
CDPU: Co-designing Compression and Decompression
Processing Units for Hyperscale Systems

Sagar Karandikar
UC Berkeley, Google
Berkeley, CA, USA

Aniruddha N. Udipi
Google

Mountain View, CA, USA

Junsun Choi
UC Berkeley

Berkeley, CA, USA

Joonho Whangbo
UC Berkeley

Berkeley, CA, USA

Jerry Zhao
UC Berkeley

Berkeley, CA, USA

Svilen Kanev
Google

Mountain View, CA, USA

Edwin Lim
UC Berkeley

Berkeley, CA, USA

Jyrki Alakuijala
Google

Zürich, Switzerland

Vrishab Madduri
UC Berkeley

Berkeley, CA, USA

Yakun Sophia Shao
UC Berkeley

Berkeley, CA, USA

Borivoje Nikolić
UC Berkeley

Berkeley, CA, USA

Krste Asanović
UC Berkeley

Berkeley, CA, USA

Parthasarathy Ranganathan
Google

Mountain View, CA, USA

ABSTRACT
General-purpose lossless data compression and decompression
(“(de)compression”) are used widely in hyperscale systems and
are key “datacenter taxes". However, designing optimal hardware
compression and decompression processing units (“CDPUs”) is
challenging due to the variety of algorithms deployed, input data
characteristics, and evolving costs of CPU cycles, network band-
width, and memory/storage capacities.

To navigate this vast design space, we present the first large-
scale data-driven analysis of (de)compression usage at a major
cloud provider by profiling Google’s datacenter fleet. We find that
(de)compression consumes 2.9% of fleet CPU cycles and 10-50% of
cycles in key services. Demand is also artificially limited; 95% of
bytes compressed in the fleet use less capable algorithms to reduce
compute, motivating a CDPU that changes cost vs. size tradeoffs.

Prior work has improved the microarchitectural state-of-the-art
for CDPUs supporting various algorithms in fixed contexts. How-
ever, we find that higher-level design parameters like CDPU place-
ment, hash table sizing, history window sizes, and more have as
significant of an impact on the viability of CDPU integration, but are
not well-studied. Thus, we present the first end-to-end design/eval-
uation framework for CDPUs, including: 1. An open-source RTL-
based CDPU generator that supports many run-time and compile-
time parameters. 2. Integration into an open-source RISC-V SoC for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589074

rapid performance and silicon area evaluation across CDPU place-
ments and parameters. 3. An open-source (de)compression bench-
mark, HyperCompressBench, that is representative of (de)compress-
ion usage in Google’s fleet.

Using our framework, we perform an extensive design space
exploration running HyperCompressBench. Our exploration spans
a 46× range in CDPU speedup, 3× range in silicon area (for a
single pipeline), and evaluates a variety of CDPU integration tech-
niques to optimize CDPU designs for hyperscale contexts. Our final
hyperscale-optimized CDPU instances are up to 10× to 16× faster
than a single Xeon core, while consuming a small fraction (as little
as 2.4% to 4.7%) of the area.

CCS CONCEPTS
• Computer systems organization → Architectures; Cloud
computing; •Hardware→ Communication hardware, inter-
faces and storage; Application-specific VLSI designs; • Infor-
mation systems → Data compression.

KEYWORDS
compression, decompression, hardware-acceleration, warehouse-
scale computing, hyperscale systems, profiling

ACM Reference Format:
Sagar Karandikar, Aniruddha N. Udipi, Junsun Choi, Joonho Whangbo,
Jerry Zhao, Svilen Kanev, Edwin Lim, Jyrki Alakuijala, Vrishab Madduri,
Yakun Sophia Shao, Borivoje Nikolić, Krste Asanović, and Parthasarathy
Ranganathan. 2023. CDPU: Co-designing Compression and Decompression
Processing Units for Hyperscale Systems. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA ’23), June 17–21,
2023, Orlando, FL, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/
10.1145/3579371.3589074

https://doi.org/10.1145/3579371.3589074
https://doi.org/10.1145/3579371.3589074
https://doi.org/10.1145/3579371.3589074

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

1 INTRODUCTION
As demand for cloud computing grows and traditional hardware
scaling techniques slow down, improving the performance and effi-
ciency of warehouse-scale computers (WSCs) through hardware-
software co-design is increasingly critical. Complicating this, WSCs
run large, layered software stacks consisting of diverse and rapidly
evolving microservices, making specialization difficult. However,
prior work has shown that several common datacenter taxes [41, 56]
appear across hyperscale services and thus present specialization
opportunities. Characterization and acceleration of several of these
taxes has been explored in prior work [39, 42, 43, 49], but little at-
tention has been paid to general-purpose lossless data compression
and decompression (referred to as “(de)compression” in this work)
in hyperscale contexts.

Most datacenter taxes implement critical functionality like inter-
service communication, security, or memorymovement. In contrast,
(de)compression is unique in that its purpose is not to add func-
tionality, but to enable a trade-off between the consumption of two
classes of WSC resources: runtime (CPU cycles) and storage/com-
munication capacity (persistent storage capacity, memory capac-
ity [45, 61], and network bandwidth). Unlike other datacenter taxes,
service developers must first decide whether to compress at all, and
then select an algorithm that achieves satisfactory compression
quality within their constraints.

This presents an interesting opportunity for hardware accelera-
tion: an accelerator that radically outperforms software implemen-
tations can not only reduce existing CPU cycles in the fleet, but also
increase compression usage in general, leading to additive savings
in storage, memory, and network bandwidth. However, introducing
specialized hardware complicates the design space; the total cost
of ownership (TCO) calculation must now account for hardware
complexity, area vs. performance, and more.

In this work, we present the first large-scale data-driven analysis
of lossless data (de)compression usage at a major cloud provider by
profiling Google’s datacenter fleet. We find that (de)compression
consumes 2.9% of fleet CPU cycles and 10% to 50% of CPU cycles
in key services at Google. This demand is also artificially limited;
95% of bytes compressed in Google’s fleet forgo more aggressive
forms of compression because of the high compute cost, motivating
HW acceleration that changes time vs. data size trade-offs. While
profiling fleet usage is helpful, we also find that true co-design for
(de)compression processing units (CDPUs) requires a comprehen-
sive evaluation environment, due to the large number of high-level
design parameters and their impact on end-to-end performance.

A large body of prior work has improved the microarchitectural
state-of-the-art for CDPUs supporting various algorithms in fixed
contexts [10–18, 29, 30, 32, 36, 46, 50, 53, 58, 59]. While these im-
provements are important, we find that higher-level design param-
eters like accelerator placement, hash table sizing, history window
sizes, and more can have just as significant of an impact on the
value and feasibility of CDPU integration, but are not well-studied
in the literature. Thus, we present the first end-to-end design and
evaluation framework for CDPUs, which includes: 1. An RTL-based
CDPU generator that supports many run-time and compile-time
configurable parameters. 2. Integration into a RISC-V SoC for rapid

performance and silicon area evaluation with varying CDPU place-
ments and configurations. 3. A (de)compression benchmark, Hyper-
CompressBench, that is representative of (de)compression usage in
Google’s fleet. All components of this framework are open-source1,
enabling the community to build and evaluate CDPUs for both
hyperscale systems and their own use cases.

Using our CDPU design framework, we perform an extensive
design space exploration running HyperCompressBench. Our ex-
ploration spans a 46× range in accelerator speedup, 3× range in
silicon area (for a single pipeline), and evaluates a variety of accel-
erator integration techniques to better understand optimal CDPU
designs for hyperscale contexts. Our final hyperscale-optimized
accelerator instances are up to 10× to 16× faster than a single Xeon
core, while consuming a small fraction (as little as 2.4% to 4.7%) of
the area.

2 COMPRESSION BACKGROUND
Compression algorithms are used to produce a reduced-size rep-
resentation of source data that can later be fed to a decompressor
to exactly reproduce the original data. While the functional goal
is only to minimize the output size (maximizing the compression
ratio, equal to uncompressed divided by compressed size), algo-
rithms must also account for metrics like latency, throughput, and
CPU/memory consumption, resulting in a vast design space. In a hy-
perscale context, compression reduces the consumption of several
resources, including storage (bytes written to disk/SSD), network
bandwidth (e.g., RPC traffic), and memory (transparently [45, 61]
or via application managed compression). Compression can also
implicitly save other resources such as caches, network-on-chip
capacity, etc., but we do not explore these in this work.

2.1 Compression algorithm fundamentals
Compression algorithms generally contain two main components:
a dictionary-coding stage and an entropy-coding stage. During
dictionary coding, data size is reduced by searching for matches
between the input data and a “dictionary” of known values, then
encoding the input in terms of the “best” match in the dictionary, de-
duplicating repeated strings in the input. LZ77 [65] is a widely-used
dictionary coding algorithm that uses a sliding window of already
processed input data as the dictionary. Matches are encoded as
triplets of (offset, length, literal). Such a triplet indicates
to the decompressor that length bytes should be copied to the
output starting from offset bytes back in the window of output
generated so far. Then, the raw literal is also copied to the output,
for example to encode data when no matches were found in the
dictionary.

Entropy coding compresses symbols (e.g. (offset, length,
literal) triplets produced by LZ77) by representing more com-
monly occurring symbols with fewer bits. Popular techniques in-
clude Huffman coding [37], arithmetic coding, and Asymmetric
Numerical Systems (ANS) [2, 35]. Huffman and arithmetic coding

1CDPU generator, custom Chipyard, custom FireSim:
https://github.com/ucb-bar/compress-acc
HyperCompressBench:
https://github.com/google/HyperCompressBench
Archival URLs:
See Artifact Appendix (Appendix A)

https://github.com/ucb-bar/compress-acc
https://github.com/google/HyperCompressBench

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

trade-off compression ratio and performance—Huffman is cheaper
in CPU cycle cost, but arithmetic coding generally achieves a better
compression ratio. ANS (such as tANS/FSE [2, 35]) combines the
best of both worlds, with low CPU cost and high compression ratio.

2.2 Compression algorithm taxonomy
Compression algorithm developers trade-off compression ratio vs.
performance by combining these components in novel ways and
tuning parameters within them. For example, they can choose how
much effort to expend trying to find an “optimal” match during
LZ77-style dictionary coding or change the size of the sliding his-
tory window. A larger window size typically yields better compres-
sion ratios, but must be bounded to limit memory consumption.
Many algorithms accept a compression-level parameter, which also
allows users to tune algorithm performance.

In Section 3, we will analyze six algorithms that are used in
Google’s fleet. We qualitatively group these into “heavyweight”
and “lightweight” classes (which we will justify quantitatively in
Section 3.3):

Heavyweight algorithms: These prioritize compression ratio
over speed. They generally have a large space of parameters and
use sophisticated LZ77/entropy-coding techniques.
• ZStd [8, 31]: LZ77/Huff./FSE. Params: comp. level + window size.
• Flate [7, 34]: LZ77/Huff. Params: comp. level + window size.
• Brotli [1, 20]: LZ77/Huff./contextmodeling/static dictionary [19].
Params: compression level + window size.
Lightweight algorithms: These prioritize speed over compres-

sion ratio. They generally use “LZ77-inspired” dictionary coding,
little or no entropy coding, and have few parameters.
• Snappy [5, 9]: LZ77-inspired, no entropy coding. Fixed window
size (64 KiB), no compression levels.

• Gipfeli [3, 47]: LZ77-inspired, simple entropy coding. Fixed win-
dow size (64 KiB), no compression levels.

• LZO [4, 57]: LZ77-inspired dictionary coding, no entropy coding.
Supports compression levels.
ZStd and Brotli can also become more lightweight by setting a

low compression level. We will explore this in Section 3.3.3.

3 PROFILING COMPRESSION USAGE AT
HYPERSCALE

In this section, we profile the fleet-wide usage of (de)compression
in Google’s datacenters to motivate the design of a CDPU and
understand design constraints.

