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Abstract: Ten years into the revival of deep networks and artificial intelligence, we propose a theoretical framework
that sheds light on understanding deep networks within a bigger picture of intelligence in general. We introduce
two fundamental principles, Parsimony and Self-consistency, which address two fundamental questions regarding
intelligence: what to learn and how to learn, respectively. We believe the two principles serve as the cornerstone
for the emergence of intelligence, artificial or natural. While they have rich classical roots, we argue that they
can be stated anew in entirely measurable and computable ways. More specifically, the two principles lead to an
effective and efficient computational framework, compressive closed-loop transcription, which unifies and explains
the evolution of modern deep networks and most practices of artificial intelligence. While we use mainly visual data
modeling as an example, we believe the two principles will unify understanding of broad families of autonomous

intelligent systems and provide a framework for understanding the brain.
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1 Context and motivation

For an autonomous intelligent agent to survive
and function in a complex environment, it must
efficiently and effectively learn models that reflect
both its past experiences and the current environ-
ment being perceived. Such models are critical for
gathering information, making decisions, and tak-
ing action. Generally referred to as world mod-
els, these models should be continuously improved
based on how projections agree with new observa-
tions and outcomes. They should incorporate both
knowledge from past experiences (e.g., recognizing
familiar objects) and mechanisms for interpreting
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immediate sensory inputs (e.g., detecting and track-
ing moving objects). Studies in neuroscience sug-
gest that the brain’s world model is highly struc-
tured anatomically (e.g., modular brain areas and
columnar organization) and functionally (e.g., sparse
coding (Olshausen and Field, 1996) and subspace
coding (Chang and Tsao, 2017; Bao et al., 2020)).
Such a structured model is believed to be the key to
the brain’s efficiency and effectiveness in perceiving,
predicting, and making intelligent decisions (Barlow,
1961; Josselyn and Tonegawa, 2020).

In contrast, in the past decade, progress in
artificial intelligence has relied mainly on training
“tried-and-tested” models with largely homogeneous
structures, like deep neural networks (DNNs) (Le-
Cun et al., 2015), using a brute-force engineering
approach. While functional modularity may emerge
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from training, the learned feature representation re-
mains largely hidden or latent inside and is diffi-
cult to interpret (Zeiler and Fergus, 2014). Cur-
rently, such expensive brute-force end-to-end train-
ing of black-box models has resulted in ever-growing
model size and high data/computation cost!, and is
accompanied by many caveats in practice: the lack
of richness in final learned representations due to
neural collapse (Papyan et al., 2020)2, lack of sta-
bility in training due to mode collapse (Srivastava
A et al., 2017), lack of adaptiveness and susceptibil-
ity to catastrophic forgetting (McCloskey and Co-
hen, 1989), and lack of robustness to deformations
(Azulay and Weiss, 2019; Engstrom et al., 2019) or
adversarial attacks (Szegedy et al., 2014).

A principled and unifying approach? We hy-
pothesize that a fundamental reason why these prob-
lems arise in the current practice of deep networks
and artificial intelligence is a lack of systematic and
integrated understanding about the functional and
organizational principles of intelligent systems.

For instance, training discriminative models for
classification and generative models for sampling or
replaying has been largely separated in practice.
Such models are typically open-loop systems that
must be trained end to end via supervision or self-
supervision. A principle long-learned in control the-
ory is that such open-loop systems cannot automati-
cally correct errors in prediction, and are unadaptive
to changes in the environment. This had led to the
introduction of “closed-loop feedback” to controlled
systems so that a system can learn to correct its er-
rors (Wiener, 1948; Mayr, 1970). As we will argue in
this paper, a similar lesson can be drawn here: once
discriminative and generative models are combined
to form a complete closed-loop system, learning can
become autonomous (without exterior supervision),
more efficient, stable, and adaptive.

To understand any functional component that
may be necessary for an intelligent system, such as
a discriminative or a generative segment, we need to

'With model sizes frequently going beyond billions or
trillions of parameters, even Google seems to recently have
started worrying about the carbon footprint of such practices
(Patterson et al., 2022).

2This refers to the final representation for each class col-
lapsing to a one-hot vector that carries no information about
the input except its class label. Richer features might be
learned inside the networks, but their structures are unclear
and remain largely hidden.

understand intelligence from a more principled and
unifying perspective. Therefore, in this paper, we in-
troduce two fundamental principles, Parsimony and
Self-consistency, which we believe govern the func-
tion and design of any intelligent system, artificial or
natural. The two principles aim to answer the follow-
ing two fundamental questions regarding learning,
respectively:

1. What to learn: what is the objective of learn-
ing from data, and how can it be measured?

2. How to learn: how can we achieve such an
objective via efficient and effective computation?

As we will see, answers to the first question
fall naturally into the realm of information/coding
theory (Shannon, 1948), which studies how to ac-
curately quantify and measure the information in
the data and then seek the most compact represen-
tations of the information. Once the objective of
learning is clear and set, answers to the second ques-
tion fall naturally into the realm of control/game
theory (Wiener, 1948), which provides a universally
effective computational framework, i.e., a closed-loop
feedback system, for achieving any measurable ob-
jective consistently (Fig. 1).

The basic ideas behind each of the two principles
proposed in this paper can find their roots in clas-
sic works. Artificial (deep) neural networks, since
their earliest inception as “perceptrons” (Rosenblatt,
1958), were conceived to store and organize sensory
information efficiently. Back propagation (Kelley,
1960; Rumelhart et al., 1986) was later proposed as
a mechanism for learning such models. Moreover,
even before the inception of neural networks, Nor-
bert Wiener had contemplated computational mech-
anisms for learning at a system level. In his famed
book Cybernetics (Wiener, 1961), he studied the
possible roles of information compression for parsi-
mony and feedback/games in a learning machine for
consistency.

But we are here to reunite and restate the
two principles within the new context of data sci-
ence and machine learning, as they help better ex-
plain and unify most modern instances and practices
of artificial intelligence, particularly deep learning®.

3As we will see, besides integrating discriminative and
generative models, they lead to a closed-loop framework that
works uniformly in supervised, incremental, or unsupervised
settings, without suffering from many of the problems of
open-loop deep networks.
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Fig. 1 Overall framework for a universal learning engine.
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The model needs to be self-consistent; i.e., it can regenerate the original data via a map
: z — & such that f cannot distinguish despite its best effort.

Often, for simplicity, we omit the

dependency of the mappings f and g on their parameters 6 and 7, respectively.

Different from previous efforts, our restatement of
these principles will be entirely measurable and com-
putationally tractable, hence easily realizable by ma-
This
paper aims to offer our overall position and per-

chines or in nature with limited resources.

spective rather than to justify every claim tech-
nically. Nevertheless, we will provide references
to related work where readers can find convinc-
ing theoretical and compelling empirical evidence.
They are based on a coherent series of past and re-
cent developments in the study of machine learn-
ing and data science by the authors and their stu-
dents (Ma et al., 2007; Wright et al., 2007; Chan
TH et al., 2015; Yu YD et al., 2020; Baek et al.,
2022; Chan KHR et al., 2022; Dai et al., 2022;
Pai et al., 2022; Tong et al., 2022; Wright and Ma,
2022).

The rest of this paper is organized as follows: In
Section 2, we use visual data modeling as a concrete
example to introduce the two principles and illus-
trate how they can be instantiated as computable
objectives, architectures, and systems. In Section 3,
we conjecture that they lead to a universal learn-
ing engine for broader perception and decision mak-
ing tasks. In Section 4, we discuss several impli-
cations of the proposed principles and their con-
nections to neuroscience, mathematics, and higher-
level intelligence. Finally, Section 5 concludes the

paper.

2 Two principles for intelligence

In this section, we introduce and explain the
two fundamental principles that can help answer the
questions of what to learn and how to learn by an
intelligent agent or system.

2.1 What to learn: the principle of Parsimony

“ Entities should not be multiplied unnecessarily.”
— William of Ockham

The principle of Parsimony: The objective of
learning for an intelligent system is to identify low-
dimensional structures in observations of the external
world and reorganize them in the most compact and
structured way.

There is a fundamental reason why intelligent
systems need to embody this principle: intelligence
would be impossible without it! If observations of
the external world had no low-dimensional struc-
tures, nothing would be worth learning or memo-
rizing. Nothing could be relied upon for good gener-
alization or prediction, which relies on new observa-
tions following the same low-dimensional structures.
Thus, this principle is not simply a convenience aris-
ing from the need for intelligent systems to be frugal
with their resources, such as energy, space, time, and
matter.

In some contexts, the above principle is also
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called the principle of Compression. However,
Parsimony of intelligence is not about achieving
the best possible compression, but about obtain-
ing compact and structured representations via com-
putationally efficient means. There is no point
for an intelligent system to try to compress data
to the ultimate level of Kolmogorov complexity
or Shannon information: they not only are in-
tractable to compute (or even to approximate) but
also result in completely unstructured representa-
tions. For instance, representing data with the min-
imum description length (Shannon information) re-
quires minimizing the Helmholtz free energy via a
Helmholtz machine (Hinton et al., 1995), which is
When ex-
amined more closely, many commonly used math-
ematical or statistical “measures” for model good-
ness are either exponentially expensive to compute
for general high-dimensional models or even be-
come ill-defined for data distributions with low-
dimensional supports.  These measures include
widely used quantities, such as maximum likeli-
hood, Kullback—Leibler (KL) divergence, mutual
information, and Jensen—Shannon and Wasserstein

distances?.

typically computationally intractable.

