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Abstract. We prove the existence of GSpin-valued Galois representations corresponding to
cohomological cuspidal automorphic representations of general symplectic groups over totally real
number fields under the local hypothesis that there is a Steinberg component. This confirms the
Buzzard—Gee conjecture on the global Langlands correspondence in new cases. As an application
we complete the argument by Gross and Savin to construct a rank 7 motive whose Galois group is of
type G2 in the cohomology of Siegel modular varieties of genus 3. Under some additional local
hypotheses we also show automorphic multiplicity 1 as well as meromorphic continuation of the
spin L-functions.
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Introduction

Let G be a connected reductive group over a number field F. The conjectural global
Langlands correspondence for G predicts a correspondence between certain automorphic
representations of G.A¢ / and certain "-adic Galois representations valued in the L-group
of G. Let us recall from [13, §3.2] a rather precise conjecture on the existence of Galois
representations for a connected reductive group G over a number field F. Let be a
cuspidal L-algebraic automorphic representation of G.Af /. (We omit their conjecture
in the C-normalization [13, Conj. 5.40], but see Theorem 9.1 below.) Denote by §.Q./
the Langlands dual group of G over Q-+, and by “G.Q/ the L-group of G formed by the
semidirect product of G.Q./ with Gal.F=F/. According to their conjecture, for each
prime * and each field isomorphism WC' Q-, there should exist a continuous represent-
ation
WGal.F=F/! 'G.Q./;

which is a section of the projection 'G.Q-/ ! Gal.F =F / such that the following holds: at
each place v of F where , is unramified, the restriction ;,WGaI.F\,=F\,/!_ Llc.Q./
corrgponds toy via the unramified Langlands correspondence. Moreover, ; should satisfy
other desiderata (see Conjecture 3.2.2 of loc. cit.). For instance, at places v of F above °,
the localizations ;,y are potentially semistable and have Hodge-Tate cocharacters
determined by the infinite components of . Note that if G is a split group over F, we may
as well take ; to have values in G.Q./. To simplify nofation, we often fix and write and .y
for. and ..y, understanding that these representations do depend on the choice of in general.

Our main result confirms the conjecture for general symplectic groups over totally
real fields in a number of cases (up to Frobenius semisimplification, meaning that we take
the semisimple part in (ii) of Theorem A below). We find these groups interesting for two
reasons. Firstly, they naturally occur in the moduli spaces of polarized abelian varieties
and their automorphic/Galois representations have been useful for arithmetic applications
(such as the study of L-functions, modularity and the Sato—Tate conjecture). Secondly,
new phenomena (as the semisimple rank grows) make the above conjecture sufficiently
nontrivial, stemming from the nature of the dual group of a general symplectic group: e.g.
faithful representations have large dimensions and locally conjugate representations may
not be globally conjugate.

Let F be a totally real number field. Let n 2. Let GSp,, denote the split general
symplectic group over F, equipped with similitude character sSimW GSp,,, ! Gn over F.
The dual group G8p,, is the general spin group GSpin,,c,, which we view over Q- (or
over C via ), admitting the spin representation

spinW GSpin,; ! Glan:

Consider the following hypotheses on :

(St) There is a finite F-place vs; such that v, is the Steinberg representation of
GSp,,,.Fv,,/ twisted by a character.
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(L-coh) 1jsimj "nC€1/=4 is _cohomological for an irreducible algebr&ic representa-tion
D “ywr,! c y of the group .Resg-q GSp,,/ "o C ' ywi,1c GSPan.c
(Definition 1.12 below).

A trace formula argument shows that there are plenty of (in particular infinitely many)
satisfying (St) and (L-coh) (see [18]). Let Spad denote the finite set of rational primes p such
that either p D 2, p ramifies in F, or, ramifies at a place v of F above p.

Theorem A (Theorem 10.3). Suppose that satisfies hypotheses (St) and (L-coh). Let *
be a prime numberand WC | Q. afield isomorphism. Then there exists a representation

D ,WGalF=F/! GSpin,,.;.Q/;
unique up to GSpin,,c;.Q-/-conjugation, attached to and such that the following

hold:

(i) The composition

Gal.F=F/ | GSpin,,c;.Q/! SO2nc1.Q-/ Glanc1.Q-/

is the Galois representation attached to a cuspidal automorphic Sp,,,.Af /-subre-
presentation [ contained in . Further, the composition

Gal.F=F/ | GSpin,,c,.Q./=Spin,,c;.Q:/" GL1.Q./

corresponds to the central character of via class field theory and .

(ii) For every finite place v which is not above Spag [ 72, the semisimple part of
.Froby/ is conjugate to , .Froby/ in GSpin,,c,.Q 7, where , is the unrami-fied
Langlands parameter of .

(iii) For every vj', the representation ;, is de Rham .in the sense that r 1 .y is de
Rham for all representations r of GSpin, ;.5 /. Moreover:

(a) The Hodge—Tate cocharacter of ;, is explicitly determined by . More pre-
cisely, for all yYWF !  C such thaty induces v, we have

n.nC1/ _.
HT-;V;V/ D Hodge-y/ /SIFH—4

.for ur and wodge see Definitions 1.10 and 1.14 below/.

(b) If v has nonzero invariants under a hyperspecial .resp. lwahori/ subgroup of
GSp,,-Fv/ then either ;v or a quadratic character twist is crystalline .resp.

semistable/.
(c) If ° .. Spag then .y is crystalline.
(iv) Foreveryvij 1, ., is odd.see Definition 1.8 and Remark 10.4 below/.

(v) The Zariski closure of the image of maps onto one of the following three sub-
groups of SO2nca1: (a) SO2nc1, (b) the image of a principal SL, in SO2nc1, or(c)
(only possible when n D 3/ G, embedded in SO7.
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(vi) If WGal.F=F/ ! GSpin,,c,.Q:/ is any other continuous morphism such that, for
almost all F-places v where ®and are unramified, the semisimple parts °.Froby/ss
and .Froby/ss are conjugate, then and °are conjugate.

Our theorem is new when n 3. When n D 2, a better and fairly complete result
without condition (St) has been known by [31,41,67,92,97,101,109]. (Often is assumed
globally generic in the references but this is no longer necessary thanks to [31].)

The above theorem in particular associates a weakly compatible system of -adic
representations with . See also Proposition 13.1 below for precise statements about the
weakly compatible system consisting of spin 1 . It is worth noting that the uniqueness
in (vi) would be false for general GSpin,c;.Q-/-valued Galois representations in view of
Larsen’s example in §5 below.® Our proof of (vi) relies heavily on the fact that contains
a regular unipotent element in the image, coming from condition (St).

Whenn D 3andF D Q, we employ the strategy of Gross and Savin [36] to construct
a rank 7 motive over Q with Galois group of exceptional type G, in the cohomology
of Siegel modular varieties of genus 3. The point is that as in the above theorem
factors through G,.Q:/,! GSpin,.Q:/ if comes from an automorphic representation
on (an inner form of) G2.A/ via theta correspondence. In particular, we get yet another
proof affirmatively answering a question of Serre in the case of G, (cf. [25,42,77,113]
for other approaches to Serre’s question, none of which uses Siegel modular varieties).
Along the way, we also obtain some new instances of the Buzzard—Gee conjecture for a
group of type Gz. Our result also provides a solid foundation for investigating the sug-
gestion of Gross—Savin that a certain Hilbert modular subvariety of the Siegel modular
variety should give rise to the cohomology class for the complement of the rank 7 motive
of type G in the rank 8 motive cut out by, as predicted by the Tate conjecture. See The-
orem 11.1, Corollary 11.3, and Remark 11.5 below for details. We mention that Magaard
and Savin obtained similar results (using a different method) in a new version of [72].

As another consequence of our theorems, we deduce multiplicity 1 theorems for auto-
morphic representations for inner forms of GSp, ... under similar hypotheses from the
multiplicity formula by Bin Xu [112]. As his formula suggests, multiplicity 1 is not always
expected when all hypotheses are dropped.

Theorem B (Theorem 12.1). Let be a cuspidal automorphic representation of
GSp,,-Ar / satisfying (St) and (L-coh). The automorphic multiplicity of is equal to 1.

By part (vi) of Theorem A asserting uniqueness, we have (a version of) strong mul-
tiplicity 1 for the L-packet of . In Proposition 6.3 we prove a weak Jacquet—Langlands
transfer for in Theorem B. This allows us to propagate multiplicity 1 from as above to the
corresponding automorphic representations on a certain inner form. See Theorem 12.2
below for details. Note that (weak and strong) multiplicity 1 theorem for globally generic

—Hmrcontrast, forcuspidat-automorphic representations of the group Sp, . Af /, the correspond-

ing analogue of statement (vi) does hold (cf. Proposition B.1). So the possible failure of (vi) is a
new phenomenon for the cuspidal spectrum of the similitude group GSp,,.Af /.
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cuspidal automorphic representations of GSp,.Ar / has been known by Jiang and Soudry
[40,94].

Our results yield a potential version of the spin functoriality, thus also a mero-
morphic continuation of the spin L-function, for cuspidal automorphic representations of
GSp,,.Ar / satisfying (St), (L-coh), and the following strengthening of (spin-reg):

(spin-REG) The representation y is spin-regular at every infinite place v of F .

The last condition means that the Langlands parameter of , maps to a regular para-
meter for GLan by the spin representation (Definitions 1.6 and 1.7 below). Thanks to the
potential automorphy theorem of Barnet-Lamb, Gee, Geraghty, and Taylor [7, Thm. A] it
suffices to check the conditions for their theorem to apply to spin1 (for varying = and ).
This is little more than Theorem A; the details are explained in §13 below.

Theorem C (Corollary 13.4). Under hypotheses (St), (L-coh), and (spin-REG) on ,
there exists a finite totally real extension F °=F .which can be chosen to be disjoint from
any prescribed finite extension of F in F//'such that spin 1 jg, r -¢ o7-is automorphic. More
precisely, there exists a cuspidal automorphic representation ... of GLan. A o/ such that

for each finite place w of F° not above Spaq, the representation spini jw is,
unramified and its Frobenius semisimplification is the Langlands parameter for \AV,V,

at each infinite place w of F° above a place v of F, we have ., jw. ' spini ,jwc.In

particular, the partial spin L-function L>.s; ; spin/ admits a meromorphic continu-ation
and is holomorphic and nonzero in a right half-plane.

We can be precise about the right half-plane in terms of : For instance it is given
by Re.s/ 1if has unitary central character. Due to the limitation of our method, we
cannot control the poles. Before our work, the analytic properties of the spin L-functions
have been studied mainly via Rankin—Selberg integrals; some partial results have been
obtained for GSp,, for 2 n 5 by Andrianov, Novodvorsky, Piatetski-Shapiro, Vo,
Bump—Ginzburg, and more recently by Pollack—Shah and Pollack [12, 78, 80, 81, 102].
See [80, 1.3] for remarks on spin L-functions with further references.

Finally, we comment on the hypotheses of our theorems. Statements (ii) and (iii.c) are
not optimal in that we exclude a little more than the finite places v where y is unramified.
This is due to the fact that the Langlands—Rapoport conjecture has been proved by [46] at a
p-adic place only when p > 2 and the defining data (including the level) are unramified at
all p-adic places.? Condition (L-coh) is essential to our method but it is perhaps possible to
prove Theorem A under a slightly weaker condition that appears in the coherent
cohomology of our Shimura varieties.

The rather strong condition (spin-REG) in Theorem C is necessary due to the current
limitation of potential automorphy theorems. Condition (St) in Theorem A is believed

2When F D Q, our argument uses Siegel modular varieties, so we may allow p D 2 by appeal-

ngto Kottwitz's work onm PEL=type Shimura varieties instead of [46].
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to be superfluous. Significant work and ideas would be needed to get around it. On the
other hand, (St) is harmless to assume for local applications, which we intend to pursue in
future work.

Idea of proof. Our proof of Theorem A relies crucially on Arthur’s book [5]. His results
used to be conditional on the stabilization of the twisted trace formula, whose proof has
been completed by Moeglin and Waldspurger; see [73, 74] for the last one. Thus Arthur’s
results are essentially unconditional.®> Since Theorems B and C depend in turn on The-
orem A, all our results count on Arthur’s book.

Let us sketch our proof with a little more detail. We prove Theorem A by combin-
ing two approaches: (M1) Shimura varieties for inner forms of GSp,,, and (M2) lifting
to GSpin,,c;-Q-/ the SO2nc1.Q:/-valued Galois representations as constructed by the
works of Arthur and Harris—Taylor.

First method. Consider the inner form G over F of G WDGSp, ,.; such that the local
group Gy is
8
2 nonsplit ifvD vsgiand GF D Qe s even;
anisotropic modulo center ifvj1; vH vp;

“split otherwise:

We consider Shimura varieties arising from the group Resr-q G (and the choice of X asin
§7 below). Note that (the Q-points of) Resg-q G has factor of similitudes in F, as
opposed to Q, and that our Shimura varieties are not of PEL type (when F % Q) but of
abelian type. This should already be familiar for n D 1 (though we assume n 2 for our main
theorem to be interesting), where we obtain the usual Shimura curves (cf. [15]). In case F
D Q our Shimura varieties are the classical Siegel modular varieties.
The idea is to consider (the semisimplification of) the compactly supported étale
cohomology
H' .Shg; L/ D lim  HL.Shg;L/; i O;

KG,AtY

where L is the "-adic local system attached to some irreducible complex representa-tion
of G via.Then H'.Shg; LZ has an action of G.A'/ Gal.F =F /; and onehopes to prove
that through this action the module H'.Shy; L/ realizes the Langlands correspondence. In
particular, one tries to attach to a cuspidal automorp‘ﬁic representa-

tion of GSp,,.Af / the following virtual Galois representation (see also (7.3)): 0

X , R
I HW . 1/'GHomgna, ;.%; H'.Shigl/ss/e;
i0
___3Strictly speaking, Arthur postponed some technical details in harmonic analysis to future art-

icles ([A25, A26, A27] in the bibliography of [5]), which have not appeared yet. The weighted
fundamental lemma has been proved by Chaudouard—Laumon but the proof has appeared for split
groups thus far.
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where the first mapping is a weak transfer of from G to G. (We need to twist by j
j ™n€1/=4 to have H X O but this twist will be ignored in the introduction.) The subscript
./ss denotes the semisimplification asa G. AL /-modulé.

The construction of H has two issues. Firstly there are the usual issues coming from
endoscopy. Our assumption (St) circumvents this difficulty (and helps us at other places).
Secondly, even without endoscopy, one does not expect H to realize the representa-
tion itself; rather it realizes (up to dual, sign, twist, and multiplicity) the composition

Gal.F=F/ | GSpin,,c;.Q:/ 1 Gla».Q-/:

In particular, if one wants to use H to construct, one has to show that rwW Gal.F=F/! G&

.H({ ' Gl2n.Q-/ has (up to conjugation) image in the group GSpin,¢;-Q-/  Glan
.Q-/. With point counting methods it can be shown that this is true for the Frobenius
elements, but since these elements are only defined up to GL2».Q:/-conjugation, we are
unable to deduce directly that the entire representation r has image in GSpin,, ¢, Q-/.
More information seems to be required.

Second method. Consider a continuous representation Wsal.F=F/ ! SO2nc1.Q-/,
and the exact sequence

1! a | GSpinZnCl.a‘/! SOanl.a\/! 1:

Using the theorem of Tate that H2.F; Q=2/ vanishes, it is not hard to show that has

a continuous lift WGal.F=F /! GSpin,,c;.Q:/. In particular, one could try to attach to
a (nonunique) automorphic Sp,,.Af /-subrepresentation [ , and then to [ the Galois
representation { WGal.F=F/! SO2nc1.Q./, constructed by the combination of results of

Arthur and others (Theorem 2.4). One now hopes to construct WGal.F=F/ !
GSpiny e, &/ as a twist@ “  for some continuous character WGal.F=F/ ! & .

However, it is a priori unclear where should come from. (The central character of
only determines the square of .)

Construction. We find the character by comparing ; @th the representation H.

Consider the diagram
/x\
m GlL2n.Q-/

GalF=F/ ‘

if
[ SO2nc1.Q/ ——— PGL20.Q./

spin

where 1 D spin1 ; f@ some choice of lift | of {, @d we construct » from the representation
H. We show in three steps that 1 and » are conjugate up to twisting by the sought-after
character .
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Step 1: Show connectedness of image. More precisely, we show that the image of [ (thus
also the image of spinT— ) has connected Zariski closure. Because is a twist of the
Steinberg representation at a finite place, we can ensure that | jg, ¢ ¢, has a regular

unipotent element N in its image. It then follows from results of SaxI-Seitz that the
reductive subgroups of SO2nc1.Q-/ containing N are connected (see Proposition 3.5).

Step 2: Construct 2. We compare the point counting formula for .Resg-q G; H/ with the
Arthur—Selberg trace formula for G=F . Since the datum .Resr-q G; H/ is not of PEL type
(unless F D Q), the classical work of Kottwitz [55,57] does not apply. Instead we use the
counting point formula as derived in [47] from Kisin’s recent proof of the Langlands—
Rapoport conjecture for Shimura data of abelian type, so in particular for .Resg-q G; H/.
Consequently, we have Hjg, ¢ =p sD aspini, at the unramified places v, where | is the

unramified L-parameter of y and a 2 Z>¢ is essentially the automorphic multiplicity of .
(In fact, we show that a D 1 together with Theorem B but only after the

construction of is done. See §12 below.)
Step 3: Produce . To do this we prove

Lemma. Let ri; pWGal.F=F/! GLm.Q:/ two continuous representations, which are
unramified almost everywhere, r1 has Zariski connected image modulo center, and for
almost all F-places

ri.Froby/ss is conjugateto ra.Froby/ss in PGLm.Q/:

Thenri' r2” for a continuous character WGal.F=F/! Q..

By counting points on Shimura varieties we control , at the unramified places. By a
different argument 1 is, up to scalars, also controlled at the unramified places. Hence the
lemma applies, and allows us to find a character suchthat, ' 1~

To prove Theorem A we define

WD, “@N Gal.F=F/T GSpin,,c;.Q/;

and check that satisfies the desired properties stated in the theorem.

Notation

We fix the following notation and conventions:
“Almost all” always means “all but finitely many”.
n 2is an integer.
F is a totally real number field, embedded into C.
O¢ is the ring of integers of F .

Of (E1=S¢ s the localization of O with finite primes in S inverted, where S is a finite
set of places of F . (Finite places are used interchangeably with finite primes.)
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Af isthering of adéles of F, i.e. Af WD.F "o R/ .F "z Z/.Y
If t is a finite set of F-places, then A_ T Af is the ring of adéles with trivial com-
ponents at the placesint, and F+ WD — ,,; Fy; F1 WDF “ o R.

If p is a prime number, then F, WDF “q Qp.

* is a fixed prime number (different from p).

Q. is a fixed algebraic closure of Q , and WC ! CT is an isomorphism.

For each prime number p we fix the positive root P P 2 Rso C. From we then

obtain a choice for P g2 Q-. Thus, if q is a prime power, then q* is well-defined in C as
n.nCl1/=4
v

well as in Q-"for all half-integers x 2 , Z(e.g. q in Corollary 8.7).

If is a representation on a complex vector space then we set WD “¢. Q.. Sim-ilarly if
is a local L-parameter of a reductive group G so that maps into “G.C/ then is the
parameter with values in *G.Q/ obtained from via .

€ WDGal.F =F / is the absolute Galois group of F .
€, WDGal.F,=F,/ is (one of) the local Galois group(s) of F at the place v.
V1 WDHomq.F; R/ is the set of infinite places of F .

cyv 2 € is the complex conjugation (well-defined as a conjugacy class) induced by any
embedding F ,! C extendingv 2 V1.

If G is alocally profinite group equipped with a Haar measure, then we write H . G / for the
Hecke algebra of locally constant, complex valued functions with compact support. We
write H a. .6/ for the same algebra, but now consisting of Q.-valued functions.

We normalize parabolic induction by the half-power of the modulus character as in [9,
§1.8], so as to preserve unitarity. The Satake transform and parameters are normalized
similarly, e.g. as in [13, §2.2].

We normalize class field theory so that geometric Frobenius elements correspond to
local uniformizers. Our normalization of the local Langlands correspondence for GL is
the same as in [39].

If H=Q- is a reductive group, a group-valued representation € ! H.Q-/ means, by
definition, a continuous group morphism for the Krull topology on € and the “-adic
topology on H.Q-/. Similarly every character is assumed to be continuous throughout
the paper.

The (general) symplectic group

Write A, for the n n-matrix with zeros everywhere, except on its anti-diagonal, where we
put1’s. Write ), WD An 2 GLan.Z/. We define GSp,, as the algebraic group over Z

such that for all rings R,

GSp,,.-R/D 'g 2 GL2n.R/j'g Jn gD x Jn for somex 2 R:
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The factor of similitude x 2 R induces a morphism smWGSp,,, ! Gm. Write Tasp
GSp,,, for the diagonal maximal torus. Then X.Tgsp/ D Moo Zei where

eiWdiag.ai;:::;an;ca, b;:ii;ca /! ai .i > 0f;
1
n
We let Bgsp GSp,,, be the upper triangular Borel subgroup. We have the following
corresponding simple roots and coroots:

.1De e ::ii; n1Den1 en; .nD2en eo2X.Tasp/;
rDe e, 1De ;e - De2XTasp/:

We define Sp,,, D ker.sim/. Write Bs, D Bgsp \ Sp,, and Tsp D Tasp \ Sp,,-

The (general) orthogonal group

Let m 2 Z1 and let GO, be the algebraic group over Q such that for all Q-algebras R,
GOm.R/D 'g 2 GLm.R/j'g Am gD x Am forsomex 2 R9;

where An, is the anti-diagonal unit m m-matrix. We have the factor of similitude smwW
GO2nc1! Gp and put Om D ker.sim/and SOm D Om\ SLm. Let Tco GOm, Tso SOm
be the diagonal tori. We write stdW GO, ! GLm for the standard represent-ation. If m D
2n C 1is odd, the root datum of SO2nc1 is dual to Sp,,,. In particular, we identify X.Tso/

D X.TSp/.