3.1 Data Sources
3.1.1 Fleet-wide CPU Cycle Data. Google’s infrastructure provides
fleet-wide runtime information about CPU-cycle consumption us-
ing a sampling framework, Google-Wide Profiling (GWP) [52], that
randomly samples fleet servers. When a server is profiled, the sam-
pler collects profiles including workload names, stack traces, and
cycle counts, enabling determination of where time is spent in the
software stack. We use this to classify fleet-wide CPU-cycles spent
in (de)compression by algorithm.

3.1.2 Fleet-wide compression/decompression call sampling. An ex-
tension of this sampling framework also enables detailed profiling

Y1
-0

4
Y1

-0
8

Y1
-1

2
Y2

-0
4

Y2
-0

8
Y2

-1
2

Y3
-0

4
Y3

-0
8

Y3
-1

2
Y4

-0
4

Y4
-0

8
Y4

-1
2

Y5
-0

4
Y5

-0
8

Y5
-1

2
Y6

-0
4

Y6
-0

8
Y6

-1
2

Y7
-0

4
Y7

-0
8

Y7
-1

2
Y8

-0
4

Y8
-0

8
Y8

-1
2

0
10
20
30
40
50
60
70
80
90
100

%
 o

f f
le

et
-w

id
e

(d
e)

co
m

pr
es

sio
n

cy
cle

s
no

rm
. t

o
ea

ch
 ti

m
e

sli
ce

C-Snappy (19.5%)
C-ZSTD (15.4%)
C-Flate (5.9%)

C-Brotli (3.3%)
C-Gipfeli (0.1%)
C-LZO (0.0%)

D-Snappy (20.3%)
D-ZSTD (25.8%)
D-Flate (5.2%)

D-Brotli (4.0%)
D-Gipfeli (0.4%)
D-LZO (0.1%)

Figure 1: Percentage of (de)compression cycles in Google’s
fleet over several years, broken down by algorithm and nor-
malized to each month. C=compress, D=decompress.

of (de)compression calls in userspace, including collecting the algo-
rithm used, input and output sizes, window sizes, and compression
levels. Given the additional engineering effort this requires, data
is only collected for the Snappy, ZStd, Flate, and Brotli algorithms,
which, as Figure 1 shows, are the dominant algorithms in the fleet.

3.2 Opportunity for (De)compression
Acceleration

WSCs today spend significant compute on (de)compression. In
Google’s infrastructure, 2.9%2 of fleet-wide CPU cycles are spent in
(de)compression; 56% of these cycles are spent in decompression
and the rest in compression.

For large services, (de)compression can be a much greater pro-
portion of total cycle consumption. We find that a total of sixteen
services constitute around half of all fleet-wide cycles for Snappy
and ZStd3 (de)compression. Out of these, one service spends nearly
50% of its total cycles on (de)compression, another spends over 35%,
and eight more spend between 10% and 25% of their cycles each on
(de)compression. Even ignoring potential growth in demand, these
represent a significant acceleration opportunity at hyperscale.

3.3 Can accelerators change WSC resource
tradeoffs?

While reducing the existing CPU cycles spent on (de)compression is
a useful goal, it is important to note that this usage is a function of
the performance constraints imposed by current software libraries.
When considering the introduction of specialized hardware, we
must keep inmind that the accelerator is likely to change the “space”
(storage/memory bytes, network bandwidth) vs. “time” (runtime,
CPU cycles) trade-off involved in selecting a compression algorithm,
that algorithm’s parameters, or indeed, choosing to compress at all
in a given situation.

In an ideal scenario, the accelerator would sufficiently reduce the
performance overhead of “heavyweight” forms of (de)compression
such that services can always choose them over “lightweight” tech-
niques (or even no compression), and reduce storage, memory, and
network bandwidth consumption for “free". To understand this
opportunity, we must answer four key questions:
2At hyperscale, this can translate to 100s of millions of dollars [24, 56].
3In the rest of the paper, we focus on Snappy and ZStd as dominant representatives of
“lightweight" and “heavyweight" algorithms in the fleet respectively.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

C-Sn
ap

py

C-ZST
D
C-Fl

ate

C-Brot
li

D-Sn
ap

py

D-ZST
D
D-Fl

ate

D-Brot
li

Algorithm/Operation

0

20

40

%
 o

f u
nc

om
pr

es
se

d
by

te
s

(a) Fleet-wide uncompressed bytes handled
by (de)compression, broken down by algo.

−5 0 5 10 15
ZStd Compression Level

0

20

40

60

%
 o

f u
nc

om
pr

es
se

d
in

pu
t b

yt
es

(b) Fleet-wide ZStd compression level distri-
bution.

Flate
All

ZSTD
[4,22]

ZSTD
[-inf,3]

Sna-
ppy

Brotli
All

Algorithm/Compression Level

0

2

4

Fl
ee

t-w
id

e
ac

hi
ev

ed
co

m
pr

es
sio

n
ra

tio

(c) Aggregate fleet-wide compression ratios
achieved, by algo./compression level pairs.

Figure 2: Google fleet-wide (de)compression algorithm breakdowns. C=compression, D=decompression.

3.3.1 Do existing services prefer to use heavyweight or lightweight
algorithms? Figure 1 shows a detailed breakdown of CPU time spent
in the fleet on compression and decompression by algorithm, self-
normalized to each month. In this sub-section, we focus only on the
final time slice, which is summarized in the legend. In addition to
cycle consumption, we would also like to understand the amount of
data that each algorithm is invoked on. Figure 2a thus differentiates
algorithms based on the number of uncompressed bytes they handle
in the fleet (i.e., compression inputs and decompression outputs).

We find several interesting trends from this data. For compres-
sion, where the heavyweight vs. lightweight distinction is most
significant, we see that slightly more cycles, 56%, are spent in heavy-
weight compression. However, from the perspective of bytes han-
dled, the outcome is reversed: heavyweight compression only ac-
counts for 36% of the total. This foreshadows the difference in
cost-per-byte-compressed between heavyweight and lightweight
compression, explored in greater detail in Section 3.3.4. In decom-
pression, the CPU consumption imbalance between heavyweight
and lightweight is far more stark, but the cost-per-byte is closer:
heavyweight algorithms comprise 63% of fleet decompression cycles,
while producing 49% of uncompressed bytes.

As an aside, Figure 2a also shows an interesting insight: on
average, each byte that is compressed in the fleet is decompressed
3.3 times. So, despite a lower cost-per-byte, decompression remains
a worthy target for hardware acceleration. Further, decompression
is often more performance-sensitive, naturally appearing on client-
visible read paths, rather than usually non-critical write paths.

3.3.2 Are heavyweight algorithms used to their full potential? Gen-
erally, this requires supplying a larger compression-level argument
to the algorithm, instructing it to spend more cycles improving the
compression ratio. Consider ZStd compression, which currently
supports levels from negative infinity to 22. Figure 2b shows the
distribution of bytes passed to ZStd compression calls in the fleet,
binned by the associated compression level specified by the caller.
We find that even services that use ZStd tend to avoid high com-
pression levels: 88% of bytes are compressed at level 3 (the default)
or lower, while over 95% of bytes are compressed at level 5 or lower.
Fewer than 0.002% of bytes are compressed at levels ≥12.

Combining the data in Figures 2a and 2b we glean a critical
insight: over 95% of bytes compressed in the fleet are handled either
by a lightweight algorithm (Snappy) or a heavyweight algorithm at

low compression level (ZStd at level ≤ 3). This suggests that there
is significant opportunity for an accelerator that can achieve higher
compression ratios within existing performance bounds to produce
significant savings in storage, network, and memory consumption.

3.3.3 Do high compression levels result in improved compression
ratio? Of course, the goal of using heavyweight algorithms config-
ured to high compression levels is to achieve a better compression
ratio. Therefore, we must understand whether this improvement is
indeed notable.

Before we present this data, it is important to caveat that ex-
trapolating from this data is generally difficult due to the highly
data-dependent nature of both compression ratio and cycles-per-
byte terms. While the data gives the reader an estimate of possible
improvements and is valuable because it is based on large fleet byte
volumes, a true comparison of algorithms/levels requires running
the same sets of representative data through algorithms/levels of
interest. We will address this in Section 4 when we construct our
benchmark suites.

Figure 2c shows the aggregate fleet-wide compression ratio
achieved by each compression algorithm (total uncompressed bytes
divided by total compressed bytes). ZStd bins are further separated
by the user-specified compression level. We can see that compres-
sion is clearly beneficial across the fleet, with no algorithm having
an aggregate compression ratio less than 2. Furthermore, the data
aligns with expectations from the taxonomy we established in Sec-
tion 2.2. ZStd and Flate clearly belong in the heavyweight category,
exceeding Snappy’s compression ratio even at the lowest compres-
sion levels. Brotli results do not align with our taxonomy because
most of its usage in the fleet is at low compression levels.

Quantitatively, we observe a favorable trend in the data to justify
hardware acceleration. Services that use ZStd at a low compression
level achieve a 1.46× improved compression ratio over services
that use Snappy. Services that use ZStd at a high compression
level achieve an additional 1.35× improved compression ratio over
services that use it at a low compression level. It is also important
to note that this is likely under-representing the potential of ZStd’s
highest compression-levels, since Figure 2b showed that the vast
majority of bytes in the [4, 22] bin in Figure 2c are compressed
at level 4, due to the aforementioned performance constraints.

In a hyperscale context, the corresponding reductions in demand
for storage, network, and memory capacity that arise from these

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

differences in compression ratio can translate to a further potential
savings of hundreds of millions of dollars across the industry [24, 43,
56], in addition to the savings from CPU-cycle reduction/offloading:
most hyperscaler customers are big-data companies who spend as
much on storage as compute [51], while memory has been shown
to be 50% of WSC TCO [26], and providing sufficient network
bandwidth at low cost is a perpetual concern for hyperscalers [54].

3.3.4 What is the cycle cost in software of using heavyweight algo-
rithms at high compression level in the fleet? Is hardware acceleration
necessary? Given the marked difference in achieved compression
ratio using different algorithms/levels, one might ask: why not sim-
ply migrate to heavyweight algorithms at high compression levels
in software?

To answer this question, we collect data on the aggregate cost-
per-byte observed in the fleet for each algorithm, operation, and
compression level of interest thus far. We elide the plot due to
space constraints, however we find that our taxonomy from Sec-
tion 2.2 is largely validated: both heavyweight compression and
decompression are more expensive per-byte than lightweight com-
pression and decompression respectively. We also find that services
that use ZStd compression at lower compression levels pay 1.55×
the cost-per-byte for compression as compared to those that use
Snappy, and services that use ZStd compression at higher compres-
sion levels over lower compression levels pay an additional 2.39×
cost-per-byte.

Extrapolating from this data (and keeping in mind caveats about
the data-dependent nature of compression), if a service spends 25%
of its cycles on Snappy compression (e.g., the services described
in Section 3.2), switching to the highest ZStd levels would result
in a 67% increase in the service’s cycle consumption, a non-starter.
There is also a significant additional cost for decompression, when
the data is accessed later; ZStd decompression is 1.63× more costly
than Snappy decompression, partially due to the entropy decoding.

Altogether, this profiling data suggests that there is significant
headroom for services to achieve improved compression ratios
for the deployed algorithms, but the cost of these algorithms in
software is too high for services to adopt them. This suggests that
hardware-accelerated compression has the opportunity to save not
only CPU cycles, but also to save storage/memory/network resources
by changing the trade-off space between performance and compression
ratio.