It is commonplace in the practice of
machine learning to resort to various heuristic ap-
proximations and empirical evaluations.
sult, performance guarantees and understanding are
lacking.

As a re-

Now we face a question: how can an intelli-
gent system embody the principle of Parsimony to
identify and represent structures in observations in
a computationally tractable and even efficient way?
Theoretically, an intelligent system could use any
family of desirable structured models for the world,
provided that they are simple yet expressive enough
to model informative structures in real-world sen-
sory data. The system should be able to accurately
and efficiently evaluate how good a learned model is,
and the measure used should be basic, universal, and
tractable to compute and optimize. What is a good
choice for a family of structured models with such a
measure?

To see how we can model and compute parsi-
mony, we use the motivating and intuitive example of

4More explanations about caveats associated with these
measures can be found in Ma et al. (2007) and Dai et al.
(2022).

modeling visual data®. To make our exposition easy,
we will start with a supervised setting in this section.
Nevertheless, as will be discussed in Section 2.2, with
parsimony as the only “self-supervision” and with
the second principle of Self-consistency, a learning
system can become fully autonomous and function
without needing any exterior supervision.

2.1.1 Modeling and computing parsimony

Let us use x to denote the input sensory data
(e.g., an image), and z its internal representation.
The sensory data sample & € R is typically rather
high-dimensional (millions of pixels) but has ex-
tremely low-dimensional intrinsic structures®. With-
out loss of generality, we may assume that it is dis-
tributed on some low-dimensional submanifolds, as
illustrated in Fig. 2. Then, the purpose of learning
is to establish a (usually nonlinear) mapping f, say
in some parametric family 8 € @, from x to a much
lower-dimensional representation z € R%:

wERD&zGRd7 (1)
such that the distribution of feature z is much more
compact and structured. Being compact means eco-
nomic to store. Being structured means efficient to
Particularly, linear structures are
ideal for interpolation or extrapolation.

access and use.

R° R’

Fig. 2 Seeking a linear and discriminative represen-
tation: mapping high-dimensional sensory data, typ-
ically distributed on many nonlinear low-dimensional
submanifolds, onto a set of independent linear sub-
spaces of the same dimensions as the submanifolds.

To be more precise, we can formally instantiate
the principle of Parsimony for visual data model-
ing as trying to find a (nonlinear) transform f that
achieves the following goals:

1. Compression: map high-dimensional sensory
data @ to a low-dimensional representation z;

51t is arguably true that vision is the most complex to
model among all senses.

SFor example, all images of a rotating pen trace out only
a one-dimensional curve in the space of millions of pixels.
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2. Linearization: map each class of objects
distributed on a nonlinear submanifold to a linear
subspace;

3. Sparsification: map different classes into sub-
spaces with independent or maximally incoherent
bases”.

In other words, we try to transform real-world
data that may lie on a family of low-dimensional sub-
manifolds in a high-dimensional space onto a fam-
ily of independent low-dimensional linear subspaces.
Such a model is called a linear discriminative rep-
resentation (LDR) (Yu YD et al., 2020; Chan KHR
et al., 2022), and the compression process is illus-
trated in Fig. 2. In some sense, one may even view
the common practice of deep learning that maps each
class to a “one-hot” vector as seeking a very special
type of LDR models in which each target subspace
is only one-dimensional and orthogonal to others.

The idea of compression as a guiding principle
of the brain for representing (sensory data of) the
world has strong roots in neuroscience, going back to
Barlow’s efficient coding hypothesis (Barlow, 1961).
Scientific studies have shown that visual object rep-
resentations in the brain exhibit compact structures,
such as sparse codes (Olshausen and Field, 1996) and
subspaces (Chang and Tsao, 2017; Bao et al., 2020).
This supports the proposal that low-dimensional lin-
ear models are the preferred representations in the
brain (at least for visual data).

2.1.2 Maximizing rate reduction

Remarkably, for the family of LDR models,
there is a natural intrinsic measure of parsimony.
Intuitively speaking, given an LDR, we can compute
the total “volume” spanned by all features on all sub-
spaces and the sum of “volumes” spanned by features
of each class. Then the ratio between these two vol-
umes gives a natural measure that suggests how good
the LDR model is: the larger, the better. Fig. 3

7This is related to the notion of sparse dictionary learning
(Zhai et al., 2020) or independent component analysis (ICA)
(Hyvérinen, 1997; Hyvérinen and Oja, 1997). Once the bases
of the subspaces are made independent or incoherent by the
transform, the resulting representation becomes sparse and
thus collectively compact and structured. For example, two
sets of subspaces with the same dimensions have the same
intrinsic complexity. However, their extrinsic representations
can be very different (Fig. 3). This illustrates why sim-
ply compressing data based on their intrinsic complexity is
insufficient for parsimony.

shows an example with features distributed on two
subspaces, S1 and S;. Models on the left and right
have the same intrinsic complexity. The configura-
tion on the left is preferred as features for different
classes are made independent and orthogonal—their
extrinsic representations would be the most sparse.
Hence, in terms of this basic volumetric measure, the
best representation should be such that “the whole is
mazximally greater than the sum of its parts.”

As per information theory, the volume of a
distribution can be measured by its rate distortion
(Cover and Thomas, 2006). Roughly speaking, the
rate distortion is the logarithm of how many e-balls
or spheres one can pack into the space spanned by a
distribution®. The logarithm of the number of balls
directly translates into how many binary bits one
needs in order to encode a random sample drawn
from the distribution subject to the precision e. This
is generally known as the description length (Rissa-
nen, 1989; Ma et al., 2007).

Now let R be the rate distortion of the joint
distribution of all features Z = [2!, 22, ...,2"] of
sampled data X = [z}, 22,...,z"] from all, say k,
classes. RC is the average of the rate distortions for
the k classes: R°(Z) = %[R(Zl) + R(Z3) + ...+
R(Zy)] where Z = Z1 U Zy U ... U Zg. Note that
because of the logarithm, the ratio between volumes
becomes the difference between rates. Then the dif-

ference between the whole and the sum of the parts,
called the rate reduction (Chan KHR et al., 2022):

AR(Z) = R(Z) — R*(Z), (2)

gives the most basic, bean-counting-like, measure of
how good the feature representation Z is”.
Although for general distributions in high-
dimensional spaces, the rate distortion, like many
other measures mentioned before, is intractable and

8Sphere packing gives almost a universal way to mea-
sure the volume of space of an arbitrary shape: to compare
volumes of two containers, one only has to fill them both
with beans and then count and compare. Optimal sphere-
packing problems can be traced back to Johannes Kepler
since 1611. Most recently, mathematician Maryna Viazovska
received the 2022 Fields medal for solving the optimal sphere-
packing problem in spaces of dimension 8 (Viazovska, 2017)
and 24 (Cohen H et al., 2017).

9The rate reduction quantity also has a natural interpre-
tation as “information gain” (Quinlan, 1986).
how much information is gained, in terms of bits saved, by
specifying a sample on one of the parts, compared to drawing
a random sample from the whole.

It measures
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vol(2)

vol(Z)

Fig. 3 Rate of all features R = log # (green spheres + blue spheres) and average rate of features on the two
subspaces R® = log # (green spheres). Rate reduction is the difference between the two rates: AR = R — R°.

NP-hard to compute (MacDonald et al., 2019), the
rate distortion for data Z drawn from a Gaussian dis-
tribution supported on a subspace has a closed-form
formula (Ma et al., 2007):

R(Z)= %log(det I+aZZ")). (3)

Hence, it can be efficiently computed and optimized!

The work of Chan KHR et al. (2022) has shown
that if one uses the rate distortion functions of Gaus-
sians and chooses a generic deep network (say a
ResNet) to model the mapping f(x,6), then by
maximizing the coding rate reduction, known as the
MCR? principle:

max AR(Z(6) = R(Z(0)) - R(Z(6)), ()

one can effectively map a multi-class visual dataset
to multiple orthogonal subspaces. Notice that maxi-
mizing the first term of the rate reduction R expands
the volume of all features.
ducts “constrastive learning” for all features, which
can be much more effective than contrasting sam-
ple pairs as normally conducted in conventional con-
trastive methods (Hadsell et al., 2006; van den Oord
et al., 2019). Minimizing the second term R° com-
presses and linearizes the features in each class. This
can be interpreted as conducting “contractive learn-
ing” (Rifaiet al., 2011) for each class. The rate reduc-
tion objective unifies and generalizes these heuristics.

It simultaneously con-

Particularly, one can rigorously show that, by
maximizing the rate reduction, features of different
classes will be independent and features of each class

will be distributed almost uniformly within each sub-
space (Chan KHR et al., 2022). In contrast, the
widely practiced cross entropy objective for mapping
each class to a one-hot label maps the final features of
each class onto a one-dimensional singleton (Papyan
et al., 2020).

2.1.3 White-box deep networks from unrolling
optimization

Notice that in this context, the role of a deep
network is simply to model the nonlinear mapping f
between the external data « and the internal repre-
sentation z. How should an intelligent system know
what family of models to use for the map f in the
first place? Is there a way to directly derive and con-
struct such a mapping instead of guessing and trying
different possibilities?