The (general) spin group

Consider the symmetric form

hx; yi D Xx1y2nc1 C X2¥2n C C X2nc1y1 D ' Aznc1 y

on Q2"¢Y, The associated quadratic formis Q.x/ D x1X2nc1 C X2X2n C C X2nc1X1. Let
C be the Clifford algebra associated to .Q2"“Y; Q/. It is equipped with an embedding
Q2"¢Y C which is universal for maps f WQ?"* I A into associative rings A satisfying

products By D —;,, bi forl '1;2;:::;2n C 12 form a basis of C. The algebra C has a
Z=27Z-grading,C D C ¢ ° C ,induced from the grading on the tensor algebra. On the
Clifford algebra C we have a unique anti-involution thatis determined by .vi v,/ D . 1/ v,

GSpin,,c;-R/D'g2.C“” R/jg R" gD R":

The spinor norm on C induces a character N W GSpin,; ! Gm. The action of the group
GSpin, ¢, stabilizes Q2"¢!1 C and we obtain a surjection °W GSpin,,c; ! GO2znc1. We
write g for the surjection GSpin,,c; SO2nc1 obtained from g°.
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We write Taspin GSpin,,c; for the torus .q%/ 1.Taspin/. We then have

X-TGSpin/OD Zelo Ze ° ° Zne .D X.TGsp//;
X.TGspin/ D Zeg® Ze1° ° Ze,.D X.TGsp//Z

The group GSpin, ,¢,.C/ is dualto GSp,,,.C/. The character sim V6Sp,, ! G induces
a central embedding Gm !  GSpin,,¢;, still denoted by sim.

The spin representation

Let k be an algebraically closed field of characteristic zero. Write W WD*, , 'k bjand
W for the exterior algebra of W. Then W is an n-dimensional isotropic sub-
space of .Q%"¢1; Q/. We have End.V W/' €€, and hence VW is a 2"-dimensional
representation of GSpin, 4., called the spin representation (cf.[29, (20.18)]). The com-
position of spin with GLzn .k ! PG Ln .k induces a morphism spinW SOzncik ! PGLan k-

Lemma 0.1. When n mod 4 is 0 or 3 .resp. 1 or 2/, there exists a symmetric .resp.
symplectic/ form on the 2"-dimensional vector space underlying the spin representation
such that the form is preserved under GSpin,,c;.k/ up to scalars. The resulting map
GSpiny,c; ! GOgzn .resp. GSpin,,c; ! GSp,n/ over k followed by the similitude char-
acter of GO2n .resp. GSp,n/ coincides with the spinor norm N .

Proof. We may identify the 2"-dimensional space with v W . Write for the main invol-ution
on C ¢ as well as on W . Givens;t 2 W, write ".s; t/ 2 k for the projection of
sht2 v W onto Vn W D k. It is elementary to check that “.; / is symmet-
ric if n mod 4 is 0 or 3 and symplectic otherwise (cf. [29, Exercise 20.38]). Now letx 2
GSpin,,¢;-k/, also viewed as an element of C . Note that xx 2 k is the spinor norm of
Xx. Then “.xs; xt/ D .xs/ ~ .xt/ D .xx/s At D xx".s; t/, completing the

proof. ]

1. Conventions and recollections

Let G=Q. be a reductive group, T G a maximal torus and W its Weyl group in G.
Recall that by highest weight theory the trace characters of irreducible representations
form a basis of the algebra O.T=W /. We call a set S of representations of G=Q- a
fundamental set if the trace characters of all exterior powers of the representations in S
generate the algebra O.T=W / of global sections of the variety T=W . Here are some
examples of such S, where we define the standard representation std of GSpin,,, (m even or
odd) to be the composition GSpin,, GSOm ,! GLm. For the group G2, write std and ad
for the irreducible 7-dimensional and 14-dimensional (adjoint) representations,
respectively.

G Gln GSpy, GSO2nc1 GO2n  GSpinpper GSpinyp G2
S std std; sim std; sim std; sim  spin;std; N spin ;spin ;std; N std, ad
c
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Justification of table. The justification for the groups G D GO3, and GSO3nc1 follows
from Appendix B. Notice that the remaining groups are all connected. The fundamental
representations of a simply connected semisimple group G are those irreducible repres-
entations whose highest weights (for some Borel) are dual to the basis of coroots of G; the
trace characters of fundamental representations generate O.T=W / as an algebra.
Exercises V.28-30 and 33 of [48, p. 344] show that for the Lie algebras sl,, soznci1,
sQzn and g> the representations '~ istd.1 i n/e,' std.1 i n 1/;spine,’ std

‘ .1in  2/;spin®;spin 2and'std; ad? (respectively) are the fundamental rep-
resentations of these Lie algebras. The statement for the corresponding semisimple simply
connected groups follow from this. It is then routine to derive the sets S listed above for the
groups GL,, GSpin,,c;, GSpin,, and G2. This leaves us with the group GSp,,. In this
case the representations i std of sp,, are reducible, but it follows from the maps '
and Theorem 17.5 in [29, p. 260] that they generate the fundamental representations of
SP2n- [

Lemma 1.1. Let g1;82 2 G.Q-/ be two semisimple elements. Then g1 g2 in G.Q/ if
and only if .g1/ .g2/in GL.V /forall .;V/25S.

Proof. “)” is obvious. We prove “(”. Since T=W is an algebraic variety, two Q.-
points x1; x> of it are the same if and only if f.x1/ D f.x2/ for any algfbraic func-

tions f 2 O.T=W/. Since .g1/ .g2/ forall 2 S, we also have Tr ".gi/ D
Tr ° " .gy/ for all n 1. Since the functions f D Tr " in O.T=W / generate this
algebra, the images of g1 and g2 in T=W are the same. -

Remark 1.2. Gauger [30] and Steinberg [95, Thm. 3] proved Lemma 1.1 also for non-
semisimple elements g1; g2 2 G.Q-/ and (under various assumptions) algebraically
closed fields of characteristic p 0.

Let ri; BWE ! G.Q./ be two semisimple representations that are unramified at
almost all places. (As remarked before, all representations are continuous by convention.)
Lemma 1.3. The following statements are equivalent:

(1) for a Dirichlet density 1 set of finite F -places v where r1; ra are unramified we have
ri.Froby/ss ra.Froby/ssin G.Q-/;

(2) there exists a dense subset T € such that for all 2 t we have ri./ss r2./ssin
G.Q./;
(3) forall 2 € wehaveri./ss r2./ssin G.Q-/;

(4) for all linear representations WG! GLy the representations 1 ry and 1 ry are
isomorphic;

(5) for a fundamental set of irreducible linear representations V& ! GLy the repres-
entations 1 r1 and 1 ry are isomorphic.

Proof. (3))(1) is tautological, (1))(2) follows from the Chebotarev density theorem,
and (2))(3) follows from the continuity of the map G.Q./ ! .T=W/.Q-/ taking the
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semisimple part. The implication (3))(4) follows from the Brauer—Nesbitt theorem,
(4))(5) is obvious, and (5))(3) is Lemma 1.1. [ ]

Definition 1.4. If one of the conditions in Lemma 1.3 holds, then r1 and r> are said to be
locally conjugate, and we write r1 .

Definition 1.5. Let T be a maximal torus in a reductive group G over an algebraically
closed field. A weight 2 X.T /is regularif h_-;i 1 0O forall coroots , - of T in G.

Definition 1.6. Let WWk! GSpin,,c;-.C/ be a Langlands parameter. Denote by T the
diagonal maximal torus in GLan and byyT its dual torus. We have Wc D C Wg. The
composition

C Wg! GSpiny,;.C/ ™ GLan.C/

is conjugate to the cocharacter z ! 1.z/>.z/ given by some 1;22 X.T/”z CYD X.T/
“7 C suchthat1 22 X.T /. Then is spin-regular if 1 is regular (equivalently if , is
regular; note that 1 and > are swapped if spin1 is conjugated by the image of an element j
2 Wg suchthatj2 D 1landjwj 1D wforw 2 Wc). —

Definition 1.7. An automorphic representation of GSp,,,.Af / is spin-regular at v 1 if
the Langlands parameter of the component , , is spin-regular.

Let H be a connected reductive group over Q- for the following two definitions
(which could be extended to disconnected reductive groups). Let hger denote the Lie
algebra of its derived subgroup. Write ¢ for the nontrivial element of Gal.C=R/.

Definition 1.8 (cf. [35]). A representation W Gal.C=R/ ! H.Q-/ is odd if the trace of c
on hger through the adjoint action of .c/ is equal to rank.hger/.

We remark that the mapping GL1 SO2nc1 ! GOgznc1 is an isomorphism, in par-
ticular the latter is connected.

Lemma 1.9. Let IWGal.C=R/! GOa2nc1.Q-/ be a representation. Write
We€! Glanci.Q/
for the composition of  with the standard embedding. If Trl.c/ 2 '"1¢2 then [ is odd.

Proof. We may choose a model for the Lie algebra of SO2nc1 to consist of X 2 GLanca
suchthatX C AL -1 XA51., D 0.SuchanX D .xj;j/is characterized by the condition
Xi;j C Xnc1 j;nc1 i D Oforeveryl i;j 2nC 1. Writet WD .c/! By conjugation and
multiplying with 1 2 GLlanc1 if necessary, we can assume that t is in the diagonal
maximal torusin SO2nc1 (notonly in GO2nc1, using the fact that the latter is the product of
SO2nc1 with center) of the form diag.1s; 1p;1; 1p; 1./, where 0 a;b nandaC b
D n.Since Trl.cy/2 ' 12 wehaveaD bifnisevenandb aD 1if nis odd. Now
an explicit computation shows that the trace of the adjoint action of t on Lie.SO2nc1/
hastrace2.a b/2C2.a b/ n,whichisequalto nD rank.SO2nc1/ in all cases.



A. Kret, S. W. Shin 88

Let K be a finite extension of Q . Fix its algebraic closure K and write ¥ for its
completion.

Definition 1.10 (cf. [13, §2.4]). Let WGal.K=K/ ! H.Q-/ be a representation. We say
that is crystalline/semistable/de Rham/Hodge-Tate if for some (thus every) faith-ful
algebraic representation WH | GLy over Q., the composition 1 is crystal-
line/semistable/de Rham/Hodge—Tate. Now suppose that is Hodge—Tate. For each field
embedding WQ- ! R, a cocharacter pt.; iLy_Wli(m I H overK is¥alled a Hodge— Tate
cocharacter for and i if for some (thus every) faithful algebraic representation WH !
GL.V / on a finite dimensional Q~-vector_space V, the cocharacter 1 induces

the Hodge—Tate decomposition of semilinear Gal.K=K/-modules on Rtvector spaces:

” M
Vg D Vi
k2z

Namely Vy is the weight k space for the Gm-action through 1 yr.; i/, while Vi

is also the ¥=ftmear span of the K-subspace M V", ¥ on which Gal.K=K/ acts

through the . k/-th power of the cyclotomic character. (So our convention is that the
Hodge—Tate number of the cyclotomic character is 1.) Finally, we call a cocharacter
HT.; MWWGm | H over Q. a Hodge-Tate cocharacter if it is conjugate to wr.; i/y

inH.RY/.

K

For any of the above conditions on, if it holds for one then it holds forall (use [24, Prop.
1.3.1]). Whenever is Hodge—Tate, a Hodge—Tate cocharacter exists by [88, §1.4] and is
shown to be unique (independent of ) by a standard Tannakian argument. Often we only
care about the isomorphism class of , in which case only the H.Q:/-conjugacy class of a
Hodge—Tate cocharacter matters.

Lemma 1.11. Letf WA1 ! H2 beamorphism of connected reductive groups over Q.. If
W Gal.K=K/! H1.Q./ is a Hodge—Tate representation then f 1 is also Hodge—Tate

with wr.f 1;i/D f 1 wr.;i/ foralliwa ! K. ¥

Proof. This is obvious by considering 1 f 1 for any faithful algebraic representation
WH! GLy. ™

We return to the global setup. A representation WE!' H.Q-/ is said to be totally odd if
JGalF = sisodd foreveryv 2 V1. Itis crystalline/semistable/de Rham/Hodge-Tate if
igalr thv/ is crystalline/semistable/de Rham/Hodge—Tate for every place v above ".

Definition 1.12. Let H be a real reductive group. Let Ky be a maximal compact sub-
group of H.R/. Put Ry WD .Ky/%Z.H/.R/. Let be anirreducible algebraic representa-
tionof H “ g C. An irreducible unitary representation of H.R/ is said to be cohomolo-
gical for (or -cohomological) if there exists i 0 suchthat H'.LieH.C/;Kuz “¢c /& O.
(The definition is independent of the choice of Ky . The group Ky is comsistent with K 1
in §7 below.)
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Example 1.13. Let H; be as in Definition 1.12. Assume that H.R/ has discrete series
representations. Let ... be the set of (irreducible) discrete series representations which
have the same infinitesimal and central characters as -. Then ... is a discrete series L-
packet, whose L-parameter is going to be denoted by WWgr | 'H . Then there are a Borel
subgroup B H ang a maximal torus T B suchythat yz/ D .z=2/C, -
where is the B-ckpminant highest weight of , and is thg half-sum of B-posiy’ve roots. Every
member of ... is -cohomological. More precisely, H' .Lie H.C/; Ky ; ”z / ® 0 exactly
when i D 1 dimg H.R/=K? , in wnich case the cohomology is of dimension

EK4Z.H /.R/ Wy o (cf. Remark 7.2 below).

Definition 1.14. Consider a complex L-parameter WW¢ ! H .YFor a suitable maximal
torus W H,Yone can describe asz ! 1.z/2.z/for1;22 X.T /c with1VY

22 X.T /. Write e, for,the Weyl group of T in HY. We¥efine Hodge./ to be 1 viewed as an
element of X.T /c=e , . (Wh¥n 1 happens to be integral, i.e. in X.T /, then we may a¥so
VIeW Hodge./ @s a conjugacy class of cocharacters G, ! H over C.) Given HY as in the
preceding example, define

Hodge-/ V\DHodge-jwc /5

So if B; W are as before, then pogge./ D C 2 1X.T /2 X.TYc up to the » , -action. ;

Let f WH1 ! Hy be a morphism of connected reductive groups over R whose image
is normal in H, such that f has abelian kernel and cokernel. (Later we will consider the
dual of the mapping GL1 Sp,, ! GSp,,). Denote by f WHy! Hiythe dual morphism.
We choose maximal tori % HiYori D 1;2 suchthatf.To¥ T1. 1¥2WWR! H> is an L-
parameter then obviously

fy-Hodge-ZjWC//D Hodge-f | Z.MNC/: (1.1)

Lemma 1.15. With the above notation, let ; be a member of the L-packet for 5. Then the
pullback of ; via f decomposes as a finite direct sum of irreducible representations of
H1.R/, and all of them lie in the L-packet for f 1.

Proof. This is property (iv) of the Langlands correspondence for real groups on page 125
of [62]. [

2. Arthur parameters for symplectic groups

Assume [ is a cuspidal automorphic representation of Sp,,-Af / such that
[ is cohomological for an irreducible algebraic representation ! D “,y, , of !
SPansreco
there is an auxiliary finite place vs; such that the local representation |, ﬂsgtthe Stein-
berg representation of Sp,,.Fv, /.
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In this section we apply the construction of Galois representations [5,89] to [ to obtain a
morphism | WE | GOaznc1.Q/ and then lift | to a representation@ WE |
GSpinyncq-Q-/.

Let us briefly recall the notion of (formal) Arthur parameters as introduced in [5]. We
will concentrate on the discrete and generic case as this is all we need (after Corollary 2.2
below); refer to loc. cit. for the general case. Here genericity means that no nontrivial
representation of SU>.R/ appears in the global parameter.

Forany N 2 Z; let be the involution on (all the) general linear groups GLn;F,
defined by .x/ D 'Jnx YJn where Jy is the N N-matrix with 1’s on its anti-
diagonal, and all other entries 0. A generic discrete Arthur parameter for the group Sp,, ,.¢
is a finite unordered collection of pairs *.m;; /2, f,, where

m;i; r 1 are positive integers such that2nC 1D 51 Mi,

for each i, ; is a unitary cuspidal automorphic representation of GLm,.Ar / such that

LI
]

the ; are mutually nonisomorphic,
each is of orthogonal type, and the product of the central characters of the ; is trivial.
We write formally D [,,i for the Arthur parameter .m;i; i/9p}- The parameter is
said to be simple if r D 1. The representation ... is defined to be the isobaric sum
.phis itis a self-dual automorphic representation of GLanc1.Af /.
Exploiting the fact that Sp,, is a twisted endoscopic group for GLlanc1, Arthur
attaches [5, Thm. 2.2.1] to [ a discrete Arthur parameter . Let ! denote the cor-
responding isobaric automorphic representation of GLanc1.Af / asin [5, §1.3]. (If s
generic, which will be verified soon, then  has the form as in the preceding paragraph.)

For each F-place v, the representation |, belongs to the local Arthur packet ... /
defined by localized at v. This packet ... / satisfies the character relation [5,
Thm. 2.2.1]

1 X Span
Tr.A | .f\),// D Tr.f>>"/ (2.1)
2. v/

for all pairs of functions fy 2 H.GLanc1.Fv//, f\,s'gz”;F 2 H.Sp,,.Fv// such that
£,P20F s a Langlands—Shelstad—Kottwitz transfer of f,. Here A is an intertwining
operator from , tb its -twist such that A2 is the identity map. (The precise normaliza-tion is
not recalled as it does not matter to us.)

Lemma 2.1. The component vst] is the Steinberg representation of GLanc1.Fv,/.
Proof. This follows from [72, Prop. 8.2]. [

Corollary 2.2. The Arthur parameter  of [ is simple .i.e. D 1 is cuspidal/ and
generic.

Proof. Lemma 2.1 implies in particular that v, is a generic parameter which is irredu-
cible as a representation of the local Langlands group WFVSt SU2.R/. Hence the global
parameter is simple and generic. ]
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Denote by ! the cuspidal automorphic representation 1 D ... .Let AW..q ! o, the
canonical intertwining operator such that A is %he identity and A preserves the
Whittaker model (see [5, §2.1] and [58, §5.3] for this normalization). Write for the
L-morphism “Sp,,.; ! 'Glanca;r, extending the standard representation Sp,, D
SO2nc1.C/ ! GLlanci.C/ such that jw, is the identity map onto We, .

Lemma 2.3. Let v be a finite F-place where ! Js unramified.* Then , is unrami-fied

as well. Let } WWg, SU2.R/ ! GLlanc1.C/ be the Langlands parameterof]. Let [ W
We, SU2.R/! SO2nc1.C/ be the Langlands parameter of ,. Then 1 { D ;. |

v

Proof., The morphism WA “"".GLanc1.Fv// ! H"".Sp,,.Fy// is surjective because the
restriction of finite-dimensional characters of GLanc1 to SO2nc1 generate the space
spanned by finite-dimensional characters of SO2nc1. The lemma now follows from (2.1)
and the twisted fundamental lemma (telling us that one can take f,5*" D .f,/ in (2.1)).

The existence of the Galois representation ; attached to ! follows from [39, Thimy
VI1.1.9], which builds on earlier work by Clozel and Kottwitz. (The local hypothesis in
that theorem is satisfied by Lemma 2.1. However, this lemma is unnecessary for the
existence of ; if we appeal to the main result of [89].) The theorem of [39] is stated over
imaginary CM fields but can be easily adapted to the case over totally real fields (cf. [20,
Prop. 4.3.1 and its proof]). (Also see [7, Thm. 2.1.1] for the general statement
incorporating later developments such as the local-global compatibility at v j °, which we
do not need.) We adopt the convention in terms of L-algebraic representations as in [13,
Conj. 5.16] unlike the references just mentioned, in which C-algebraic representations
are used (cf. [13, §5.3, §8.1]).

To state the Hodge-theoretic property at * precisely, we introduce some notation based
on §1. At eachy 2 V 1 we have a real L-parameter WWF I LSp,, arising from [. The

parameter is L-algebraic as well as C-algebraic. Via the embedding WF ,! C we
may identify the algebraic closure Fy with C so that WT D Wc. As explained in Defin-
ition 1.14, we have Hodge. /V\DHodge [Jw—/ a conjugacy class of cocharacters Gm !
SO2nc1.C/. oy

Theorem 2.4. There exists an irreducible Galois representation
(D WE€! SOznc1.Q/;

unique up to SO2nc1.Q:/-conjugation, attached to [ .and / such that the following
hold:

4We should mention that in the group Sp,,.Fy/ (in contrast to GSp,,.Fyv/), not all hyper-
special subgroups are conjugate. When we say that \gs unramified, we mean that there exists a

hyperspeeial-subgroup-for-which-therepresentation has an invariant vector.
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(i) Let v be afinite place of F not dividing *. If , is unramified then

-[jWFV [ss' s

v

where { is the unramified L-parameter of ,, ahd ./ss is the semisimplification. For

general [, the parameter is isomorphic to the Frobenius semisimplifica-tion of the
parameter associated to [ngv S

(ii) Let v be a finite F-place such that v - where y is unramified. Then ,, is

unramified at v, and for all eigenvalues , of std.;.Froby//ss and all embeddings Q
;T C wehavej, jD 1.

(iii) For every vj°, the representation (., is potentially semistable. For each y W
, ! C suchthaty induces v, we have

HT-Lys Y/ D Hodge-y/5

(iv) For every v j ", the Frobenius semisimplification of the Weil-Deligne representation
attached to the de Rham representation (,, is isomorphic to the Weil-Deligne

representation attached to , tinder the local Langlands correspondence.