3.4 Algorithm evolution vs. hardware
accelerator design cycles

Even when hardware acceleration is well-motivated by projected
resource savings, a significant roadblock to adoption is the oppor-
tunity cost of “ossification” of logic in hardware, since hardware
design cycles are significantly longer than software development
cycles. However, given the need for long-term stability of compres-
sion algorithms (e.g. for data written to cold storage), significant
algorithm change generally only occurs when a completely new
algorithm is adopted by a service. Referring back to Figure 1, we
can observe the introduction of the ZStd algorithm in Google’s
fleet, which took roughly a year from being introduced to consum-
ing 10% of fleet (de)compression cycles. While this broadly aligns

15 20 25
Snappy COMP call
size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(a) Snappy-compression

15 20 25
ZSTD COMP call
size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(b) ZStd-compression

15 20 25
Snappy DECOMP call

size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(c) Snappy-decompression

15 20 25
ZSTD DECOMP call

size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(d) ZStd-decompression

Figure 3: Cumulative call size distributions for Snappy/ZStd
(de)compression. The x-axis bins calls by 𝑙𝑜𝑔2(𝑐𝑎𝑙𝑙𝑠𝑖𝑧𝑒), using
uncompressed sizes. The y-axis is weighted by call size.

with hardware design cycles, starting a design from scratch and
deploying it in this timeframe would be challenging.

This suggests that an agile hardware development approach is
necessary, with early hardware/software co-design with algorithm
developers and utilization of (de)compression accelerator generators
that provide high-performance primitives that are common across
multiple algorithms, alleviating the need to write entire accelerators
from scratch. For example, transitioning from Flate to ZStd would
mostly entail adding an FSE module. This methodology is explored
in Section 5.

When compared to other datacenter taxes, (de)compression also
has a qualitative advantage when considering hardware accelera-
tion feasibility: the user API for compression and decompression
has been essentially unchanged since the first compression tools
were created—a stateless, buffer-in, buffer-out API, sometimes with
a separate dictionary, and a streaming equivalent.

3.5 (De)Compression Accelerator Placement
In this section, we discuss the factors impacting an important choice
in CDPU design: where to place it in the system: on-die, on a PCIe-
attached device, or on a chiplet.

3.5.1 (De)compression call granularity. The granularity of offloaded
work—in this case, the number of bytes to be (de)compressed—is
a key factor in determining placement, since any overhead per
accelerator invocation is only amortized over each payload size.

Figures 3a and 3b show the cumulative distribution of call gran-
ularities for Snappy and ZStd compression. Snappy’s distribution is
slightly more biased towards smaller calls: 24% of bytes compressed
are from calls of size 32 KiB or smaller; for ZStd only 8% fall in this
group. Interestingly, the distributions align near the median, with
the 50th percentile of uncompressed bytes falling between 64 and

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

RPC
13.9%

Filetype6
0.1%

Filetype1
13.2%

InStorageShuffle
0.2% Other

13.0%
Filetype80.4%

Unknown11.2%

Filetype70.6%

Filetype3.1
9.7%

InMemMap
1.5%

Filetype2
9.5%

InMemShuffle
1.7%

MixedResourceShuffle
9.3%Filetype5

2.7%
Filetype4 6.9%

Filetype3 6.0%

Figure 4: Percent of Google fleet-wide (de)compression cy-
cles by the library that led to the (de)compression call.

128 KiB calls in both. For ZStd, much of this jump comes from the
(32 KiB, 64 KiB] bin, which represents 28% of bytes compressed.
Apart from the 16.8% of bytes compressed by Snappy in the (2 MiB,
4 MiB) bin, both distributions increase uniformly until reaching a
maximum size of 64 MiB.

Figures 3c and 3d show the corresponding data for decompres-
sion. Immediately, we see that Snappy’s decompression distribution
is slightly more biased towards smaller calls than its compression
distribution, with 62% of bytes handled in calls smaller than 128
KiB and 80% of bytes handled in calls smaller than 256 KiB. On the
other hand, the ZStd decompression distribution shifts drastically
towards larger sizes, with the median size between 1 MiB and 2
MiB, rather than between 64 KiB and 128 KiB as for compression.

A back of the envelope projection of accelerator performance
ranges shows that these distributions are insufficiently skewed to
immediately fix accelerator placement. In contrast, if hypothetically
most calls were 32 MB, a PCIe-attached accelerator would be a
natural choice. Aswewill see in Section 6, both call sizes and various
accelerator tuning parameters play important roles in determining
accelerator placement; a comprehensive design-space exploration
will be necessary to make a final determination.

3.5.2 Interaction with Related Accelerators. With increasing hard-
ware specialization, we envision a futurewhere our (de)compression
accelerator is invoked in conjunction with related accelerators (e.g.,
a hardware protocol buffer (de)serializer [39, 43, 49]) as part of a
larger data-access operation. While the hardware benefits of such
a system are self-evident, the corresponding software services and
libraries need to be architected appropriately as well.

Figure 4 shows fleet (de)compression cycles classified by the
codebase (e.g. a library) that directly called the (de)compression
operation. Note that 49% of cycles are derived from “file formats".
Upon closer examination, we notice that even if these formats are
internally “serializing and compressing protobufs” before writing
to file, there are often small, unrelated book-keeping operations
between the two accelerated operations. Services may also expect to
pass in a sequence of serialized protobufs that are accumulated and
compressed periodically. Handling these in hardware introduces
significant complexity due to file-format specific logic and the need
to track outstanding state, and can also limit file-format evolution.

15 20 25
ZSTD Comp window

size, lg2(B)

0

50

100

%
 u

nc
om

p
By

te
s

(a) ZStd-compression

15 20 25
ZSTD Deco window

size, lg2(B)

0

50

100

%
 u

nc
om

p
By

te
s

(b) ZStd-decompression

Figure 5: Window size distributions for ZStd
(de)compression in Google’s fleet. The x-axis bins calls
by 𝑙𝑜𝑔2(𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒). The y-axis is weighted by call size.

This argues for placing both accelerators close to the CPU cores,
utilizing the CPU caches or even main memory as the intermedi-
ate storage, allowing the general-purpose cores to sequence data
movement between them in the normal course of program execu-
tion, without undue communication overhead. If the accelerators
are far away, for example across PCIe, the operation would incur
substantial offload overhead multiple times, making the use of each
accelerator less attractive. In the long run, the potential perfor-
mance gains may justify additional software engineering effort in
file formats to enable the exploitation of sequences of hardware
accelerators; this is left to future work.

3.6 Window Size Requirements
A compression algorithm’s window size determines the amount of
recent history the algorithm will keep when searching for matches
during LZ77-style de-duplication. Correspondingly, during decom-
pression, the window size represents the maximum offset into the
recently produced output from which a copy command can read
data.

Our first algorithm of interest, Snappy, has a fixed window size
of 64 KiB for compression and decompression [5]. For ZStd com-
pression, Figure 5a shows the per-call fleet-wide window-size dis-
tribution. We see that slightly over 50% of bytes compressed by
ZStd use a window size of 32 KiB or less. However, the upper 50%
of the distribution quickly grows, with a 75th percentile between
512 KiB and 1 MiB and tails as high as 16 MiB. The distribution for
ZStd decompression is shown in Figure 5b, with a median of 1 MiB.

This parameter can affect accelerator design and performance.
For compression, the window is commonly kept in SRAM, registers,
or even expensive CAM structures. For decompression, the window
is commonly kept in SRAM. However, beyond for example 32 KiB,
on-chip storage can become prohibitively expensive. Notably, the
existing state-of-the-art compression accelerator for a heavyweight
algorithm, IBM’s z15 compression accelerator [18], offers a window
size of 32 KiB, meaning it would not be able to handle 50% of these
compression calls in Google’s fleet.

This further argues for a near-core accelerator with access to
the memory hierarchy, which would allow the accelerator to “fall
back” to accessing the history from the L2 cache or main memory.
This design space is further explored in Section 6.

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

15 20 25
Call size ceil(lg2(B))

0

50

100
%

 u
nc

om
p

By
te

s

Figure 6: Call size distribution from four popular open-
source compression benchmarks.

3.7 Do existing open-source compression
benchmarks represent hyperscale
requirements?

Several of our analyses thus far have motivated the need to perform
a design-space exploration of (de)compression acceleration within
the context of a complete system. However, performing such an
exploration requires representative (de)compression benchmarks
used as input to the accelerators.

Many benchmark suites exist that aim to provide a standard set
of input files to evaluate compression algorithms. The most well-
known of these is Silesia [33], which, for example, is used to provide
the “default” results in the READMEs of both ZStd and lzbench, a
common compression benchmarking tool. Other commonly used
benchmarks (e.g., in [18]) include Canterbury [22], Calgary [27],
and several benchmarks included with Snappy (we will refer to the
collection as SnappyFiles) [6].

Unfortunately, we find that they are not representative of Google’s
fleet usage of (de)compression. As one dimension of comparison, we
can bin these open benchmarks by call size as we did for fleet-wide
compression calls in Figure 3. Figure 6 shows this call size distri-
bution for open-source benchmarks, which we can see is vastly
different from the fleet distribution. For example, the median call
sizes of the distributions differ by an astounding 256×. More work is
clearly needed to realistically evaluate compression in a hyperscale
fleet. We will describe the construction of representative bench-
marks in Section 4.

3.8 Key Cloud Provider Fleet Profiling Lessons
for Hyperscale CDPUs

Before continuing, we summarize the key profiling insights gleaned
thus far and highlight the important questions that remain:

(1) Significant headroom exists in fleet compression usage for accel-
erators that improve compression ratio vs. compute tradeoffs:

(a) Lightweight algorithms dominate compression usage, han-
dling 64% of compressed bytes.

(b) Heavyweight algorithms are primarily used at lower compres-
sion levels: 88% of bytes compressed with ZStd are handled
at level 3 (the default) or lower.

(c) Services using heavyweight algorithms at high levels achieve
higher compression ratios (1.35-1.97×), but at a significantly
higher cost-per-byte (1.55-3.70×).

(d) For many services, this increased CPU cost is untenable, pre-
senting an opportunity for accelerators that achieve higher
compression ratios within service performance bounds.

(2) Change in (de)compression algorithm usage in Google’s fleet
over time (e.g., ZStd’s 0%→ 10% of fleet (de)compression cycles
in 1 year) alignswith agile hardware design cycles andmotivates
a re-usable CDPU generator over point designs.

(3) Fleet call sizes are not sufficiently biased towards small/large
calls to immediately determine accelerator placement.

(a) Instead, understanding placement requires design-space ex-
ploration of an implementation running representative bench-
marks.

(4) Accelerator chaining between serialization and compression,
which could ease placement requirements, is non-trivial.

(a) At a minimum, chaining will require re-architecting file for-
mat libraries, which are responsible for invoking 49.2% of fleet
(de)compression cycles, and the ability to maintain multiple
contexts in the accelerator.

(b) On the other hand, both of these concerns can be avoided
while maintaining most chaining benefits if the accelerator is
placed close to the CPU, with direct access to caches or main
memory.

(5) History window sizes in the fleet are also insufficiently biased
to make a clear recommendation for on-accelerator history
window sizing.

(a) Like accelerator placement, this will require design-space
exploration of an accelerator implementation.

(6) Existing open-source (de)compression benchmarks used by
prior work do not represent hyperscale compression usage.

(a) For example, call size distributions differ greatly between
open-source benchmarks and Google’s fleet, even at a high-
level; themedian call size in popular open-source benchmarks
is 256× the fleet’s median call size.

While hyperscale fleet profiling has provided several insights
about CDPU design requirements, a few critical questions remain
that are difficult to explore without a concrete implementation eval-
uated in the context of a complete system. In the rest of this paper,
we will build a parameterized CDPU generator and a hyperscale-
representative (de)compression benchmark suite, then answer the
open CDPU design questions by performing an extensive design-
space exploration.

4 BUILDING OPEN-SOURCE HYPERSCALE-
REPRESENTATIVE (DE)COMPRESSION
BENCHMARKS

To produce (de)compression benchmarks representative of Google’s
fleet requirements, while preserving privacy in Google’s datasets,
we build an open-source (de)compression benchmark generator
that produces representative benchmarks from summary statistics
about a private data set. By supplying this generator with profiles
of Google’s fleet, we produce the open-source HyperCompressBench,
a benchmark suite representative of (de)compression requirements
in Google’s fleet.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

15 20 25
Snappy Comp call
size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(a) Snappy-compression

15 20 25
ZSTD Comp call
size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(b) ZStd-compression

15 20 25
Snappy Deco call
size, ceil(lg2(B))

0

50

100

%
 u

nc
om

p
By

te
s

(c) Snappy-decompression

15 20 25
ZSTD Deco call
size, ceil(lg2(B))

0

50

100
%

 u
nc

om
p

By
te

s

(d) ZStd-decompression

Figure 7: Call-size distributions for HyperCompressBench.