Recall that our goal is to optimize the rate re-
duction AR(Z) as a function of the set of features Z.
To this end, we may directly start with the original
data Zp = X and incrementally optimize AR(Z),
say with a projected gradient ascent (PGA) scheme!?:

0AR )
Zoyr o< Zy+n- —o|  subject to [ Zea|| = 1.
Z,
(5)

That is, one can follow the gradient of the rate re-
duction to move the features so as to increase the
rate reduction. Such a gradient-based iterative de-
formation process is illustrated in Fig. 4.

10For fair comparison of coding rates between two repre-
sentations, we need to normalize the scale of the features,
say |12I| = 1.
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Z,=Z+

OAR
737 Iz,

Fig. 4 A basic way to construct the nonlinear mapping f: following the local gradient flow

%Z(Z) of the

rate reduction AR, we incrementally linearize and compress features on nonlinear submanifolds and separate
different submanifolds to respective orthogonal subspaces (the two dotted lines).

From the closed-form formula for the rate dis-
tortions (Eq. (3)), we can also compute the gradient
of AR = R — R° in the closed form. For example,
the gradient of the first term R is of the form

OR(Z)| _ 10log(det(I +aZZ")) ©)
0Z |, 2 0Z 2

= a(I + OngZ;)ilzg =EZ,. (7)

Similarly, we can compute the gradients for the
k terms {R(Z;)}%_, in R® and obtain k operators
on Zy, named C;. Then, the above gradient ascent
operation (5) takes the following structured form:

Zp41 X Z2p + T][EZZE + O'([Célz’g, ng’g, cee CfZg]):|

subject to ||ze4+1]] = 1,

(8)
where Ey and C)’s are linear operators fully deter-
mined by covariances of the features from the pre-
vious layer Z, (Eq. (7))
operator that assigns z, to its closest class based
on its distance to each class, measured by Cyz,. A
diagram of all the operators per iteration is given in
Fig. ba.

Acute readers may have recognized that such
a diagram draws a good resemblance to a layer of
popular “tried-and-tested” deep networks such as

Here, o is a softmax

1 E is associated with the gradient of the first term R and
stands for “expansion” of the whole set of features, whereas
C'’s are associated with the gradients of multiple rate distor-
tions in the second term RS and stand for “compression” of
features in each class. See Chan KHR et al. (2022) for the
details.

ResNet (He et al., 2016) (Fig. 5b), including parallel
columns as in ResNeXt (Xie et al., 2017) (Fig. 5¢)
and a mixture of experts (MoE) (Shazeer et al.,
2017). This provides a natural and plausible in-
terpretation of an important class of DNNs from
the perspective of unrolling an optimization scheme.
Even before the rise of modern deep networks, itera-
tive optimization schemes for seeking sparsity, such
as the iterative soft thresholding algorithm (ISTA)
or fast ISTA (FISTA) (Wright and Ma, 2022), had
been interpreted as learnable deep networks, e.g.,
the work of Gregor and LeCun (2010) on learned
ISTA!'2. The class of networks derived from optimiz-
ing rate reduction has been named ReduNet (Chan
KHR et al., 2022).

2.1.4 Forward unrolling versus backward propaga-
tion

We see above that compression leads to an en-
tirely constructive way of deriving a DNN, includ-
ing its architecture and parameters, as a fully in-
terpretable white-box'3: its layers conduct iterative
and incremental optimization of a principled objec-
tive that promotes parsimony. As a result, for so-
obtained deep networks, the RedulNets, starting from

12 A strong connection between sparsity and deep convolu-
tional neural networks (CNNs) was formally established by
Papyan et al. (2018). Similarly, unfolding iterative optimiza-
tion for sequential sparse recovery leads to recurrent neural
networks (RNNs) (Wisdom et al., 2017).

13Here, we give only an interpretation of deep networks,
instead of artificial intelligence in general, which, we believe,
remains an open research topic, as we will discuss more in
Section 4.
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Fig. 5 Building blocks of the nonlinear mapping f: (a) one layer of ReduNet as one iteration of projected
gradient ascent, which precisely consists of expansive or compressive linear operators, a nonlinear softmax,
plus a skip connection, and normalization; (b) one layer of ResNet; (c) one layer of ResNeXt.

the data X as input, each layer’s operators and pa-
rameters (Ey, Cy) are constructed and initialized in
an entirely forward unrolling fashion. This differs
from the popular practice in deep learning: starting
with a randomly constructed and initialized network
which is then tuned globally via backward propa-
gation (Rumelhart et al., 1986). It is widely be-
lieved that the brain is unlikely to use backward
propagation as its learning mechanism due to the
requirement for symmetric synapses and the com-
plex form of feedback. Here, the forward unrolling
optimization relies only on operations between adja-
cent layers that can be hard-wired; hence, it would
be much easier for nature to realize and exploit.

Additionally, parameters and operators of the
so-constructed networks are amenable to further
fine-tuning via another level of optimization, e.g.,
(stochastic) gradient descent realized by backward
propagation (Rumelhart et al., 1986)'4. However,
one should not confuse the (stochastic) gradient de-
scent used to fine-tune a network with the gradient-
based optimization that layers of the network ought
to realize.

2.1.5 CNN derived from shift-invariance and nonlin-
earity

If we further wish the learned encoding f to be
invariant (or equivariant) to all time-shifts or space-
translations, then we view every sample z(t) with
all its shifted versions {x(t — 7), V7} as in the same

141t has been shown that ReduNets have the same model
capacity (say to interpolate all training data precisely) as
tried-and-tested deep networks such as ResNets (Chan KHR
et al., 2022).

equivalence class. If we compress and linearize them
together into the same subspace, then all the linear
operators, E or C’s, in the above gradient oper-
ation (8) automatically become multi-channel con-
volutions (Chan KHR et al., 2022)! As a result,
ReduNet naturally becomes a multi-channel convo-
lutional neural network (CNN), originally proposed
for shift-invariant recognition (Fukushima, 1980; Le-
Cun et al., 1998)1°.

2.1.6 Artificial selection and evolution of neural
networks

Once we realize that the role of the deep net-
works themselves is to conduct (gradient-based)
iterative optimization to compress, linearize, and
sparsify data, it may become easy to understand the
“evolution” of artificial neural networks that has oc-
curred in the past decade. Particularly, it helps ex-
plain why only a few have emerged on top through
a process of artificial selection: going from general
multi-layer perceptrons (MLPs) to CNNs to ResNets
to Transformers. In comparison, a random search
of network structures, such as neural architecture
search (Baker et al., 2017; Zoph and Le, 2017) and
AutoML (Hutter et al., 2019), has not resulted in
any network architecture that is effective for general
tasks. We speculate that successful architectures are

151 addition, due to special structures in such convolution
operators E and C'’s, they are much more efficient to compute
in the frequency domain than in the time/space domain:
the computational complexity reduces from O(D?) (notice
that computing E, requires inverting a D x D matrix a(I+
aZ,Zy)~1, which is in general of complexity O(D?)) to O(D)
in the dimension D of the input signals (Chan KHR et al.,
2022).
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simply getting more and more effective and flexible
at emulating iterative optimization schemes for data
compression. Besides the aforementioned similarity
between ReduNet and ResNet/ResNeXt, we want to
discuss a few more examples.

2.1.7 What is a transformer transforming?

Notice that the gradient of a rate distortion term
R(Z) is of the form (7): 92 = o(I + aZ,Z;)"' Z,.
Instead of viewing the matrix a(I + aZZ;)™" as
a linear operator E, acting on Z,, as was done in
ReduNet, we may rewrite the whole gradient term

approximately as

oI +aZZ)) ' Zy~ oI —aZiZ})Z,

= Oz[Zg — Ong(ZZZg)] . (9)

That is, the gradient operation for optimizing a
rate distortion term depends mainly on the auto-
correlation of the features A = Z7Z, from the pre-
vious iteration. This is also known as “self-attention”
or “self-expression” in some contexts (Vaswani et al.,
2017; Vidal, 2022). If we consider applying an ad-
ditional learnable linear transform U to each feature
term in the above expression (9) for the gradient, a
gradient-based iteration to optimize rate distortion
takes the general form:

Ziy1 = Zy+U, [Zg—OéUng(Ung)*(Uqu)}. (10)

This is of exactly the same form as the basic opera-
tion of each layer for a Transformer (Vaswani et al.,
2017), i.e., a self-attention (SA) head followed by a
feed-forward residual MLP operation'.

Moreover,
ResNet, for tasks such as image classification, it is
found empirically better to use multiple, say k, SA
heads in parallel in each layer (Dosovitskiy et al.,
2021). In the context of rate reduction, these SA
heads may be naturally interpreted as gradient terms
associated with the multiple rate distortion terms
in the rate reduction AR(Z) = R(Z) — [R(Z1) +
R(Z2) + ...+ R(Zy)]/k. The learned linear trans-
forms (Uy,U,,U,) in each SA head can be inter-

161f the term in the bracket (i.e., [Z[ —aUyZy(Ux Zy)*-
(UqZ,)]) is interpreted as to emulate the gradient (9) of
rate distortion, the linear operator U, can then be viewed
to emulate a certain regularized gradient-based method. For
instance, it can be used to model the inverse of the Fisher
information matrix in the natural gradient descent (Kakade,
2001).

very similar to ResNeXt versus

preted as “matched filters” or “sparsifying dictionar-
ies”!” that select and transform token sets (on sub-
manifolds) that belong to the same category (of sig-
nals or images). Hence, we conjecture that layers of
Transformer (10) emulate a more general family of
gradient-based iterative schemes that optimize the
rate reduction of all input token sets (on multiple
submanifolds) by clustering, compressing, and lin-
earizing them altogether.