(v) If v is unramified at vj~, then Ly is crystalline. If y has a nonzero Iwahori fixed

vector atvj °, then Ly IS semistable.

(vi) The representation | is totally odd.
(vii) If , |s essentially square-integrable at v— 1 thenstd1 | is irreducible.

Remark 2.5. We need the ramified case of (i) only when , is the Steinberg representa-
tion.

Proof. The representation! is regular algebraic [19, Def. 3.12], and so 1] is cohomo-
logical for an irreducible algebraic representation. By [89, Thm. 1.2] (in view of [89,

Rem. 7.6]) there exists a Galois representation ; WE!' GLanc1.Q-/ that satisfies prop-

erties (i)—(iii), (v) with ! in place of [; property (iv) is established by Caraiani [14,
Thm. 1.1]. (The reader may also refer to [7, Thm. 2.1.1].) Strictly speaking, the normal-
ization there is different, so one has to twist the Galois representation there by the *5 L1th
power of the cyclotomic character. In particular, ; is self-dual.

By Lemma 2.1, |, is the Steinberg representation and by Taylor—Yoshida [99] the

representation | V& ! GLlanc1.Q-/ is irreducible. The determinant of this represent-
ation is trivial, since in the Arthur parameter '.m;; i/% 54, the product of the central
characters of the ; is trivial. Together with the self-duality of ;, we see that ) factors
through a representation {VE | SO2nc1.Q-/ via the standard embedding SO2nc1 , !
GL2anca (after conjugation by an element of GLanc1.Q:/). We know the uniqueness of
( from Proposition B.1 (and Chebotarev density). Properties (i)—(v)

5This is equivalent to saying that .std 1 [/ is isomorphic to the Frobenius semisimplification of

the Langlands parameter associated-with .std 1Y /j€Fv in view of Proposition B.1.
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for | follow from those for ;. Part (vi) is deduced from Lemma 1.9 and the main
theorem of [98]. Lastly, (vii) is [99, Cor. B]. -

For the rest of this section, let be a cuspidal -cohomological automorphic repres-
entation of GSp,,.Ar / for an irreducible algebraic representation of GSp,.r .

Lemma 2.6 (Labesse-Schwermer, Clozel). There exists a cuspidal automorphic
Sp,,-Ar /-subrepresentation [ contained in .

Proof. This follows from the main theorem of Labesse—Schwermer [61]. [

Lemma 2.7. Suppose that is a twist of the Steinberg representation at a finite place.
Then y is essentially tempered at all places v.

Proof. Let [ be as in the previous lemma. We know that [ is the Steinberg represent-ation
at a finite place and [-cohomological, where ! is the restriction of to SPan.g~ ¢ (which is
still irreducible). Let ! be the self-dual cuspidal automorphic representation of
GLlanci.Af / as above. Note also that ! is C-algebraic (and regular); this is checked using
the explicit description of the archimedean L-parameters. Hence

v is]tempered atall vj 1 by Clozel’s purity lemma [19, Lem. 4.9],
v id tempered at all v— 1 by [89, Cor. 1.3] and (quadratic) automorphic base change.

(Since 1 is self-dual, if a local component is tempered up to a character twist then

it is already tempered.) Hence ,lis a tempered representation of Sp,,.Fv/ (cf. [5,
Thm. 1.5.1]). This implies that 1 itself is essentially tempered. (Indeed, after twisting by
a character, one can assume that 1 restricts to a unitary tempered representation on
Sp,,-Fv/ Z.Fy/, which is of finite index in GSp,,,.Fv/. Then temperedness is tested by
whether the matrix coefficient (twisted by a character so as to be unitary on Z.F,/)
belongs to L2".GSp,,.Fv/=Z.F,//. This is straightforward to deduce from the same

property of the matrix coefficient for the restriction to Sp,,,.Fv/ Z.Fy/.) -

Corollary 2.8. 1 belongs to the discrete series L-packet ....

Proof. By [11, Thm. IIl.5.1], ... coincides with the set of essentially tempered -cohom-
ological representations. Since 1 is essentially tempered and -cohomological, the
corollary follows. n

3. Zariski connectedness of image

Let | be the Galois representation from Section 2. The goal of this section is to prove that
has connected image in the sense defined below. The proof relies on the existence of the
regular unipotent element in the image thanks to assumption (St).

Definition 3.1. Let Go be a connected reductive group over Q.. A representation r Vi
| Go.Q-/ is said to have connected image if the image of r has connected Zariski
closure in Go. (The definition applies to any topological group in place of €.) We say that
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WE | Go.Q./ is Go-irreducible if its image is not contained in any proper parabolic
subgroup of Gp, and we say that r is strongly Go-irreducible if rjeo is Go-irreducible for
every open finite index subgroup €° of €. In case Go D GL,, we often leave out the
reference to the group Go.

When Go D GL,, a representation W€ |  GL,.Q-/ is strongly irreducible if it is
irreducible and has connected image in PGL, (Lemma 4.8). Typical examples of irredu-
cible representations that are not strongly irreducible are Artin representations and the 2-
dimensional “-adic representation arising from a CM elliptic curve over Q.

The lemma below is extracted from arguments of [87, p. 675]. (One can always
enlarge L to satisfy the first two conditions in the lemma.)

Lemma 3.2. Let L=L°=Q" be two finite extensions in Q-. Write €.0 WD Gal.Q.=L%/
and €. WDGal.Q-=L/. Let o ! SO2nc1.Q-/ be a semistable representation. Let H
SO, c1.q. bethe Zariski closure of the image of . Assume that

H is defined over L,
the image of is contained in SO2nc1.L/,

the Weil-Deligne representation .the functor WD is defined as in [8, p. 12])
WD..Bst “q. .std1 //%/ (3.1)

has a nilpotent operator Nyeg that is regular in Lie.SO2nc1.Q.//.

Then the group H.Q./ contains a regular unipotent element of SO2nc1.Q/.

Proof. The underlying space of the .; N /-module .Bst “ o . .std1 //%t is naturally a vector
space over the maximal subfield Lo L that is unramified over Q . We consider the functor

%W Rep.H/! Rep,.Gs/; r! WD..B&“q. .ri//*/js,;

where, if V is an L-vector space equipped with the structure of a Weil-Deligne repres-
entation for €0, we write V jg, for the unique representation WGa ! GL.V / of the
additive group such that Lie./.1/ is equal to the nilpotent operator of the Weil-Deligne
representation V.

Let !y and lg, be the standard fiber functors of the categories Rep,.H/ and
Rep,.Ga/. The functor %o is an exact faithful L-linear “-functor. The composition
G, I %ois therefore a fiber functor of Rep, .G/ [24, §11.3]. By [24, Thm. 3.2] we have the
equivalence of categories

Fiber functors of Rep .H/ | Category of H-torsors overL, ! Hom .; !y /:

We obtain a morphism Aut".!Ga/—Q! Aut .1y /—‘Qi.e. an algebraic morphism %o W

Q- I H.Q./, well-defined up to conjugation. Write N D %0.1/ 2 H.Q./. For every
linear representation r of H in a finite-dimensional L-vector space the element
Lie.%o/.1/ is conjugate to the nilpotent operator of the Weil-Deligne representation
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attached to .Bst “q. .r 1 //€ . Taking r D std, we see that Lie.%o/.1/ and Ny are
Glanc1.Q-/-conjugate by (3.1). Thus N D %0.1/ 2 H.Q-/ is a regular unipotent ele-
ment of SO2nc1.Q:/. ]

Proposition 3.3. Let H be a semisimple subgroup of SO, .,.q containing a regular
unipotent element N 2 SO, ., o . Then either H s the full group SO, ;- , H isthe
principal PGL, . in SO, c;q.,0rnD 3andH is the simple exceptional group G2
over Q- .i.e. H is the automorphism group of the octonion algebra O ~ Q-/.

Proof. Let H® H denote the identity component. Since there are no nontrivial mor-
phisms from G, to the finite group o0.H/, we must have N 2 H®. Therefore H © is either
PGL, .o ,G2,0rSO, (1.4 asin thetheorem, by [100, Thm. 1.4] classifying connected
semisimple subgroups of SO, ;.o containing regular unipotent elements. From [85] it
follows that in each of the three cases the subgroup Ho SO, ;.o is a maximal closed
subgroup [85, Thm. B, (i.a), (iv.a) and (iv.e)].6 In particular, H oD H. -

The following lemma will be used in the proof of Proposition 3.5 below.

Lemma 3.4 (Liebeck—Testerman [68, Lem. 2.1]). Let G a semisimple connected algeb-
raic group over an algebraically closed field. If X is a connected G-irreducible subgroup of
G, then X is semisimple, and the centralizer of X in G is finite.

Proposition 3.5. Assume n 3. The Zariski closure of the subgroup | .€/
SO2nc1.Q@:/ is either PGLy, G2, or SO2nc1. .The embedding of PGL; is induced by the
symmetric 2n-th power representation of GL,. The group G occurs only whenn D 3 and
embeds in SO7 via an irreducible self-dual 7-dimensional representation./

Proof. Write H SO2nc1 for the Zariski closure of ; .€/. We claim that H contains a
regular unipotent element of GL2nc1 (thus also of SO2nc1).

To prove this, we distinguish cases. Let us first assume vs; — . Let Ny, be the unipo-
tent operator of the Weil-Deligne representation attached to ., $0 that it corresponds to

the image of 1; 1 10 , under [ be Theorem 2.4. Then Ny, is regular unipotent in

GLlanca since [St and thus J, is Steinberg by Lemma 2.1. The attached Weil-Deligne
representation has the property that a positive power of Ny, lies in the image of (., . This
completes the proof if vsi = . If vstj~, we take a finite extension E=F such that V\D[Stv
je: is semistable at places above vs;. By Theorem 2.4 (iv), the last assump-tion of Lemma
3.2 is satistied. (To satisfy the first two, take L large enough.) Applying

Lemma 3.2, we see that .gg /, thus also H, contains a regular unipotent element of
Glanci.

6In fact, it is not completely clear whether [85, Thm. B] classifies maximal closed subgroups or
maximal connected closed subgroups; see [59, footnote 9 in the proof of Prop. 5.2]. Nevertheless,
we can still show that H D H O in the case at hand as in that proof, using the fact that PGL 5
and G, have no outer automorphism, which implies that the conjugation action by elements of’
on H O gives inner automorphisms of HO.

Io
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We have shown that H SO3nc1 contains a regular unipotent element. On the other
hand, H is an irreducible subgroup of SO, ;.4 by Theorem 2.4. By Lemma 3.4, H Oisa
semisimple group and hence so is H. By Proposition 3.3, H is one of the groups

SO2nc1, G2, or PGL; over Q@-. Thus H D H © and the proposition follows. -

4. Weak acceptability and connected image

A classical theorem for Galois representations states that if ri;,W€! GLm .Q-/ are two
semisimple representations which are locally conjugate, then they are conjugate. (Recall
that every representation is assumed to be continuous by the convention of this paper.)
This is a consequence of the Brauer—Nesbitt theorem combined with the Chebotarev
density theorem. In this section we investigate analogous statements when GLm.Q./ is
replaced by a more general (not necessarily connected) reductive group. We show that in
many cases the implication still holds if one assumes that one of the two representations
has Zariski connected image.

Definition 4.1. A (possibly disconnected) reductive group G over Q- is said to be weakly
acceptable if for every profinite group ¢ and any two locally conjugate semisimple con-
tinuous representations r1; PWe | G.Q</ there exists an open subgroup *° e such that ry
and r» restricted to ¢° are conjugate.

Lemma 4.2. Let ri; pWe |  GLm.Q./ be two representations such that for some finite
subgroup of Q andeach 2 e wehaveTrri./ D Trra./forsome D 2 .ThenTrri./
D Trry./ for all in some open subgroup ¢° of e.

Proof. Choose some openideal | Z: suchthat.1 /m..| forall 2 :.Q./ with ® 1.Let
U e bethesetof suchthatfori D 1;2andall 2 U wehaveTrri./ mmod|. Then U is
open by continuity of the representations rj. Let 2 U.ThetracesTrri./ and Trr,./ agree
up to an element 2 .Q-/. Reducing modulo I we get m m. This is only possible if D 1.
For the unit element e 2 ¢ we have Trri.e/ D m (i D 1;2), and consequently U is an open
neighborhood of e 2 *. We may now take for «an open subgroup of ® contained in U.

—n
Lemma 4.3. Assume (H G4 s a central extension of reductive groups over Q-, where we
assume additionally that is finite. Then the group G is weakly acceptable if and only if H
is weakly acceptable.

Proof. “(” Assume that H is weakly acceptable. Let ¢ be a profinite group and rs;

PWe | G.Q./ Tocally conjugate. Choose U H.Q:/ an open subgroup withU \ D

12, Write U G.Q./ for the image of U in G.Q-/. The map H G induces a bijection

U | U. Consider ®WDr *.U/\ r LU/ e. Using the iso-

morphism U | "U we obtain lifted representations g ;g W°! H.Q-/. By the local
G-conjugacy of ri; ra, there exists for each 2 ¢® some elementh D h 2 H.Q./ and
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azD z 2 .Q-/ such that
22./55 D th -{ssh 1 2 HQ/_ (41)

We claim that in an open subgroup ¢® of 0 the elements z .4 and £ ./ are in factH-
conjugate for every 2 ¢® (as opposed to conjugate upto H).

Choose a faithful representation 'WH ! GLy, and write' as a direct sum of irredu-
cible representations' D °,m, 'i. By Schur’s lemma we have 'i./ t where are the t-th

roots of unity for some t 2 Z4. In particular, we have the identity

Tr'i.e,.//D Tr'i.e /{2 Q;

where WD'j.z/ with z as in (4.1). Consequently, there exists by Lemma 4.2 some open
subgroup ¢; e such thaton ¢; we haveTr'iz ./ D Jgriie J. Congider an open subgroup
o0 *i suchthat Tr'i e ./ ® Oforall 2 «°. Now let PR 00V\D my *°
and let .z; h/ be asin (4.1). By applying Tr '; to (4.1) we find '

O® Tr'ie,./D Tr'ie /D 'i.z/Tre ./2 Q;

so'i.z/ D 1foralli D 1;:::;m, and hence z D 1. This proves the claim.
The group H is weakly acceptable. Hence the representations g jeow and g jeowo are
conjugate by some h 2 H.Q-/ on some open subgroup *® ¢ Since H.Q-/ U | U

G.Q-/the representations rijesco and ra2jeooo are conjugate by the image of hin G.Q./.
“J7 Let ri;pWe ! H.Q./ be two locally conjugate semisimple continuous rep-
resentations. Their projections T1; T2 are locally conjugate in G.Q./. Hence there exists
an open 0 e such that raj.oD g.rij.o/g 1. Liftgtog2 H.Q./ and replace r> by grog *
Since is central we obtain the character ./ WDr1./r2./ 1 of 0. This character has finite
order. Hence r1 and r agree on the open subgroup ker./ *°. =

Lemma 4.4. Let G=Q. be a reductive group with center Zg for which there exists a
semisimple subgroup G1 G suchthatZg Gi ! G is surjective.

(1) The group G is weakly acceptable if and only if its adjoint group Ga.g4 is weakly accept-
able.

(2) If G is connected and Gaq is a product of copies of the groups PGLy; SO2nc1 and
PSp,,, then G is weakly acceptable.

(3) If G is GPinzn or GO2y, then G is weakly acceptable.

Remark 4.5. Note that for connected groups G, we may take G1 D G9" and the condi-
tion of the lemma is always satisfied. For discconnected G the condition is not empty: One
may consider the semidirect product G of GL, with'" 12 where lactsbyg! g . In
this case there is no semisimple subgroup Gi1 G suchthatZg Gi1 ! G is surject-ive
(rk.Z¢ G1/ D 0C 1< 2 D rk.G/). For applications in this paper, we only need
connected G, so the reader may choose to restrict to this case. However, we state a more
general version for potential applications elsewhere.
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Proof. (1) The statement follows by applying the previous lemma to the natural surjec-
tionsZg Gi! G and Gi1 ! Gui;ad. Both maps have finite kernels as Zg, is finite and
contains Zg \ Gi. Therefore G is weakly acceptable if and only if G1 is weakly accept-
able if and only if G1,aq is weakly acceptable. Finally, G1 G induces an isomorphism
Gl;ad ! Gad-

(2) If G is connected we can take G1 D GY" and use acceptability of the groups GL,
SO2nc1 and Sp,,; the latter two cases follow from Proposition B.1.

(3) Since Oan is acceptable by Proposition B.1, the group PO2n is weakly acceptable
by Lemma 4.3. For G D GPinzn (resp. GO2n) we take G1 WD Pinz, (resp. O2n), and we
have the surjectionZs Gi1 G. From the surjection G1 POy, we find that G; is weakly
acceptable, and then G is also weakly acceptable by (i). [ ]

Proposition 4.6. Let G be a reductive group with center Z and cocenter D, and Z the
kernel of the natural morphismZ ! D. Assume that G is weakly acceptable. Let ® be

a profinite group and ri;;rWe ! G.Q-/ be two locally conjugate continuous semisimple

representations where we assume that ry has Zariski connected image’ modulo Z..

(1) Wehavero D grig whereg2 G.Q./ and We! .Q-/ is some character.

(2) If the image of r1 in G.Q./ is Zariski connected modulo a subgroup Zo Z with
Zo\ D '19,then D 1in.1/.

(3) Assume the existence of o 2 * with the following property: the images of ri.0/ and

gri.0/g 1inG=.Q-/arenot G°.Q./-conjugate forany g 2 G,4.Q-/nG,4.Q-¢. Then
riand rp are G .Q./-cenjugate.

Example 4.7. Consider the case G D PGLm. By (1) any two locally conjugate projective
Galois representations ri; ra are conjugate on an open subgroup of ¢ (of index at most m). If
furthermore one of the two representations has connected image, then r1 and ry are
PGLm.Q:/-conjugate by (2). Similarly, two locally conjugate GSpin,,c,-valued Galois
representations are conjugate on an open subgroup of index 2, since is a group of order 2
when G D GSpinycq-

Proof of Proposition 4.6. (1) Since G is weakly acceptable, there exists someg 2 G.Q./
and an open subgroup *® e such that r D grig * on ¢ Let 'WG=Z | GLy bea
faithful representation and choose x 2 GLy.Q/ such that 'r1./ D x'r2./x 12 GLy
.Q./ forall 2 e.For 2 *%we obtain

'r1./D x'r2./x *D x'.gr1./g Y/x Y2 GLy.Q/:

Taking the Zariski closure we have '.i/ D x'.gig /x 12 GLy foralli in the Zariski
closure | of the image of r1.¢%/. Since | =Z is connected, 'r1./ D x'.gr1./g /x 12
GLn.Q/ for all 2 e. Earlier we found 'r1./ D x'r2./x 12 GLn.Q./ for

7Recall that a morphism of finite type affine algebraic groups over a field is closed, in particular
there is no difference in taking the Zariski closure before or after reducing modulo Z .
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all 2 e Thus 'rp./ D '.gr1./g 1/ 2 GLn.Q./ for all 2 e. We deduce thatr,./ D
./ gri./Jg *2 G.Q./ for some character We | Z.Q./. By mapping down to the
cocenter D of G and using local conjugacy, we see that has image in .

(2) Repeat the same proof, but now take ' a faithful representation of G=Z¢ (as
opposed to G=Z). Then we find a character as above whose image is in and Zo, and
therefore is trivial.

(3)By (1) wehaver, D grig *forsomeg2 Ga.4.Q./. By local conjugacy at g, we find
that ro.o/ D .o/gri.0/g ! and r1.0/ are Gag.Q./-conjugate. By the assump-tion, this
implies g 2 G,4.Q:/. Hence rz and r1 are G,4.Q:/-conjegate. -

Lemma 4.8. Let * be a profinite group. Let We |  GL.V / be a representation on a
finite-dimensional Q--vector space V and let We! Q. be a nontrivial character.

(1) f r" r” thenr is notstrongly irreducible.

(2) If risirreducible and has connected image in PGL.V /, then r is strongly irreducible.

Proof. (1) We may assume r is irreducible. Since det.r/ D det.r “ /D det.r/9mV, the
character has finite order. Take ¢® WD ker, which is an open normal subgroup of e. It is
enough to show that

dim Homeo.r;r/ D dim Hom..r; Ind, ot/ > 1:

We have the tautological e-equivariant embedding r ,! Ind’qr, v ! . | frv./v/.
Define f, ./ WD./fy,./. Thenv ! f, gives another embedding r ,! Ind,or thatis not
a scalar multiple of v ! f,.
(2) This follows from the fact that the Zariski closure of the image of r in PGL.V /
does not change upon restriction to an open normal subgroup ¢° e due to connec-
tedness. Since (strong) irreducibility only depends on the Zariski closure of image in
PGL.V /, the lemma follows. ]

The preceding lemma leads to the following proposition, which will be employed
when studying the spinor norm of GSpin,,c;-valued Galois representations and when
proving an automorphic multiplicity 1 result. Considerr W ! GL.V /and We! Q. as
in the setup of Lemma 4.8. Let r ' °, ; ;tm;r; be a decomposition into mutually non-
isomorphic irreducible e-representations with multiplicities m; 2 Zo.

Proposition 4.9. Assume that

;b1 are mutually distinct,

dimr;@
im.r/ has connected Zariski closure in PGL.V /.

Then each of the following is true:

(1) fr" r-" andif® r” risaone-dimensional e-submodule then°D . (2) If r
'"'r” then D 1.
Proof. (1) The first condition says *i miri ' " mir- ” . Since dimr; are distinct, ri

r, ” forall i. Again by the dimension assumption, © r; “ r; for some i. (If
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0 01

ri 7, r fori x j then there is a nonzero e-equivariant map from+, tor ” ,
which must be an isomorphism by irreducibility; however, this violates the dimension
assumption.) Moreover, if r has connected image in PGL then so does r; (because im.ri/ is
the image of im.r/ by the projection map). Hence we are reduced to the case when r is
irreducible.

