2 for each
strategy. Using a GPR R2 score threshold (strategy 3) shows a
clear advantage over the other two strategies, as it requires
fewer PCs in order to reach the same accuracy in the SED
prediction. For example, to reach a reduced χ2

∼ 1.43, the
average number of PCs needed is 15 for strategy 1, 13 (total
variance of �99.5%) for strategy 2, and eight (R2

� 0.2) for
strategy 3. This trend is consistent if we take the template
uncertainties into consideration for the calculation, but the
reduced χ2 values are consistently lower. Hence, we adopted
strategy 3 with a threshold of R2

� 0.2. The number of PCs
used in each region is listed in Table 1. The GPR
hyperparameters of the selected PCs are all converged to the
optimal values, except the RBF length scale for sBV of PC1 in
the W4 (telluric) region; see details in Appendix C. Note that
even though some higher-ranked PCs are omitted when
constructing the template flux, it is crucial to include these
when estimating the uncertainties in the spectral template.
Having PC projections that are highly correlated with phase

and sBV would be ideal for constructing spectral templates.
However, spectral features with low GRP R2 scores could aid
the search for a secondary parameter for improving SN Ia
standardization or even point to interesting physics. For
example, the early-phase NIR spectra of the transitional SN Ia
iPTF13ebh have been shown to have strong C I features, most
notably in the Y band (Hsiao et al. 2015). These spectra also
have the most extreme PC projection values compared with

Figure 9. An example of the GPR mapping of the projection hypersurface in
phase-sBV space. The side view of the hypersurface with various sBV slices is
color-coded by sBV. Note that the side view of the data is the same as the one
plotted in Figure 8. The R2 value noted on top of the figure is the coefficient of
determination of the GPR prediction. The example shown is of PC1 in W5 (H

band) and has one of the highest R2 values in our analysis.
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other spectra at early phases, such as PC2, PC6, PC7, PC8, and
PC10 in W2 (Y band; see Figure 8).

4. Results

Following the methodology set forth in Section 3, the NIR
spectral templates of SNe Ia and corresponding statistical
uncertainties can be constructed as a function of phase and
the light-curve parameter sBV using PCA+GPR. In this section,
we present the resulting NIR spectral templates and check how
well they reproduce observed spectra. Here, we use K-
corrections to assess the accuracies of the templates, even
though they do not need to be explicitly calculated for
spectrophotometric experiments or SED-based light-curve
fitters.

The new NIR spectral template is available on the CSP
website36and will be implemented in SNooPy (Burns et al.
2011), in where the NIR template can be attached to the optical
region of the time-stretched (tstretched= t/sBV) Hsiao template
(Hsiao et al. 2007).

4.1. Spectral Templates

The template spectra constructed using the PCA + GPR
method are able to replicate the spectral diversity in the sample

spectra. In Figure 12, we highlight the spectral dependence on
sBV in three wavelength regions and epochs: pre-maximum in
the Y band, and post-maximum in the H and K bands.
The left panels of Figure 12 present the pre-maximum

spectra in the Y band at around −10 days. At these early
phases, the photosphere arises in the outer and intermediate
layers of the ejecta. Faster declining and fainter SNe clearly
show stronger Mg II λ 1.0092 and λ1.0927 μm features. The
additional absorption feature on the blue wing of Mg II

λ1.0927 μm is captured by the template and appears to be
only present in subluminous SNe Ia. This feature has been
identified to be unburned C I λ1.0693 μm in several fast
decliners: SN 1999by (Hoeflich et al. 2002), iPTF13ebh (Hsiao
et al. 2015), SN 2012ij (Li et al. 2022), and SN 2015bp (Wyatt
et al. 2021). An alternative identification of He I λ1.0830 μm
has also been proposed in the context of the double-detonation
scenario (Boyle et al. 2017).
At around two weeks past maximum, the prominent H-band

break is at its peak strength (e.g., Hsiao et al. 2013). The
template shows drastic differences in the profile shapes
between slow and fast-declining SNe Ia (middle panels of
Figure 12). These variations have been investigated in previous
studies. The strength of the H-band break at its peak varies
strongly with the light-curve decline rate (Hsiao et al.
2013, 2015). The velocity of the blue edge of the H-band
break measures the 56Ni distribution and is also strongly

Figure 10. Example of the template construction in W1 (z band; left panel) and the merging process (right panel) of a maximum light spectrum of sBV = 1. In each
wavelength region, the template flux is constructed by inverse-transforming the selected PCs (marked with filled red circles in the top-left example plot) that are
predicted by GPR; and the template uncertainty is represented by the standard deviation of the inverse-transformed flux of 1000 sets of randomly sampled PCs
assuming Gaussian error given the GPR prediction uncertainty. Then the template fluxes in neighboring regions are merged together by normalizing the integrated flux
and taking the weighted flux in the overlapping region. The plotted example template in each region is normalized by the integrated flux in the overlapping area with
the previous region. The flux uncertainties are connected together through taking the weighted mean S/N in the overlapping area. The inset in the right panel shows an
example of such merging process between W6 and W7. The division of the seven wavelength regions is plotted in the background.