Furthermore, gradient ascent or descent is the
most basic type of optimization scheme. Networks
based on unrolling such schemes (e.g., ReduNet)
might not be the most efficient yet. One could antici-
pate that more advanced optimization schemes, such
as accelerated gradient descent methods (Wright and
Ma, 2022), could lead to more efficient deep network
architectures in the future. Architecture wise, these
accelerated methods require the introduction of skip
connections across multiple layers. This may help
explain, from an optimization perspective, why ad-
ditional skip connections have often been found to
improve network efficiency in practice, e.g., in high-
way networks (Srivastava RK et al., 2015) or dense
networks (Huang et al., 2017).

2.2 How to learn: the principle of Self-

consistency

“ Fverything should be made as simple as possible,
but not any simpler.”
— Albert Einstein

The principle of Parsimony alone does not en-
sure that a learned model will capture all important
information in the data sensed about the exter-
nal world. For example, mapping each class to a
one-dimensional “one-hot” vector, by minimizing the
cross entropy, may be viewed as a form of being
parsimonious. It may learn a good classifier, but
the features learned would collapse to a singleton,
known as neural collapse (Papyan et al., 2020). The
so-learned features would no longer contain enough
information to regenerate the original data. Even if
we consider the more general class of LDR models,
the rate reduction objective alone does not automati-
cally determine the correct dimension of the ambient
feature space. If the feature space dimension is too

ITInterested readers may see Zhai et al. (2020) for more
details about the topic of sparse dictionary learning.
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low, the model learned will under-fit the data; if it is
too high, the model might over-fit!®.

More generally, we take the view that percep-
tion is distinct from the performance of specific tasks,
and the goal of perception is to learn everything pre-
dictable about what is sensed. In other words, the
intelligent system should be able to regenerate the
distribution of the observed data from the compressed
representation to the point that itself cannot distin-
guish internally despite its best effort. This view
distinguishes our framework from existing ones that
are customized to a specific class of tasks. Repre-
sentative of such is the information bottleneck frame-
work (Tishby and Zaslavsky, 2015; Shwartz-Ziv and
Tishby, 2017; Saxe et al., 2019), which explains how
only information in the data related to its class label
is extracted via the deep networks. To govern the
process of learning a fully faithful representation®®,
we introduce a second principle:

The principle of Self-consistency: An au-
tonomous intelligent system seeks a most self-
consistent model for observations of the external
world by minimizing the internal discrepancy between
the observed and the regenerated.

The principles of Self-consistency and Parsi-
mony are highly complementary and should always
be used together. The principle of Self-consistency
alone does not ensure any gain in compression or
efficiency. Mathematically and computationally, it
is easy and even trivial to fit any training data
with over-parameterized models2® or to ensure con-
sistency by establishing one-to-one mappings be-
tween domains with the same dimensions without
learning intrinsic structures in the data distribu-

1

tion?!. Only through compression can an intelli-

18The first expansive or contrastive term in the rate reduc-
tion might over-expand the features to fill the space, due to
noises or other variations.

19 Although in this section, for simplicity, we focus our
discussions on modeling 2D imagery data, we will discuss the
perception of the 3D world in Section 3.1, as well as argue
why perception needs to integrate recognition, reconstruction,
and regeneration.

20Having a photographic memory is not intelligence. It
is the same as fitting all the data in the world with a Big
Model.

21That is the case with many popular methods for learn-
ing generative models of data, such as normalizing flows
(Kobyzev et al., 2021), CycleGAN (Zhu et al., 2017), and
diffusion probabilistic models (Ho et al., 2020). Although
so-learned models might be useful for applications such as
image generation or style transfer, they neither identify low-

gent system be compelled to discover intrinsic low-
dimensional structures within the high-dimensional
sensory data, and transform and represent them in
the feature space in the most compact way for future
use. Also, only through compression can we easily
understand why over-parameterization, e.g., by fea-
ture lifting with hundreds of channels, as normally
done in DNNs, will not lead to over-fitting if its sheer
purpose is to compress in the higher-dimensional fea-
ture space: lifting helps reduce the nonlinearity in
the data?, rendering it easier to compress and lin-
earize?3. The role of subsequent layers is to perform
compression (and linearization), and in general, the
more the layers, the better it is compressed?4.

So far, we have established that a mechanism
is needed to determine if the compressed representa-
tion contains all the information that is sensed. In
the remainder of this section, we will first introduce
a general architecture for achieving this, a genera-
tive model, which can regenerate a sample from its
compressed representation. Then, a difficult prob-
lem arises: how to sensibly measure the discrep-
ancy between the sensed sample and the regenerated
sample? We argue that for an autonomous system,
there is one and only one solution to this: measur-
ing their discrepancies in the internal feature space.
Finally, we argue that the compressive encoder and
the generator must learn together through a zero-
sum game. Through these deductions, we derive a
universal framework for learning that we believe is
inevitable.

2.2.1 Auto-encoding and its caveats with

computability

To ensure that the learned feature mapping f
and representation z have correctly captured low-
dimensional structures in the data, one can check if
the compressed feature z can reproduce the original
data @, by some generating map g, parameterized by

dimensional structures in the data distributions nor produce
compact linear structures in the learned representations.

22Gay, as in the scattering transforms (Bruna and Mallat,
2013) or random filters (Chan TH et al., 2015; Chan KHR
et al., 2022).

23 As Lao Tzu famously said in Tao Te Ching: “ That which
shrinks must first expand.”

24This naturally explains a seemingly mysterious phe-
nomenon about deep networks: the “double-descent” phe-
nomenon suggests that a deep model’s test error becomes
smaller as it gets larger, after reaching its peak at a certain
interpolation point (Belkin et al., 2019; Yang et al., 2020).
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weRP @D, L erd IED L5 e RD (11)
in the sense that & = g(z,7) is close to « (accord-
ing to a certain measure). This process is generally
known as auto-encoding (Kramer, 1991; Hinton and
Zemel, 1993). In the special case of compressing
to a structured representation such as LDR, we call
such an auto-encoding a transcription®® (Dai et al.,
2022). However, this goal is easier said than done.
The main difficulty lies in how to make this goal
computationally tractable and hence physically real-
izable. More precisely, what is a principled measure
for the difference between the distribution of & and
that of & that is both mathematically well-defined
and efficiently computable? As mentioned before,
when dealing with distributions in high-dimensional
spaces with degenerate low-dimensional supports,
which is almost always the case with real-world data
(Ma et al., 2007; Vidal et al., 2016), conventional
measures, including the KL divergence, mutual in-
formation, Jensen—Shannon distance, Helmholtz free
energy, and Wasserstein distances, can be either ill-
defined or intractable to compute, even for Gaus-
sians (with support on subspaces) and their mix-

26 How can we resolve this fundamental and

tures
yet often unacknowledged difficulty in computability
associated with comparing degenerate distributions

in high-dimensional spaces?

2.2.2 Closed-loop data
consistency

self-

transcription  for

As shown in the previous Section 2.1, the rate
reduction AR gives a well-defined principled distance
measure between degenerate distributions. However,
it is computable (with a closed form) only for a mix-
ture of subspaces or Gaussians, not for general dis-
tributions! Yet, we can only expect the distribution

25This is analogous to the memory-forming transcription
process of engram (Josselyn and Tonegawa, 2020) or that
between functional proteins and DNA (genes).

26 Many existing methods formulate their objectives based
on these quantities. Thus, these methods typically rely on
expensive brute-force sampling to approximate these quanti-
ties or optimize their approximated lower-bounds or surro-
gates, such as in variational auto-encoding (VAE) (Kingma
and Welling, 2013).
methods are often disguised by good empirical results ob-
tained using clever heuristics and excessive computational

The fundamental limitations of these

resources.

of the internally structured representation z to be a
mixture of subspaces or Gaussians, not the original
data x.

This leads to a rather profound question re-
garding learning a “self-consistent” representation:
to verify the correctness of an internal model for the
external world, does an autonomous agent really need
to measure any discrepancy in the data space? The
The key is to realize that,
to compare x and & = g(z,n), the agent needs

answer is actually no.

only to compare their respective internal features

z = f(x,0) and 2 = f(&,0) via the same mapping f

that intends to make z compact and structured.
f(=,0)

glzm) . f=0)
T Z.

(12)

Measuring distribution differences in the z space is
well-defined and efficient: it is arguably true that in
the case of natural intelligence, learning to measure
discrepancies internally is the only thing that the
brain of a self-contained autonomous agent can do?”.

This effectively leads to a “closed-loop” feedback
system, and the overall process is illustrated in Fig. 6.
The encoder f now plays an additional role as a dis-
criminator, detecting any discrepancy between x and
 through the difference between their internal fea-
tures z and 2. The distance between the distribu-
tion of z and that of 2 can be measured through the
rate reduction (Eq. (2)) of their samples Z(0) and
Z(0,n):

AR(Z(0),Z(0,n)) = R(ZUZ) - %(R(Z) +R(Z)).