Now suppose r is irreducible. Then® r “ rimpliesr' r-~ ° 1. We are assum-ing r
r-” ,sowehaver' r” 0 1/ 1f% then Lemma 4.8 (1) says rj.«is reducible
for some open normal subgroup ¢° e, contradicting part (2) of the same lemma.
Therefore °D .

(2) Arguing similarly to the proof of (1), we reduce to the case of irreducible r and
deduce that D 1 by using Lemma 4.8. [

5. GSpin-valued Galois representations

In this section we study the notion of local conjugacy for the group GSpin,,c;.Q-/. In
general it is not expected that local conjugacy implies (global) conjugacy of Galois
representations: In [65, proof of Prop. 3.10] Larsen constructs a certain finite group e
(called € there), which is a double cover of the (nonsimple) Mathieu group Mg in the
alternating group Ai0. More precisely, he realizes Mio SO9.&:/ by looking at the
standard representation of A1o GL10.Q/. Then e is the inverse image of Mig in
Sping /. Let us just assume that e can be realized as a Galois group $\€ . The group ¢
comes with a map \We! Sping.Q./, and isthe composition ¢ Mig Mio=As ' Z=2Z
Sping.Q./. He defines 2.x/ WD.x/1.x/. We may define ry WD11 s and r WD2 1 s. Then
the argument of Larsen shows that 1./ and »./ are
Sping.Q:/ conjugate for every 2 €, while 1 and > are not Sping.Q:/-conjugate. The
maps ; cannot be GSping.Q./-conjugate: If we had » D gig ! for some g in
GSping.Q-/ then we could findaz 2 Q .suchthath D gz 2 Sping.Q-/andhih 1D gig
1 D ,, which contradicts Larsen’s conclusion. Thus, assuming that the inverse Galois
problem for e has an affirmative answer over F , the pair of Galois representations
.r1; ra/ is locally conjugate but nonconjugate.
In [65] Larsen explains that counterexamples may be constructed for all Spin,,.Q-/

with m 8 (form D 8, see [66, Prop. 2.5]). Proposition 4.6 shows that any two locally
conjugate GSpin,,c;.Q:-/-valued Galois representations are conjugate up to a quadratic
character twist (see also Example 4.7).

Lemma 5.1. Let WE!  GSpin,,c;.Q-/ be a semisimple representation that contains a
regular unipotent element in the Zariski closure of its image. If WE! Q. isacharacter such
that spin./ ' spin./” then D 1.

8Tn a private communication, Chenevier informed us that also the group Spin;.Q:/ is not
acceptable.
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Proof. This follows from Proposition 4.9 (2) applied to r D spin./. For this we need to
check the assumptions there; the only nontrivial part is the dimension hypothesis, which
we verify as follows. Write im./ for the Zariski closure of im./ in GSpin, ;. The
image of Wn SO2nc1 is either PGLy, SO2nc1, or G2 (the last case only when n D 3) by
Proposition 3.3. Hence we have either

(i) SLo im./ GLa,

(i) PGL2 im./ PGLy Gm,

(iii) Spiny,cy im./ GSpin,,cq, OF

(iv) G2 im./ G2 Gnm (the last case is possible only when n D 3).

In each case we explain the dimension hypothesis of Proposition 4.9 in detail when im./ is
equal to GL2, PGL2 Gm, GSpin,,cq, OF G2 Gm, respectively, as the argument is
essentially the same in general. Case (iii) is obvious. Cases (i) and (ii) follow from the fact
that GL, or PGLy Gp-representations are determined by the dimension if the central
character has weight 1 (namely the central Gy, acts through the identity map). In case
(iv), the underlying spin representation has dimension 8, and it decomposes as the direct
sum of a one-dimensional representation with an irreducible 7-dimensional representation
of G2, whereas the G, factor acts by weight 1. So the assumption still holds. ™

Proposition 5.2. Let ri;r,W€! GSpin,,c;.Q-/ be two semisimple representations that
are unramified at almost all places and locally conjugate. Assume the image of r1 con-
tains a regular unipotent element in the Zariski closure of its image. Then ry1 and r; are
conjugate.

Proof. As in the proof of Lemma 5.1, the image of r1 in SO2nc1 has connected Zar-iski
closure. Recall from Lemma 4.4 that GSpin, ¢, is weakly acceptable. By Proposi-tion
4.6 (1) we may assume that r, D ri, with a character taking values in the center of
Spin,,c,-Q-7- By Lemma 5.1 we have D 1. n

6. The trace formula with fixed central character

In this section we recall the general setup for the trace formula with fixed central char-
acter.” For later use, we prove some instances of the Langlands functoriality for general
reductive groups under the assumptions analogous to (St) at a finite place and cohomo-
logical at infinite places. (One might try to prove such a result by directly applying the L2-
Lefschetz formula of [3] and [33] but the formula only tellsus0 D Owhen F ¥ Q. This is
why we need a version with fixed central character.)
Let G be a connected reductive group over a number field F with center Z. Write A ;

for the maximal Q-split torus in Resg-q Z and set Az,1 WDAz.R/C. Write G.A¢ /?

—More-detaits-are-to-be-avaitabte-in [47] and Dalal’s thesis. Compare with [82, §1], [4, §2, §3],
or [5, §3.1].



A. Kret, S. W. Shin 102

for the subgroup of G.Ar /asin [1, p. 11] so that G.Af /D G.Af /* Az.1. Con-sider
a closed subgroup X Z.Af / which contains Az, 1 suchthatZ.F /X is closedin Z.A¢ /
(then Z.F /X is always cocompact in Z.Ar /) and a continuous character WX\
Z.F//nX 1 C. Suchapair.X; / is called a central character datum.

In what follows we need to choose Haar measures consistently for various groups,
but we will suppress these choices as this is quite standard. For instance, the same Haar
measures on G.Af / and X have to be chosen for each term in the identity of Lemma 6.1
below.

Let v be a place of F, and X, a closed subgroup of Z.F,/. Let y WKy, ! C bea
smooth character. Write H.G.F,/; 1/vfor the space of smooth compactly suppor-ted
functions on G.F,/ which transform under X, via 1; ifvv is archimedean, we also
require functions in H.G.F,/; , 1/ to be K,-finite for a maximal compact subgroup K of
G.Fy/. (We fix such a Ky in this section, and use the same K, to compute relative Lie
algebra cohomology. In the main case of interest, the choice of K is made in §7.) Given a
semisimple element y 2 G.F,/ and an admissible representation , of G.F,/ with cent-ral
character v on Xy, the orbital integral and trace character for fy 2 H.G.F./; , 1/ are
defined as follows (below, |, denotes the connected centralizer of y in G):

Z
Q .fv/ WD fv.x Lyx/dx;
. I.Fy/nG.Fy/
VA
Tr.fyjy/ D Try.fy/ WDTr fv.g/v.g/dg

G.Fy/=Xy
Note that the trace is well-defined since the operator RG F /=X fv.g/v.g/ dg is of finite
rank if v is finite and is of trace class if v is infinite. v

For our purpose, we henceforth assume the following:

X D X! X1 foran open compact subgroup X' Z.A. /4ndX1 D Z.F1/,
D v v Withy D 1 at every finite place v.

One defines the adelic Hecke algebra H.G.Af /; 1/ as well as orbital integrals and
trace characters by taking a product over the local case considered above. Write €e”;x .G/
for the set of X-orbits of elliptic conjugacy classes in G.F /. Let By ...G.F /nG.Af //
denote the space of functions on G.F /nG.Af / transforming under X by and square-
integrable on G.F /nG.Af /2=X\ G.Af /1. Write A.G/ for the set of isomorphism
classes of cuspidal automorphic representations of G.Ar / whose central characters
restricted to X are . (In particular, such representations are G.Af /-submodules of
L@sc.-G.F/nG.Ae//.)

Forf 2 H.G.Af/; 1/ we define invariant distributions T g. and T by
Ta,-f/WD X ./ Yvol I.LF /nl.Af /=XO.f /;
2€e11;x.G/

T, f/ WOTK f jLyi2.,.G.F/nG.Ar //

Similarly P, is defined by taking trace on the space of square-integrable cusp forms.
We omit the G from the notation when clear from the context. In general we do not expect



Galois representations for general symplectic groups 103

that Ten;.f / D Tqisc;.f / (unless G=Z is anisotropic over F ); the equality should hold only
after adding more terms on both sides. However, we do have Tejj;.f / D Tgisc;.f / if f
satisfies some local hypotheses; this is often referred to as the simple trace formula.

We also need to consider the central character datum .Xo; o/ with Xo WDAz;1
and o WDj 2, . The quotient X \ Z.F /nX=Xo is compact as it isclosed in
Z.F/nZ.Ar /=Az;1, which is compact. We have a natural surjection H.G.Af /;
/1 H.G.Af/; /givenby

° z
fo ! g! f-.g/ WD fo.zg/.z/dz
0 z22X\Z.F /nX=Xo
Translating the function fo by z, define a function f,2.g/ D fo.zg/. Then

z
1

Vvol.X\Z.F/nX=Xo/ 22x\z.F /nx=x,

TS, fo7.2/dzD T, .Fo/; ? 2 %ell; disce:

From now on we assume that F is totally real and that G.F1/ admits discrete series
representations (for Lefschetz functions to be nontrivial).
Let be an irreducible algebraic representation of .Resg-.q G/ “q C' G “¢ F1, also
thought of as a continuous representation of G.F1/ on a complex vector space.

Denote by WZ.F1/ ! C the restriction of - to Z.F1/. Write f D f G 2
H.G.F1/; 1/ for a Lefschetz function (also known as Euler—Poincaré function) asso-
ciated with such that Tr 1.f/ computes the Euler—Poincaré characteristic for the
relative Lie algebra cohomology of 1 “ for every irreducible admissible representa-tion
1 of G.F1/ with central character . See Appendix A for details. Analogously we have
the notion of Lefschetz functions at finite places as recalled in Appendix A.

The following simple trace formula is standard for X D A ;1 and some other choices
of X (such as X D Z.G.A¢ //), but we want the result to be more flexible. Our proof
reduces to the case that X D Ag;1.

Lemma 6.1. Consider the central character datum .Z.F1/; /. Assume that fy,, in
H.G.Fy,, // is a .truncated/ Lefschetz function and f 1 2 H.G.F1/; 1/is a cuspidal
function. Then

TS, f/D Tg&, . f/D T Sf/:

cusp;

Proof. Considerfg D QV fo;w 2 H.G.AF /;1/, wherefo,, WD, atall finite places v, and

fo;1 is a cuspidal function such that f ., (as defined above) and f 1 have the same trace

against every tempered representation of G.F1/. The existence of such an fo;1 is

guaranteed by the trace Paley—Wiener theorem. By assumption fy,, D fo;v, is strongly

cuspidal (Lemma A.7). Hence the simple trace formula [3, Cor. 7.3, 7.4] implies that
Ta, -fo/ D TyS. .fo/ D To fo/:

cusp;o *

We deduce the IemmaRby averaging over Z.F1/=Z.F1/ \ G.F1/! against, noting
that the avera ! 1. . :

geg 2.k, /=2.F, J\G.F, /1 fo;1.2g/.z/ dz of fo;1 recovers f 1 up
to a nonzero constant. -
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Now we go back to the general central character data and discuss the stabilization for
the trace formula with fixed central character under simplifying hypotheses. Assume that
G is quasi-split over F . Write +e||,.x .G/ for the set of X-orbits on the set of F -elliptic
stable conjugacy classes in G.F /. Define

X
T8,.f/ WD.G/ a/ 'so.%/; f 2H.G.Af/; Y
21'ell;>(~G/

where Q/ is the number of €-fixed points in the group of connected components in the
centralizer of in G, and SO;.f(‘y’ denotes the stable orbital integral of f at. If G has

simply connected derived subgroup (such as Sp,, or GSp,,), we always have Q/D 1.

Returning to a general reductive group G, let G denote its quasi-split inner form
over F (with a fixed inner twist G ' G over F). Since Z is canonically identified with
the center of G, we may view .X; / as a central character datum for G. Let f 2
H.G.Ar /; 1/ denote a Langlands—Shelstad transfer of f to G.!° Such a transfer
exists in this fixed-central-character setup: One can lift f via the surjection
H.G.Ar//!H.G.Af /; Y givenby ! .g ! XR.gz/.z/dz/, apply the transfer from
H.G.Af // to H.G .Af // (the transfer to quasi-split inner forms is due to Wald-
spurger), and then take the image under the similar surjection downtoH .G .A¢ /; /.

Let vs; be a finite place of F.

Lemma 6.2. Assume that fy, is a Lefschetz function. Then T §..f / D ST, C.f /.

ell;*

Proof. Since fy,, is stabilizing (Lemma A.7), this follows from [60, Thm. 4.3.4] (spe-
cializedtoL D G, H D G, D 1;note that the “.G; H/-essentiel” condition there is

vacuous). (]

LetSo S1 [ 'vst? beafinite subset,and S afinite set of places containingSo [ S1. We
assume that G is unramified away from S and fix a reductive model for G over Of
(E1=Se. (See [90, Prop. 8.1] for the existence of such a model.)

Let G ' G over F be an inner twist which is trivialized at each place v ... So (i.e.
up to an inner automorphism the inner twist descends to an isomorphism over F,). In
particular, G is unramified outside S, and fix a reductive model for G over Of (E1=Se as
well. By abuse of notation we still write G and G for reductive models. The notion of
unramified representations is taken relative to the hyperspecial subgroups given by these
integral models. The inner twist determines an isomorphism G ' Gg, forv .. So, well-
defined up to inner automorphisms of G, . Whenv ... S we further have an isomorphism G

' Go,, . We fix these |somorphlvsms and use them to transport representations
between G and G.

10The transfer for 1-equivariant functions is defined in terms of the usual transfer factors. Its
existence is implied by the existence of the usual Langlands—Shelstad transfer (for compactly

supported-funetions)—For-details,see {111, §3.3] for instance.
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We prove weak transfers of a certain class of automorphic representations between
G and G.

Proposition 6.3. Assume that the adjoint group of G is nontrivial and simple over Fy,.
Consider and \ as follows:
is a cuspidal automorphic representation of G.A¢ / such that —
is unramified at every place outside S,
— v, is an unramified character twist of the Steinberg representation, —
1 is -cohomological.
\ is a cuspidal automorphic representation of G.Af / such that— \
is unramified at every place outside S,

— u\is an unramified character twist of the Steinberg representation, —

1 is\-cohomological.

(1) Suppose that has regular highest weight. Then for each .resp.\/ as above, there
exists \ .resp. / as above such that , ' Nat every finite place v ... S [ 'vsi2.

(2) For each as above, suppose that
is not one-dimensional,

for every 2 A.G/ suchthat® ' ®,if 1 is-cohomological and v, is an unramified
twist of the Steinberg representation then 1 is a discrete series representation.

Then there exists \ as above such that V\' v at every finite place v ... S [ Tvs2.
Moreover, the converse is true with G in place of G and the roles of and \
switched.

Remark 6.4. The adjoint group of G is assumed to be simple over Fy, in order to apply
Proposition A.2. Without the assumption we may have a mix of trivial and Steinberg
representations (up to unramified twists) for \,, corresponding to simple factors of G at
Vst.

Remark 6.5. Corollary 2.8 tells us that the condition in (2) for the transfer from G to G is
satisfied by G D GSp,,,. Later we will see in Corollary 8.4 that the same is also true for

a certain inner form of GSp,,.

Proof of Proposition 6.3. We will only explain how to go fro&1 to \ as the oppos-ite
direction is proved by exactly the same argument. Let f D~ fy be such that f, 2
HY"".G.Fy// for finite places v ... S, fy,, is a Lefschetz functBn at vsy, and f 1 is a Lef-
schetz function for . Then we can choose the transfer f D , Fysuchthatf D fy for
allv..S1 [ 'wst2, f isaLefschetz function, and f is a Lefschetz function for . We know
from Lemmas A.4 and A'1'1 that fue, (resp.f1) and f (%esp. f ) are asso-ciated up to a
nonzero constant. Hence cf and f are associated for some ¢ 2 C*The
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preceding two lemmas imply that

ell;

T&p,f/D ST 5 /D ¢ T, fF:

By linear independence of characters, we have

X \
m./Tr.fgjs/ D c m.\/ Tr.fsj /5
2A.G/ \2A .G/
S+ S S

Let us prove (1). Choosef, D f 9tfinite placesvin S butoutside'vsi2[ So[ S1 suchthat
Tr.f jy/ > 0. (This is vacuous if there is no such v.) At infinite places, as soon as Tr.f j,/
# 0 at v]’l , the regularity condition on implies thaty is a discrete series representation
and ‘that Tr.f ju/ D . 1/96/ by Vogan-Zuckerman’s classification of unitary
cohomological representations. At v D vs;, whenever Tr.f jy, /% 0 (which is true for D
), the unitary representation v, is an unramified twist of either the tftvial or the Steinberg
representation by Proposition A.1. If Gy, is anisotropic modulo center then the Steinberg
representation is the trivial representation. In case Gy, is isotropic modulo center, if y,
were one-dimensional then the global representation would be one-dimensional by a well
known strong approximation argument (e.g. [43, Lem. 6.2] for details), implying that 1

cannot be tempered.

All in all, for all as above such that Tr.f j§/ " 0, we see that y, is an unramified
twist of the Steinberg representation and that Tr.f¢ js/ has the same sign. Moreover, D
contributes nontrivially to the left sum by our assumption. Therefore the right hand side is
nonzero, i.e. there exists \ 2 A.G/ such that V'S ' NS and m.\/Tr.fsj\ / & 0. The
nonvanishing of trace confirms the conditions on \ at vs; and 1 by the same argument as
above.

Now we prove (2). Make the same choice of fy D f, at finite places v in S. Since
one-dimensional representations of G.F,o/ are excluded by assumption, the condition
Tr.fVSthSt/ 1 0 implies that v, is an unramified twist of the Steinberg representation. By
the assumption 1 is then a discrete series representation. Hence the nonzero con-
tributions from on the left hand side all have the same sign. Thereby we deduce the
existence of \ as in (1). -

As before, G is a quasi-split group over a totally real field F. Let E=F be a finite
cyclic extension of totally real fields such that CBEEW e s a prime. Write for a generator of
the group Gal.E=F /. Set G ®WDRes¢-¢ .G /, which is equipped with a natural action of
defined over F . Let S be a finite set of places of F such that the group G and the extension
E=F are unramified outside S, so that G is also gnramified outside S. Fix a reductive
model of G over O¢ (E1=Se as before. By base change followed by Resg-¢, this gives
rise to a reductive model of G over @r (E1=Se. The models determine hyper-special
subgroups of G and G away fr(om S, thus also unramified Hecke algebras and unramified
representations of G and G. C

For each place v of F put E, WDE “ ¢ Fy. Canonically, E, ' Q Ew with w

running over places of E abovev.Let BCg-f Wrr'"".G.F,// ! Irr¥""vGv.E,// denote
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the base change map for unramified representations. Writing BC . _. WH unt G.Ey// !
HY"".G.Fy// for the base change morphism of unramified Hecke algebras, we see from
Satake theory that

Tr.BCp_p .fu/jv/ D Tr.fujBCeof v//: (6.1)

Write D “ 1 v asarepresentationof G.F1/ ' Vi1 G.Fy/. For each infinite place v of
F, define e;v WD”jy v as a representation of G.E,/ ' wiv 8-Ew/, where w runs
over places of E dividing v (here the two isomorphisms are canonical). Set WD

” vjl E;v-
Proposition 6.6. Let be a cuspidal automorphic representation of G.A¢ / such that
is unramified at all finite places outside a finite set S,

v, 1S an unramified character twist of the Steinberg representation,

1 is -cohomological.

Suppose that either has regular highest weight or that the condition for in Proposi-tion
6.3 (2) is satisfied. .This is always true for G D GSp,,, cf. Remark 6.5:/ Then there exists
a cuspidal automorphic representation ¢ of G . Ag / such that

£ is unramified at all finite places outside S,
E;vs, IS an unramified character twist of the Steinberg representation,
£.1 IS e -cohomological,

and moreover g,y ' BCg-f .y/ atevery finite place v ... S.

Proof. We will be brief as our proposition and its proof are very similar to those in
Labesse’s book [60, §4.6], and also as the proof just mimics the argument for Proposi-
tion 6.3 in the twisted case. In particular, we leave the reader to find further details about
the twisted trace formula for base change in loc. cit. Strictly speaking, one has to incor-
porate the central character datum .X; / above in Labesse’s argument, but this is done
exactly as in the untwisted case.

We begin by setting up some notation. Take KC to be a sufficiently small open com-
pact subgroup of G.AEl/ such that N ., W . Ae /! Z.Ar / maps Z.E/ \ K into
Z.F/\ K. Let RWDZ.E/ \ K, redefine X to be Ng—r X/ and restrict to this sub-
6roup, QWD 1 NE_; . Let dénote the representation “ ¢ 1c of G,,.-E“aq C/D

£ 1c G .F “q C/ (both indexed by F -algebra embeddings E ,! C).