The generator starts by breaking all files from the Silesia, Canter-
bury, Calgary, and SnappyFiles benchmarks into fixed-size chunks.
Each chunk is individually run through all combinations of sup-
ported algorithms and parameters (window size, compression level)
to obtain a compression ratio for that chunk for each algorithm/pa-
rameters pair. This data is stored in lookup tables indexed by the
compression ratio.

The generator then ingests metrics such as call size, compression
ratio, window size, and compression level from the aforementioned
fleet profiling data, constructs distributions from these metrics, and
samples from the distributions to produce a set of target parameters
for a single benchmark file.

For each such set of target parameters, the generator walks
through the lookup table, greedily selecting chunks with the closest
compression ratio and adding them to the output file until the
target call size is reached. At various points during this process,
the generator evaluates the file assembled so far and adjusts the
target ratio accordingly. To avoid pathological sequences, random
shuffles are introduced both within the lookup table and the output.
The completed file is saved along with the parameters (level and
window size) that should be applied when it is used. This process
is repeated until we have a sufficient number of benchmark files to
represent the overall distribution of calls across various dimensions.
We find around 8,000 to 10,000 files to be a suitable number for this
work.

The entire process is repeated for each algorithm/operation pair
of interest, in our case, (Snappy and ZStd) × (Compress and De-
compress). In the rest of the paper, we refer to this suite of around
35,000 generated files as HyperCompressBench.

4.1 HyperCompressBench validation
We validate the suite across the swath of previously discussed met-
rics. For example, consider the distributions for call size, shown

Ti
le

Li
nk

 S
ys

te
m

 B
us L2

 $
C

or
e

C
om

pl
ex

P
er

ip
h-

er
al

s

LL
C

D
R

A
M

 C
ha

nn
el

s

Tile

BOOM OoO
Superscalar
RISC-V Core

Generated Compression
and Decompression

Processing Units

PTW
RoCC
Request

TLBs

L1 I$

L1 D$

RoCC
Response

Figure 8: Top-level RISC-V SoC block diagram with CDPUs.

in Figure 7. We can see that these line-up very well with the fleet
distributions from Figure 3 and preserve the shape of each algo-
rithm/operation pair’s unique distribution, in stark contrast to the
existing open-source benchmark suite call-size distributions. Be-
tween each pair of distributions, the only significant difference is
in the largest size bins—this is because these call sizes represent
an extremely small proportion of uncompressed fleet bytes and
thus are unlikely to be included in an 8,000 to 10,000 benchmark
sample. Comparing compression ratios, we find that on average
for each suite, achieved compression ratios are within 5%-10% of
fleet compression ratios. While elided due to space constraints, the
distributions for compression level and window sizes are also ex-
tremely similar to the fleet distributions shown in Figures 2b and 5
respectively.

5 A PARAMETERIZED GENERATOR FOR
COMPRESSION AND DECOMPRESSION
PROCESSING UNITS (CDPUS)

Our open-source CDPU generator is implemented in Chisel RTL [25]
and incorporated into the Chipyard RISC-V SoC generator ecosys-
tem [21]. Figure 8 shows the overall architecture of the accelerated
SoC, which is configured to use BOOM, an OoO superscalar RISC-V
core with performance comparable to ARM A72-like cores [64].

The generated accelerators receive commands directly from the
BOOM application core in the SoC via the RoCC interface [23],
which allows the CPU to directly dispatch custom RISC-V instruc-
tions in its instruction stream to the accelerator within a few cycles.
These RoCC instructions [23] can supply two 64-bit register values
from the core to the accelerator. The accelerator accesses the same
unified main memory space as the CPU through the 256 bit-wide
TileLink-based NoC [38] and can issue memory requests with vir-
tual addressing. As shown in Figure 8, all memory accesses made
by the accelerator go through the L2 and LLC, which are shared
with the application cores in the system.

Figures 9 and 10 show the block diagrams of complete decom-
pressors and compressors respectively. Both handle the Snappy
and ZStd algorithms. In these diagrams, components used by both
algorithms are shown with a solid outline, components used only
by Snappy with a dotted outline, and components used only by
ZStd with a dashed outline. In the following subsections, we will
outline the generator’s library of reusable components used to build
the aforementioned compressors and decompressors and give an
overview of high-level parameters that can be modified.

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

TileLink System Bus (L2) / PTW
R

oC
C

 R
eq

ue
st

 /
R

es
po

ns
e

C
M

D
 R

ou
te

r
Mem Interface Wrappers

...

LZ77
Writer

...

History
SRAM

Mem
Writer

Memloader Units
FS

E
 D

ec
od

er

H
uf

f T
ab

le

B
ui

ld
er

H
uf

f T
ab

le

R
ea

de
r

Huff Control

O
ff-

C
hi

p
H

is
to

ry
 L

oo
ku

p

LZ
77

 L
oa

de
r

FS
E

 T
ab

le
 B

ui
ld

er

FS
E

 T
ab

le
 R

ea
de

r

FS
E

 T
ab

le
 S

R
A

M

Mem
Loaders

Mem
Writer

Snappy
Control

Zstd
Control

Figure 9: Block diagram for CDPU decompressor with sup-
port for Snappy and ZStd.

TileLink System Bus (L2) / PTW

R
oC

C
 R

eq
ue

st
 /

R
es

po
ns

e

C
M

D
 R

ou
te

r

Mem Interface Wrappers
...

...
MemLoaders &

MemWriters

LZ
77

H
as

h
M

at
ch

er

Li
tL

en

In
je

ct
or

H
uf

f E
nc

od
er

FS
E

 D
ic

t
B

ui
ld

er
 x

3

FS
E

 E
nc

od
er

Huff Dict
Builder

FSE

S
eq

To
C

od
e

C
on

ve
rte

r

PQ

C
op

y
E

xp
an

de
r

Snappy Control ZSTD Control

Figure 10: Block diagram for CDPU compressor with sup-
port for Snappy and ZStd.

5.1 System Interface Blocks
Our generator uses three types of blocks to interface accelerators
to the rest of the system. Memloaders support streaming from the
L2 cache, Memwriters support streaming to the L2 cache, and Com-
mandRouters dispatch incoming commands to the appropriate sub-
blocks. These are visible in both Figures 9 and 10.

5.2 LZ77 Decoder
The LZ77 Loader, Off-Chip History Lookup, and LZ77 Writer in
Figure 9 comprise the LZ77 Decoder. This unit consumes sequences
of (offset, length, literal) from a compressed input and pro-
duces the final stream of decompressed output data. The block pri-
marily consists of a history window SRAM used to lookup matches
based on offset and length, with the ability to fall back to mak-
ing memory requests for matches that are further away than the
configured size of the history SRAM.

5.3 Huffman Expander
The Huff Table Builder, Reader, and Control in Figure 9 comprise
the Huffman Expander. Decoding Huffman-encoded streams is
inherently serial because the starting position of a code cannot be
known before decoding the previous code. The Huffman expander
performs speculative decoding by issuing decode-table look-ups
for a configurable number of starting bit positions, similar to the
IBM z15 decompressor [18].

5.4 Finite-State Entropy (FSE) Expander
The FSE Expander (consisting of FSE Table Builder, SRAM, and
Reader in Figure 9) first builds a decode table based on the normal-
ized count statistics of each symbol by reading the input file stream.
Then, the FSE expander reads the table to produce the decoded
symbol, which is the sum of bits from the input file stream and the
base value. The base value, number of bits to read from the input,
and the next table entry to read are indicated in the table entry.

5.5 LZ77 Encoder
The LZ77 encoder (consisting of the LZ77 Hash Matcher and LitLen
Injector blocks in Figure 10) performs streaming dictionary encod-
ing of raw input data and produces output in the common (offset,
length, literal) format. It primarily consists of a configurable
hash table SRAM and a history window SRAM. This unit iterates
over the data, checking the hash table for matches in the history
and then checking the history buffer to find the extent of the match.
If no match is available, the data is emitted as a literal.

5.6 Huffman Compressor
The Huffman compressor consists of two main modules, the Huff-
man dictionary builder and the Huffman encoder (Figure 10). The
dictionary builder collects symbol statistics and writes the dictio-
nary into memory. The encoder performs compression by perform-
ing look-ups into the dictionary builder.

5.7 Finite-State Entropy (FSE) Compressor
The FSE compressor is shown as part of Figure 10 and consists of
three separate dictionary builders for each of literal length, match
length, and offset and an FSE encoder that performs dictionary
lookups to perform compression. The input stream is passed to
the combinational SeqToCodeConverter which feeds the dictionary
builders with the correct inputs while the encoder consumes the
raw input stream.

5.8 Parameterization
Our framework supports two parameterization methods:
(1) Runtime configurable (RunT): These are parameters that can be

changed after hardware is built, either for programmability or
for rapid design space exploration.

(2) Compile-time configurable (CompileT): These are traditional
hardware parameters that are fixed when the design is compiled.

The parameters available in our framework include:

5.8.1 CDPU-wide parameters:

(1) Accelerator placement (CompileT), including:
(a) Near-core RoCC/on-NoC; no latency injection
(b) Chiplet; 25ns latency injection
(c) PCIeLocalCache: PCIe+DDIO, assuming PCIe card has

large SRAM cache and on-board DRAM; 200ns latency
injection (measurements from [48]) for raw input + final
output, no latency injection for intermediate reads/writes

(d) PCIeNoCache: PCIe+DDIO, assuming PCIe card does not
have on-board cache/DRAM; 200ns latency injection for
all requests

(2) Algorithm support (RunT & CompileT)

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

5.8.2 LZ77 decoder parameters:

(3) History Window Size (RunT & CompileT)

5.8.3 LZ77 encoder parameters:

(4) History Window Size (RunT & CompileT)
(5) Hash-table number of entries (RunT & CompileT)
(6) Hash-table associativity (RunT & CompileT)
(7) Hash-table contents (CompileT)
(8) Hash Function (CompileT)

5.8.4 Huffman expander parameters:

(9) Number of speculations (CompileT)

5.8.5 Huffman compressor parameters:

(10) Number of Bytes per cycle to collect symbol stats (CompileT)

5.8.6 FSE compressor parameters:

(11) Number of Bytes per cycle to collect symbol stats (CompileT)
(12) Max accuracy of FSE compression tables (CompileT)

6 CDPU DESIGN SPACE EXPLORATION
6.1 Evaluation Methodology
We perform design-space exploration (DSE) of our accelerated sys-
tems implemented in RTL running HyperCompressBench using
FireSim [44], which provides high-performance, deterministic, and
cycle-exact4 modeling of designs, while cycle-accurately modeling
I/O, including DRAM [28].

Each benchmark is run on two systems: a single-core RISC-
V system with CDPUs attached, modeled at 2 GHz core/CDPU
frequency, and one core (2 HT) of a Xeon E5-2686 v4-based server,
running at 2.3 GHz base/2.7 GHz turbo.

Performance results for our accelerated systems are reported
by measuring end-to-end operation time from the perspective of
software (i.e. the time taken by an entire compression or decom-
pression call, without overlapping requests). Performance results
for the Xeon are collected using lzbench [55], a standard tool for
in-memory (de)compression algorithm benchmarking. In Hyper-
CompressBench, a suite’s aggregate performance metric is the total
amount of time required to (de)compress each benchmark file in
the suite. Lastly, we report ASIC area estimates by pushing designs
through synthesis [60] for a commercial 16nm-class process.