One can interpret popular practices for learning
either a DNN classifier f or a generator g alone as
learning an open-ended segment of the closed-loop
system (Fig. 6). This currently popular practice is
very similar to an open-loop control which has long
been known in the control community to be prob-
lematic and costly. The training of such an open
segment requires supervision on the desired output
(e.g., class labels), and deployment of such an open-
loop system is inherently not stable, robust, or adap-
tive if the data distributions, system parameters, or
tasks change. For example, deep classification net-
works trained in supervised settings often suffer from
catastrophic forgetting if retrained for new tasks with

2"Tmagining someone colorblind, it is unlikely that his/her
internal representation of the world requires minimizing dis-
crepancies in RGB values of the visual inputs «.
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Fig. 6 A compressive closed-loop transcription of nonlinear data submanifolds to a linear discriminative
representation (LDR), by comparing and minimizing the difference in z and 2, internally. This leads to
a natural pursuit-evasion game between the encoder/sensor f and the decoder/controller g, allowing the
distribution of the decoded & (the dotted blue curves) to chase and match that of the observed data x (the

solid black curves).

new classes of data (McCloskey and Cohen, 1989).
In contrast, closed-loop systems are inherently more
stable and adaptive (Wiener, 1948). It has been sug-
gested by Hinton et al. (1995) that the discriminative
and generative segments need to be combined as the
“wake” and the “sleep” phases, respectively, of a com-
plete learning process.

2.2.3 Self-learning through a self-critiquing game

However, just closing the loop is not enough.
It is tempting to think that now we need only to
optimize the generator g to minimize the difference
between z and 228, e.g., in terms of the rate reduc-
tion measure:

mgn AR(Z(9), Z(, n)).

(13)

Note that AR(Z,Z) =0if Z = g(f(Z)) = Z. That
is, the optimal set of features Z should be a “fixed
point” of the encoding-decoding loop?°.
the encoder f performs significant dimension reduc-
tion and compression, so Z = Z does not necessarily
imply X = X. To see this, consider the simplest

However,

case when X are already on a linear subspace (e.g.,
of dimension k) and f and ¢ are a linear projection
and lifting, respectively (Pai et al., 2022). f would

28This is very similar in spirit to the “sleep” phase of
the wake-sleep scheme proposed by Hinton et al. (1995):
it essentially tries to ensure that the encoding (recognition)
network f produces a response 2 to the regenerated & = g(z)
consistent with its origin z.

29This can be viewed as a generalization to the “deep
equilibrium” models (Bai et al., 2019) or the “implicit deep
learning” models (El Ghaoui et al., 2021). Both interpret
deep learning as conducting fixed-point computation from a
feedback control perspective.

not be able to detect any difference in its (large) null
space: X and any X = X + null(f) have the same
image under f.

How can Z = Z imply X = X then? In other
words, how can satisfaction with the self-consistency
criterion in the internal space guarantee that we have
learned to regenerate the observed data faithfully?
This is possible only when the dimension k is low
enough and f can be further adjusted. Let us assume
that the dimension of X is k < d/2, where d is the
dimension of the feature space. Then X = g(f(X))
under a linear lifting ¢ is a subspace of k-dimension.
The union of the two subspaces of X and X is of
dimension at most 2k < d. Hence, if there is a
difference between these two subspaces and f can be
an arbitrary projection, we have f(X) # f(X); i.e.,
X # X implies Z # Z.

Hence, after g minimizes the error AR in
Eq. (13), f needs to actively adjust and detect, in
its full capacity, if there is remaining discrepancy be-
tween X and X , e.g., by maximizing the same mea-
sure AR. The process can be repeated between the
encoder f and the decoder g, resulting in a natural
pursuit and evasion game, as illustrated in Fig. 6.

In the 1961 edition of his book Cybernetics,
Wiener (1961) added a supplementary chapter dis-
cussing learning through playing games. The games
he described were mostly about an intelligent agent
against an opponent or the world (which we will
discuss in Section 3). Here we advocate the need
of an internal game-like mechanism for any intelli-
gent agent to be able to conduct self-learning via
self-critique! What abides by is the notion of (non-
cooperative) games as a universally effective way
of learning (von Neumann and Morgenstern, 1944;
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Nash, 1951): applying the current model or strategy
repeatedly against an adversarial critique, hence con-
tinuously improving the model or strategy based on
feedback received through a closed loop!

Within such a framework, the encoder f as-
sumes a dual role.
resentation z for the data & by maximizing the rate
reduction AR(Z) (as done in Section 2.1), it should
serve as a feedback “sensor” that actively detects any
discrepancy between the data « and the generated
. Also, the decoder g assumes a dual role: it is a

In addition to learning a rep-

“controller” that corrects any discrepancy between x
and & detected by f, as well as a decoder trying to
minimize the overall coding rate AR(Z ) needed to
achieve this goal (subject to a given precision).
Therefore, the optimal “parsimonious” and “self-
consistent” representation tuple (z, f, g) can be inter-
preted as the equilibrium point of a zero-sum game
between f(-,0) and g(-,7n), over a combined rate re-
duction based utility on Z(0) and Z(0,n):
maxmin AR(Z) + AR(Z) + AR(Z,Z). (14)
0 n
A recent analysis has rigorously shown that, in the
case when the input data X lie on multiple linear
subspaces, the desired optimal representation for Z
is indeed the Stackelberg equilibria (Fiez et al., 2019;
Jin et al., 2020) of a sequential maximin game over
a rate reduction objective similar to the above (Pai
et al., 2022). It remains an open problem for the
case when X are on multiple nonlinear submani-
folds. Nevertheless, compelling empirical evidence
indicates that solving this game indeed provides ex-
cellent auto-encoding for real-world visual datasets
(Dai et al., 2022), and automatically determines a
subspace with a proper dimension for each class. It
does not seem to suffer from problems like mode col-
lapsing in training conventional generative models,
such as generative adversarial networks (GANSs) (Sri-
vastava A et al., 2017). The so-learned representa-
tion is simultaneously discriminative and generative.

2.2.4 Self-consistent incremental and unsupervised
learning

So far, we have discussed mainly the two prin-
ciples in the supervised setting. In fact, a primary
advantage of our framework is that it is most natu-
ral and effective for self-learning via self-supervision
and self-critique. Additionally, since the rate re-

duction has sought explicit (subspace-type) repre-
sentations for the learned structures3?, this makes it
easy for past knowledge to be preserved when learn-
ing new tasks/data, as a prior (memory) to be kept
self-consistent.

For more clarity, let us examine how the closed-
loop transcription framework above can be natu-
rally extended to the case of incremental learning—
that is, to learn to recognize one class of objects
at a time instead of simultaneously learning many
classes. While learning the representation Z,., for
a new class, one needs only to add the cost to ob-
jective (14) and ensure that the representation Zgq
learned before for old classes remains self-consistent
(a fixed point) through the closed-loop transcrip-
tion: Zog ~ Zod = f(9(Zoa)). In other words,
the above maximin game (14) becomes a game with
constraints:

maxmin AR(Z) + AR(Z) + AR(Zuew, Zuew)
n

subject to AR(ZOld, Zold) =0.
(15)
Such a constrained game makes learning an incre-
mental and dynamic process, enabling the learned
transcription to adapt to new incoming data contin-
uously. This process is illustrated in Fig. 7.

Recent empirical studies (Tong et al., 2022)
have shown that this leads to arguably the first
self-contained neural system with a fixed capacity
that can incrementally learn good LDR representa-
tions without suffering from catastrophic forgetting
(McCloskey and Cohen, 1989). Forgetting, if any,
is rather graceful with such a closed-loop system.
Additionally, when images of an old class are pro-
vided again to the system for review, the learned
representation can be further consolidated—a char-
acteristic very similar to that of human memory. In
some sense, such a constrained closed-loop formula-
tion ensures that the visual memory formation can
be Bayesian and adaptive—characteristics hypothe-
sized to be desirable for the brain (Friston, 2009).

Note that this framework is fundamentally con-
ceived to work in an entirely unsupervised set-
ting.  Thus, even though for pedagogical pur-
poses we present the principles assuming that class

30instead of a “hidden” or “latent” representation learned
using a purely generative method such as GAN (Goodfellow
et al., 2014) where the features are distributed randomly in
the feature space.
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Fig. 7 Incremental learning via a compressive closed-loop transcription. For a new data class Xpew, a new
linear discriminative representation (LDR) memory Znew is learned via a constrained minimax game between
the encoder and decoder subject to a constraint that memory of past classes Z,)q is preserved, as a ‘“fixed

point” of the closed loop.

Fig. 8 Comparison between x and the corresponding decoded & of the auto-encoding learned in the unsuper-
vised setting for the CIFAR-10 dataset (with 50 000 images in 10 classes) (a) and t-SNE of unsupervised-learned
features of the 10 classes and visualization of several neighborhoods with their associated images (b). Notice
the local thin (nearly 1D) structures in the visualized features, projected from a feature space of hundreds of

dimensions.

information is available, the framework can be nat-
urally extended to an entirely unsupervised setting
in which no class information is given for any data
sample. Here, we only have to view every new
sample and its augmentations as one new class in
Eq. (15). This can be viewed as one type of “self-
supervision.” With the “self-critiquing” game mech-
anism, a compressive closed-loop transcription can
be easily learned. As shown in Fig. 8, the so-learned
auto-encoding shows good sample-wise consistency,
and the learned features also demonstrate clear and
meaningful local low-dimensional (thin) structures.
More surprisingly, subspaces or block-diagonal struc-
tures in the feature correlation emerge in the fea-
tures learned for the classes even without any class
information provided during training at all (Fig. 9)!
Hence, structures of the so-learned features resemble
those of category-selective areas observed in a pri-
mate’s brain (Kanwisher et al., 1997; Kriegeskorte
et al., 2008; Kanwisher, 2010; Bao et al., 2020).