36
https://csp.obs.carnegiescience.edu/data
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correlated with sBV (Ashall et al. 2019a, 2019b). In the region
between 1.6 and 1.7 μm, the spectral local minimum in a slow

decliner is in contrast to a local emission feature in a fast
decliner, which may be the result of a photosphere well within

the central Ni-rich region (Hoeflich et al. 2002). Any viable
explosion scenario needs to be able to explain these trends.
At approximately one month past maximum, the photo-

sphere has receded to reveal the iron-peak elements in the inner
layers. The K band is dominated by multiple lines of Co II at
this epoch (e.g., Gall et al. 2012). Interestingly, the template

only shows a mild dependence of the feature shapes on the
light-curve shape (right panels of Figure 12). The observed

spectra show a range of feature strength but a weaker
correlation with sBV compared to the H band. This perhaps
points to a secondary parameter or contribution from a different

spectral line that is not associated with the decay products of 56

Ni.
In Figure 13, we present the time-series comparison between

our new template, the template of Hsiao et al. (2007) updated to
include the NIR (Hsiao 2009), and the observed spectra within

our sample. Note that the Hsiao template gives the average
SED that is designed to match a stretch s= 1 SN Ia. For the
Hsiao template, the variation with light-curve shape is

accounted for through matching the time on the stretched time
axis (tstretched= t/sBV), assuming that a fast decliner also has a
more rapid spectral evolution. Within the training sample, three

well-observed SNe were selected for comparison: iPTF13ebh
(sBV= 0.63) representing a fast decliner, SN 2013gy

(sBV= 0.91) representing an average object, and SN 2013hh
(sBV= 1.20) representing a slow decliner. As expected, the

Figure 11. Panel (a): the cumulative total variance percentage of the first 20 PCs in each wavelength region. Panel (b): the heat map of the GPR scores of the first 20
PCs in each wavelength region, represented by the coefficient of determination (R

2; which normally ranges from 0–1). Greater R2 means the GPR model captures more
variance in the data set. Panel (c): comparison of three different strategies for PC selections in each wavelength region (see the text for details). The y-axis is the
median χ2 per degree of freedom (dof) of the spectra sample, treating the template spectra as the expected value and the (number of points − number of PCs) as the
dof. We adopt GPR score R2

� 0.2 as our PC selection rule for template construction, as it efficiently reaches better χ2 per dof with fewer PCs compared to other
strategies.

Figure 12. Comparisons between template (top panels) and observed spectra
(bottom panels) for a range of light-curve color-stretch parameter sBV. The
columns present the diversity for pre-maximum spectra around −10 days in the
Y band (left), post-maximum spectra around 12 days in the H band (center), and
post-maximum spectra around 30 days in the K band. In each panel, the spectra
are normalized to have the same integrated flux in the wavelength region
shown.
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Hsiao template performs well when tasked to match an average
SN Ia. On the other hand, the new template performs well for
all sBV and shows a clear advantage at the extremes. This result
demonstrates that the spectral feature dependence on the light-

curve shape cannot be solely described by the speed of the

evolution.
Ideally, the performance of the new template should be

assessed using an independent sample. In the left panel of

Figure 14, the new and Hsiao templates are compared to the

sample of Marion et al. (2009). Note that the phases relative to

Vmax listed by Marion et al. (2009) were converted to phases

relative to Bmax assuming that Vmax occurs 2 days after Bmax.

Also note that Δm15(B) values were converted to sBV using

Equation (4) of Burns et al. (2014). The sources of Δm15(B)

values are tabulated in Table 2. Overall, the new template

provides a better match than the Hsiao template especially for

low and high sBV values, such as SN 2005am (sBV= 0.72).

There are three notable disagreements for the NIR Ca II triplet:

SN 2003W at −6 days, SN 2004bv at −3 days, and SN 2001bf

at 6 days. These could point to real diversity in the feature that

is not captured by the template or observational artifacts near

the short wavelength limit of the detector.
As discussed in Section 2.2, the small number of NIR spectra

of subluminous SNe Ia, especially at the late phase, is a limiting

factor for the template at this particular phase space. Here, the

template is compared to the spectra of two subluminous SNe

from the literature: SN 1999by (sBV= 0.42; Hoeflich et al.