6.2 Snappy Decompressor
Figure 11 shows speedup and area results from a CDPU gener-
ated for Snappy Decompression, configured with a range of on-
accelerator history windows (given on the x-axis) and in a variety
of placements in the system. In this design, offsets beyond the on-
accelerator SRAM fall back to the L2 cache. We see that the CDPU
placed near-core (RoCC) with the largest on-accelerator window
size (equal to Snappy’s SWmaximum of 64 KB), achieves the highest
speedup; it is over 10× faster than the Xeon (11.4 GB/s accelerated
vs. 1.1 GB/s Xeon), while consuming 0.431mm2 of silicon area in
16nm. As a comparison, this is less than 2.4% of the area of a single
modern Xeon Core Tile (17.98mm2 in 14nm, reported in [63]). If we
4All components of the RISC-V SoC written in RTL, including our accel. design, are
modeled bit-by-bit and cycle-by-cycle exactly as they would perform in silicon taped-
out using the same RTL.

64K 32K 16K 8K 4K 2K
SRAM Size (B)

0
2
4
6
8

10
12

Sp
ee

du
p

vs
. X

eo
n

RoCC Chiplet PCIeLocalCache PCIeNoCache

0.00

0.25

0.50

0.75

1.00

Ar
ea

 v
s.

64
K

Ac
ce

l

Area Normalized

Figure 11: CDPU speedup running Snappy Decompression
on HyperCompressBench across accelerator placements
and History SRAM Sizes. Area is normalized vs. the 64KB
history SRAM accelerator.

instead shrink the on-CDPU history to 2 KB, we find a potentially
more fruitful design point: we can achieve a 38% reduction in area
for only a 4.3% reduction in speedup (i.e., 9.8× speedup vs. Xeon
while consuming 1.5% of the area).

As discussed in Section 5.8, we also model integrating the CDPU
over PCIe+DDIO and re-run the sweep of on-accelerator SRAM
size, which is shown by the “PCIeNoCache” series in Figure 11.
Even with a 64K SRAM (no off-accelerator history lookups), we
see that even the cost of loading/writing input/output data once
over PCIe results in a significant (5.6×) slowdown vs. the near-core
CDPU, due to the large number of small decompressions in the fleet
(Fig. 3c).

The increased latency of PCIe also means that the accelerator
cannot take advantage of the same performance vs. history SRAM-
size tradeoff as the near-core accelerator: the PCIe-attached 32K
SRAM design loses most of the performance advantage of the al-
ready degraded PCIe 64K design, and performance only degrades
further from there. The “PCIeLocalCache” series in Figure 11 some-
what mitigates this by modeling a shared on-die SRAM cache and
local DRAM attached to the PCIe card. In this situation, we can
see that the SRAM optimization continues to work, albeit with an
identical starting speedup (at the 64K size) as “PCIeNoCache”.

Chiplet integration techniques and new protocols like CXL, UCIe,
CCIX, and CAPI offer a new “intermediate” placement option for
accelerators; accelerators can be manufactured in a separate die,
reducing integration cost, while still remaining on the same pack-
age as the core. As discussed in Section 5.8, we can model this
integration technique in our framework. The results of running the
Snappy decompressor in this placement are shown in the “Chiplet”
series in Figure 11. Considering the configuration with 64K history
size, we can see that Chiplet integration is an attractive solution for
a Snappy accelerator; it still achieves a 9.5× speedup vs. the Xeon,
despite the added latency. However, we can see that performance
suffers as more requests are forced to cross the Chiplet interconnect;
at the smallest history window sizes, speedups drop such that they
are on par with PCIe-based integration.

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

64K 32K 16K 8K 4K 2K
SRAM Size (B)

0

5

10

15

20

Sp
ee

du
p

vs
. X

eo
n

RoCC Chiplet PCIeNoCache

0.00

0.25

0.50

0.75

1.00

1.25

Ra
tio

Compression Ratio vs. SW Area vs. 64K14HT Accel.

Figure 12: CDPU speedup/area running Snappy Compres-
sion onHyperCompressBench acrossCDPUplacements and
History SRAM Sizes. Area is norm-ed vs. the 64K history
SRAM and 214 hash table entry Snappy CDPU.

64K 32K 16K 8K 4K 2K
SRAM Size (B)

0

5

10

15

Sp
ee

du
p

vs
. X

eo
n

RoCC Chiplet PCIeNoCache

0.00

0.25

0.50

0.75

1.00

Ra
tio

Compression Ratio vs. SW Area vs. 64K14HT Accel.

Figure 13: CDPU speedup/area running Snappy Compres-
sion onHyperCompressBench acrossCDPUplacements and
History SRAMSizes, with only 29 HashTable Entries. Area is
norm-ed vs. the 64K history SRAM and 214 hash table entry
Snappy CDPU.

6.3 Snappy Compressor
Figure 12 shows speedup, compression ratio, and area results for the
Snappy Compress accelerator, covering a range of on-accelerator
history windows (on the x-axis). Area results are normalized to
the largest version of the accelerator, which has a 64K History
SRAM and 214 hash table entires (“64K14HT” on plots). This design
consumes 0.851 mm2 in a 16nm process or about 4.7% the area of
a Xeon Core [63]. Reducing the history SRAM size restricts the
maximum matching offset that can be identified, and large offset
matching does not fall back to the L2 cache since history checking
is necessarily serial in compression. Interestingly, the 64 KB SRAM
design achieves a 1.1% higher compression ratio than Snappy SW.
This is because the software implements a skipping mechanism
that avoids hash-table lookups when data appears incompressible
to save cycles. In a hardware implementation, this optimization is
not useful. Therefore, the accelerator has more “chances” to find a
match than SW. As the SRAM size is reduced, we do see a drop-off

in the achieved compression ratio as compared to software, ranging
from an 8% loss at 2 KB (with 20% area savings) to a 0.5% loss at
32 KB (with 10% area savings).

We also see that across the swath of history window sizes, the
accelerator achieves significant speedup compared to the Xeon.
For example, the 64 KB configuration achieves over 16× speedup
compared to the Xeon (5.84 GB/s accel. vs. 0.36 GB/s Xeon). The
various smaller configurations achieve between 14.8× and 15.5×
speedup, losing performance only because of the increased amount
of data they must write due to the lower achieved compression
ratio.

Figure 12 also shows various compression accelerator place-
ments. We see again that a Chiplet-integrated design performs very
well, achieving less than 1.7% loss of speedup vs. the near core de-
sign across the swath of SRAM sizes. PCIe again struggles, but fares
much better than in the decompression case, with speedups shrink-
ing to around 6.6×. Note that PCIeNoCache and PCIeLocalCache
are identical for compression, given that there are no intermediate
data accesses.

Given that Snappy is a lightweight algorithm, we can ask an
interesting question: how small of a Snappy accelerator can we
build while still achieving meaningful compression and high perfor-
mance? In Figure 12 we can see that reducing the history window
size to 2K for compression can result in negligible loss of speedup
and a small, but potentially tolerable 8% loss in compression ra-
tio, while reducing accelerator area by 20%. Figure 13 shows the
results of tuning another design knob: the number of hash table
entries. Reducing the number of entries increases the likelihood of
collisions and reduces the chance of finding optimal matches in the
history window. However, we can see that reducing the number of
hash table entries can provide drastic area wins: a snappy compres-
sion accelerator with 29 hash table entires and a 2K history SRAM
consumes only 34% of the area of the full-size design (and only 1.6%
of the area of a Xeon Core), with a negligible loss of speedup and
while only increasing compression ratio loss by 3% compared to
the 2K history, 214 hash table entry design.

6.4 ZStd Decompressor
Figure 14 shows speedup and area results from a CDPU generated
for ZStd Decompression, configured with a range of on-accelerator
history windows (given on the x-axis) and in a variety of placements
in the system. The largest design in this plot (64K SRAM) achieves
4.2× speedup vs. the Xeon (3.95 GB/s accelerated vs. 0.94 GB/s
Xeon).

We can see that overall performance is reduced compared to the
Snappy accelerator. While this is not directly comparable since the
Snappy/ZStd suites in HyperCompressBench are different, we can
broadly see the cost of the additional entropy decoding steps on
the accelerator’s performance, especially since the LZ77 decoding
block is re-used between Snappy and ZStd accelerators. This added
cost attenuates both the area savings and performance impact of
reducing history SRAM compared to the Snappy decompressor; the
overall savings moving from the 64K SRAM design (1.9 mm2 in
16nm) to the 2K SRAM design of the ZStd compressor is only 8.6%.

An additional parameter that can be swept in the ZStd decom-
pressor as compared to Snappy is the amount of speculation allowed

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

64K 32K 16K 8K 4K 2K
SRAM Size (B)

0

1

2

3

4

5

Sp
ee

du
p

vs
. X

eo
n

RoCC Chiplet PCIeLocalCache PCIeNoCache

0.00

0.25

0.50

0.75

1.00

Ar
ea

 v
s.

64
K

Ac
ce

l

Area Normalized

Figure 14: CDPU speedup running ZStd Decompression on
HyperCompressBench across accelerator placements and
History SRAMSizes. Area is normalized vs. the 64KBhistory
SRAM accelerator.

64K 32K 16K 8K 4K 2K
SRAM Size (B)

0

5

10

15

20

Sp
ee

du
p

vs
. X

eo
n

RoCC Chiplet PCIeLocalCache PCIeNoCache

0.00

0.25

0.50

0.75

1.00

1.25

Ra
tio

Compression Ratio vs. SW Area vs. 64K14HT Accel.

Figure 15: CDPU speedup/area running ZStd Compression
onHyperCompressBench across CDPU placements andHis-
tory SRAM Sizes. Area is norm-ed vs. the 64K hist. and 214

hash table entry ZStd CDPU.

in the Huffman Decoder. All results in Figure 14 used a speculation
of 16. To better understand the design space, we explored two addi-
tional speculation design points: 32 (similar to IBM z15) and 4 (as a
minimum reasonable design point), while keeping history SRAM
size fixed at 64K. The 32 speculation design increases speedup over
Xeon to 5.64×, while requiring an additional 18% area as compared
to the 16 speculation design. The 4 speculation design reduces
speedup over Xeon to 2.11×, while requiring 10% less area as com-
pared to the 16 speculation design. As we can see, for the ZStd
decompressor, tuning the speculation amount produces a much
larger swing in design quality-of-result than history SRAM size.

6.5 ZStd Compressor
Figure 15 shows speedup, compression ratio, and area results for
the ZStd Compress accelerator, covering a range of on-accelerator
history windows (on the x-axis). Area results are normalized to the
largest version of the accelerator, which has a 64K History SRAM

and 214 hash table entries (“64K14HT” on plots). This design con-
sumes 3.48mm2 in a 16nm process. As this accelerator re-uses the
LZ77 encoder block from the Snappy accelerator, restricting history
SRAM size similarly restricts the maximum matching offset that
can be identified. Looking first at compression ratio, we see that
the accelerator achieves only 84% of the compression ratio of soft-
ware, likely primarily due to the fact that we are re-using the LZ77
encoder block as configured for Snappy. We leave exploring more
complicated LZ77 encoding techniques to future work. With the
caveat that compression ratio is reduced, the largest configuration
of accelerator achieves a 15.8x speedup compared to the Xeon (3.5
GB/s accelerated vs. 0.22 GB/s Xeon).

6.6 Key Implementation-Based Design-Space
Exploration Lessons for Hyperscale CDPUs

Our design space exploration shows the importance of focusing
not only on the microarchitectural design of CDPUs, but also their
high-level parameters. By tuning these high-level parameters in
the previous section, we observed for example, 46× differences in
speedups and 66% savings in silicon area. Here, we summarize our
key findings:
(1) Decompression accelerator feasibility is very heavily affected

by accelerator placement. Given data sizes observed in Google’s
fleet, near-core accelerators (10× speedup for Snappy, 4× speedup
for ZStd) perform over 3 to 5.6 times better than PCIe attached
accelerators (1.8× speedup for Snappy, 1.4× speedup for ZStd).
Chiplets offer a reasonable middle ground for Snappy, with our
chiplet-integrated accelerator (9.5× speedup) performing only
1.1× worse than the near-core accelerator.

(2) In contrast, compression is less sensitive to accelerator place-
ment; we observe over 6.6× speedup (Snappy) or 8.2× speedup
(ZStd) in the PCIe attached cases. However, the biggest perfor-
mance gains are still seen for near-core and chiplet-integrated
designs (around 15 to 16× speedup for both Snappy and ZStd).