We choose the test functions

Y Y
fQD f% 2H.G.Ac/Q Y and f D fy 2H.G.Ar/; Yw v

as follows. If v D vs; then f,CD Q fuCand fy are set to be Lefschetz functions as in
Appendix A. So f, afd f, are associated up to a nonzero constant by Lemma A.9. If v is a
finite place of F contained in S then choose fy to be the characteristic function on a
sufficiently small open compact subgroup Ky of G.F,/ such that, ' ¥ 0.8y

wWjv
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[60, Prop. 3.3.2], fy is a base change transfer of some function

Y
fAD f& 2H.G.E,/;Q Y/

wjv

Given a finite place v ... S and each place w of E above it, let f.§ be an arbitrary function
inHY".G.Ew; Q 1//. The image of fy §n HU"".G.Fy// under the base change map is
denoted by fy. At infinite places let fQ D~ ;; f§ be the twisted Lefschetz function
determined by @nd f 1 D vj1 fv the usual Lefschetz function for . Again f 1Qand
f 1 are associated up to a nonzero constant by Lemma A.12. By construction, f Cand cf
are associated for somec 2 C.
We write T@ and T ¢ for the cuspidal and elliptic expansions in the base-change

twisted trace f6ffula, whidfRare defined analogously to their untwisted counterparts. (For

|nstanc% TC is defined as |n TL in [60, p. 98] with L O G but making the obvious
adJustment to account for the central character as earlier in this section.) Just like the trace
formula for G and f , the twisted trace formula for & and fC as well as its stabilization
simplifies greatly exactly as in Lemmas 6.1 and 6.2 in light of Lemmas A.9 and A.12. So

FRD T FED ¢ ST, C.F/D ¢ Tey,3f /2

cusp Q- el;Q * cusp;

By linear independence of characters and the character identity (6.1), we have

X
Q.Q/ Tr.fsjQs/ D ¢ m./ Tr.fsjs/;
Q2Aq.G.Ac// 2A.G.Af//3
QQ; QS'BCe-f .5/ i

where Tr denotes the -twisted trace (for a suitable intertwining operator for the -twist),
and ®.Q/ denotes the relative multiplicity of Qas defined in [60, p. 106]. The right hand side
is nonzero as in the proof of Proposition 6.3. Therefore there exists ¢ WDQin A.G . Ag //
contributing nontrivially to the left hand side. By construction of f such a ¢ has @ll the
desired properties. -

7. Cohomology of certain Shimura varieties of abelian type

In this section we construct a Shimura datum and then state the outcome of the Langlands-
Kottwitz method on the formula computing the trace of the Frobenius and Hecke operators in
the case of good reduction.

We first construct our Shimura datum .Resg-q G; X/. The group G=F is a certain
inner form of the quasi-split group G WD GSp, .. . We recall the classification of such
inner forms, and then define our G in terms of this classification. The inner twists of
GSp,,.; are parametrized by the cohomology HL.F; PSp,,/. Kottwitz [53, Thm. 1.2]
defines for each F -place v a morphism of pointed sets

SWHLF; PSP,/ ! 0.2.Spin,,cq.C//® /P " 2=22Z;
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where ./P denotes the Pontryagin dual. If v is finite, then _y is an isomorphism. If v is
infinite, then [53, (1.2.2)] tells us that

ker..v/ D im@EHYFy;Sp,,/ ! HY.Fy; PSp,,/e;
im..v/ D ker(Eo.Z.Spin,,c;.C//®/P 1 0.2.Spin,c1.C//p/e:

Thus |y is surjective, with trivial kernel as H™.R; Sp,,/ vanishes by [79, Chap. 2]. How-
ever, _y is not a bijection (when n 2).In fact, , , 1.1/ classifies unitary groups associated to
Hermitian forms over the Hamiltonian quaternion algebra over F, with signature .a; b/
with a C b D n modulo the identification as inner twists between signatures .a; b/ and .b;
a/. (See [96, 3.1.1] for an explicit computation of H.F,; PSp,,/.) So . 1.1/ has
cardinality bn=2c C 1. There is a unique nontrivial inner twist of GSp (\ﬁp to iso-
morphism), to be denoted by GSp™" , such that GSpgyp  is compact thodulo center. It
comes from a definite Hermitian forf. Y

By [53, Prop. 2.6] we have an exact sequence
M
ker!.F; PSp,,/ H.F;PSp,,/! HY.Fy; PSp,,/ ! Z=2Z;v

P
where , sends.c,/2 HY.F; G.Af "¢ Q//to , .v.cv/. By [52, Lem. 4.3.1] we have
kerl.F; PSp,,/ D 1. We conclude that

’ M X x
HY.F; PSp,,/D .xv/2 HY.Fy;PSp,,/~ ..xv/ D 022Z=2Z: (7.1)

" \"

In particular, there exists an inner twist G of GSp,,,.; such that:
For the infinite placesy 2 Vin'v12 the group G, is isomorphic to GSpZmFC"?"For y D
v1 wehave Gr, D GSp,,.r - (Recall that v is the infinite F -place correspondxing to
the embedding of F into C that we fixed in the Notation section.)

If GF W2« s odd, we take Ga 1 ' GSPanat-

If G&F WQei s even we fix a finite F -place vst, and take G Aivst ' GSp 2 alivst. The
Aa:

form Gr, , then has to be the unique nontrivial inner form of GSpPan;r, -

More concretely, G can be defined itself as a similitude group but we do not need it in
this paper.

Let S be the Deligne torus&esc=R Gm. Over the real numbers the group .Resr-q G/r
decomposes into the product y2v, G “¢ Fy. Letl, bethen nidentity matrix and An

be the n n-matrix with all entries O except those on the anti-diagonal, where we put 1.
Let oWS! .Resg-q G/r be the morphism given by

Y

| ” . | aln bAn B I ”
S.R/V G.F “q R/; acC bi! ban a|nv1’1""’12 i .G "¢ Fy/.R/
y2v,

(7.2)

for all R-algebras R (the nontrivial component corresponds to the noncompact place
vi 2 Vi). We let X be the .Resr-q G/.R/-conjugacy class of hg. This set X can
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more familiarly be described as Siegel double half-space Hy, i.e. the n.n C 1/=2-di-
mensional space consisting of complex symmetric n n-matrices with definite (positive or
negative) imaginary part. Let us explain how the bijection X ' H; is obtained. The
group GSp,,.R/ acts transitively on H, via fractional linear transformations: . A WD
.AZ C B/.CZC D/ L, BB 2 GSpy,.R/, Z 2 Hy [91] (in these formulas
the matrices A; B; C; D; Z are all of size n n). The place v1 induces a surjec-tion
.Resg-q G/.R/ GSp,,.R/ and via this surjection we let .Resg-q G/.R/ acton Hy.
The stabilizer Kd V\Dstab_ResF:QG/_R/.iln/ of the pointil, 2 Hy has the formK 1 WD
Kv, vav, nv, ¢ G.Fv/, where K\, is the stabilizer of il in GSp,,.Fv, /.
Similarly, the stabilizer of hg 2 X is equal to K1 . Thus there is an isomorphism X ' H,
under which hg corresponds to il,. It is a routine verification that Deligne’s axioms for
Shimura data [23, (2.1.1.1)—(2.1.1.3)] are satisfied for .Resg-q G; Hn/. Since moreover
the Dynkin diagram of the group Gaq is of type C, it follows from [23, Prop. 2.3.10] that
.Resg-q G; Hn/ is of abelian type.

We write D .y/yov |, 2 X.T /V1 for the cocharacter of Resg-q G such thaty
D1lifyx vy andy,.x/D ' 0 g 'Il'ir]en is conjugate to the holomorphic
part of ho “ C. An element 2 Gal.Q=Q/ sends D .,/ to./ D .,y/. Thus the conjugacy

class of is fixed by if and only if 2 Gal.Q=F /. Therefore the reflex field

of .Resg-q G; Hn/ is F (embedded in C via vi1). For K G.A} / a sufficiently small
compact open subgroup, write Shx=F for the corresponding Shimura variety. In case F
D Q the datum .Resg-q G; Hn/ is the classical Siegel datum (of PEL type) and Sh are
the usual noncompact Siegel modular varieties. If (B WQ > 1 so that G is anisotropic
modulo center, then it follows from the Baily—Borel compactification [6, Thm. 1] that
Shy is projective. Whenever (F W0 &> 1 the datum .Resf-q G; Hn/ is not of PEL type. If
moreover n D 1 then the Shx have dimension 1 and they are usually referred to as
Shimura curves, which have been extensively studied in the literature.
Q Let D_”yjl y be an_irreducible algebraic representation of .Resg-q G/ q C D
vj1 G-Fy/ with each F canonically identified with C. The central character ! =~ of,
has the formz | z v for some integer wy 2 Z.

Lemma 7.1. If there exists a -cohomological discrete automorphic representation of
G.Af /then wy has the same value for every infinite placey of F.

Proof. Under the assumption, the central character WF nA !F C is an (L-)algeb-raic
Hecke character. Hence ! D !oj jW for a finite Hecke character !¢ and an integer w by
Weil [108]. It follows that w D wy for every infinite place y. -

In light of the lemma we henceforth make the hypothesis as follows, which implies
that restricted to the center Z.F / D F of .Resg-q G/.Q/ D GSp,,.F/ is the w-th

power of the norm character N¢ -2 :
(cent) wy is independent of the infinite place y of F (and denoted by w).

Following [16, §2.1, especially §2.1.4] we construct an “-adic sheaf on Shg for each
sufficiently small open compact subgroup K of G.Al / from the "-adic representation
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D “¢; Q.. For simplicity we write L for the “-adic sheaf (omitting K). It is worth
pointing out that the construction relies on the fact that is trivialonZ.F / \ K for small
enough K. (For a fixed open compact subgroup Ko, we see that Z.F / \ Ko O; is

mapped to ' 12 under N-®. So s trivialon Z.F / \ K for every K contained in some

subgroup of Ko of index at most 2.) Similarly, we write L for the (complex) local system on
Shg.C/ attached to .

Wd'lthout loss of generality we assume throughout that K decomposes into a product
K D ~,_; Kv whereKy G.Fy/isacompactopen subgroup. We call .G; K/ unrami-fied
at a finite F-place v if the group Ky is hyperspecial in G.F,/. If so, fix a smooth
reductive model G of Gr, over Of, such that G.Of,/ D Ky. We say that .G; K/ is
unramified at a rational prime p if it is unramified at all F-places v above p. For the
moment, we do not assume these conditions on .G; K/.

We fix an algebraic closure Q C of F with respecttovi W ,! C. Our primary
interest lies in the “-adic étale cohomology with compact support

nxCl/
H¢.Shi; L/ WD . 1/iCEI-|C'.ShK;Q—; L/e (7.3)
iDo
as a virtual H, .G JA . /=K/ €-module. Let us make the word “virtual”, and the nota-
tion @ more precise. As in the book of Harris—Taylor, if * is a topological group that
is locally profi:pite [39, p. 23], we let Groth.e/ be the abelian group of formal, possibly
infinite, sums = ..., n...., where Irr.e/ is the set of isomorphism classes of admis-
sible representations of  in Q--vector spaces. Given an admissible e-representation ..., it
defines an element (E.2 Groth.e/ [39, bottom of p. 23]). In particular, we may
take D €, G.A_ fand € G.A_ /, of, by proceeding similarly, take * equal toa Hecke
algebra times a group, such as H, .G.A. /=K/ €. Taking a direct limit over
sufficiently small open compact subgroups K of G.A. /, welsimilarly obtain aG.A_ /
€-mddule with admissible G. A /-action @nd a virtual G.A; / €-moddle

n.xCl/
H..Sh; L/ WDlim H,/.Sh,. 5L/, x  Hc.Sh; L/ WD . 4GEH..Sh; L/e:

iDO
|

Let us introduce some more cohomology spaces to be used mainly for the F D Q

case in the next section. For K as above and for each i 2 Zp, we write Id‘ .Shg; L/,
Hi.z/.ShK; L/, and IH' .Shy; L/ for the cuspidal, L2, and “-adic intersection cohomo-
logy of Sh, respectively. (The first two spaces are as in [26, §6], considering Shg as a
complex manifold with respect to F ,! C corresponding to vi. The last one is the
cohomology of the intermediate extension of L to the Bailey—Borel compactification
[75, §2.2].) By taking direct limits over K, we obtain admissible G.Alz-representations
Hb.Sh; L/, H1,.Sh; L/, and IH'.Sh; L/. The last one is equipped with commuting
actionsof G.A} /and €.

We are going to apply the Langlands—Kottwitz method to relate the action of
Frobenius elements of € at primes of good reduction to the Hecke action on the com-
pact support cohomology. In the PEL case of type A or C, Kottwitz worked it out in
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[55,57] including the stabilization. As we are dealing with Shimura varieties of abelian
type, we import the result from [47]. In fact the stabilization step is very simple under
hypothesis (St).

Suppose that .G; K/ is unramified at a prime p. Let p be a finite F-place above p
with residue field k.p/. We fix an isomorphism , WC ' 'Q, such that ;vi WF ,! Q,
induces the place p of F . Let us introduce some more notation:

r WDGEkp/ Wy 02 Z 1.

Forj 2 Z1 denote by Q,; the unramified extension of Qp of degree j, and Z; its
integer ring.

Write F, WDF " q Qp, Fp;j WDF " Q,;,and Of?,; WDOFr "z Z,;.

Let be the automorphism of Fy;; induced by the (arithmetic) Frobenius automor-
phism on Q,i and the trivial automorphism on F .

Let H.G.A_t// (resp. H.G.Fy//, H.G.Fp;j //) be the convolution algebra of com-
pactly supported smooth complex valued functions on G.Al / (resp. G.F,/, resp.
G.Fp;j /), where the convolution integral is defined by the Haar measure giving the
group K (resp. Kp, resp. G.O¢e,, /) measure 1.

We write H'"".G.F,// (resp. H'"".G.Fp;;//) for the spherical Hecke algebra, i.e.
the algebra of K, (resp. G.O¢?  /)-bi-invariant functions in H.G.Fy// (resp.
H.G.Fp;j//).

Define 2 H UNT G.Fp;rj// to be the characteristic function of the double coset
G.Of,,,/ .p 1/ G.O¢r,, /inG.Fprj/.

N1 WDj..¢F/j jo.G.F1/=Z.F1//jD 2" 1 2D 2",

ep.1 7 /WD P lyo- 1/ dim H'.Lie G.F1/; K11 1 “ / for an irreducible

admissible representation; of G.F1/.
.X; / is the central character datum givenas X WD.Z. A, /A\ K/ Z.F1/ and WD
(extended from Z.F 1/ to X triviallyonZ.A; /) K).

Remark 7.2. We point out that K 1 is a subgroup of index jo.G.F1/=Z.F1//j in
some KO1 which is a product of Z. F 1 / and a maximal compact subgroup of G.F1/, and
thatep.1 “ /is defined in terms of K1, not K, . When 1 belongs to the discrete series
L-packet ... , theGrepresentation 1 decomposes into a direct sum of irreducible .Lie
G.F1/; Ki/-modules, the number of which is equal to jo.G.F1/=Z.F1//j [56,
paragraph below Lemma 3.2].21 Soep.1 ” /D . 1/ ™n€1/=2j, G.F1/=Z.F1//jD .

1/ nn€i/=2 forq 2 .6,

Letf 1P 2 H .G.Ale/=Kp/. We would like to present a stabilized trace formula
computing the action of f 1P and Frobp on H¢.Shg; L/.

11The discussion there is correct in our setting, but it can be false for non-discrete-series

representations (which—are attowed—in that paper). For instance when and 1 are the trivial

representation in the notation of [56], it is obvious that 1 cannot decompose further even if
jo.G.F1/=2.F1//j > 1.
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Let Ec;1.G/ denote the set of representatives for isomorphism classes of .G; K/-un-
ramified elliptic endoscopic triples of G. For each .H; s; o/ 2 E¢;1.G/ we make a fixed
choice of an L-morphism WH | .G extending o (which exists since the derived group
of GSp,, is simply connected). We recall the definition of .G; H/ 2 Q and h" D
hH:LiPhHhH 2 H,H.Af // only for the principal endoscopic triple .H; s; /D .G; 1;id/,
which is all wepnetled. (For other endoscopic triples, the reader is referred
to (7.3) and [55, second display on p. 180 and second display on p. 186]; this is adap-ted
to a little more general setup than ours in [47].) We have .G; G/ D 1and h® D h®:1iPh6
hG 2 H. G AF /; 1/ given as follows:

heé: 1 p 2 H.G. A1 P// is an endoscopic transfer of the function f 1P to the inner

form G (hG:1ip can be made invariant under Z. A1 P/ \ KP by averaging over it),
hG 2 HY"".G.F,// is the base change transfer of 2 H UN" . G.Fp;rj// down to
HY".G.Fp// D HU'.G.Fy//,
hGlz H.G.F:1/; 1//WDj..6j? P 2.6 f,, ie theaverage of the pseudo-
coefficients for the discrete series L-packet ... gAs shown by [56, Lem. 3.2], h
N ;! times the Euler—Poincaré function for (defined in §6 but using K 1 of this
section):

Tr1.h®/D N ‘ep.1” /; 1 21rr.G.F1//: (7.4)

The main result of [47] is the following (which works for every Shimura variety of abelian
type when p 1 2), where the starting point is Kisin’s proof of the Langlands—Rapoport
conjecture for all Shimura varieties of abelian type [46]. When F D Q it was already
shown by [55,57].

Theorem 7.3. Letf * 2 H .G.A} /=K/. Suppose that p and p are as above such that
.G; K/ is unramified at p,
f1 DfLPf, withf 1P 2 H.G.A'P/=KP/andf, D 1, .

Then there exists a positive integer jo .dependingon,f %, p, p/suchthatforallj jowe
have

X
tTr.ftFrobl  He.Shy; L// D .G; H/STfl..h"/: (7.5)
H2Ee .G/

8. Galois representations in cohomology

Let be a cuspidal -cohomological automorphic representation of GSp,,.Af / satisfy-ing
condition (St), and fix the place vs; in that condition. Define an inner form G of GSp,, as in
§7; when (B WD« s even, we take vs; in that definition to be the fixed place vs;. Let \bea
transfer of to G.Af / via Proposition 6.3 (which applies thanks to Remark 6.5) so that at
the unramified places \:* and ! are isomorphic, ., is an unramifled twist of the Steinberg
representation, and 1 is -cohomological. The aim of this section is to
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compute a certain V1-isotypical component of the cohomology of the Shimura variety
Sh attached to .G; X /.

Let A.\/ be the set of (isomorphism classes of) cuspidal automorphic representa-
tions of G.A¢ / such that v, ' \St “ y for an unramified character 1 of the group G.F,
/, Livst ! \?1?"5‘ and 1 is -cohomological. Let K G.A / be % sufficiently small
decomposed compact open subgroup such that \; 1 has a nonzero K-invariant vec-
tor. Let Spag be the spdof prime numbers p for which either p D 2, the group Resg-q G
is ramified or K, D ;, Ky is not hyperspecial.

Let HL.Sh; L/ss denote the semisimplification of H_.Sh; L/ asa G.A_ / €lmodule.
Likewise H.Shy.q; 'L/ss means the semisimplification asan H . G. A /= K/ €-module.
For each 2 A.\/ (or any irreducible admissible representation ofG.A /), we define
the '-isotypic part of an admissible G.A'/-module R ona C-
vector space as

RE'MD Homg a1/.%; R/; (8.1)

which is finite-dimensional. If the underlying space of R is over Q., we define R(E'e
using > in (8.1). If R has an action of € commuting with G.A* / then RCEL & nherits the
€-action. As a primary example, H' .Sh; L/SSCE1-| s a finite- d|men5|onal repres-entation
of €, which is isomorphic to Homy ¢ A1/_K/ 1/K H . Shy.qs L/ss/ for each K such
that. /" ® 0since the isomorphism class of . 1/ and that of determ-
ine each other. In particular, the representation is finite-dimensional and unramified at
almost all places.

Consider two representations ;92 A.\/ equivalent and write °if 1 ' 91, Define a
virtual Galois representation

X n,xCl/
shim p shim \/wp. 1/nnci/=2 . YEH.Sh; L/ssE (8.2)
2A.\/= iDO

in the Grothendieck group of the category of continuous representations of € on finite-
dimensional Q:-vector spaces which are unramified at almost all places. We compute in

this section "™ at almost all F -places not dividing a prime in Spag.
Define a rational number

X
a\/wWp. 1/mnct/=2N h m./ ep.1” /; (8.3)
2A.\/

where m./ is the multiplicity of in the discrete automorphic spectrum of G.

Recall the integer w 2 Z determined by as in condition (cent) of the last section. In
the following, the subscript ss always means the semisimplificationasa G. A f-module, or

asaG.A; ¥ €-module if there is a €-action. As in [26, §6], we have natural G Al /-
equivariant maps of C-vector spaces

HL.Sh; L/ ! Hj,.Sh;L/ ! H.Sh;L/; (8.4)

where Hic.Sh; L/ and H'.Sh; L/ denote the topological cohomologies, which are iso-
morphic to the *-adic cohomologies H‘C.Sh; L/ and H'.Sh; L/ via .
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Lemma 8.1. For each 2 A.\/ the following hold:

(1) For everyi 2 Zo, the maps of (8.4) induce isomorphisms
H..Sh;L/GEye ! H',,.Sh;L/GE's | H.Sh;L/G"e:

Moreover, dim H..Sh; L/ssCE'eD dim H,.5h; L/CE'e. .Namely all subquotients of
H_..Sh; L/ isomorphic to 1 appear as subspaces./

(2) For every finite place x & vs; of F, if is unramified at x then xjsimj*=2 is tempered
and unitary.

Proof. (1) If F ¥ Q the isomorphisms are clear by compactness of Shg. In that case,
H'.Sh; L/ is semisimple as a G.A'/-module since the same is true for the L2-auto-
morphic spectrum (which is entirely cuspidal since G is anisotropic modulo center
over F ), via Matsushima’s formula.

Suppose that F D Q from now on. By Poincaré duality, it suffices to check that
(8.4) induces an isomorphism H', .Sh; L/GE'e | H'.Sh;L/GE"e. To set things up, let S
Sbad be a finite set of F-places including all infinite places. Then K> is a product of
hyperspecial subgroups, and .5 /%° & 0. The category of H .G.A3} /=K>/-modules is
semisimple and irreducible objects are one-dimensional. For an H .G .As /=K% /-mod-
ule R, define the >-part of R to be the maximal subspace Rs such that Rs s iso-
morphic to a self-direct sum of 5. Then it suffices to prove that (8.4) induces

Hi_z/.ShK;L/s I H;.Shg; L/s; i O: (8.5)

Indeed, the desired isomorphism of (1) will follow from the preceding formula by tak-
ing the functor Home.qu\, /-snv,; /. The latter assertion of (1) is also implied by
(8.5) as we now explain. Again by Poincaré duality, we can reduce to showing it for the
ordinary cohomology rather than the compact support cohomology. Then it suffices to
verify that H'.Shy; L/s is a semisimple G.Fs,", /-module. This follows from (8.5)
since Hi_z/.ShK; L/ is a semisimple G. A, '/-module by comparison with the L “discrete
automorphic spectrum via Borel-Casselman’s theorem.