2002) and SN 2015bp (sBV= 0.67; Wyatt et al. 2021), shown

in the right panel of Figure 14. These spectra were not included

in our training sample. The spectra of SN 2015bp at various

phases, including at more than 1 month past maximum, are

well represented by the new template. This is despite the time

gap of 50 days in the four FIRE spectra of SN 2015bp included

in the training sample. Because of the limited range in the light-

curve shape of our sample, reproducing the spectral features of

SN 1999by with such a low sBV requires extrapolation on the

hypersurface with GPR. Nevertheless, the spectral features of

the template match exceptionally well to those of SN 1999by.

Note especially that the C I features at early times were

reproduced and are stronger than those of SN 2015bp. The

Hsiao template simply fails at these low sBV values.
We also checked the broadband colors of the new template

using the SNooPy model. The broadband colors of the new

spectral template and the light-curve model of SNooPy are in

general agreement within 0.2 mag for all colors and sBV values

(Figure 15). The large discrepancies at the early phases may be

due to the lack of observed data. The general agreement gives

assurance that the merging of the seven wavelength regions at

the last step of the template construction preserves the

broadband color information. Note, however, that the spectral

template should always be color-matched to the observed

photometric colors of the SN Ia in question during the light-

curve fitting process.
Another test we did is to address the potential training bias

toward SN 2012fr, the best-observed SN in the sample, with 25

spectra out of the total 331 sample spectra. Following the

methodology of leave-one-out cross validation, we constructed

another template without SN 2012fr following the same

methodology to compare with the template built with the

whole sample. The two templates were color-corrected to have

matching broadband colors. The maximum flux difference is

around 6% in the region near 0.85 μm, where SN 2012fr

presents the detached high-velocity Ca II feature at early times.

In general, the differences between the two templates are

negligible, with a median flux difference less than 1%.

Figure 13. Comparison between template and observed spectra in the training
sample. The panels show three well-observed time series from the FIRE
sample: (top) sBV = 0.63, a fast decliner, (middle) sBV = 0.91, an average
object, and (bottom) sBV = 1.20, a slow decliner. The new spectral template is
shown by the solid colored curves with its 1σ uncertainty, while the Hsiao
template is shown as blue dashed curves. All observed spectra were color-
corrected to match the colors of the template spectra for presentation.
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Figure 14. Comparison between template and observed spectra that were not included in the training sample. The new spectral template is shown by the solid colored
curves with its 1σ uncertainty, while the Hsiao template is shown as blue dashed curves. The left panel shows comparisons with the sample of Marion et al. (2009),
and the template is color-coded by sBV. The right panels show two subluminous SNe Ia from the literature: (top) SN 1999by (Hoeflich et al. 2002) with sBV = 0.63,
and (bottom) SN 2015bp (Wyatt et al. 2021) with sBV = 0.67. All observed spectra were color-corrected to match the colors of the template spectra to focus on the
spectral features.
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4.2. K-correction Uncertainties

We utilized the definitions of K-correction uncertainties from
Hsiao et al. (2007) to evaluate the performance of the new
template. K-corrections obtained using the template spectra
(Ktemp) were compared to those from observed spectra of our
sample (Kobs) for different combinations of filters and redshifts.

The rms and the mean of the K-correction differences were
then taken as the statistical and systematic uncertainties,
respectively. The K-correction uncertainties were also com-
pared to those computed using the Nugent (Nugent et al. 2002)
and Hsiao (Hsiao et al. 2007) templates. The computations
were done using the SNooPy package, while the template
spectra were color-corrected to match the broadband YJH
colors of the observed spectra before the computation.

Note that these uncertainty measurements were designed
solely to evaluate how well the template can predict the spectral
features of the observed spectra. The broadband colors of the
template were corrected to match those of the observed spectra,
as it is common practice in light-curve fitting to correct the
template to the observed colors. These estimates do not include
other effects, such as the uncertainty in the relative flux
calibration discussed in Section 2.2.

In the most ideal case, one should assess the performance of
the new template using a validation set of observed spectra that
is completely independent of the template training set. In the
NIR, the sample size is severely restricted by the telluric
region, as discussed in Section 3.1. There is currently no
spectral sample with reliable telluric regions besides the FIRE
sample presented here, and after inspecting the telluric
corrections, our sample was reduced by roughly one-third.
Given this difficulty, we chose to evaluate its performance
using a cross-validation technique described below.