(3) Snappy decompression accelerator area is dominated by history
size, which also affects speedup (but not compression ratio).
Given data characteristics in Google’s fleet, a 38% silicon area
savings can be achieved by slightly sacrificing speedup (9.8×
vs. 10× speedup).

(4) ZStd decompression accelerator area is dominated by vary-
ing the amount of speculation in the Huffman stage. Given
data characteristics in Google’s fleet, there is a 31% silicon area
cost increase between speculation amounts of 4 and 32, but
this comes with a significant corresponding improvement in
speedup (2.1× vs. 5.6× speedup).

(5) Snappy compression accelerator area is dominated by history
buffer size and hash table size. When both are reduced, a neg-
ligible sacrifice in speedup and a 12% sacrifice in compression
ratio can result in reducing accelerator silicon area by 66%.

7 RELATEDWORK
A few prior studies have presented (de)compression metrics as
part of broader hyperscaler fleet characterizations [40, 41, 56].
Our study is the first to take a fleet-wide, multi-year deep-dive
into (de)compression usage at a major cloud provider by profiling
Google’s fleet and derives several novel insights for CDPU design.

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Furthermore, we use the insights gained to build a parameterized
generator for CDPUs that supports hyperscale use-cases, and trans-
late our profiling data into open-source, hyperscaler-representative
(de)compression benchmarks that can be used by the community.

Many prior studies have explored implementing hardware accel-
erators for lossless block-level (de)compression, both in academia [29,
50], industrial research [36, 53], and commercial products [10–
14, 18, 58]. However, all of these studies only explore a single point
in the design space; they focus on a single algorithm (usually Flate
or ZStd), in a single placement (PCIe, NoC-attached, on-chipset,
etc.), and sometimes only a single direction (decompress or com-
press). Furthermore, these studies usually run existing open-source
benchmarks, which, as shown in Section 4, are not representative of
hyperscale workloads. To our knowledge, we are the first study to
build a highly-parameterized CDPU generator that supports multi-
ple algorithms using a common set of high-performance, re-usable
primitives. Our generator integrates into a RISC-V SoC framework
that allows for rapid evaluation of CDPUs across system place-
ments and configuration parameters. Furthermore, we evaluate our
generated designs with HyperCompressBench, a (de)compression
benchmark that is representative of hyperscale workloads.

However, for our design space evaluations to produce realistic
results, it is important to contextualize and validate our observed
results with those published in prior studies. To that end, we com-
pare against the current state of the art, the NXU accelerator for the
IBM POWER9 and z15 [18]. While the NXU study does not provide
a directly comparable performance result using open-source bench-
marks, we can extrapolate from its performance vs. data size plots
and the size distribution of input files in HyperCompressBench.
This calculation projects performance of the NXU on HyperCom-
pressBench of 5.6 to 7.1 GB/s for compression and 6.7 to 7.7 GB/s for
decompression. Our results for compression (5.8 GB/s Snappy, 3.5
GB/s ZStd) and decompression (11.4 GB/s Snappy, 5.3 GB/s ZStd)
are comparable, given our RISC-V SoC’s weaker memory system
and algorithmic differences. In area terms, our academic prototype
is similar, but could benefit from greater tuning/engineering effort,
with our design consuming around 1.3 mm2 (Snappy) or 5.7 mm2

(ZStd) in a 16nm process, while the IBM NXU consumes around 3.5
mm2 in the GF14 process (extrapolated from [18, 62]).

To our knowledge, the state-of-the-art open-source compression
and decompression implementation is Project Zipline [13, 30, 32,
58] from Microsoft, which has also been fabricated in the Corsica
ASIC [30, 59]. The ASIC version of this design is limited to 25 Gbps
for single requests (3.125 GB/s) [30]. Also in contrast, our design is
heavily parameterized, supporting several compile-time and run-
time configurable parameters, and is integrated into a complete
system for evaluation.

FPGAs have also been proposed as a host platform for compres-
sion and decompression accelerators constructed using handwritten
RTL or high-level synthesis tools [29, 36, 46, 50]. Unfortunately,
FPGAs as a basis technology are insufficiently performant to sup-
port (de)compression as compared to ASIC designs—our generated
accelerators are significantly faster than the state-of-the-art hand-
written [29] andHLS-generated [46] FPGA-hosted implementations.
In Section 3.4, we also demonstrated that the flexibility of FPGAs is
unnecessary for the pace of (de)compression algorithm evolution
in WSCs. Lastly, the Corsica ASIC’s compression engine has also

been shown to achieve improved performance over FPGA-hosted
solutions [30].

Several interesting industrial products are also on the horizon,
including NVIDIA’s DPU [17], Intel’s IPU [15], and Intel Sapphire
Rapids/QAT [16]. At time of writing, little commercial benchmark-
ing data is available publicly for these systems.

8 CONCLUSION

In this work, we presented a detailed fleet-wide characterization
of (de)compression usage at a major cloud provider by profiling
Google’s datacenter fleet. We showed that (de)compression con-
sumes significant fleet CPU cycles, even though services under-
utilize the most aggressive forms of compression, presenting an
opportunity for hardware acceleration to save resources beyond
merely CPU cycles.

We then presented the first end-to-end design/evaluation frame-
work for CDPUs, including: 1. An open-source RTL-based CDPU
generator that supports many run-time and compile-time parame-
ters. 2. Integration into an open-source RISC-V SoC for rapid perfor-
mance and silicon area evaluation with varying CDPU placements
and configurations. 3. An open-source (de)compression benchmark,
HyperCompressBench, that represents (de)compression usage in
Google’s fleet.

While a large body of prior work has improved themicroarchitec-
tural state-of-the-art for CDPUs supporting various algorithms in
fixed contexts [10–18, 29, 30, 32, 36, 46, 50, 53, 58, 59], we found that
higher-level design parameters like accelerator placement, hash
table sizing, history window sizes, and more are as critical when
considering the feasibility of CDPU integration, but were previously
not well-studied in the literature.

Using our CDPU design framework, we performed an exten-
sive design space exploration running HyperCompressBench. Our
design-space exploration spanned a 46× range in accelerator speedup,
3× range in silicon area (for a single pipeline), and explored a va-
riety of accelerator integration techniques to better understand
optimal CDPU designs for hyperscale contexts. Our final hyperscale-
optimized accelerator instances are up to 10× to 16× faster than a
single Xeon core, while consuming a small fraction (as little as 2.4%
to 4.7%) of the area.

ACKNOWLEDGMENTS
This work builds on profiling infrastructure work done by several
engineering teams at Google (e.g., GWP) and we would like to
thank our colleagues in those teams, including Todd Jackson, Gar-
rett Wang, and Alexey Alexandrov. We would also like to thank
Daniel Berlin, Jichuan Chang, Chris Kennelly, and the anonymous
reviewers and artifact evaluators for their valuable feedback. The
information, data, or work presented herein was funded in part by
SLICE Lab industrial sponsors and affiliates and by NSF CCRI ENS
Chipyard Award #2016662 and by NSF Award CCF-1955450. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

A ARTIFACT APPENDIX
A.1 Abstract
This artifact appendix describes how to reproduce the CDPU De-
sign Space Exploration results from Section 6 of this paper. As in
Section 6, we will use FireSim FPGA-accelerated simulations to
cycle-exactly simulate the entire RISC-V SoC containing the RTL
implementations of CDPUs (compression and decompression accel-
erators). We will run HyperCompressBench, the benchmark suite
we created from fleet-wide profiling at Google, on both a Xeon sys-
tem (for the baseline) and our RISC-V SoC augmented with CDPUs.
We will sweep the design parameters explored in Section 6 to col-
lect accelerator performance metrics and reproduce the accelerator
trade-offs and insights discussed in the paper.

A.2 Artifact check-list (meta-information)
• Run-time environment: AWS FPGA Developer AMI 1.12.1.
• Hardware: AWS EC2 instances: 1× c5.9xlarge, 16× f1.2xlarge, 1×
m4.large.

• Metrics: Compression and decompression throughput (GB/s), compres-
sion ratio.

• Output: Compression and decompression performance and compres-
sion ratio plots. HyperCompressBench call size distribution plots. Re-
generation of paper text that contains data.

• Experiments: FireSim simulations of compression and decompression
accelerators incorporated into a RISC-V SoC, running HyperCompress-
Bench.

• How much disk space is required?: 2000GB (on EC2 instance).
• How much time is needed to prepare workflow?: 1 hour (scripted
installation).

• How much time is needed to complete experiments?: 6 hours for
Snappy, 110 hours for ZStd (both fully-automated).

• Publicly available: Yes.
• Code licenses: Several, see download.
• Archived: https://doi.org/10.5281/zenodo.7812634, https://doi.org/10.5281/

zenodo.7812577, https://doi.org/10.5281/zenodo.7812573, https://doi.org/
10.5281/zenodo.7812563.

A.3 Description
A.3.1 How to access. The artifact consists of four git repositories
preserved on Zenodo.

(1) chipyard-compress-acc-ae: Chipyard RISC-V SoC genera-
tion environment, customized for CDPU evaluation. Zenodo: https:
//doi.org/10.5281/zenodo.7812634
(2) firesim-compress-acc-ae: FireSim simulation environment,
customized for CDPU evaluation. Zenodo: https://doi.org/10.5281/
zenodo.7812577
(3) compress-acc-ae: Compression and decompression acceler-
ator implementation (RTL), software, and scripts. Zenodo: https:
//doi.org/10.5281/zenodo.7812573
(4) HyperCompressBench: Compression and decompression bench-
marks representative of (de)compression usage in Google’s dat-
acenter fleet, created and open-sourced for this paper. Zenodo:
https://doi.org/10.5281/zenodo.7812563

Users need not download the latter three repositories manually—
they will be obtained automatically from Zenodo when the first
repository is set up in the next section.

A.3.2 Hardware dependencies. OneAWSEC2 c5.9xlarge instance
(also referred to as the “manager” instance), sixteen f1.2xlarge
instances, and one m4.large instance are required. The latter two
instance types will be launched automatically by FireSim’s manager.

To optionally run FPGA builds (see Appendix A.7.2), seven addi-
tional z1d.6xlarges are required, however we provide pre-built
FPGA images to avoid the long latency (≈ 18 hours) of this process.

A.3.3 Software dependencies. Installing mosh (https://mosh.org/)
on your local machine is highly recommended for reliable access to
EC2 instances. All other requirements are automatically installed
by scripts in the following sections.

A.4 Installation
First, follow the instructions on the FireSim website5 to create a
manager instance on EC2. You must complete up to and including
“Section 1.3.1.2: Key Setup, Part 2”, with the following changes in
“Section 1.3.1”:

(1) When instructed to launch a c5.4xlarge instance, choose a
c5.9xlarge instead.

(2) When entering the root EBS volume size, use 2000GB rather
than 300GB.

Once you have completed up to and including “Section 1.3.1.2”
in the FireSim docs, you should have a manager instance set up,
with an IP address and key. Use either ssh or mosh to login to the
instance.
Option 1: USE SSH
$ ssh -i KEY.pem centos@IP_ADDR
Option 2: USE MOSH
$ mosh --ssh="ssh -i KEY.pem" centos@IP_ADDR

From this point forward, all commands should be run on
the manager instance.

If using ssh, be sure to start screen or tmux on the manager so
that the artifact continues running even if your network connection
is interrupted.

Begin by fetching the top-level repository from Zenodo, like so:

$ cd $HOME
Enter as a single line:
$ curl -Ls -w %{url_effective} -o a https://doi.org/

10.5281/zenodo.7812634 > DL_url
$ wget $(cat DL_url)/files/chipyard-compress-acc-ae.zip
$ unzip chipyard-compress-acc-ae.zip

Next, run the following, which will initialize all dependencies
and run basic Chipyard and FireSim setup steps (RISC-V toolchain
installation, host toolchain installation, etc.):

$ cd chipyard-compress-acc-ae
$./scripts/first-clone-setup-fast.sh

This step should take around 45 minutes. Upon successful com-
pletion, it will print:

first-clone-setup-fast.sh complete.