0 1.0
12500
25000 0.5
37500
S 0 12500 25000 37500 50 00{0_ "

Fig. 9 Correlations between unsupervised-learned
features for 50000 images that belong to 10 classes
(CIFAR-10) by the closed-loop transcription. Block-
diagonal structures consistent with the classes emerge
without any supervision.
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3 Universal learning engines

“What I cannot create, I do not understand.”
— Richard Feynman

In the above section, we deduced from the first
principles of Parsimony and Self-consistency the
compressive closed-loop transcription framework, us-
ing the example of modeling visual imagery data. In
the remaining two sections, we offer more specula-
tive thoughts on the universality of this framework,
extending it to 3D vision and reinforcement learn-
ing (RL) (the rest of this section)®' and projecting
its implications for neuroscience, mathematics, and
higher-level intelligence (Section 4).

“Unite and build”
quer’”:

versus ‘divide and con-
Within the compressive closed-loop tran-
scription framework, we have seen why and how
fundamental ideas and concepts from coding/
information theory, feedback control, deep networks,
optimization, and game theory come together to be-
come integral parts of a complete intelligent system
that can learn. Although “divide and conquer” has
long been a cherished tenet in scientific research, re-
garding understanding a complex system such as in-
telligence, the opposite “unite and build” should be
the tenet of choice. Otherwise, we would forever be
blind men with an elephant: each person would al-
ways believe that a small piece is the whole world
and tend to blow its significance out of proportion®2.

The two principles serve as the glue needed
to combine many necessary pieces together for the
jigsaw puzzle of intelligence, with the role of deep
networks naturally and clearly revealed as models
for the nonlinear mappings between external ob-
servations and internal representations. Interest-
ingly, the principles reveal computational mecha-
nisms for learning systems that resemble some of
the key characteristics observed in or hypothesized
about the brain, such as sparse coding and sub-
space coding (Barlow, 1961; Olshausen and Field,
1996; Chang and Tsao, 2017), closed-loop feedback
(Wiener, 1948), and free energy minimization (Fris-
ton, 2009), as we will discuss more in Section 4.

310ur discussions on the two topics require familiarity with
certain domain-specific terminology and knowledge. Readers
who are less familiar with these topics may skip without
much loss of continuity.

32Hence all the superficial claims: “this or that is all you
need.”

Notice that closed-loop compressive architec-
tures are ubiquitous for all intelligent beings and
at all scales, from the brain (which compresses sen-
sory information) to spinal circuits (which compress
muscle movements) down to DNA (which compresses
functional information about proteins). We believe
that compressive closed-loop transcription may be
the universal learning engine behind all intelligent
behaviors. It enables intelligent beings and sys-
tems to discover and distill low-dimensional struc-
tures from seemingly complex and unorganized in-
put and transform them into compact and organized
internal structures for memorizing and exploitation.

To illustrate the universality of such a frame-
work, for the remainder of this section, we examine
two more tasks: 3D perception and decision making,
which are believed to be two key modules for any
autonomous intelligent system (LeCun, 2022). We
speculate on how, guided by the two principles, one
can develop different perspectives and new insights
to understand these challenging tasks.

3.1 Three-dimensional perception:
the loop for vision and graphics

closing

Thus far, we have demonstrated the success
of closed-loop transcription in discovering compact
structures in datasets of 2D images.
on the existence of statistical correlations among
imagery data in each class. We believe that the
same compression mechanisms would be even more
effective if the low-dimensional structures in the
data were defined through hard physical or geomet-
ric constraints rather than through soft statistical
correlations.

This relies

Particularly, if we believe that the principles of
Parsimony and Self-consistency also play a role in
how the human brain develops mental models of the
world from life-long visual inputs, then our sense of
3D space should be the result of such a closed-loop
compression or transcription. The classic paradigm
for 3D vision laid out by David Marr in his influ-
ential book Vision (Marr, 1982) advocates a “divide
and conquer” approach that partitions the task of 3D
perception into several modular processes: from low-
level 2D processing (e.g., edge detection and contour
sketching), to mid-level 2.5D parsing (e.g., grouping,
segmentation, and figure and ground), and high-level
3D reconstruction (e.g., pose and shape) and recog-
nition (e.g., objects). In contrast, the compressive
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Fig. 10 A closed-loop relationship between computer vision and graphics for a compact and structured 3D

model of the visual inputs.

closed-loop transcription proposed in this paper ad-
vocates an opposite “unite and build” approach.

3.1.1 Perception as a compressive closed-loop

transcription?

More precisely, a 3D representation of shapes,
appearances, and even dynamics of objects in the
world should be the most compact and structured
representation that our brain has developed inter-
nally to consistently interpret all perceived visual
observations. If so, the two principles then suggest
that a compact and structured 3D representation is
directly the internal model to be sought for. This im-
plies that we could and should unify computer vision
and computer graphics within a single closed-loop
computational framework, as illustrated in Fig. 10.

Computer vision has conventionally been inter-
preted as a forward process that reconstructs and
recognizes an internal 3D model for the 2D visual in-
puts (Ma et al., 2004; Szeliski, 2022), whereas com-
puter graphics (Hughes et al., 2014) represents its
inverse process that renders and animates the inter-
nal 3D model. There might be tremendous compu-
tational and practical benefits to directly combine
these two processes into a closed-loop system: all
the rich structures (e.g., sparsity and smoothness) in
geometric shapes, visual appearances, and dynam-
ics can be exploited together for a unified 3D model
that is the most compact and consistent with all vi-
sual inputs.

Indeed, the recognition techniques in computer
vision could help computer graphics in building com-
pact models in the spaces of shapes and appearance
and enabling new ways for creating realistic 3D con-
tent. Conversely, the 3D modeling and simulation
techniques in computer graphics could predict, learn,

and verify the properties and behavior of the real
objects and scenes analyzed by computer vision al-
gorithms. In fact, the approach of “analysis by syn-
thesis” has been long practiced by the vision and
graphics community, e.g., for efficient online percep-
tion (Yildirim et al., 2020). Some recent examples of
closing the loop for computer vision and graphics in-
clude a learned 3D rendering engine (Kulkarni et al.,
2015) and 3D aware image synthesis (Chan ER et al.,
2021; Wood et al., 2021).

3.1.2 Unified representations for appearance and
shape?

Image-based rendering (Gortler et al., 1996;
Levoy and Hanrahan, 1996; Shum et al., 2007), in
which a new view is generated by learning from a set
of given images, may be regarded as an early attempt
to close the gap between vision and graphics with
the principles of em Parsimony and Self-consistency.
Particularly, plenoptic sampling (Chai et al., 2000)
shows that an anti-aliased image (self-consistency)
can be achieved with the minimum number of im-
ages required (parsimony).

Recent developments in modeling radiance fields
have provided more empirical evidence for this
view (Yu A et al., 2021): directly exploiting low-
dimensional structures in the radiance field in 3D
(sparse support and spatial smoothness) leads to
much more efficient and effective solutions than
brute-force training of black-box DNNs (Mildenhall
et al., 2020). However, it remains a challenge for
the future to identify the right family of compact
and structured 3D representations that can integrate
shape geometry, appearance, and even dynamics in a
unified framework that leads to minimal complexity
in data, model, and computation.
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3.2 Decision making: closing the loop for per-
ception, learning, and action

Thus far in this paper, we have discussed how
compressive closed-loop transcription may lead to an
effective and efficient framework for learning a good
perceptual model from visual inputs. At the next
level, an autonomous agent can use such a perceptual
model to achieve certain tasks in a complex dynam-
ical environment. The overall process for the agent
to learn from perceived results or received rewards
for its actions forms another closed loop at a higher
level (Fig. 11).

Ax, u) {i(x)=arg minQ(x, u)
N u
Qs, a) fi(als)—arg maxQ(s, a)
Leaming| policy control [Optimization a
™| decision
Value-based Policy-based RL/OC
RL/OC ’
Jix Agent Environment |y —fx, 4
A( ) controller t’\ controlled plant Ak =FolXi i)
V(s)|decision maker| dynamical system|Po(St+1|St @)
A Model-based RL/OC
Feedback|Cost utility| 25 °°P1°"

)
9xi ) reward (X, Uk) OF (Y, Uk)
s, &) (st a) or (o, @)

Fig. 11 An autonomous intelligent agent that inte-
grates perception (feedback), learning, optimization,
and action in a closed loop to learn an optimal policy
for a certain task. s; or xj is the state of the world
model; r or g is the perceived reward or cost of ac-
tion at¢ or control ug on the current state; J or V is
the (learned) cost or value associated with each state,
Q is the (learned) cost associated with each state-
action pair. Here, we deliberately use terminologies
from optimal control (OC) (Bertsekas, 2012) and re-
inforcement learning (RL) (Sutton and Barto, 2018)
in parallel for both comparison and unification.

The principle of Self-consistency is clearly at
play here: the role of the closed-loop feedback sys-
tem is to ensure that the learned model and control
policy by the agent are consistent with the external
world in such a way that the model can make the
best prediction of the state (s;) transition, and the
learned control policy 7y for the action (a;) results
in maximal expected reward R33:

mGaXR(9) = Eq g (se) {Z r(se, at)} '

t

(16)

33In many practices of RL, people may consider a “nar-
rower” version of the self-consistency principle: it requires
only the learned state model and control policy consistent
with a specific task or reward, not a full state model for all
sensed data.