First, a subsample with reliable telluric regions was chosen
to form a “validation” pool. Next, we randomly selected 66

spectra from this pool to form the validation set, which
constitutes 20% of the entire sample. The remaining 80% of the
entire sample was then used as the training set. The training set
was used to construct a template with the procedures outlined
in Section 3, while the validation set was used to estimate the
K-correction uncertainties. The process of splitting the sample,
constructing the template, and estimating the K-correction
uncertainties was repeated for 1000 iterations. The resulting
uncertainty estimates converge rather quickly, generally after
50 iterations, while the 1000 iterations yielded Gaussian-like
distributions.
Figure 16 presents the K-correction uncertainties as a

function of redshift for several cases of single-filter K-
corrections at low redshifts and cross-filter K-corrections at
high redshifts. The mean and standard deviation of the 1000
iterations are shown as the solid curves and shaded regions,

Table 2

List of SNe Ia Used for Spectral Comparison from the Sample of Marion et al.
(2009)

SN z Δm15(B) Δm15(B) References sBV
a

(mag)

2000dk 0.017 1.66 Wang et al. (2019) 0.70

2005am 0.008 1.61 Höflich et al. (2010) 0.72

2000dm 0.015 1.51 Wang et al. (2019) 0.77

2002 ha 0.014 1.37 Wang et al. (2019) 0.83

2001br 0.021 1.32 Wang et al. (2019) 0.85

2004ab 0.006 1.27 Chakradhari et al. (2018) 0.88

2001en 0.016 1.23 Wang et al. (2019) 0.90

2002cr 0.010 1.19 Wang et al. (2019) 0.91

2002ef 0.024 1.18 Wang et al. (2019) 0.92

2003cg 0.004 1.17 Wang et al. (2019) 0.92

2003W 0.020 1.15 Wang et al. (2019) 0.93

2001bg 0.007 1.14 Wang et al. (2019) 0.94

2000dn 0.032 1.13 Wang et al. (2019) 0.94

2002fk 0.007 1.02 Wang et al. (2019) 0.99

2003du 0.017 1.00 Wang et al. (2019) 1.00

2004bk 0.023 0.98 Wang et al. (2019) 1.01

2004bv 0.011 0.98 Wang et al. (2019) 1.01

2001fe 0.014 0.96 Wang et al. (2019) 1.02

2001bf 0.016 0.83 Wang et al. (2019) 1.08

2001dl 0.021 0.80 Marion et al. (2003) 1.09

Note.
a
Converted from Δm15(B) using Equation (4) of Burns et al. (2014).

Figure 15. Comparison of the template spectroscopic colors (solid curves) and
SNooPy light-curve model colors for various sBV values (dashed curves). The
uncertainties on the SNooPy colors come from the uncertainties on the light-
curve templates. In the bottom panels, the residuals are shown along with the
mean (solid gray lines). The mean and rms values are also labeled.
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respectively. The observer-frame filters for the high-redshift
cases are the Wide Field Instrument (WFI) F129, F159, and
F184 filters of the RST (Hounsell et al. 2018).37The remaining
filters are of RetroCam on the du Pont Telescope, measured by
Rheault et al. (2014).

As shown in the upper panels of Figure 16, the statistical K-
correction uncertainties of the new template are significantly
reduced compared to the previous templates. For example, at
z= 0.05, improvements of 0.09, 0.03, and 0.02 mag in the Y, J,
and H bands, respectively, can be gained by switching from the
Hsiao template to the new one. Note that the result of Boldt
et al. (2014) that the smallest uncertainties can be found in the
Y band is not reproduced here. From a larger sample, we found
that all YJH bands yield similar uncertainties. For cross-filter K-
corrections, a minimum would be present at a redshift where
the observed and rest-frame filters are aligned (Kim et al.
1996). On average, there is a 0.02 mag improvement in
statistical uncertainty compared to the Hsiao template in cross-
filter K-corrections.

The lower panels of Figure 16 demonstrate that the
systematic K-correction uncertainties are essentially eliminated
by adopting the new template. This is true for all of the
redshifts and filter combinations considered here, and repre-
sents as 0.1 mag improvements in some cases. The improve-
ments in the Y band are the most evident. Since the broadband
colors of the template spectra were matched to the observed

spectra before the comparison, these uncertainty estimates
indicate the ability of the template to predict the spectral feature
profile shapes.

4.3. Impact on Cosmology

Here, we explore the impact of adopting the new SN Ia NIR
spectral template on cosmological analyses, both at low (e.g.,
Hubble constant measurements) and high (e.g., dark energy
measurements) redshifts.
We first examine the impact on the NIR peak magnitude of

adopting the new template on the low-redshift end in single-
filter K-corrections. The results are presented in comparison to
the Hsiao template in Figure 17. Note that we chose to make
the calculations at B-band maximum for convenience, and the
analysis yielded a rough estimate of potential magnitude
change around peak magnitude. Both templates are scaled and
color-corrected to match the YJH magnitudes of the SNooPy

light-curve template, which is a function of sBV. Recall that the
Hsiao template at peak is a single spectrum and does not
account for the variation of spectral features. The spread of
roughly 0.1 mag in K-corrections at z= 0.1 results entirely
from color corrections.
On the other hand, the new template at peak is a series of

spectra that are a function of sBV. Figure 17 shows the
difference between the two templates in terms of the K-
correction as a function of redshift. It essentially reflects the
fact that the diversity is not only in the broadband colors but

Figure 16. K-correction uncertainties of the new template compared to those of the Nugent (Nugent et al. 2002) and Hsiao (Hsiao et al. 2007) templates. The rms and
the mean of the K-correction differences between the template and observed spectra are taken as the statistical (top panels) and the systematic (bottom panels)
uncertainties. The mean and standard deviation of the 1000 iterations are shown as solid curves and shaded regions, respectively. (See the text for details.) The filters
used are the YJH scans of du Pont + RetroCam, as well as the proposed RST + WFI F129, F158, and F184 filters.