Once this is complete, run:

5https://docs.fires.im/en/1.15.2/Initial-Setup/index.html

https://doi.org/10.5281/zenodo.7812634
https://doi.org/10.5281/zenodo.7812577
https://doi.org/10.5281/zenodo.7812577
https://doi.org/10.5281/zenodo.7812573
https://doi.org/10.5281/zenodo.7812563
https://doi.org/10.5281/zenodo.7812563
https://doi.org/10.5281/zenodo.7812634
https://doi.org/10.5281/zenodo.7812634
https://doi.org/10.5281/zenodo.7812577
https://doi.org/10.5281/zenodo.7812577
https://doi.org/10.5281/zenodo.7812573
https://doi.org/10.5281/zenodo.7812573
https://doi.org/10.5281/zenodo.7812563
https://mosh.org/
https://docs.fires.im/en/1.15.2/Initial-Setup/index.html

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

$ source env.sh
$ cd sims/firesim
$ source sourceme-f1-manager.sh

Finally, run the following to finish setting up FireSim. You can
enter your email address when prompted if you plan to run the
optional FPGA builds in Appendix A.7.2, otherwise just hit Enter.

$ firesim managerinit

Now, your manager instance is fully set up to run CDPU sims.

A.5 Experiment workflow
Now that our manager is set up, we will run the full artifact evalua-
tion script, which will automatically do the following:

(1) On the manager instance, extract HyperCompressBench and
compile RISC-V/CDPU benchmarks for the ≈35,000 bench-
mark files we need.

(2) For isolated Xeon baseline runs, launch an m4.large, run
HyperCompressBench on it using lzbench, collect results,
and terminate the m4.large.

(3) On the manager instance, build FireSim host-side drivers
required to drive each FPGA-accelerated simulation.

(4) Launch sixteen f1.2xlarge instances, which provide a total
of sixteen FPGAs to run simulations on in parallel.

(5) Run FireSim simulations, repeating the following for the 16
workloads of interest:

(a) Copy all simulation infrastructure to the F1 instances.
(b) Run the set of benchmarks on 16 simulated systems in

parallel (one f1.2xlarge has 1 FPGA).
(c) Copy results back to the manager instance.

(6) Terminate the sixteen f1.2xlarge instances.
(7) On the manager, re-generate accelerator performance plots

from this paper (and sections of the paper text that use this
data), using data collected from your runs.

Note that this script will not rebuild FPGA images for the system
by default, since each build takes around 18 hours. We instead pro-
vide pre-built images by default (see $COMPRESSACC_FSIM/config_
others/config_hwdb.yaml). If you would like to build your own
images, see Appendix A.7.2, then return here.

Now, run the aforementioned full artifact evaluation script:

$ cd $COMPRESSACC_FSIM
$./run-ae-full.sh

This takes around 6 hours for Snappy and 110 hours for ZStd.
When complete, it will print:

run-ae-full.sh complete.

The FireSim manager will automatically terminate any instances
it launched during this process.

A.6 Evaluation and expected results
Next, we will step through the plots generated from your run of
run-ae-full.sh in the previous section. The following results
generated from your run will be located in the $HYPER_RESULTS
directory:

(1) Figures 7a, 7b, 7c, and 7d:
[Snappy,ZSTD]-[C,D]-callsizes.pdf

(2) Figure 11: snappy-decompression.pdf
(3) Figure 12: snappy-compression-ht14.pdf
(4) Figure 13: snappy-compression-ht9.pdf
(5) Figure 14: zstd-decompression.pdf
(6) Figure 15: zstd-compression-ht14.pdf
(7) FINAL_TEXT_SUMMARIES.txt contains paper text re-generat-

ed with data obtained from these simulations. This excludes
the single ZStd-Decomp-32spec data point, which requires
≈100 additional machine-days of software simulation.

(8) Raw results are located in the five *.csv files

A.7 Experiment customization
A.7.1 Customizing the design. Since the compression and decom-
pression accelerators are written in Chisel RTL, incorporated into
the Chipyard RISC-V SoC generator ecosystem, and modeled at
high-performance using FireSim, they can be experimented with
in a wide-variety of contexts, including in multi-core systems, at-
tached to various kinds of processors, and with different memory
hierarchy configurations, to name a few. These parameters are too
numerous to list here; see the FireSim docs6, Chipyard docs7, and
tutorial slides8 for these configuration options.

The compression and decompression accelerator RTL is located
in the $COMPRESSACC_SRC directory and can be customized as nec-
essary, including using the runtime and compile-time configurable
parameters outlined in Section 5.8, several of which we swept in
this artifact evaluation.

A.7.2 Rebuilding FPGA images. We provide pre-built FPGA images
for designs in this paper (generated from the included RTL), encoded
in the configuration files in the artifact.

Rebuilding the supplied FPGA images can also be done by run-
ning ./buildafi.sh in the $COMPRESSACC_FSIM directory. This
will take around 18 hours, require seven z1d.6xlarge instances,
generate seven new AGFIs (i.e., FPGA bitstreams on EC2 F1), and
place their config_hwdb.yaml entries in $BUILT_HWDB_ENTRIES/
[config name]. To use the new AGFIs, replace existing entries
in the $COMPRESSACC_FSIM/config_others/config_hwdb.yaml
file (or, for a new config, add it).

When an FPGA build completes, the FireSim manager will au-
tomatically terminate the instances it launched during the build
process. More details about the FireSim FPGA build process can be
found in the FireSim docs9. Note that many of the FireSim manager
build configuration files are in a non-standard location to simplify
scripting for artifact evaluation. Open buildafi.sh to see their
locations.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

6https://docs.fires.im/en/1.15.2/
7https://chipyard.readthedocs.io/en/1.8.1/
8https://fires.im/asplos-2023-tutorial/
9https://docs.fires.im/en/1.15.2/Building-a-FireSim-AFI.html

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://docs.fires.im/en/1.15.2/
https://chipyard.readthedocs.io/en/1.8.1/
https://fires.im/asplos-2023-tutorial/
https://docs.fires.im/en/1.15.2/Building-a-FireSim-AFI.html

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Karandikar, Udipi, Choi, Whangbo, Zhao, Kanev, Lim, Alakuijala, Madduri, Shao, Nikolić, Asanović, and Ranganathan

REFERENCES
[1] [n. d.]. Brotli compression format. https://github.com/google/brotli.
[2] [n. d.]. FiniteStateEntropy: New Generation Entropy coders. https://github.com/

Cyan4973/FiniteStateEntropy.
[3] [n. d.]. Gipfeli, a high-speed compression library. https://github.com/google/

gipfeli.
[4] [n. d.]. LZO real-time data compression library. http://www.oberhumer.com/

opensource/lzo/.
[5] [n. d.]. Snappy: A fast compressor/decompressor. https://github.com/google/

snappy.
[6] [n. d.]. Snappy Testdata. https://github.com/google/snappy/tree/main/testdata.
[7] [n. d.]. zlib Home Site - A Massively Spiffy Yet Delicately Unobtrusive Compres-

sion Library. https://www.zlib.net/.
[8] [n. d.]. Zstandard - Real-time data compression algorithm. https://facebook.

github.io/zstd/.
[9] 2011. Snappy compressed format description. https://github.com/google/snappy/

blob/main/format_description.txt.
[10] 2013. Scaling Acceleration Capacity from 5 to 50 Gbps and Beyond with Intel

QuickAssist Technology. https://www.intel.com/content/dam/www/public/us/
en/documents/solution-briefs/scaling-acceleration-capacity-brief.pdf.

[11] 2015. Intel QuickAssist Adapter 8950. https://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf.

[12] 2017. Product Brief: Intel Atom C3000 Processor. https://www.intel.com/
content/dam/www/public/us/en/documents/product-briefs/atom-c3000-
family-brief.pdf.

[13] 2021. Project Zipline. https://github.com/opencomputeproject/Project-Zipline.
[14] 2022. AHA374 / AHA378 PCI Express Compression and Decompression Acceler-

ator Card. http://www.aha.com/Uploads/aha374-378_brief_rev_c1.pdf.
[15] 2023. Intel Infrastructure Processing Unit (Intel IPU). https://www.intel.com/

content/www/us/en/products/details/network-io/ipu.html.
[16] 2023. Intel Launches 4th Gen Xeon Scalable "Sapphire Rapids".

https://www.phoronix.com/image-viewer.php?id=intel-xeon-sapphire-
rapids-max&image=intel_sapphirerapids_8_lrg.

[17] 2023. NVIDIA BlueField Data Processing Units. https://www.nvidia.com/en-
us/networking/products/data-processing-unit/.

[18] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein, Ashutosh Mishra, Craig B.
Agricola, Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J. Starke,
Haren Myneni, and Charlie Wang. 2020. Data Compression Accelerator on
IBM POWER9 and z15 Processors : Industrial Product. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). 1–14. https:
//doi.org/10.1109/ISCA45697.2020.00012

[19] Jyrki Alakuijala, Evgenii Kliuchnikov, Zoltan Szabadka, and Lode Vandevenne.
2015. Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2 Compres-
sion Algorithms. https://cran.r-project.org/web/packages/brotli/vignettes/brotli-
2015-09-22.pdf.

[20] Jyrki Alakuijala and Zoltan Szabadka. 2016. Brotli Compressed Data Format.
RFC 7932. https://doi.org/10.17487/RFC7932

[21] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (jul 2020),
10–21. https://doi.org/10.1109/MM.2020.2996616

[22] R. Arnold and T. Bell. 1997. A corpus for the evaluation of lossless compression
algorithms. In Proceedings DCC ’97. Data Compression Conference. 201–210. https:
//doi.org/10.1109/DCC.1997.582019

[23] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. EECS Department, University of California, Berkeley.

[24] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho,
Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp
Moseley, and Parthasarathy Ranganathan. 2019. AsmDB: Understanding and
Mitigating Front-End Stalls in Warehouse-Scale Computers. In Proceedings of
the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA ’19). Association for Computing Machinery, New York, NY, USA, 462–473.
https://doi.org/10.1145/3307650.3322234

[25] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Constructing
hardware in a Scala embedded language. In DAC Design Automation Conference
2012. 1212–1221. https://doi.org/10.1145/2228360.2228584

[26] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition.
Synthesis Lectures on Computer Architecture 13, 3 (2018), i–189. https://doi.org/
10.2200/S00874ED3V01Y201809CAC046

[27] Timothy C. Bell, John G. Cleary, and I. H. Witten. 1990. Text compression. Prentice
Hall, Englewood Cliffs, N.J.

[28] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, and Krste Asanovic. 2019. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA ’19). Association for Computing Machinery, New York, NY, USA, 330–339.
https://doi.org/10.1145/3289602.3293894

[29] Jianyu Chen, Maurice Daverveldt, and Zaid Al-Ars. 2021. FPGA Acceleration of
Zstd Compression Algorithm. In 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 188–191. https://doi.org/10.1109/
IPDPSW52791.2021.00035

[30] Derek Chiou, Eric Chung, and Susan Carrie. 2019. HotChips31 Tutorial: (Cloud)
Acceleration at Microsoft. https://old.hotchips.org/hc31/HC31_T2_Microsoft_
CarrieChiouChung.pdf.

[31] Yann Collet and Murray Kucherawy. 2021. Zstandard Compression and the
’application/zstd’ Media Type. RFC 8878. https://doi.org/10.17487/RFC8878

[32] Microsoft Corporation and Broadcom Corporation. 2019. Project Zipline Top Mi-
cro Architecture Specification. https://github.com/opencomputeproject/Project-
Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_
Specification.docx.

[33] Sebastian Deorowicz. [n. d.]. Silesia compression corpus. https://sun.aei.polsl.pl/
/~sdeor/index.php?page=silesia.