It remains to obtain (8.5). We apply Franke’s spectral sequence in the notation of [104,
Cor., p. 151] (cf. [28, Thm. 19]). The spectral sequence, which is G.Al/-equivariant,
stays valid when restricted to the -part. We claim that the S-part is zero in any para-
bolic induction of an automorphic representation on a proper Levi subgroup of GSp,,,.A/. It
suffices to check the analogous claim with [ (as in Lemma 2.6) and Sp,,, in place of and
GSp,,,. The latter claim follows from Arthur’s main result [5, Thm. 1.5.2], Corol-lary 2.2,
and the strong multiplicity 1 theorem for general linear groups. As a consequence of the
claim, the direct summand of Ep;q ovey .w; P/ in [104, p. 151] has vanishing ° -

part unlessP D G and w D 1. For w D 1, we see from [104, first line on p. 151] that

there is a nonzero contribution to E”* for a unique p (independent of q). Therefore the S.
part of the spectral sequence degenerates at E1 and yields an isomorphism, in the
notation there (writing i for p C q),

Hi.m; KrlA2.G;/ “c E®/s | Hi.m%;KrlA.G;/ ¢ ES/s; i o
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This map is the natural one induced by A>.G;/ A.G;/, and translates into (8.5) in our
notation via Borel’s theorem [104, p. 143] on the right hand side. The proof of (1) is
complete.

(2) Let WFnA, | C denote the common central character of , \, and . (The
central characters are the same as they are equal at almost all places.) Since F is totally
real, ! D !oj j@ for a finite character ! ¢ and a suitable a 2 C. Since \ s -cohomojogical,
we must have a D w. Then ,jsimj%¥=2 has unitary central character and is essentially

tempered by Lemma 2.7. We are done since , ' «. \ -

Proposition 8.2. For almost all finite F-places v not dividing a prime number in Spag
and all sufficiently large integers j , we have

Trshm Frobl /D qlnnct/=4 Tr.i,\.spin_. ///.Frob,/: i
Moreover, the virtual representation Shizm is a true representation.
Proof. We imitate arguments from [56]. We consider a function f on G.Af / of the form
f Dfy1 ” fu, ~ f 1:Vst, where the components are chosen in the following way:

Weletf1 beN 11 times an Euler—Poincaré function for (and K1) on G.F1/ so that

X 1
Tri.f1/ DN 'ep.s” /DN ' . 1//dimH;.g;Kil1” /: (8.6)
iDO

We pick a Hecke operator f 1:Vst D va\, pv o2 H .G.AYYSt [=KYst/ such that for all

automorphic representations of G.Af / with iK'y 0and Trp.f1/ 1 0 we
have

if L iLive.
1 iftivser \ilivesg

otherwise.

Tr l;VSt.f 1;Vst/ D (8.7)
This is possible since there are only finitely many such (one of which is ).
We let fy,, be a Lefschetz function from equation (A.4) of Appendix A.

There exists a finite set + of primes containing places over 2 such that f * decomposes
asf+ “ f17 where

f+ 2H.G.F+/=K+/,

f1:7D 1+ 2H.G.AY//,

K * is a product of hyperspecial subgroups,

if v1; vz are F -places above the same rational prime, thenvy 2 T ifandonly if vo 2 T.

In the rest of the proof we consider only finite places v such that v ... ¥, v = . Fix

such a place and call it p as in §7. We also fix an isomorpf&sm p WC ' ap such that
Vi1 WL Cl_p induces p. Wa'te p V\Dp&l. Then Kp D vip Kv is a hyperspecial
subgroup of G.Fp/, andf, D ;, fv D, 1k, . Thus .G; K/ is unramified at p in
the sense of §7 so that the Langlands—Kottwitz method applies.
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The stabilized Langlands—Kottwitz formula (Theorem 7.3) simplifies as

YTr.f *Frob,} He.Shy; L// D ST,.0¢/; (8.8)

ell;

essentially for the same reason as in the proof of Lemma 6.2. Indeed, fy, is a stabilizing
function (Lemma A.7), thus unless H D G, the stable orbital integrals of hVHSt vanish as
they equal -orbital integrals of fy,, with ® 1, which are zero (Definition A.6), up to a
nonzero constant via the Langlands—Shelstad transfer. Note that hVGSt can be chosen to be a
Lefschetz function thanks to Lemma A.4.
To extract spectral information, we will compare (8.8) with the stabilized trace for-
mula of §6. We choose the following test functions prand f¢ onG. Fp/ and G.F1/:

prV\DhGp via the identification G.F,/ D G.Fp/,

f1Cis N ! times an Euler—Poincaré function associated to .
Then hf and helare transfers of f, &&d f 1 §rom G to G, respectively. This is trivial at p

and follows from Lemma A.11 at 1. By construction, h®:%:P is a transfer of f 1P,
Therefore Lemmas 6.1 and 6.2 tell us that

TSep, f 1o fp€1¢ D ST G.F6/: (8.9)

By (8.8) and (8.9), we have

ITr.f 1Frobijc.ShK; L//

Dm./Trt, P/ Trp.fo/Tri.f1/: Q C (8.10)
2Acusp;-G/

The summand on the right hand side vanishes unless Tr1.f1/ ® 0, p is unrami-fied,

and Tr1:P f 1P/ 1 0. The latter two imply nonvanishing of Tr® . f 1/, thus Tr 1:Ve . f

Lvst/x 0and Try,,.fvg, /® 0. By the choice of f 1:Vst (see (8.7)) and fy,,, it follows that

contributes nontrivially in (8.10) only if 2 A.\/. In this case, we have p \in particular.

Recall fp D h®. Applying (8.6) and §8.7), we identify the right hand side of (8.10) with
X

N, ! m./ep.1” /Tr .h, ¥ DO. 1/™"V/=23 N/ T\ G/ - (8.11)

2A.N/

By the choice of f ¥ the left hand side of (8.10) is equal to the trace of Frob{, on
1/n-nCi/=2shim To sum up,

j . shim \ \ |G /.
Tr.Frobp, 5 /D a.}/Tr‘.h /p. o (8.12)

To analyze the right hand side, consider the cocharacter D .y /2y, from §7. The
irreducible representation of K&sr-q G ' y2v, GSpin,,cq-C/ of highest weight is

spin on the vi-component and trivial on the other components (sincey D 1ify % vi1).
This extends uniquely to a representation r of the L-group of .Resg-q G/f, asin [51,
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Lem. 2.1.2] since the conjugacy class of is defined aver F (thus also Fp). The Satake

parameter of , ' vip v (With respectto G.Fp/ " vip G-Fv/) belongs to the Frob,-
coset of zesp=q G/Qp , identified with4esF=Q G viap , in the L-group. Then the vi-
component of the Satake parameter of , comes from the Satake parameter of ,, since F
;1 € Qpinduces p. With this observation, we apply [51, (2.2.1)] (his, G, n, F, G
correspond to our\, .Resg-q G/Qp , 1, Qpris h€) to obtain

p p p
\ LG jn.nC1/=4 . j/.
Tr .ph ’{D q o Tr.spin-. //.Srob /: o (8.13)

(See [56, p. 656 and the second last paragraph on p. 662] for a similar computation.) This
finishes the proof of the first assertion.

It remains to show that ™ is not just a virtual representation but a true rep-
resentation. To this end we will show that "™, is concentrated in the middle degree n.n
C 1/=2.Leti O.There are natural maps from H'.Sh; L/ to each of IH'.Sh; L/

and Hi_z/.Sh; L/. Compatibility with Hecke correspondences implies that both maps are
G.A} /-equivariant; the first map is moreover equivariant for the action of € (which com-

mutes with the G .A',l: /-action). By Zucker’s conjecture, which is proved in [69, 70, 84],
the L 2-cohomology H"Z/.Sh; L/ is naturally isomorphic to the intersection cohomology
IH".Sh; L/ via so that we have a G.Al/-gquivariant commutative diagram??

H..Sh; L/ ———— IH".Sh; L/
HY,.Sh;L/
The diagram together with Lemma 8.1 yields a €-equivariant isomorphism
HL.Sh; L/CE1¢ | H;.Sh;L/CE"e;

the semisimplification of which is isomorphic to H!.Sh; L/ssEle.
In view of condition (cent), the intersection complex defined by is pure
of weight w. Hence the action of Frob, on IH".Sh; L/GE's thus also on

12The G.Alz-equivariance is clear for the horizontal map, which is induced by the map from the

extension-by-zero of L tothe Baily—Borel compactification to the intermediate extension thereof. For
the vertical map it can be checked as follows (we thank Sophie Morel for the explanation). From the
proof of Zucker’s conjecture we know that IH".Sh; L/ and HF _é/h; L/ are represented by two
complexes of sheaves on the Baily—Borel compactification which are quasi-isomorphic and
become canonically isomorphic to L when restricted to the original Shimura variety. The Hecke
correspondences extend to the two complexes (so as to define Hecke actions on the intersection
and L2-cohomologies) and coincide if restricted to the original Shimura variety. Now the point is
that the Hecke correspondences extend uniquely for the intersection complex as follows from [75,
Lem. 5.1.3], so the same is true for the LZ-complex via Zucker’s conjecture. Therefore the Hecke
actions on the two cohomologies are identified via the isomorphism of Zucker’s conjecture.
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HL.Sh; L/ssGE!si s pure of weight w C i for every p as above (cf. the proof of [76,
Rem. 7.2.5]). In particular, there is no cancellation between different i in (8.2). On the
other hand, Lemma 8.1(2) (with x D p) implies that pjsimj*"=2 D \jsimjw=2pistempered
and unitary. Then the first part of the proposition implies that Sh”“.Frobp/Si has eigenvalues
whose absolute values equal the w C ™" -th power of .#0F =p/2-2. We conclude that
IH'.Sh;L/ssCEXD Ounlessi D n.n C1/=2. The proof of the proposition is complete.

Remark 8.3. The last paragraph in the above proof simplifies significantly if F ¥ Q, in
which case Shy is proper and thus the compact support cohomology coincides with the
intersection cohomology. See the first paragraph in the proof of Lemma 8.1 for another
simplification. When F D Q, as an alternative to studying various cohomology spaces,

one can also argue by reducing to the F % Q case as follows. Consider many real quad-
ratic extensions E=Q, find a base-change automorphic representation ¢ of GSp, ,.Ae/ by

Proposition 6.6, and apply the so-called patching lemma [93] to patch spin.cE / to obtain
a Galois representation , WEq € GL2n.Q:/. The argument in the next section can be
adapted with , in place of > to construct Weq ! GSpin,,c,-Q./. -

Corollary 8.4. If 2 A.\/then1 belongs to the discrete series L-packet R

Proof. Since 1 is -cohomological and unitary, 1 appears in the Vogan—-Zuckerman
classification of [103]. The preceding proof shows that H ,}.Shg; L/CE'« s nonzeroonly
fori D n.n C 1/=2. Hence H' .Lie G.F1/; K® IX ~ /1does not vanish exactly fori D
n.n C 1/=2. This implies that must be a éiscrete series representation through

[103, Thm. 5.5] (namely | k in the notation there). Thus 1 2 LOR -

Corollary 85. If 2 A.\/ then 10 2 AN/ for all © 2 ...GiFl/ and m./ D m.10 /.

Moreovgr, a.\/ is a positive integer.
Remark 8.6. A similar argument appears in [56, Lem. 4.2].

Proof of Corollary 8.5. We work with the trace formula with fixed central character, with

respect to the datum .X; /, where X D Z.A¢ / and is the central character of . (We
diverge from the convention of §7 only in this proof.) Let G.F,, /* be as in the paragraph
above (A.4),and W5.Fy,, /=G.Fy, /! C the unique character such that, is the -twist of
the Steinberg representation; in particular, the restriction of to Z.F., / equals . Consider
test functions f D f Livstf,  .f andf OD f Livstfy  .fo , where

flivse 2 H.G.AYYS /; Bivey 1Y,

fus; 2 H.G.Fyg, ;. // s the function f ;. &t vs asin Corollary A.8, f,
0

1

;o are psleudo-coefficients for1;° , respectively.
By [56, Lem. 3.1],f , andfo have the same stable orbital integrals. Moreover, fy,; is

stabilizing by Corollary A.8. The simple trace formula and its stabilization (Lemmas 6.1
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and 6.2) imply that, by arguing as in the proof of Proposition 6.3,
D

X T . . X T . . c
m./ rfugive/ Trofiin/  mo/ rfy i/ Tr.f ja/; (8.14)

where both sums run over the set of 2 A.G/ such that
L;vse v 1;vst

vei ~ vg, by Corollary A.8 (since v, cannot be one-dimensional, as in the proof of
Proposition 6.3),
2.6 F/ (Since Tr.f, j1/ ® 0, the infinitesimal character of 1 is the same as that
of 1. By [83, Thm. 1.8], 1 is -cohomological. Thus 2 A.\/, to which Corollary 8.4
applies.)
By the last condition, Tr.f, j1/ equals 1if 1 ' 1 and O otherwise; the obvious
analogue also holds with ; Cin place of 1 . Therefore,

m/ D M.10 /:1

It remains to prove the second assertion. With A.\/= as in (8.2), we apply Corol-lary
8.4 to rewrite a.\/ defined in (8.3) as

X X

a\/D . 1/mnci/=2N ! m.i1o /,ep0 7 /:

2A\/= 12.“@«':1/
The inner sum is equal to
1/n.nC1/=2 2 J—mGAFl/j m'/
by what we just proved as g/ell as Remark 7.2. Since N1 D 2" andj...G'Fl/j D 2" 1,
we conclude that a.\/ D 2a=M./ 2 Z50. (Notea.\/ m.\/ > 0.) -

Fora2Z;andm2Z; leti;WGLm ! GLam denote the block diagonal embedding.
Corollary 8.7. Let Shizm be as above. For almost all finite F -places v where \ is unrami-

fied, ™. Froby/ss a™"S=* i,y spin_.//.Froby/ in GL, vz

Proof. Write 1 D *"™ Froby/ss and » D gnnet/= ia.\/.spin_.\//.Frobv/.vBy Proposition
82wegetTr.)/D Tr.! /folrj sufficigntly large. Consequently, 1 and 2 are GL, \/,n.Q./-
conjugate. -

9. Construction of the GSpin-valued representation

Let be a cuspidal -cohomological automorphic representation of GSp,,,.Ar / satisfy-ing
(St). Denote by ! its central character. We showed in Corollary 8.7 that there exists
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an a.\/2"-dimensional Galois representation ™My | GL, \/on.Q /. In this section
we show that the representation Shizm factors through the composition

. — spin— — —
GSpinynci-Q:/ ! GL2n.Q:/ ! GL,y2:.Q-/;

to a representation WE! GSpin, . ¢;.Q-/.

Denote by Spaq the finite set of rational primes p such that either p D 2 or p is ramified
in F ory is ramified at a place v of F above p. (As we commented in the introduction, it
should not be necessary to include p D 2 in view of [44].) In the theorem below the super-
script C designates the C-normalization in the sense of [13]. Statement (ii°) of the theorem
will be upgraded in the next section to include all v which are not above Spaq [ '9.

Theorem 9.1. Let be a cuspidal -cohomological automorphic representation of
GSp,,-Af / satisfying conditions (St) and (L-coh). Let * be a prime number and WC !
Q- afield isomorphism. Then there exists a representation

B wef GSpinyne.Q/;

unique up to conjugation by GSpin,,c,.Q:/, satisfying (iii.b), (iv) and (v) of Theorem A
with if place of , as well as the following .which are slightly modified from (i), (ii), (iii.a) of
Theorem A due to a different normalization/:

(% For each automorphic Sp,,.Af /-subrepresentation [ of , its associated Galois

representation | is isomorphic to Ccomposed with the projection
GSpin, - @/ ! SO2nc1.T@/. The composition

N1 WE!  GSpiny,;.-Q/! GLi.Q./

corresponds to |j j""C1/=2 by global class field theory.

(ii°) There exists a finite set S of prime numbers with S Spaq such that for all
finite F-places v which are not above S [ "2, ¢ , is unramified and the ele-
ment € .Froby/ss is conjugate to the Satake parameter of yjsimj™"cl/=4 in

GSpin,c1-Q:/.
(iii.a°) HT-CV;,V/ D Hodge-y/ n'ncl/si-lc\=14—.5«ee Definitions 1.10 and 1.14./3

Proof. We have the automorphic representation of GSp,,.Af /. Consider

[ a cuspidal automorphic Sp,,,.Af /-subrepresentation from Lemma 2.6; \a
transfer of to the group G.Af / from Proposition 6.3;

(WE! SO2nc1.Q-/ the Galois representation from Theorem 2.4;

13Even though HT..y; ¥/ and Hodge.y/ are only conjugacy classes of (possibly half-integral)

cocharacters, the equality makes sense since n'"ciiim is a central (possibly half-integral)

cocharacter.
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( @ lift of [ to the group GSpin,, c;.Q-/ (to prove the existence of this lift, consider
for s 2 Z1 the group GSpin,,¢;.Q./ of’g 2°GSpin,,c,.Q:/ such thatN .g/* D 1;
using the exact sequence 2s GSpin,,c; SO2nc1 andsthe van-ishing of H .€; Q=2/
we see thatauch a lift indeed exists for s sufficiently large and
divisible); ' ‘

i spin-

WE! GSpin,,c,.Q7 " o GL, \y2n-Q-/ the composition of | @ith the
a.\/-th power of the spin representation;

2D dqhqV\£€ I GL,\,0-Q/ asemisimple representative of the virtual representa-tion
introduced in (8.2) (see also Proposition 8.2)

(see also Figure 1 in the introduction). Then

for all finite F -places v away from S,

1.Frob\//55 Z.Frob\//ss |n PGLa'\/zn.Q7

by Proposition 8.2;
the representation 2W€! PGL, \/n .Q-/ has connected image (because 1 factors over
SO2nc1.Q-/, has a regular unipotent in its image, and hence has connected image by
Proposition 3.5).
By Proposition 4.6 (1) and Example 4.7 there exists a g 2 GLa.\/Zn.Q7 and a character
WE! Q. such that

2D gig WE! GL,\,0.Q/:

Without loss of generality, we replace 2 with g 1>g to assume that » D 1. By
construction, the representation 1 has image inside GSpin,,c;.Q:/ GL,\/5..Q/,
and consequently the representation Shizm has image in GSpinZnCl.Q_/ as well. Thus
shim induces a representation

WE!  GSpin,,c;.Q/

such that 2 D i, \/spin- 1 C . We now compute ¢ at Frobenius conjugacy classes. The

uniqueness of will then follow from Proposition 5.2 and the fact that since q is conjugate
to 1, it has a regular unipotent element of GSpin, ¢, in its image.

We have the semisimple elements € .Froby/ss and , .Froby/ in GSpin,, c;.Q./. At
this point we know that
spin-. .FFoby/ss/ and q”'”cvl/:4 spin-.,.Froby// are conjugate in GL2n.Q-/ by —
Proposition 8.2,
q. .FFoby/ss/ q.,.Froby//in GLanc1.Q-/. We

claim that additionally

N . .Froby/ss/ D N .q M"C/=4 Frob,//: (9.1)
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Once the claim is verified, Lemma 1.1 implies that ¢ .Froby/ss is conjugate toq
”'\/”Cl/:“ , -Froby/ in GSpin,,c,.Q:/ Since 'spin; std; N 2 is a fundamental set of
representations of GSpin, ¢, (table above Lemma 1.1). This proves statement (ii°).

Let us prove the claim. Possibly after conjugation by an element of GL2n.Q./, the
image of spin 1 lies in GO2n (resp. GSp,n ) if n.n C 1/=2 is even (resp. odd), for some
symmetric (resp. symplectic) pairing on the underlying 2"-dimensional space. Again by
the same lemma, we may assume that spin.,.Froby// also belongs to GO2n (resp. GSp,n
). Hereafter we let the central characters | or !, also denote the corresponding Galois
characters via class field theory. For almost all v we have the following isomor-phisms
(cf. Lemma 0.1):

spin..Cje,/ss/- ' §§ "M spin., /-
tjj o=t spin, /1t ,
1 JJ n.nCl/:ZSpin..Cj€v/Ss/ “ l;v (92)
The above isomorphisms imply that
spin. /¢ spin. /- € j jn.act/721: (9.3)

We have
spin.¢/" spin.c/-” N .spin.¢//:

Recall the equality N .,/ D ! (from functoriality of the Satake isomorphism with
respect to the central embedding Gm ,! GSp,,) and the isomorphism spin.,/ !
spin., /-~ sim.,/ 1 induced from the pairing h;i that defines GO2n (resp. GSp,n).
From Lemma 5.1 we deduce

N .spin. /¥ D j jn nct/721:

This proves the second part of (i°). Evaluating at unramified places, we obtain (9.1), fin-
ishing the proof of the claim.

We show statement (i%). It only remains to check the first part. By Theorem 2.4 and
the preceding proof of (ii®), for almost all unramified places v we have

,-Froby/ .Froby/(.Froby/ss;

where we have also used the fact that the Satake parameter of the restricted representa-
tion , | is equal to the composition of the Satake parameter of , with the natural surjection
GSpin,y,c;-C/ ! SO2nc1.C/ (cf. [112, Lem. 5.2]). Hence € .Froby/ss (.Froby/ss for

almost all F -places v. Consequently, std1 std1; D, .By Pré-
position B.1 the representation € is SO2nc1.Q-/-conjugate to the representation .