37
https://roman.gsfc.nasa.gov/science/WFI_technical.html
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also in the spectral features. Not accounting for the variation
of spectral features as a function of sBV can cause errors in K-
corrections as large as 0.3 mag in Y and 0.1 mag in J at
z= 0.1. Also note that the two templates show the largest
difference in slow decliners (high sBV values). The prominent
H-band feature is at maximum strength around 12 days after
the maximum. Both slow and fast decliners show K-
correction differences as large as 0.1 mag at z= 0.1.

For cosmological analyses using distant SNe Ia, the redshift
evolution of the SN Ia population is an important factor to
consider. Based on previous high-redshift surveys, the SN Ia
population at high redshifts tends to comprise slower decliners
and have higher optical light-curve stretch values on average
(e.g., Howell et al. 2007; Nicolas et al. 2021). This would
introduce an additional systematic shift in the K-corrections if
the template SEDs do not reflect the spectral feature variations
with light-curve shape.

We simulate such a scenario, considering a shifting sBV
distribution at three different redshifts. In the left panels of
Figure 18, three populations of SNe Ia are presented at three
different redshifts, simulating the distribution of SN Ia light-
curve shapes observed locally and at high redshifts (Howell
et al. 2007; Riess et al. 2007). The mean of the sBV distributions
shifts by as much as 5% from the local sample to z= 1.12. We
then calculated K-corrections to the rest-frame Y band and
examined the difference between the new and Hsiao templates
at B-band maximum.

The resulting K-correction differences from the corresp-
onding sBV distribution are presented in the right panels of
Figure 18. The observer-frame filters for the two high-redshift
bins, H and K, align well with the rest-frame Y band at each
redshift. The effective wavelength of the de-redshifted H

(z= 0.56) and K (z= 1.12) bands match that of the rest-frame Y
band within 0.02 μm. Even so, the K-correction differences are
systematic and significant, with means of 0.10, 0.01, and

0.07 mag at z= 0.03, 0.56, and 1.12, respectively. The results

again highlight the importance of accounting for the spectral

feature variations as a function of light-curve shape (e.g., Jones

et al. 2022).

Figure 17. The K-corrections of our new template compared to the previous Hsiao template (Hsiao et al. 2007; Hsiao 2009) at maximum light T Bmax . Both templates
are color-corrected to match the SNooPy light-curve templates, which is a function of sBV. The bottom panels plot the K-correction differences between the two
templates: ΔK = K(New template) − K(Hsiao). Note that the variation in K-corrections of the new template is caused by both the diversity of the temporal spectral
features and the broadband colors, while the variation of the Hsiao template is only reflecting the color variation of the SNooPy light-curve templates in sBV. The K-
correction differences can be substantial, such as for slow decliners at redshift ∼0.1, the ΔK in the Y band is as large as 0.3 mag.

Figure 18. Simulating the effects of an evolving sBV distribution as a function
of redshift. Left panels: three redshift bins are considered: one local and two at
high redshifts. The sBV distributions are assumed to be Gaussian with the mean
converted from the stretch values taken from Howell et al. (2007). The vertical
dashed lines mark the mean of the distribution in each bin. Right panels: the
distributions of the resulting peak-magnitude K-correction differences are
shown, assuming the distribution of sBV in the corresponding left panel. The
definition ofΔK is the same as in Figure 17. The vertical dashed lines mark the
mean of the distribution in each panel. The red solid vertical line marks the
position of ΔK = 0.
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5. Conclusion

We present 339 NIR spectra of 98 SNe Ia observed with
Baade + FIRE by the CSP-II (Hsiao et al. 2019; Phillips et al.
2019), the largest and the most homogeneous NIR spectral
sample of SNe Ia to date. Among those, 331 spectra of 94
SNe Ia were used to construct the most accurate NIR spectral
template as a function of a light-curve-shape parameter. The
spectra maintain a spectrophotometric accuracy on the level of
10%–20%, allowing for examination of the broadband colors
along with the spectral features. The telluric regions are crucial
when we study SNe Ia at a range of redshifts. Thankfully, the
high-throughput nature of the FIRE NIR spectrograph enables
consistent and reliable telluric corrections for ∼70% of the
sample.