[34] L. Peter Deutsch. 1996. DEFLATE Compressed Data Format Specification version
1.3. RFC 1951. https://doi.org/10.17487/RFC1951

[35] Jarek Duda, Khalid Tahboub, Neeraj J. Gadgil, and Edward J. Delp. 2015. The use
of asymmetric numeral systems as an accurate replacement for Huffman coding.
In 2015 Picture Coding Symposium (PCS). 65–69. https://doi.org/10.1109/PCS.
2015.7170048

[36] Jeremy Fowers, Joo-Young Kim, Doug Burger, and Scott Hauck. 2015. A Scalable
High-Bandwidth Architecture for Lossless Compression on FPGAs. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines. 52–59. https://doi.org/10.1109/FCCM.2015.46

[37] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101. https:
//doi.org/10.1109/JRPROC.1952.273898

[38] SiFive Inc. 2019. SiFive TileLink Specification. https://sifive.cdn.prismic.io/sifive%
2Fcab05224-2df1-4af8-adee-8d9cba3378cd_tilelink-spec-1.8.0.pdf.

[39] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin, Tae Jun Ham,
and Jae W. Lee. 2020. A Specialized Architecture for Object Serialization with
Applications to Big Data Analytics. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 322–334. https://doi.org/10.1109/
ISCA45697.2020.00036

[40] Geonhwa Jeong, Bikash Sharma, Nick Terrell, Abhishek Dhanotia, Zhiwei Zhao,
Niket Agarwal, Arun Kejariwal, and Tushar Krishna. 2023. Characterization
of Data Compression in Datacenters. In 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS).

[41] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-YeonWei, and David Brooks. 2015. Profiling aWarehouse-Scale
Computer. In Proceedings of the 42nd Annual International Symposium on Com-
puter Architecture (Portland, Oregon) (ISCA ’15). Association for Computing Ma-
chinery, New York, NY, USA, 158–169. https://doi.org/10.1145/2749469.2750392

[42] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. 2017. Mallacc: Ac-
celerating Memory Allocation. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Machinery, New
York, NY, USA, 33–45. https://doi.org/10.1145/3037697.3037736

[43] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi,
Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. 2021. A
Hardware Accelerator for Protocol Buffers. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 462–478.
https://doi.org/10.1145/3466752.3480051

[44] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE
Press, Piscataway, NJ, USA, 29–42. https://doi.org/10.1109/ISCA.2018.00014

[45] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 317–330.
https://doi.org/10.1145/3297858.3304053

https://github.com/google/brotli
https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/google/gipfeli
https://github.com/google/gipfeli
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://github.com/google/snappy
https://github.com/google/snappy
https://github.com/google/snappy/tree/main/testdata
https://www.zlib.net/
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://github.com/google/snappy/blob/main/format_description.txt
https://github.com/google/snappy/blob/main/format_description.txt
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/scaling-acceleration-capacity-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/scaling-acceleration-capacity-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-c3000-family-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-c3000-family-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/atom-c3000-family-brief.pdf
https://github.com/opencomputeproject/Project-Zipline
http://www.aha.com/Uploads/aha374-378_brief_rev_c1.pdf
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.phoronix.com/image-viewer.php?id=intel-xeon-sapphire-rapids-max&image=intel_sapphirerapids_8_lrg
https://www.phoronix.com/image-viewer.php?id=intel-xeon-sapphire-rapids-max&image=intel_sapphirerapids_8_lrg
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://doi.org/10.1109/ISCA45697.2020.00012
https://doi.org/10.1109/ISCA45697.2020.00012
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://doi.org/10.17487/RFC7932
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/DCC.1997.582019
https://doi.org/10.1109/DCC.1997.582019
https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.1145/3289602.3293894
https://doi.org/10.1109/IPDPSW52791.2021.00035
https://doi.org/10.1109/IPDPSW52791.2021.00035
https://old.hotchips.org/hc31/HC31_T2_Microsoft_CarrieChiouChung.pdf
https://old.hotchips.org/hc31/HC31_T2_Microsoft_CarrieChiouChung.pdf
https://doi.org/10.17487/RFC8878
https://github.com/opencomputeproject/Project-Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_Specification.docx
https://github.com/opencomputeproject/Project-Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_Specification.docx
https://github.com/opencomputeproject/Project-Zipline/blob/master/specs/Project_Zipline_Top_Micro_Architecture_Specification.docx
https://sun.aei.polsl.pl//~sdeor/index.php?page=silesia
https://sun.aei.polsl.pl//~sdeor/index.php?page=silesia
https://doi.org/10.17487/RFC1951
https://doi.org/10.1109/PCS.2015.7170048
https://doi.org/10.1109/PCS.2015.7170048
https://doi.org/10.1109/FCCM.2015.46
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://sifive.cdn.prismic.io/sifive%2Fcab05224-2df1-4af8-adee-8d9cba3378cd_tilelink-spec-1.8.0.pdf
https://sifive.cdn.prismic.io/sifive%2Fcab05224-2df1-4af8-adee-8d9cba3378cd_tilelink-spec-1.8.0.pdf
https://doi.org/10.1109/ISCA45697.2020.00036
https://doi.org/10.1109/ISCA45697.2020.00036
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/3037697.3037736
https://doi.org/10.1145/3466752.3480051
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3297858.3304053

CDPU: Co-designing Compression and Decompression Processing Units for Hyperscale Systems ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[46] Morgan Ledwon, Bruce F. Cockburn, and Jie Han. 2020. High-Throughput FPGA-
Based Hardware Accelerators for Deflate Compression and Decompression Using
High-Level Synthesis. IEEE Access 8 (2020), 62207–62217. https://doi.org/10.
1109/ACCESS.2020.2984191

[47] Rastislav Lenhardt and Jyrki Alakuijala. 2012. Gipfeli - High Speed Compression
Algorithm. In Proceedings of the 2012 Data Compression Conference (DCC ’12).
IEEE Computer Society, USA, 109–118. https://doi.org/10.1109/DCC.2012.19

[48] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and AndrewW. Moore. 2018. Understanding PCIe Performance for
End Host Networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 327–341. https:
//doi.org/10.1145/3230543.3230560

[49] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 1203–1216. https://doi.org/10.1145/
3373376.3378501

[50] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank
Chang, and Jason Cong. 2018. High-Throughput Lossless Compression on Tightly
Coupled CPU-FPGA Platforms. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 37–44. https:
//doi.org/10.1109/FCCM.2018.00015

[51] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubrama-
nian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani
Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira Ja-
yaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander
Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin
Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish
Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wach-
sler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu.
2021. Warehouse-Scale Video Acceleration: Co-Design and Deployment in the
Wild. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS ’21). Association for Computing Machinery, New York, NY, USA, 600–615.
https://doi.org/10.1145/3445814.3446723

[52] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.
2010. Google-Wide Profiling: A Continuous Profiling Infrastructure for Data
Centers. IEEE Micro (2010), 65–79. http://www.computer.org/portal/web/csdl/
doi/10.1109/MM.2010.68

[53] Sudhir Satpathy, Vikram Suresh, Raghavan Kumar, Vinodh Gopal, James Guilford,
Mark Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy,
Vivek De, and Sanu Mathew. 2019. A 1.4GHz 20.5Gbps GZIP decompression
accelerator in 14nm CMOS featuring dual-path out-of-order speculative Huffman
decoder and multi-write enabled register file array. In 2019 Symposium on VLSI
Circuits. C238–C239. https://doi.org/10.23919/VLSIC.2019.8777934

[54] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter Network.
Commun. ACM 59, 9 (aug 2016), 88–97. https://doi.org/10.1145/2975159

[55] Przemyslaw Skibinski. 2022. lzbench. https://github.com/inikep/lzbench.
[56] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding

Acceleration Opportunities for Data Center Overheads at Hyperscale. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. Association for Computing Ma-
chinery, New York, NY, USA, 733–750. https://doi.org/10.1145/3373376.3378450

[57] Willy Tarreau and Dave Rodgman. 2018. LZO stream format as understood by
Linux’s LZO decompressor. https://www.kernel.org/doc/Documentation/lzo.txt.

[58] Kushagra Vaid. 2019. Hardware innovation for data growth challenges at cloud-
scale. https://azure.microsoft.com/en-us/blog/hardware-innovation-for-data-
growth-challenges-at-cloud-scale/.

[59] Kushagra Vaid. 2019. Improved cloud service performance through ASIC
acceleration. https://azure.microsoft.com/en-us/blog/improved-cloud-service-
performance-through-asic-acceleration/.

[60] Edward Wang, Colin Schmidt, Adam Izraelevitz, John Wright, Borivoje Nikolić,
Elad Alon, and Jonathan Bachrach. 2020. A Methodology for Reusable Physical
Design. In 2020 21st International Symposium on Quality Electronic Design (ISQED).
243–249. https://doi.org/10.1109/ISQED48828.2020.9136999

[61] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise
Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. 2022. TMO: Transparent Memory Offloading in Datacenters. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS 2022). Association for Computing Machinery, New York, NY, USA, 609–621.
https://doi.org/10.1145/3503222.3507731

[62] Wikichip. 2023. POWER9 - Microarchitectures - IBM. https://en.wikichip.org/
wiki/ibm/microarchitectures/power9.

[63] Wikichip. 2023. Skylake (server) - Microarchitectures - Intel. https://en.wikichip.
org/wiki/intel/microarchitectures/skylake_(server).

[64] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

[65] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (1977), 337–343.
https://doi.org/10.1109/TIT.1977.1055714

https://doi.org/10.1109/ACCESS.2020.2984191
https://doi.org/10.1109/ACCESS.2020.2984191
https://doi.org/10.1109/DCC.2012.19
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3373376.3378501
https://doi.org/10.1145/3373376.3378501
https://doi.org/10.1109/FCCM.2018.00015
https://doi.org/10.1109/FCCM.2018.00015
https://doi.org/10.1145/3445814.3446723
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68
https://doi.org/10.23919/VLSIC.2019.8777934
https://doi.org/10.1145/2975159
https://github.com/inikep/lzbench
https://doi.org/10.1145/3373376.3378450
https://www.kernel.org/doc/Documentation/lzo.txt
https://azure.microsoft.com/en-us/blog/hardware-innovation-for-data-growth-challenges-at-cloud-scale/
https://azure.microsoft.com/en-us/blog/hardware-innovation-for-data-growth-challenges-at-cloud-scale/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://doi.org/10.1109/ISQED48828.2020.9136999
https://doi.org/10.1145/3503222.3507731
https://en.wikichip.org/wiki/ibm/microarchitectures/power9
https://en.wikichip.org/wiki/ibm/microarchitectures/power9
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	2 Compression Background
	2.1 Compression algorithm fundamentals
	2.2 Compression algorithm taxonomy

	3 Profiling Compression Usage at Hyperscale
	3.1 Data Sources
	3.2 Opportunity for (De)compression Acceleration
	3.3 Can accelerators change WSC resource tradeoffs?
	3.4 Algorithm evolution vs. hardware accelerator design cycles
	3.5 (De)Compression Accelerator Placement
	3.6 Window Size Requirements
	3.7 Do existing open-source compression benchmarks represent hyperscale requirements?
	3.8 Key Cloud Provider Fleet Profiling Lessons for Hyperscale CDPUs

	4 Building Open-source hyperscale- representative (de)compression benchmarks
	4.1 HyperCompressBench validation

	5 A Parameterized Generator for Compression and Decompression Processing Units (CDPUs)
	5.1 System Interface Blocks
	5.2 LZ77 Decoder
	5.3 Huffman Expander
	5.4 Finite-State Entropy (FSE) Expander
	5.5 LZ77 Encoder
	5.6 Huffman Compressor
	5.7 Finite-State Entropy (FSE) Compressor
	5.8 Parameterization

	6 CDPU Design Space Exploration
	6.1 Evaluation Methodology
	6.2 Snappy Decompressor
	6.3 Snappy Compressor
	6.4 ZStd Decompressor
	6.5 ZStd Compressor
	6.6 Key Implementation-Based Design-Space Exploration Lessons for Hyperscale CDPUs

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	References