This proves the first part of (i°).
We prove statement (v). The composition of with GSpin,c;.Q-/SO2nc1.Q:/is|.
Hence (v) follows from Proposition 3.5.
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The Galois representation in the cohomology H'.Sk; L/ss is potentially semistable
by [45, Thm. 3.2]. The representation ¢ appears in this cohomology and is therefore
potentially semistable as well (this uses the fact that semisimplification preserves potential
semistability). This proves the first assertion of statement (iii).

To verify (iii.a%), let ut.©;i/WG_ o | GSpin, ;.q. bethe Hodge-Tate cochar-acter of

¢ (Definition 1.10). Similarly, we let y1.(;i/W Gmﬁx ! GOch1;T)- be the
Hodge-Tate cocharacter of (. We need to check that ut..,;y/ D Hodge-y/
%im. In fact, it is enough to check the equalities
QHT-;\,;§/ D QHodge-y/} (9.4)
N 1 HT-;\,}&// D N -Hodge-y//} (9.5)

namely after applying the natural surjection g° W GSpin,,c; GO2nc1 D SO2nc1 GLi given
by .q; N/, since q° induces an injection on the set of conjugacy classes of cochar-acters.
(The map X.Taspin/ ! X.Teo/ induced by q° is injective since Taspin ! Tao is an
isogeny, so the map is still injective after taking quotients by the common Weyl
group.) Let yWF | C be an embedding such that y induces the place v. It is easy to

see that qut..,$y/ D nT1.1,; Y/ and QHodge-y/ D Hodge.,/ from (1.1) &nd Lemmas 1.15

and 1.11. Thus (9.4) follows from Theorem 2.4 (iii). The proof of (9.5) is

similar: we have the following equalities in X.Gn/ D Z:

Nt nte; ¥/ D wtN 1yl ©

n.nC1 n.nC1/ _;
D Hodge-!y/ _D_/Z N I Hodge-y/ /S+FH—4;

where the Hodge cocharacter of ! at y is denoted by Hodge.!y/. Indeed, the first,
second, and third equalities follow from Lemma 1.11, part (i°) of the current theorem
(just proved above), and the fact that N 1 D . The last fact comes from the
description of the central character of an L-packet; see [62, §3, condition (ii)]. The third
equality also uses the easy observation that N 1 sim D 2 under the canonical identification
X.Gm/ D Z.

We prove statement (iii.b). So we assume that v j * and that K- is either hyperspecial
or contains an Iwahori subgroup of GSp,,.F ” Q /. We use the following proposition:

Proposition 9.2 (Conrad). Consider a representation W& | GOa2nc1.Q./ satisfying a
basic p-adic Hodge theory property P 2 'de Rham, crystalline, semistable?. There is a lift
W€ ! GSpin,,c,.Q / that satisfies P if admits a lift "€ ! GSpin,,c,.Q:/ which is
Hodge-Tate.

Proof (see also Wintenberger [110]). Combine Proposition 6.5 and Corollary 6.7 of Con-
rad’s article [22]. (Conrad has general statements for central extensions of algebraic
groups of the form GZ H® H e; we specialized his case to our setting.) [

Write 19 WD!j j™nC€1/=2 et rec./ denote the “-adic Galois representation cor-
responding to a Hecke character of A_ via global class field theory. The product
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rec.!9 //WE | GO2nc1.Q/ D GL1.Q/ SO2nc1.Q-/ is the Galois representa-tion
corresponding to the automorphic representation 1° “ [ of A SerF.AF/ (cf. Theorem
2.4). By comparing Frobenius elements at the unramified places, and using Chebotarev
and Brauer—Nesbitt, the representations std 1 q°1 ¢ and std 1 rec.!? /; are isomorphic.
Hence q°1 © andrec.!? /{ are GO2nc1.Q-/-conjugate by Proposi-tion B.1. We make two
observations:

We saw that isCpotentially semistable. In particular, rec.!/; h8s a lift which is a
Hodge-Tate representation (namely is&uch a lift).

Under the assumption of (iii.b), ; is known to be crystalline (resp. semistable'*) by
Theorem 2.4 (iv,v). We have K- \ Z.A¢ / D Z.Oy / if K- contains an lwahori
subgroup and thus the character rec.d/ is crystalline at all v j . Therefore rea !/iis
crystalline (resp. semistable) as well.

By Proposition 9.2 and Theorem 2.4 (v), the local representation rec.!fje, has a lift
rv V\Drec.!ODWQ! GSpin,,c;-Q-/ which is crystalline/semistable. Since ryand je,
are bath lifts of rec.!? /(je,, the representations ry and © je, differ by a quadratic
character . Hence statement (iii.b) follows.

We prove statement (vi). Let We | GSpin,,c,.Q:/ be semisimple and such that
for almost all F-places v where ®and ¢ are unramified, °.Froby/ss is conjugate to

.Froby/ss. We know that hasca regular unipotent element in its image (it suffices to
check this after composing with GSpin,,c;.Q:7~SO2nc1.Q-/, imwhich case it

follows from Proposition 3.5). Hence Proposition 5.2 implies that the two representations
are conjugate.

Statement (iv) reduces to checking that; WE ! GO2nc1.Q-/ is totally odd since the
covering map GSpin,,c; ! GO2nc1 induces an isomorphism on the level of Lie
algebras and the adjoint action of GSpin, ¢, factors through that of GO2nc1. We already
know from Theorem 2.4 (vi) that | is totally odd, so the proof is complete. n

10. Compatibility at unramified places

Let be an automorphic representation of GSp,,,.Ar / satisfying the same conditions as in

Section 9. In this section we identify the representation ;, from Theorem 9.1 at all places v
not above Spag [ °2.

Proposition 10.1. Let v be a finite F-place such that p WDvjq does not lie in Spag
[ 9. Then is @nramified at v. Moreover, .Frob,/s¢ is conjugate to

.Froby/.

visimjy=

141f , has a nonzero vector fixed under the standard Iwahori subgroup | of GSp,,.Fyv/, then
the restriction Jﬁas a nonzero fixed vector under an Iwahori subgroup of Sp, ,.Fy/, which may
not be conjugate to | \ Sp,,.Fv/, but the Galois representation | is still semistable at v.
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Proof. Let \ be a transfer of to the inner form G.Af / of GSp,,.Ar/ (Proposi-tion
6.3). Let B.\/ be the set of cuspidal automorphic representations of G.A¢ / such that

vs; and v, are isomorphic up to a twist by an unramified character,
Liveiv and \iLivstiV are isomorphic,

v is unramified,

1 is -cohomological.
To compare with the definition of A.\/, notice that the condition at v is different. We
define an equivalence relation on the set B.\/ by declaring that 1 » if and only if2 2 A.1/

(hence, 1 2ifandonlyif 1,y ' 2.). Define a (true) representation of € (see (8.2) for *"m./,
cf. Proposition 28.2 and Corollary 8.7) by

) X ) X
MWD shim./ D RRPWE (10.1)
2B.\/= 2B.\/=

P

Recall the definition of a./ from (8.3). Define b.\/ WD 2B.Y= a./.

Since 2./ and 2./ have the same Frobenius trace at almost all places for 2
B.\/, we deduce that».\/ ' 5./. Hence

Sh;m' ip\/ 1 2.\

We adapt the argument of Proposition 8.2 to the slightly different setting here. Consider
the functionf onG.A¢ /oftheformf D f1 ” f,, ~ 1k, ” f VY&V, wheref 1 andfy,,
are as in the proof of that proposition, and f 1:Vst:V is such that, for all automorphic

representations of G.Af /with 1K ¥ Oand Tr1.f1/ % 0, we have (observe the slight
difference between (8.7) and (10.2) at the place v):

Tr 1;V5t?v f 1;vsnv/ D 10 v VLV (10.2)
0 otherwise.

Arguing as in the paragraph between (8.11) and (8.12), but with B.\/, b.\/, and Shir"irg
place of A.\/, a."/, and *"™, we obtain

— X
Tr.Frob\‘,;Sh'am/D a./Try.f /,
ZB‘\/=

X )
D a./q;""“Y=* Tr,spin_.,//.Frob,/; 28.\/= i

where the last equality comes from (8.13). Thus the proof boils down to Lemma 10.2
below. Indeed, the lemma and the last equality imply that Tr 2.\/.Frob’ /s

equal to q”‘”sl/zz‘ Tr.spin-. \//.Frobl/. As in the proof of Theorem 9.1, since

2./ D spin-1 © by construction, the semisimple parts of € .Froby/and q, ""¢1/=4
\.Froby/ are conjugate. (Note that g, "-"¢1/=4 | Froby/ D Jjsimjvev4.Froby/.)
n
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Lemma 10.2. With the above notation, if 2 B.\/then, ' .. \

Proof. Let and denote transfers of and \ from G to GSp,, via Proposi-tion
6.3 (2); the assumption there is satisfied by Corollary 8.4 (in fact, we can just take
to be ). In particular,, ' x and, ' 4 at all Yinite places x where x and x are \
unramified. In particular, this is true for x D v, so it suffices to show that , ' .
By [112, Thm. 1.8] we see that and belong to global L-packets ...1 D “ x ...1;x and
.2 D “x ..2:x (as constructed in that paper), respectively, such that ...1 D ..o “ | for a
quadratlc Hecke character WFnA | T 1° (which is lifted to a character of
GSp,,-Ar / via the similitude character) Since each local L-packet has at most one
unramified representatlon by [112 Prop. 4.4 (3)] we see that for almost all finite places x,
wehave ' ” § Hence, ' «. (Recall thaty ' \bythemma(l assump -tion at almost
all x. )Thls implies through Theorem 9.1 (ii°) that spin.©/"' spin.c/ ~
(viewing ! as a Galois character via class field theory). Sinc€ has a regular unipotent
element in its image, it follows that ! D 1 (by Lemma 5.1). Hence the unramified rep-
resentations , and , belong to the same local L-packet, implying that ,, ' as

desired. -

v

We are now ready to collect everything and prove the main result.
Theorem 10.3. Theorem A s true.

Proof. Let us caution the reader that the normalization for changes. Namely given as in
Theorem A (so that jsimj ™"C¢1/=4 is -cohomological), the preceding discussions in
Sections 9 and 10 apply to © WDjsimj ""¢1/=4 \We thus define WDCc

Theorem 9.1 proves (iii.b), (iv) and (v) of Theorem A. By Proposition 10.1 we
also have (ii). Statements (i) and (iii.a) follow from Theorem 9.1 (i iii.a®), with evident
changes due to the different normalization. It remains to verify (iii.c) and (vi) of The-
orem A. Item (vi) follows from Proposition 5.2 since contains a regular unipotent
element in its image (see the proof of Proposition 3.5). Item (iii.c) is about the crystalline-
ness of . By definition, it is enough to prove that spin.C¢ / is crystalline, and hence it is
enough to prove that the compact support cohomology of the Shimura variety Shg with
coefficients in L is crystalline. In case F ® Q the variety Shg is projective, and the
crystallineness follows from the thesis of Tom Lovering [71]. If F D Q, then the Shimura
variety S is the classical Siegel space and in this case the representation was shown to be
crystalline by Faltings—Chai [27, VI.6]. Alternatively we may reduce to this case using base
change (Proposition 6.6) to a real quadratic extension F =Q in which * is completely split.

Remark 10.4. In the introduction we claimed that we prove [13, Conj. 5.16] up o)
Frobenius semisimplification in the case at hand. Our Theorem A covers everything
except the verification that the GSpin,,c;.Q-/-conjugacy class of .cy/ coincides with
the one predicted by loc. cit. (Our theorem only shows that .cy/ is odd.) Let ,y 2
GSpin,ncq-C/ be as in [13, Conj. 5.16], and let D ; with WC ' Q.. Let us sketch the
argument that .c,/ is conjugate to ._,/. By Lemma 1.1, it is enough
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to prove the conjugacy in GL1 (under spinor norm), SO2nc1, and GLan (under spin).
The conjugacy in GL1 is checked using the second part of Theorem A (i). The con-
jugacy in SO2nc1 follows from the uniqueness of odd conjugacy class in SO2nc1 (orin
any adjoint group, cf. [35, §2], since both conjugacy classes are odd in SO2nc1 (in view
of Lemma 1.9 for .c,/; by direct computation for . /). Then spin..c,// and=spin.. v//
are conjugate in PGLzn ; moreover, they are (up to conjugation) images of the diagonal
matrix in GLzn with each of 1 and 1 appearing exactly 2" 1 times. Since
.cv/;spin...v// 2 GLan .Q-/ are elements of order 2 whose images in PGL,n 1 are
determined as such, we conclude that .cy/ spin..,v// (with eigenvalues 1and 1, with
multiplicities 2" 1 each). We are done by showing that .cy/ .../ in GSpin,,c;.Q:/.

11. Galois representations for the exceptional group G,

As an application of our main theorems we realize some instances of the global Langlands
correspondence for G, in the cohomology of Siegel modular varieties of genus 3 via theta
correspondence, following the strategy of Gross—Savin [36]. In particular, the constructed
Galois representations will be motivic’® and hence come in compatible families. We work
over F D Q (as opposed to a general totally real field) mainly because this is the case in
[36].
More precisely, we write G, for the split simple group of type G, defined over Z.

Denote by G§ the inner form of G2 over Q which is split at all finite places and such that
G$.R/ is compact. The dual group of G is G».C/ and fits in the diagram

T

PGL2.C/ G2.C/ S07.C/ ——GL7.C/

Spin,.C/ —— $0g.C/ —— Glg.C/

\ﬂ/

such thatG>.C/ D SO7.C/\ Spin;.C/. The subgroup PGL>.C/ is given by a choice of a
regular unipotent element of SOg.C/. See [36, pp. 169-170] for details. Note that the spin
representation of Spin, is orthogonal and thus factors through SOg. The 8-dimensional

representation G2.C/ ,! GLg.C/ decomposes into one-dimensional and 7-dimensional
irreducible pieces. The former is the trivial representation. The latter factors through
S07.C/. Evidently all this is true with Q. in place of C.

The (exceptional) theta lift from each of G2 and G; to PGSpg uses the fact that
.G2; PGSpg/ and .GS; PGSpg/ are dual reductive pairs in groups of type E7 [32, 36].

151n this paper, “motivic” means that it appears in the étale cohomology of a smooth quasi-
projective variety over a number field.
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In this section we concentrate on the case of G,,%nly commenting on the case of G2 atthe
end. Every irreducible admissible representation of G, .R/is finite-dimensional, and both
(C-)cohomological and L-cohomological since the half-sum of all positive roots of

G is integral. Note that an automorphic representation of PGSp¢.A/ is the same as an
automorphic representation of GSpg.A/ with trivial central character, so we will use them
interchangeably. For such a the subgroup .€/ of GSpin,.Q./ is contained in Spin.Q-/
by Theorem A (i).

Theorem 11.1. Let be an automorphic representation of G,.A/. Assume that
admits a theta lift to a cuspidal automorphic representation on PGSpg.A/, v, is

the Steinberg representation at a finite place vs;.

Then for each prime * and WC' Q -, there exists a representation DWE! G,2.Q-/ such
that

(1) for every finite place v ¥ * where is unramified, is unramified at v; moreover,
Jwq, /ss ', as unramified L-parameters for Gz,

(2) . is de Rham with yt../ D Hodge.- /.%%, 1

(3) if - is unramified then . is crystalline, (4)

Before starting the proof, we recall the basic properties of the theta lift . We see from [36,

§4, Prop. 3.1, 3.19] that v, is the Steinberg representation, and that y is unramified whenever
v is unramified at a finite place v and the unramified L-parameters are related via

v (11.1)

v v

Furthermore, 1 is an L-algebraic discrete series representation whose parameter can be
explicitly described in terms of [36, §3, Cor. 3.9].

Proof of Theorem 11.1. We apply Theorem A to the text above to obtain a representa-tion
WE!  Spin,.Q./. Note that spin 1 is a semisimple representation by construc-tion. Since
the image of | contains a regular unipotent element of SO7.Q-/, it follows that .€/ contains
aregular unipotent of Spin,.Q./ and also one of SOg.Q./. (The rep-resentation spinW Spin,,
I GL,3 induces an inclusion Spin, ,! SOg, under which a regular unipotent maps to a
regular unipotent.) By (11.1) and the Chebotarev density theorem, the image of is locally
contained in G in the terminology of Gross—Savin, so [36, §2, Cor. 2.4] implies that .€/ is
contained in G2.Q./ (given as SO7.Q./ \ Spin,.Q./ for a saitable choiceof the
embedding SO7, ! SOg; here spinWSpin,, ! SOg is fixed). Hence we have satisfying (4),
namely ' 1.

Assertions (1)—(3) of the theorem follow from Theorem A and the fact that the set of
Weyl group orbits on the maximal torus (resp. on the cocharacter group of a maximal

Note that 1 is -cohomological for D -.
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torus) for G2 maps injectively onto that for Spin,. (The latter can be checked expli-
citly.) [ ]

Example 11.2. There is a unique automorphic representation of G§.A/ unramified
outside 5 such that s is the Steinberg representation and 1 is the trivial representation [36,
§1, Prop. 7.12]. Proposition 5.8 in §5 of loc. cit. (via a computer calculation due to
Lansky and Pollack) tells us that admits a nontrivial cuspidal theta lift to PGSpg.A/.
Proposition 5.5 in the same section gives another example of nontrivial theta lift but we
will not consider it here.

We confirm the prediction of Gross—Savin that a rank 7 motive whose motivic Galois
group is Gy is realized in the middle degree cohomology of a Siegel modular variety of
genus 3.

Corollary 11.3. Let be as in Example 11.2. Write for its theta lift. Then has Zariski
dense image in G2.Q./. Mareover, spin | is isomorphic to the direct sum of 1 and the

trivial representation. In particular, 1 and the trivial representation appear in the -
isotypic partin H..Sh; Q./.3/, whege Sh tsthe tower of Siegel modular varieties for GSpg

and .3/ denotes the Tate twist .i.e. the cube power of the cyclotomic character/.

Proof. If the image is not dense in G,.Q-/ then the proof of [36, §2, Prop. 2.3] shows
that the Zariski closure of .€/ is PGL,. However, we see from the explicit computation of
Hecke operators at 2 and 3 on carried out by Lansky—Pollack [64, p. 45, Table V] that
the Satake parameters at 2 and 3 do not come from PGL,.'” We conclude that .€/ is dense
in G2.Q-/. Thé second assertion of the corollary is clear from Theorem 11.1(4) and the
construction of . -

Remark 11.4. Corollary 12.4 implies that the !-isotypic part in H..8h; Q-/.3/ is
8-dimensional, consisting of 1 and the trivial representation without multiplicity.

Remark 11.5. The Tate conjecture predicts the existence of an algebraic cycle on Sh
which should give rise to the trivial representation in the corollary. Gross and Savin sug-
gest that it should come from a Hilbert modular subvariety of Sh for a totally real cubic
extension of Q. See [36, §6] for details.

Remark 11.6. Ginzburg—Rallis—Soudry [32, Thm. B] showed that every globally generic
automorphic representation of Gz.A/ admits a theta lift to PGSpg.A/. (The result is
valid over every number field.) Using this, Khare—Larsen—Savin [42] established instances
of global Langlands correspondence for G,.A/, the analogue of Theorem 11.1 with Gz in
place of G,, finder a suitable local hypothesis. (See Section 6 of their paper for the

17The authors check [64, §4.3] that the Satake parameters do not come from SL2 via the map
SL>.C/ ! G32.C/ induced by a regular unipotent element. But the latter map factors through the
projection SL> ! PGL;.
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hypothesis. They prescribe a special kind of supercuspidal representation instead of the

Steinberg representation.) In our notation, their is constructed inside the SO7-valued
representation ;, where the point is to show that the image is contained and Zariski
dense in G, [42, Cor. 9.5].18

12. Automorphic multiplicity

In this section we prove multiplicity 1 results for automorphic representations of
GSp,,-Ar / and the inner form G.Ar / under consideration. For GSp,,, we deduce this

from Bin Xu’s multiplicity formula using the following property (cf. Lemma 5.1)
8IW€! Q- W “!) I D1

of the associated Galois representations . The result is then transferred to G.A¢ / via the
trace formula (§6). This is standard except when the highest weight of is not regular: In that
case we need the input from Shimura varieties that the automorphic representations of
G.A¢ / of interest are concentrated in the middle degree.

Theorem 12.1. Let n 2. Let be a cuspidal automorphic representation of
GSp,,-Ar / such that conditions (St) and (L-Coh) hold. Then the automorphic multi-

plicity m./ of is equal to 1, i.e. Theorem B is true.
Proof. By Xu [112, Prop. 1.7] we have the formula
m./ D m.(/iY./=_.]];

where m.[/ D 1 in our case by [5, Thm. 1.5.2]. The group Y./ is equal to the set of
characters W GSp,,.Af / ! C which are trivial on GSp,,.F/A; Sp,,.Ar /
GSp,,-Ar /and are such that ' “ |. The definition of the subgroup ,./ of Y./ is not
important for us: We claimthatY./D 1.Let! 2 Y./andletWEl Q. bethe cor-responding

character via class field theory. We get ' “ from Theorem A (ii, vi). By Lemma 5.1, it

follows that D 1 and hence ! is trivial as well. -

We now prove the analogue of Theorem 12.1 for an inner form of GSp,,,.¢ . Since
the analogue of results by Arthur and Xu has not been worked out yet for non-quasi-split
inner forms,™ we only obtain a partial result. Let G be an inner form of GSp,,.; in the
construction of Shimura varieties (cf. §7).

—18Thereby they give anaffirmative answer to Serre’s question on the motivic Galois group of
type G2, since it is well known that | appears in the cohomology of a unitary PEL-type Shimura
variety after a quadratic base change, along the way to proving a result on the inverse Galois prob-
lem. Sometimes this contribution of [42] has been overlooked in the literature.