The aim is to obtain an accurate description of the SN Ia
SED in the NIR as a function of phase and sBV. To achieve this,
we first utilized PCA to reduce the dimensionality of the data
set, then used GPR to model the hypersurface in phase and sBV
space. The wavelength grid was divided into seven regions in
order to fully utilize the sample and to avoid the PCA results
being dominated by spurious pixels or intrinsically high flux.
The GPR R2 score has proven to be an efficient metric for
selecting which PCs to include for the reconstruction of the
SED, capturing the most data variation while using the least
number of PCs. The GPR approach also allowed the estimation
of the flux uncertainty for each template SED.

The new template successfully captures the diversity of the
broadband colors and spectral features as a function of phase
and sBV. The hallmark SN Ia NIR features, such as Mg II at
early times and the H-band break past maximum, are recreated
in the template SED. In NIR, SNe Ia have more spectral
variation than in the optical that cannot be simply described by
the varying speed of the evolution for SNe Ia with a range of
decline rates. The template is also able to predict the SED
shapes of spectra that are not in the training sample and
produce photometric colors consistent with the SNooPy light-
curve model. Using the cross-validation method, randomly
splitting the sample into training and testing sets, a drastic
decrease in the K-correction uncertainty is shown compared to
previous templates. The new template essentially eliminates
any systematic K-correction uncertainties with a 90% improve-
ment compared to the Hsiao template (Hsiao 2009). Simula-
tions of low- and high-redshift cosmological analyses illustrate
problems with assuming a fixed template that does not vary
with sBV.

The new spectral template will be implemented in
SNooPy

38(Burns et al. 2011) and is available on GitHub39

along with the source code. It can also be adopted as the
baseline SED for other light-curve fitters, such as BayeSN

(Mandel et al. 2009, 2011, 2022). As the template fully
captures the spectral behaviors of normal SNe Ia, the PCs can
be used to identify peculiar features, interesting physics, and
possible secondary parameters that could improve their
cosmological utility. It will, for example, be revealing to
cross-compare these NIR-based PCs with the three-parameter
nonlinear parameterization of the optical spectral behaviors of

SNe Ia developed by Boone et al. (2021a) from a similarly
untargeted sample of 173 SNe, which leads to a much
improved (σ ∼0.08 mag) dispersion in cosmological distance
measurements (Boone et al. 2021b). The machine-learning
techniques developed here will also have a wide range of
applications for detecting and modeling the variation in a large
and multidimensional data set. Finally, understanding the NIR
spectral diversity represents a crucial step forward for future
SN Ia cosmological experiments, such as that to be conducted
on the Nancy Grace Roman Space Telescope.
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Appendix A
NIR Spectra Sample Tables

In this work, we publish 339 NIR spectra of 98 SNe Ia
obtained by the CSP-II that passed the first two selection criteria
outlined in Section 2.1. Table A1 presents the information of the
SNe Ia and spectra. Note that the TBmax and the sBV of the sample
SNe were obtained by fitting multiband CSP light curves with
SNooPy. The phases are relative to TBmax . The spectral data and
the information in this table are available in the CSP website
(https://csp.obs.carnegiescience.edu/data).

38
https://github.com/obscode/snpy

39
https://github.com/DeerWhale/BYOST
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Appendix B
Alternative Method: Conditional Variational Autoencoder

As we mentioned in Section 3, the current PCA+GPR

method has some limitations. Here we propose an alternative
machine-learning method, using extensions of the autoencoder

network, that could circumvent the drawbacks in the current

approach.
Autoencoders have been employed in astronomy with rising

popularity in recent years (e.g., Villar et al. 2020; Boone 2021;

Gabbard et al. 2022). An autoencoder is a type of neural
network architecture that couples an encoder neural network

and a decoder neural network, with some reduction in

dimensionality at their connection point. This reduced space

is known as the latent space of the network, and can be seen as
a nonlinear subspace, in comparison with the linearly

transformed subspace that is formed from PCA. The dimen-

sionality of the latent space is akin to the choice of the number

of PC dimensions used for template generation. The network is
forced to reconstruct the inputs utilizing the fewest dimensions

while incurring some reconstruction loss that can be

minimized.
A variational autoencoder (VAE; Kingma & Welling 2013)

extends its predecessor by encoding for random variables.

Typically, this is chosen to be a vector of means and variances

for a set of Gaussian random variables. Decoding random

samples from the latent space gives access to the probability

density function of generated templates. An additional

regularization (Kullback–Leibler divergence) term is added to

the loss function of the standard VAE architecture that attempts

to maintain some level of continuity in the latent space by

guiding the embeddings to be more Gaussian distributed. This

makes template generation smoother. Furthermore, an exten-

sion to the VAE architecture can be made by conditioning the

encoder and decoder on external variables, e.g., phase and sBV.

This addition is known as a conditional VAE (cVAE; Sohn

et al. 2015) and allows us to output template spectra for given

phase and sBV inputs continuously, without requiring an

additional GPR step.