Note here that the reward R plays a similar role
as the rate reduction objective (4) for LDR models,
which measures the “goodness” of the learned control
policy 7 and guides its improvement.

The principle of Parsimony is the main rea-
son for the success of modern RL in tackling large-
scale tasks such as Alpha-Go (Silver et al., 2016,
2017) and playing video games (Berner et al., 2019;
Vinyals et al., 2019). In almost all tasks that have
a state-action space of astronomical size or dimen-
sion, e.g., D, practitioners always assume that the
optimal value function V*, Q-function Q*, or policy
7* depends only on a small number of, e.g., d < D,
features:

Vi(s) ~ V(f(s,a)),
Q*(s,a) = Q(f(s,a)), (17)
™(a | s) = fr(a;f(s,a)),

where f(s,a) € R? is a nonlinear mapping that
learns some low-dimensional features of the ex-
tremely large or high-dimensional state-action space.
In the case of video games, the state dimension D is
easily in millions and yet the number of features d
needed to learn a good policy is typically only a few
dozen or hundred! Very often, these optimal control
policies or value/reward functions sought in OC/RL
are even assumed to be a linear superposition of these
features (Ng and Russell, 2000; Kakade, 2001):

whf(s,a) = wifi(s,a)+wafo(s,a)+. . . +wafs(s, a).

(18)
That is, the nonlinear mapping f is assumed
to also be able to linearize the dependency of
the policy/value/reward functions on the learned

features34.

3.2.1 Autonomous feature selection via a game?

Notice that all these practices in RL are very
similar in spirit to the learning objectives under the
principle of Parsimony stated in Section 2.1. Ef-
fectively exploiting the low-dimensional structures
is the (only) reason the learning can be so scal-
able with such a high-dimensional state-action space,
and correctly identifying and linearizing such low-
dimensional structures is the key for the so-learned

34Tt is a common practice in systems theory to linearize
any nonlinear dynamics before controlling them, through ei-
ther nonlinear mappings known as the Koopman operators
(Koopman, 1931) or feedback linearization (Sastry, 1999).
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control policy to be generalizable’®. Nevertheless,
a proper choice in the number of features d re-
mains heuristically designed by the human in prac-
tice.
We believe that, for a closed-loop learning system
to automatically determine the right number of fea-
tures associated with a reward/task, one must ex-
tend the RL formulation (16) to a certain max-
imin game?%, in a similar spirit to those studied in
Section 2.2 for achieving Self-consistency for visual

That makes the overall RL not autonomous.

modeling.
3.2.2 Data and computational efficiency of RL?

Recently, there have been many theoretical at-
tempts to explain the empirically observed efficiency
of RL in terms of sampling and computation com-
plexity of Markov decision processes (MDPs). How-
ever, any theory based on unstructured generic
MDPs and reward functions would not be able to
provide pertinent explanations to such empirical suc-
cesses. For example, some of the best known bounds
on the sample complexity for RL remain linear in
cardinality of the state space and action O(|S||.A|)
(Li et al., 2020), which does not explain the empir-
ically observed efficiency of RL in large-scale tasks
(such as Alpha-Go and video games) where the state
or action spaces are astronomical.

We believe that the efficiency of RL in tack-
ling many practical large-scale tasks can come only
from the intrinsic low dimensionality in the sys-
tem dynamics or correlation between the optimal
policy /control and the states. For example, assume
that the systems have a bounded eluder dimension
(Osband and van Roy, 2014) or the MDPs are of
low rank (Agarwal et al., 2020; Uehara et al., 2022).
Deep networks’ role is again to identify and model
such low-dimensional structures and hopefully lin-
earize them.

To conclude, for large-scale RL tasks, the two
principles together make such a closed-loop system of
perception, learning, and action a truly efficient and
effective learning engine. With such an engine, au-
tonomous agents can discover low-dimensional struc-
tures if there are indeed such structures in the envi-
ronment and the learning task, and eventually act

35Otherwise, the learned model/policy tends to over-fit or
under-fit.

36hby introducing a self-critique of the features selected and
learned.

intelligently when the structures learned are good
enough and generalize well!

4 A broader program for intelligence

“If I were to choose a patron saint for cybernetics
out of the history of science, I should have to choose
Leibniz. The philosophy of Leibniz centers about two
closely related concepts—that of a universal symbol-
ism and that of a calculus of reasoning.”

— Norbert Wiener, Cybernetics, 1961

It has been 10 years since the dramatic revival
of DNNs with the work of Krizhevsky et al. (2012),
which has garnered considerable enthusiasm for ar-
tificial intelligence in both the technology industry
and the scientific community. Subsequent theoret-
ical studies of deep learning often view deep net-
works themselves as the object of study (Roberts
and Yaida, 2022). However, we argue here that deep
networks are better understood as a means to an
end: they clearly arise to serve the purposes of iden-
tifying and transforming nonlinear low-dimensional
structures in high-dimensional data, a universal task
for learning from high-dimensional data (Wright and
Ma, 2022).

More broadly, in this paper, we have proposed
and argued that Parsimony and Self-consistency are
two fundamental principles responsible for the emer-
gence of intelligence, artificial or natural. The two
principles together lead to a closed-loop compu-
tational framework that unifies and clarifies many
practices and empirical findings of deep learning and
artificial intelligence. Furthermore, we believe that
they will guide us from now on to study intelligence
with a more principled and integrated approach.
Only in doing so can we achieve a new level of un-
derstanding of the science and mathematics behind
intelligence.

4.1 Neuroscience of intelligence

One would naturally expect any fundamental
principle of intelligence to have major implications
for the design of the most intelligent thing in the
universe, the brain. As already mentioned, the
principles of Parsimony and Self-consistency shed
new light on several experimental observations con-
cerning the primate visual system. More impor-

tantly, they shine light on what to look for in future



Ma et al. / Front Inform Technol Electron Eng 19

experiments.

We have shown that seeking an internally
parsimonious and predictive representation alone
is enough “self-supervision” to allow structures to
emerge automatically in the final representation
learned through a compressive closed-loop transcrip-
tion. For example, Fig. 9 shows that unsuper-
vised data transcription learns features that au-
tomatically distinguish different categories, provid-
ing an explanation for category-selective representa-
tions observed in the brain (Kanwisher et al., 1997;
Kriegeskorte et al., 2008; Kanwisher, 2010; Bao et al.,
2020). These features also provide a plausible expla-
nation for the widespread observations of sparse cod-
ing (Olshausen and Field, 1996) and subspace coding
(Chang and Tsao, 2017; Bao et al., 2020) in the pri-
mate’s brain. Furthermore, beyond the modeling of
visual data, recent studies in neuroscience suggest
that the emergence of other structured representa-
tions in the brain, such as “place cells,” might also be
the result of coding spatial information in the most
compressed way (Benna and Fusi, 2021).

Arguably, the maximal coding rate reduction
(MCR?) principle (4) is similar in spirit to the “free
energy minimization principle” from cognitive sci-
ence (Friston, 2009), which attempts to provide a
framework for Bayesian inference through energy
minimization. Unlike the general notion of free en-
ergy, however, the rate reduction is computationally
tractable and directly optimizable as it can be ex-
pressed in closed form. Furthermore, the interplay of
our two principles suggests that autonomous learn-
ing of the correct model (class) should be conducted
via a closed-loop maximin game over such a utility
(14), instead of minimization alone. Thus, we be-
lieve that our framework provides a new perspective
on how to practically implement Bayesian inference.

Our framework clarifies the overall learning ar-
chitecture used by the brain. One important in-
sight is that a feed-forward segment can be con-
structed by unrolling an optimization scheme; learn-
ing from a random network via back propagation
is unnecessary. Furthermore, our framework sug-
gests the existence of a complementary generative
segment to form a closed-loop feedback system to
guide learning. Finally, our framework sheds light
on the elusive “prediction error” signal sought by
many neuroscientists interested in brain mechanisms
for “predictive coding,” a computational scheme with

resonances to compressive closed-loop transcription
(Rao and Ballard, 1999; Keller and Mrsic-Flogel,
2018). For reasons of computational tractability,
the discrepancy between incoming and generated ob-
servations should be measured at the final stage of
representation.

So far, many resemblances between this new
framework and the natural intelligence discussed in
this paper are still speculative and remain to be cor-
roborated with future scientific experiments and ev-
idence. Nevertheless, these speculations offer neu-
roscientists ample new perspectives and hypothe-
ses about why and how intelligence could emerge
in nature.

4.2 Mathematics of intelligence

In terms of mathematical or statistical mod-
els for data analysis, one can view our framework
as a generalization of principal component analy-
sis (PCA) (Jolliffe, 1986), generalized PCA (GPCA)
(Vidal et al., 2016), robust PCA (RPCA) (Candeés
et al., 2011), and nonlinear PCA (Kramer, 1991)
to the case with multiple low-dimensional nonlinear
submanifolds in a high-dimensional space. These
classical methods largely model data with single or
multiple linear subspaces or with a single nonlinear
submanifold. We have argued that the role of deep
networks is mainly to model the nonlinear mappings
that simultaneously linearize and separate multiple
low-dimensional submanifolds. This generalization
is necessary to connect these idealistic, classic mod-
els to the true structures of the real-world data. De-
spite promising and exciting empirical evidence, the
mathematical properties of the compressive closed-
loop transcription process remain understudied and
poorly understood. To the best of our knowledge,
only for the case when the original data x are as-
sumed to be on multiple linear subspaces, it has been
shown that the maximin game based on rate reduc-
tion yields the correct optimal solution (Pai et al.,
2022). Little is known about the transcription of
nonlinear submanifolds.