Table A1

Summary of SNe Ia and Spectra Used in This Work

SN Name zhelio TB
max

sBV Spec UT Date MJD Phase Exp.a S/N
(MJD) Counts (day) (day) (s) (in H)

ASASSN-14ad 0.0264 56692.70 ± 0.50 1.013 ± 0.040 6 2014-2-8 56696.40 3.6 571 10

2014-2-15 56703.39 10.4 1141 2

2014-2-22 56710.32 17.2 380 8

2014-2-27 56715.31 22.0 1014 13

2014-3-10 56726.23 32.7 1014 16

2014-3-25 56741.25 47.3 1522 8

ASASSN-14hp 0.0389 56929.53 ± 0.06 1.077 ± 0.041 1 2014-11-5 56966.13 35.2 1522 6

K K K K K K K K K K

iPTF14w 0.0189 56669.93 ± 0.03 0.743 ± 0.040 7 2014-1-9 56666.34 −3.5 507 42

2014-1-14 56671.31 1.4 507 20

2014-2-8 56696.36 25.9 1014 28

2014-2-15 56703.33 32.8 1522 6

2014-2-22 56710.24 39.6 1522 10

2014-2-27 56715.27 44.5 1014 9

2014-3-18c 56734.13 63.0 1522 24

K K K K K K K K K K

SN 2013hnb 0.0151 56642.94 ± 0.69 0.821 ± 0.048 4 2013-12-20 56646.36 3.4 888 47

2013-12-27 56653.35 10.3 761 21

2014-1-1 56658.35 15.2 634 52

2014-1-14 56671.34 28.0 507 33

K K K K K K K K K K

Notes. This table is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.
a
Total on-target exposure time excluding overhead.

b
SNe discovered by targeted search.

c
Spectra not included in the final sample for template construction due to host contamination.

(This table is available in its entirety in machine-readable form.)
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Here, a cVAE for template generation is implemented in the
pyTorch (Paszke et al. 2019) framework, and its performance

will be analyzed. The encoder is constructed as a feed-forward

neural network consisting of four layers containing 3673, 128,
32, and 5 nodes, respectively. Rectified linear units are used as

activations. The decoder neural network, in this case, mirrors

the encoder with the exception that the first node contains 5+ 2
nodes (the +2 is reserved for conditioning the decoder on the

template parameters). The cVAE is optimized using the Adam

optimizer (Kingma & Ba 2014) with a learning rate of 10−3 and

a batch size of 16. The model is trained for 500 iterations.
Under the current settings, the computation time of cVAE is

four times longer than the PCA+GPR method, at around

40 minutes and 13 minutes, respectively. However, the time
would depend on the hardware and the choice of iterations.

Figure B1 shows a comparison of the templates generated by
PCA+GPR and the proposed cVAE method. The current PCA

+GPR method still provides the best results, with a median

χ2/dof of 1.43 while compared to observed spectra (see
Section 3.4). The templates constructed with cVAE method

yield a median χ2/dof of 1.76. The current data set might not

be large enough to train the cVAE to adequately separate the
signal from the noise, especially in the telluric regions and the

noisy edge of the K band. Further exploration, such as refining

selection criteria and training for more iterations, is required to
further investigate the causes of deficiencies in these regions.

However, there are caveats in this comparison of the
resulting templates. The input data of cVAE and the PCA

+GPR method do not have the same structure: the input data of

cVAE is not split into wavelength regions, and the input data is
normalized in both mean and standard deviation, whereas the

input data for PCA is only normalized by mean in each column.

Additionally, only ∼70% of the sample is included for training
in the cVAE approach due to the limitation of the reliable

telluric regions, which essentially reduces the training size by

30% in the zYJH and 20% in the K band compared to the PCA
+GPR method.

The proposed cVAE architecture requires fixed wavelength
grid as an input, similar to PCA. A useful extension to this
would be to support sequence inputs of varying length, thereby
skipping any implicit biases that can be introduced by the
interpolation preprocessing step. One clear and natural pathway
forward would be to incorporate long short-term memory or
recurrent neural network nodes. Here, a single node takes in an
entire sequence, element by element, and contains an internal
state that allows information from previous elements of a
sequence to affect the output for the next element. Using a
sequence approach is also beneficial in that different regions
can be ignored, e.g., wavelength regions that have poor telluric
corrections.
In summary, the cVAE approach has the following potential

advantages over PCA+GPR: it can naturally deal with
irregular/missing data and unifies the two-step PCA+GPR
procedure allowing the template generation and dimensionality
reduction steps to communicate. However, it appears that a
larger data set is needed to better harvest the potential of this
method.

Appendix C
Gaussian Process Regression Kernel Parameters

In this section, we present the details of the GPR kernel setup
and the optimal kernel parameters, as well as a demonstration
of how the length scales of the RBF kernel affect the template
spectra.
In Section 3.3, GPR was used to establish the average

dependence of the PC projection values on phase and decline
rate, p sphase,i BV( ). With p sphase,i BV( ), one can “look up” the
PC projections and construct the average SED of an SN Ia for
any particular value of sBV and phase. GPR has the advantage
of being nonparametric, in the sense that no particular
functional form is chosen to represent p sphase,i BV( ). Rather,
GPR determines a mean function that is constrained by the data
and a covariance function, called the kernel, that controls the
amplitude and scale over which this function can vary.

Figure B1. Comparisons between templates constructed using the current PCA+GPR method (green solid lines) and the cVAE method (orange dotted lines). Selected
observed spectra from Marion et al. (2009), which are not included in the training process of either template, are also presented in the background for comparison (gray
solid lines). All comparison spectra are color-corrected to match the broadband colors. The regions of the strongest telluric absorptions are marked with vertical gray
bands.
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For the kernel, we choose the sum of an RBF covariance

function and a white noise term, which has four free

hyperparameters and can be represented by the following:

s= ´ +C ℓ ℓkernel RBF , W . C1sphase BV
( ) ( ) ( )

C is a constant, representing the amplitude of the RBF kernel,

ℓphase and ℓsBV are the length scales of the RBF kernel for phase

and sBV, and σ is the noise level of the white noise kernel, W.

The best values of these hyperparameters are determined by

scikit-learn by maximizing the log-marginal likelihood.

All four parameters are given uniform priors.
The shape of the probability hypersurface is a complicated

one, with obvious degeneracies. The most severe occurs when

σ becomes larger than the variations due to sBV and/or phase.
In this case, the RBF scales (ℓphase and/or ℓsBV) no longer matter

and therefore do not converge to fixed values. In these cases,

the resulting p sphase,i BV( ) are simply constant with respect to

phase and/or sBV.
The optimal kernel parameters of all GPRs are presented in

Figure C1. Around half of the GPRs, especially those of the

lower-rank PCs, do not have converged length scales, in which

case we set the scale equal to 105, effectively making the GPR

independent of that parameter. However, our PC selection

strategy (GPR R2
� 0.2; see Section 3.4) was able to screen out

the vast majority of GPR fits that have these convergence

issues. The only selected PC that has not fully converged is

PC1 of the W4 (telluric) region, which has an =ℓ 10s
5

BV
. In

general, for the templates presented in this work, the median

optimal length scales of the selected PCs are 18 days and 0.43

for phase and sBV, respectively. The optimal length scales for

phase are similar to the best-fit length scale for the SNooPy

light-curve template (∼30 days), which were also constructed

with GPR. PCs that have relatively short optimal length scales

may indicate spectral features that evolve faster than the

photometry, such as those due to ionization changes.
While our analysis provides optimal values for the four

hyperparameters, there are associated uncertainties in their

values. It is therefore worth considering the effects of varying

each hyperparameter with respect to the constructed SN Ia

SED. In other words, how do uncertainties in the hyperpara-

meters propagate to uncertainties in the final SN Ia SED? Since

the phase and sBV are the two input parameters for the template,

the temporal spectra are likely to vary with their RBF length

scales the most. To illustrate how each of the length scales

affects the final template, we keep one length scale at the

optimal value, while varying the other by 1σ median absolute

deviation (MAD). The MADs of ℓphase and ℓsBV among selected

PCs are 6.6 and 0.22, respectively.
The resulting test templates are shown in Figure C2, where

variations in ℓphase are plotted above the data as a sequence

from blue to yellow lines, and variations in ℓsBV are plotted

below as a sequence from red to blue lines. On the left, we plot

SN 1999by at +14.0 days, which has a decline rate sBV= 0.42,

and on the right, we plot SN 2015 at +47.2 days, which has a

decline rate sBV= 0.67. These were chosen to represent points

in the phase-sBV space that are sparsely sampled by the training

data (see Figure 3). SN 1999by, being on the low edge of the

sBV distribution, shows a larger variation when varying ℓsBV than

in the case of SN2015bp, which resides in a better-sampled part

of the sBV distribution.
It should be emphasized that the “errors” seen in Figure C2

are exaggerated since the real variations in ℓphase and ℓsBV due to

uncertainties are lower (on the order of 0.2 days and 0.1,

respectively). Nevertheless, it illustrates that improvements can

be made by adding more training data in those areas that are

sparsely sampled in sBV and phase, particularly fast-declining

SNe at late phases.

Figure C1. The heatmaps of the optimal kernel parameters of GPRs. From left to right are the constant (C), RBF kernel length scale for phase (ℓphase), RBF kernel
length scale for sBV (ℓsBV ), and white kernel noise level (σ), respectively. The selected PCs for the template constructions with GPR R2

� 0.2 (see Section 3.4) are
indicated with labels.
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