A rigorous and systematic investigation re-
quires an understanding of high-dimensional proba-
bility distributions with low-dimensional supports on
submanifolds (Fefferman et al., 2013). Hence, math-
ematically, it is crucial to study how such subman-
ifolds in high-dimensional spaces can be identified,
grouped or separated, deformed, and flattened with
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minimal distortion to their original metric, geome-
try, and topology (Tenenbaum et al., 2000; Buchanan
et al., 2021; Wang et al., 2021; Shamir et al., 2022).
Problems like these seem to fall into an understud-
ied area between classical differential geometry and
differential topology in mathematics.

Additionally, we often wish that during the pro-
cess of deformation, the probability measure of data
on each submanifold is redistributed in a certain op-
timal way such that coding and sampling will be the
most economical and efficient. This is related to top-
ics such as optimal transport (Lei et al., 2017). For
the case when the submanifolds are fixed linear sub-
spaces, understanding the achievable extremals of
the rate reduction, or ratio of volumes of the whole
and the parts, seems related to certain fundamen-
tal inequalities in analysis, such as the Brascamp—
Lieb inequalities (Bennett et al., 2008). More gen-
eral problems like these seem to be related to the
studies of metric entropy (also commonly known as
sphere packing) and coding theory for distributions
over more general compact structures or spaces.

Besides nonlinear low-dimensional structures,
real-world data and signals are typically invariant
to shift in time, translation in space, or to more
general group transformations. Wiener (1961) rec-
ognized that simultaneously dealing with nonlinear-
ity and invariance presents a major technical chal-
lenge. He had made early attempts to generalize
harmonic analysis to nonlinear processes and sys-
tems®”. Indeed, the revival of deep learning has
reignited strong interest in this critical problem, and
significant progress has been made recently, includ-
ing the work of Bruna and Mallat (2013), Cohen
TS and Welling (2016), Papyan et al. (2018), Wia-
towski and Boleskei (2018), and Cohen TS et al.
(2019). Our framework suggests that a more uni-
fying approach to dealing with nonlinearity and in-
variance is through (incremental) compression. This
has led to a natural derivation of structured deep
networks such as the convolutional ReduNet (Chan
KHR et al., 2022). We believe that compression
provides a unifying perspective to modeling general
sequential data or processes with nonlinear dynam-
ics too, which could lead to mathematically rigorous
justification for popular models such as recurrent
neural networks (RNNs) or long short-term mem-

3THe used his analysis to explain brain waves (Wiener,
1961)!

ory networks (LSTMs) (Hochreiter and Schmidhu-
ber, 1997).

Besides pure mathematical interests, we must
require that the mathematical investigation lead to
computationally tractable measures and scalable al-
gorithms. One must characterize the precise statis-
tical and computational resources needed to achieve
such tasks, in the same spirit as the research pro-
gram set for compressive sensing (Wright and Ma,
2022), because intelligence needs to apply them to
model high-dimensional data and solve large-scale
tasks. This entails to “close the loop” between math-
ematics and computation, enabling the use of rich
families of good geometric structures (e.g., sparse
codes, subspaces, grids, groups, or graphs; Fig. 1,
right) as compact archetypes for modeling real-world
data, through efficiently computable nonlinear map-
pings that generalize deep networks, e.g., Bronstein
et al. (2021).

4.3 Toward higher-level intelligence

The two principles laid out in this paper are
mainly for explaining the emergence of intelligence
in individual agents or systems, related to the notion
of ontogenetic learning that Norbert Wiener first pro-
posed (Wiener, 1948). It is probably noncoincidental
that after more than 70 years, we find ourselves in
this paper “closing the loop” of the modern practice
of artificial intelligence back to its roots in Cyber-
netics and interweaving the very same set of funda-
mental concepts that Wiener touched upon in his
book while conducting inquiries into the jigsaw puz-
zle of intelligence: compact coding of information,
closed-loop feedback, learning via games, white-box
modeling, nonlinearity, shift-invariance, etc.

As shown in this paper, the compressive closed-
loop transcription is arguably the first computa-
tional framework that coherently integrates many of
these pieces together. It is in close spirit to earlier
frameworks (Hinton et al., 1995) but makes them
computationally tractable and scalable. Particu-
larly, the learned nonlinear encoding/decoding map-
pings of the loop, often manifested as deep networks,
essentially provide a much needed “interface” be-
tween external unorganized raw sensory data (say
visual, auditory, etc.) and internal compact and
structured representations.

However, the two principles proposed in this
paper do not necessarily explain all aspects of
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intelligence. Computational mechanisms behind the
emergence and development of high-level semantic,
symbolic, or logic inferences remain elusive, although
many foundational works have been set forth by
pioneers like John McCarthy, Marvin Minsky, Allen
Newell, and Herbert Simon since the 1950s (Simon,
1969; Newell and Simon, 1972) and a comprehen-
sive modern exposition can be found in Russell and
Norvig (2020). To date, there remain active and con-
tentious debates about whether such high-level sym-
bolic intelligence can emerge from continuous learn-
ing or must be hard-coded (Marcus, 2020; LeCun
and Browning, 2022).

In our view, structured internal representations,
such as subspaces, are necessary intermediate steps
for the emergence of high-level semantic or sym-
bolic concepts—each subspace corresponds to one
discrete category (of objects). For example, no-
tions of eye and mouth may come out naturally
from observing a large number of face images. Ad-
ditional statistical, causal, or logical relationships
among the so-abstracted discrete concepts can be
further modeled parsimoniously as a compact and
structured (say sparse) graph, with each node repre-
senting a subspace/category, e.g., Bear et al. (2020).
We believe that such a graph can be and should
be learned via a closed-loop transcription to ensure
self-consistency.

We conjecture that only on top of compact
and structured representations learned by individ-
ual agents can the emergence and development
of high-level intelligence (with shareable symbolic
knowledge) be possible, subsequently and even-
tually. We suggest that new principles for the
emergence of high-level intelligence, if any, should
be sought through the need for efficient com-
munication of information or transfer of knowl-
edge among intelligent agents. This is related to
the notion of phylogenetic learning that Wiener
also discussed (Wiener, 1961).
new principle needed for such higher-level intelli-
gence must reveal reasons why alignment and shar-
ing of internal concepts across different individual
agents is computationally possible, as well as re-
veal certain measurable gains in intelligence for a

Furthermore, any

group of agents from such symbolic abstraction and
sharing.

Intelligence as interpretable and computable
systems: Obviously, as we advance our inquiries

into higher-level intelligence, we want to set much
higher standards this time. Whatever new principles
that might remain to be discovered in the future, for
them to truly play a substantial role in the emergence
and development of intelligence, they must share two
characteristics with the two principles we have pre-
sented in this study:

1. Interpretability: All principles together
should help reveal computational mechanisms of in-
telligence as a white box®, including measurable
objectives, associated computing architectures, and
structures of learned representations.

2. Computability: Any new principle for intel-
ligence must be computationally tractable and scal-
able, physically realizable by computing machines or
nature, and ultimately corroborated with scientific
evidence.

Only with such fully interpretable and truly re-
alizable principles in place can we explain all existing
intelligent systems, artificial or natural, as partial or
holistic instantiations of these principles. Then, they
can help us discover effective architectures and sys-
tems for different intelligent tasks without relying
on the current expensive and time-consuming “trial-
and-error” approach to advance. Also, we will be
able to characterize the minimal data and computa-
tion resources needed to achieve these tasks, instead
of the current brute-force approach that advocates
“the bigger, the better.” Intelligence should not be
the privilege of the most resourceful, as it is not the
way of nature. Instead, parsimony and autonomy
are the main characteristics®?. Under a correct set of
principles, anyone should be able to design and build
future generations of intelligent systems, small or
big, with autonomy, ability, and adaptiveness, even-
tually emulating and even surpassing that of animals
and humans.

5 Conclusions

Through this paper, we hope to have convinced
the reader that we are now at a much better place
than people like Wiener and Shannon 70 years ago
regarding uncovering, understanding, and exploiting
the works of intelligence. We have proposed and

38 Again, the phrase “white box” modeling has been conve-
niently borrowed from Wiener’'s Cybernetics (Wiener, 1961).

39A tiny ant is arguably much more intelligent and inde-
pendent than any legged robot in the world, with merely a
quarter of a million neurons consuming negligible energy.
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argued that, under the two principles of Parsimony
and Self-consistency, it is possible to assemble many
necessary pieces of the puzzle of intelligence into a
unified computational framework that is easily im-
This uni-
fying framework offers new perspectives on how we
could further advance the study of perception, deci-
sion making, and intelligence in general.

plementable on machines or by nature.

To conclude our proposal for a principled ap-
proach to intelligence, we emphasize once again that
all scientific principles for intelligence should not be
philosophical guidelines or conceptual frameworks
formulated or developed with mathematical quan-
tities that are intractable to compute or can only be
approximated heuristically. They should rely on the
most basic and principled objectives that are mea-
surable with finite observations and lead to compu-
tational systems that can be realized even with lim-
ited resources. This belief is probably best expressed
through a quote from Lord Kelvin:

“When you can measure what you are speaking
about and express it in numbers, you know something
about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is of
the meager and unsatisfactory kind: it may be the
beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science, whatever
the matter may be.”

— Lord Kelvin, 1883
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