19Certain inner forms of Span;¢ and special orthogonal groups have been treated by Taibi [96].
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Theorem 12.2. Let be a cuspidal automorphic representation of G.A¢ / satisfying
conditions (L-coh) and (St). Then the automorphic multiplicity of is equalto 1.

Proof. Let f ¢ WDj..6j *. 1/9:¢/f 46 and f © WDj..Cj 1. 1/9-2/f (.,, where
flerr andl ey dejnote the Lefschetz functions on G. F1/ and G.F1/ asin (A.6),
respectively. At the place vs;, we consider the truncated Lefschetz functions f ¢, , and

fig.,., as intreduced in (A.4), and put f,_ WD. 1/8-Cvs/f . and &, WD. 1¢9 s
/fLef;Vst. Let& Vst 2 H.G.A, // be atbitrary. Let (resp.) be a dis-crete automorphic
representation of G (resp. G). Note that f ¢ and f ¢ are associated

atv 2 'vsi; 12 by Lemmas A.4 and A.11 (with the choice of Maar measures and transfer
factors explained there). Hence f %/ st Glf Gandf 1 VStf Gf G are associated. Impli-
citly we are choosing the local transfer factor at each place v to be identically equal to the
sign e.Gy/ (whenever nonzero)?° so that the global transfer factor always equals 1
(whenever nonzero).
Comparing the trace formulas for G and G and arguing as in the proof of Proposi-
tion 6.3, we obtain
X

X
m./Tr.fliVStfvstfel /D I'T'i-/.rr-fl;vSlf tfl/;G ¢

Vs
where (resp. ) runs over discrete automorphic representations of G.Afr / (resp. G.A¢
/), and m. / denotes the automorphic multiplicity as usual. By Lemma A.13 the
functions f © (resp. f ©) have nonzero trace against v, (resp. ) only if v, (resp. v )isan

unramified twist f the Steiftberg representation. Therefore vt

jf0 X m/o 1/ epr /D jLC) X m/ 1% ep.
(12.1)

where ...¢ and ...¢ are discrete L-packets. In (12.1), each sum ranges over the set of -
cohomological discrete automorphic representations which are Steinberg (up to unrami-fied
twist) at vs; and isomorphic to Vsti1 away from vsy and 1.
For the quasi-split group G, Corollary 2.8 shows that any in (12.1) is tempered at infinity,
thus is a discrete series representation (and belongs to ... © ). However, Corol-
lary 2.8 does not imply the analogue for . For 1, Corollary 8.4 implies that 1 must be a
discrete series representation. Hence ep.1 “ /D . 1/q'Gl/ andep. ©~ /D . 1/96/
above, ajlowing us to simplify (12.1) to !

G 1X G 1X
j.Gj m./Dj.% ' m./; (12.2)

where each sum runs over discrete automorphic representations which are Steinberg (up to
unramified twist at vst), belong to the specified discrete L-packet at infinity, and are
isomorphic to Vst:? away from vsy and 1.

20| the special case of inner forms, the definition of transfer factors in [63] simplifies to yield a
nonzero constant, independent of conjugacy classes, whenever two conjugacy classes are matching.
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At this point it is useful to show the following lemma by the trace formula argument.

Lemma 12.3. Suppose that F ® Q. We have
m./D m.i;o / ;and m./D m.Y0/; )

where © alre arbitrary members of ... orG.. G

Proof. The assertion that m./ D m.10 /vyas already shown in Corollary 8.5. (We have
2 A./ in the notation there.) The same argument for G proves m./ D m.'%:%/, with
the only 1change occurring at 1. Namely, instead of appealing to Corollary 2.8, we
know that the analogue of (8.14) for G receives contributions only from those
representations whose components at 1 belong to ...¢, by Corollary 2.8.

(We already made this observation in the discussion above (12.2).) [ ]

We continue the proof of Theorem 12.2. The representation as in the statement of
the theorem appears in the left sum of (12.2). So both sides are positive in that equation.
In particular, there exists contributing to the right hand side such that m./ > 0. Any
other in the sum is isomorphic to at all finite places away from vs;. We also know that
and differ by an unramified character and that 1 and 1 belong to the same L-packet.
Now we claith that ¥ . To see this, we apply [112, Thm. 1.8] to deduce that and
belong to the same global L-packet as {i¥ that Paper, by the same argument as in the
proof of Lemma 10.2. Since the local L-packet for GSp, ,.Fv,,/ of (any character twist
of) the Steinberg representation is a singleton by [112, Prop. 4.4, Thm. 4.6], the claim
follows.?!

We have shown that the right hand side of (12.2) may be summed over which is
isomorphic to away from infinity and belongs to ... at infinity. Each has
automorphic multiplicity 1 by Theorem 12.1 and Lemma 12.3. (Without the lemma, some
m./ could be zero.) So (12.2) comes down to

m./ Dj..J°
Recall that the sum runs over such that t:vst ' Livst ;2 G ‘and,, ' ., ~ foran
unramified character . By Lemma 12.3, the contribution from with 1 ' 1 is already

j..6jm./, and the other (if any) contributes nonnegatively. We conclude that
m./ D 1. (Moreover, all in the sum with m./ > 0 should be isomorphic to at vst; this
gets used in the next corollary.) [ ]

Corollary 12.4. The integer a.\/ in Corollary 8.5 .defined in (8.3)/ is equal to 1.

21 emma 2.1 implies that the L-parameter Weg - SUa. R/ ! SO2nc1.C/ for the Steinberg
representation of Sp,,,.Fy/ restricts to the prlncmal representation of SU2.R/ in SO2nc1.C/. A
lift of this to a GSpin,,cy.C/-valued parameter is attached to the Steinberg representation of
GSpyp-Fvg/ in Xu’s construction. This is enough to imply that the group qin [112, Prop. 4.4] is
trivial.
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Proof. Consider WD\j j™"¢1/=4 which satisfies (St) and (L-coh). Applying to the last
paragraph in the proof of the preceding theorem, we see that for every 2 A.\/, we have an
isomorphism v, ' \St. Since1,2 ..C¢ forevery 2 A.\/ by Corollary 8.4, it follows from
Theorem 12.2, Lemma 12.3, and Remark 7.2 that

~ X
a\/D . 1/mncl/=2N 1 m./ ep.1” /
2A.N/

Dj.%1 m./ D 1: n

13. Meromorphic continuation of the spin L-function

Let be a cuspidal automorphic representation of GSp, ,.Ar / unramified away from a
finite set of places S. The partial spin L-function for away from S is by definition

1

Ls.s;; spin/ WD - .
> pin/ s det.1 g, Sspin.,.Frob,///

Various analytic properties of this function would be accessible if the Langlands func-
toriality conjecture for the L-morphism spin were known. However, we are far from it
when n 3. In particular, no results have been known about the meromorphic (or ana-lytic)
continuation of L®.s; ; spin/ when n 6 (see introduction for some results when 2 n 5).
The aim of this final section is to establish Theorem C on meromorphic continuation
for L-algebraic under hypotheses (St), (L-coh), and (spin-REG) by applying a potential
automorphy theorem of [7, Theorem A]. Let Spag be as in Theorem A. A character WE!
GL1.M’/ is considered totally of sign 2 "1 if .c,/ D for all infinite places v of F .
More commonly a character totally of sign C1 or 1is said to be totally odd or even,
respectively. For each Q-embedding WWF ,! C define the cocharacter hodge., / W
GL1.C/ ! GSpiny,c,.C/ by restricting the L-parameter , WNg, ! 'Sp,, to W¢c D
GL1.C/ (via w). Condition (L-coh) ensures that Hodge-,,/ iS an algebraic cocharacter.

Proposition 13.1. Suppose that satisfies (St), (L-coh), and (spin-REG). There exist a
number field M and a representation

RWE! GLan.M./

for each finite place of M such that the following hold .write * for the rational prime
below /:

(1) Ateach place v of F not above Spag [ '°2, we have
char.R..Froby// D char.spin.,.Froby/// 2 M(EXe:

(2) R.je, is de Rham for every v j *. Moreover, it is crystalline if y is unramified and v ...
Sbad.
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(3) Foreachvj andeachwWF,! C suchthatw inducesv, we have u7.R.je, ; w/ D .spin
I Hodge-, //- In particular, yt.R.je, ; W/ is a regular cocharacter for each w.

(4) R, isirreducible.
(5) R, maps into GSp,n.M./ .resp. GO2n.M.// for a suitable nondegener-ate
alternating .resp. symmetric/ pairing on the underlying 2"-dimensional space
over M. if n.n C 1/=2 is odd .resp. even/. The multiplier character W !
GL1.M’/ .sothatR.' R'” /istotally of sign. 1/nnct/=2,

Remark 13.2. Parts (1)—(3) of the proposition imply that the family 'R.2 is a weakly
compatible system of -adic Galois representations [7, §5.1].

Remark 13.3. Although we do not need it, we can choose M such that R, is valued in
GLan .M./ for every . Concretely, we may take M to be the field of definition for the -
isotypic part in the compact support Betti cohomology with Q-coefficients (with respect
to the local system arising from ). When the coefficients are extended to M., the -
isotypic part becomes a -adic representation of € via étale cohomology, which is
isomorphic to a single copy of R. if the coefficients are further extended to M . by Corollary
12.4.

Proof of Proposition 13.1. The first three assertions are immediate from Theorem 9.1.
For (4), observe that the image of ih SO2nc1 is either PGLy, G2 (n D 3) or SO2nc1, due
to the Steinberg hypothesis (and local global compatibility at vst).

We first exclude the case G2 (n D 3). In this case spinjs, decomposes as a direct sum
of the trivial representation and an odd-dimensional self-dual representation. In particular,
up to twist the weight 0 occurs in with multiplicity at least 2. This, however, contra-
dicts the regularity in item (3). We now exclude the case PGL; in a similar way. Write

WSLa ! Spin, ¢, for the principal SL2, and decompose r WDspint D ~ f,; ri into
irreducible representations r; of SL, (cf. [34, Prop. 6.1]). The dimensions of the represent-
ations r; all have the same parity: dim.ri/ dim.r /imod 2 forall i;j. If the dimension of r;
is odd, the weight 0 appears in rj, and in the even case, the weight 1 appears in each ri. As n
> 2, r is reducible, so (up to twist) either the weight 0 or the weight 1 appears with
multiplicity t 2in .

Thus, if the Galois representation has image in these smaller groups, it cannot be
regular, which contradicts (3). In particular, statement (4) follows.

The first part of (5) is clear from Lemma 0.1; let us check the second part. Consider
the diagram

€ wnm‘l.m;/ym;/ or GO2n.M ./
N

GL1.M?/ sim
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The outer triangle commutes by the definition of . The right triangle also commutes by
Lemma 0.1. Hence D N 1 . By (L-coh), $ jjn-nc1/=4 is the inverse of the central character

of some irreducible algebraic representation y at each infinite place v. Hence $ jjn-ncis=a W
R I C is the w-th power map, where w 2 Z is as in (cent) of §7 (in particular, w is
indépendent of v). Hence Sjjn.nc1/:4 D $j j""C1/=2 corresponds via class field theory and
to an even Galois character of € (regardless of the parity of w). On

the other hand, corresponds to S via class field theory and in the L-normalization (cf.
Theorem A). We conclude that’y.cy/ D . 1/™"1/=2 foreachvj 1. -

Now that we proved the lemma, Theorem A of [7] implies

Corollary 13.4. Theorem C is true.

Proof. The conditions of the theorem in [7] are satisfied by the above lemma with the fol-
lowing additional observation: the characters form a weakly compatible system since they
are associated to the central character of (which is an algebraic Hecke charac-ter).

Remark 13.5. For the lack of precise local Langlands correspondence for general sym.-
plectic groups (but note that Bin Xu established a slightly weaker version in [112]), we
cannot extend the partial spin L-function for to a complete L-function by filling in the
bad places. However, the method of proof for the corollary yields a finite alternating
product of completed L-functions made up of ... asin Theorem C, by an argument based on
Brauer’s induction theorem as in the proof of [38, Thm. 4.2]; this alternating product
should be equal to the completed spin L-function as this is indeed true away from S.

Appendix A. Lefschetz functions

We collect some results on Lefschetz functions that are used in the text. In this appendix, F
is a characteristic-zero nonarchimedean local field of residue characteristic p > O,
except in Lemma A.13 at the end, where F is global. We collect the required results
from the literature and prove some lemmas to deal with small technical difficulties (non-
compact center, twisted group).

To help the readers we clarify some terminology. There are three names for the func-
tion whose trace computes the Euler—Poincaré characteristic or the Lefschetz number of
the group cohomology (resp. Lie algebra cohomology) for a given reductive p-adic (resp.
real) group: they are called Euler—Poincaré functions, Kottwitz functions, or Lefschetz
functions. In the real case one can consider twisted coefficients by local systems. There
are small differences between the three functions. Euler—Poincaré and Lefschetz func-
tions are considered on either p-adic or real groups, and can be described in terms of
pseudo-coefficients for certain discrete series representations. The functions may not be
unique but their orbital integrals are well-defined. A Kottwitz function mainly refers to a
particular function on a p-adic group and gives pseudo-coefficients for the Steinberg



Galois representations for general symplectic groups 137

representations. It is not just characterized by their traces but can be given by an explicit
formula (cf. [54, §2]). A generalization of Kottwitz functions on a p-adic group is given in
[86] but we will not need it in this paper.

We recall a result of Casselman and Kottwitz. Let G be a connected reductive group
and write q.G/ for the F -rank of the derived subgroup of G.

Proposition A.1. Suppose that the center of G is anisotropic over F . Then there exists a
locally constant compactly supported function fLef D f| § on G.F / such that:

(i) Assume that the adjoint group of G is simple. For all irreducible admissible unit-
ary representations of G.F / the trace Tr .fLef/ vanishes unless is either the
trivial representation or the Steinberg representation, in which case the trace is 1 or
1/9-6/ respectively. .If q.G/ D 0 then the trivial and Steinberg representations
coincide./

(ii) Let 2 G.F / be a semisimple element, and | the neutral component of its central-izer;
we give |.F /nG.F / the Euler—Poincaré measure [17, p. 30] .cf. [54, §1]). Then the

orbital integral
Z

O.flef/ D fLer.g 1g/dg
|.F/nG.F/

is nonzero if and only if | .F / has a compact center, in which case O.f et/ D 1.

Proof. Kottwitz [54, §2] constructed Lefschetz functions fLef on G.F /. These are func-
tions such that

Tr .flef/ D Xl 1/ dimH.G.F/;/ (A.1)

iDO
for all irreducible representations of G.F /. The cohomology in (A.1) is the continuous
cohomology, i.e. the derived functors of | ©-F/ on the category of smooth represent-
ations of finite length. By the computation of the cohomology spaces H_,.G.F /; /in[11,
Thm. XI.3.9], for unitary , the spaces H_,,.G.F /; / vanish unless i D 0 and is the trivial
representation, or i D .G/ and is the Steinberg representation, in which case
dimHI/.G.F/;/ D 1. .

We now consider the group GLanc1 equipped with the involution defined by g ! Jig
1) with ] the.2n C 1/ .2n C 1/ matrix with all entries O except those on the
antidiagonal, where we put 1. Define Gt,,c; WDGLanca E hi. In [10] Borel, Labesse,
and Schwermer introduced twisted Lefschetz functions. Below we will cite mostly from
the more recent article of Chenevier—Clozel [17, §3]. The results we need are proven in a
general twisted setup but specialize to our case as follows.

Proposition A.2. There exists a function f LGle 2n¢l. with compact support in the subset
Glanci.F/ of GL,%,.F/ such that:

(i) For all unitary admissible representations of GI, ,.F/ the trace Tr .ijL netf
vanishes, unless is either the trivial representation or the Steinberg representation, in
which case the traceis 1 or 2. 1/" respectively.
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(i) Let 2 G.F/ 2 GL, ¢, F/ be a semisimple element, and | the neutral com-ponent of

the centralizer of ; we give I.F /nG.F / the Euler—Poincaré measure. Then the twisted
orbital integral
Z
G G
O.f anl; / D f ZnC1; .8 1.g//dg;l
Lef F/nG.F/ Lef

is nonzero if and only if |.F / has a compact center. Moreover, in case |.F / has

2

compact center, the integral O.f GLLef”“; / is equal to 1.

Proof. We deduce this from [17, Proposition 3.8 and Corollary 3.10]. In fact, [17] states

that Tr St.f& Zncl // D . 1/9-6/p.1/="./. In our case one computes q.G/ D 2n,"./
D . 1/"and P.1/ D 2, hence the statement of our proposition. ]

It is well known (cf. [5, §1.2] or [106, §1.8]) that Sp,,.; is a -twisted endoscopic

group of GLanca;r . Let szf“'F/ be the Lefschetz function on Sp,,,.F/ from Proposi-
tion A.1. We introduce the notion of associated functions. Let Gg be a reductive group
over F. Suppose that Gg is an endoscopic group for Go (i.e. Gg is part of an endo-
scopic datum for Go). We say that the functions fo 2 H.G,.F// andf, 2H .H,.F ¢/ are
associated if they have matching orbital integrals in the sense of [58, (5.5.1)]. The
same definition carries over to the archimedean and adelic setup.

®Pc § G et

Vst Lef '

Lemma A.3. Define C D jF=F2j 1. Then the functions .f
associated.

/ are

Proof. We show that for each 2 Sp,,.F/ strongly regular, semisimple and elliptic, we
have X
SO.f .77/ D *.;1/S0,.Cf ¢ 2% / (A.2)
|
where 1 ranges over a set of representatives of the twisted conjugacy classes in
Glanci.F/ which are associated to . Note that the stable orbital integral SO.fLefzs’p/ is
equal to the number of conjugacy classes in the stable conjugacy class of . Our first
claimis (1) ».;1/ D 1 for all elliptic 1 associated to . Assuming that this claim is true, the
right hand side of (A.2) is the stable twisted orbital integral SO'.Cf LG% 2nct. / which

equals, up to multiplication by C, the number of twisted conjugacy classes in the stable
twisted conjugacy class of 1. Our second claim is (2) SO.fga¢," / D SO,.Cf g *"% /.

Clearly the lemma follows from (1) and (2).

Let us now check the two claims. We begin with claim (1). For this we use the for-
mulas in the article of Waldspurger [106, §10]. The factors e.; 1/ are complicated and
involve much notation, for which we do not have space to introduce it properly. Thus we
use the notation from [106] without recalling the definitions. By [106, Prop. 1.10],

Y
'szn:@‘y;)e/ D .xpP,.1/P, . 1// SgNe, -, .Ci/: (A.3)
P21
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Since our conjugacy class is elliptic we have H D Sp,,, the group H s trivial and the
sets | , | are empty. A priori, is any quadratic character of F, and each choice

defines a different isomorphism class of twisted endoscopic data. The choice affects the
L-morphism:

W'H D SO2nc1.C/ Wg ! "G.C/ D Glanc1.C/ We; Zw/!l ow/g w/:

Since the Steinberg L-parameter for GLanc1.C/, W SU2.R/ ! 'Glanc1.C/, is
trivial on We (and Sym2" on SU>.R/), it factors through only for D 1 (and not for
nontrivial ). Consequently, the transfer factor in (A.3) is 1, and claim (1) is true.

We now check claim (2). In [106, §§1.3, 1.4], Waldspurger describes the (strongly)
regular, semisimple (stable) conjugacy classes of Sp,,.F/ in terms of F-algebras.
More precisely, a regular semisimple conjugacy class in Sp,,.F/ is given by data
.Fi; F-i; ci;xi; 1/, where | is a finite index set; for eachi 2 |, F-; is a finite exten-sion
of F; foreachi 2 |, F; is a commutative F -, -algebra of dimension 2; we have

i2) &R WF oD 2n; ; is the nontrivial automorphism of Fi=F-;; for eachi 2 I, we
have an element ¢i 2 F; suchthati.ci/D ci,andx; 2 F, such thatx;i.xij/ D 1.To the
data .Fi; Fi;ci;xi; 1/, Waldspurger attaches a conjugacy class [106, (1)] and this
conjugacy class is required to be regular.

The data .Fi; Fi; ci; xi; |/ should be taken up to the following equivalence relation:
the index set | is up to isomorphism; the triples .Fi; F-i; xi/ are up to isomorphism;
the element ¢; 2 F, is given up to multiplication by the norm group N¢ ¢ .F, /. The
stable conjugacy class is obtained from .Fi; F-i; ci; xi; | / by forgetting the elements ¢
[106, §1.4], and keeping only .Fi; F-i; xi; | /.

According to [106, §1.3] a strongly regular, semisimple twisted conjugacy class in
Glanci is given by data .Li; Li; yi; yp; J/ where?? J is a finite index set J ; for each
i2J,L isafinite extension of F; foreachi 2 J, L; is a commutative L'j-algebra of
dimension 2 overL-;; foreachi2J,yi 2L, ;2nC1D P i2) ELWe;andyp 2 F. To
the data .Li; L-i; yi; ypo; J/ Waldspurger attaches a twisted conjugacy class [106, p. 45]
and this class is required to be strongly regular.

The data .Li; L i; vi; J/ should be taken up to the following equivalence relation:
.Li; L-i; J/ are under the same equivalence relation as before for the symplectic group;
the elements y; are determined up to multiplication by N_ -, .L/; yp is determined up
to squares F 2. The stable conjugacy class of .Li; L+ ; J;'yi;'\i/D/lis obtained by taking
yi uptoL.; and forgetting the element yp.

By [106, §1.9] the stable (twisted) conjugacy classes .Li; L-i; xi; J/ and
.Fi; Fi;yi;1/ correspondifandonly if .Li; L-i; xi;J/ D .Fi; Fi;vyi;1/.

The conjugacy class (resp. 1) is elliptic if the algebra Fi (resp L;i) is a field.
Assume that this is the case (otherwise there is nothing to prove, because the equa-tion
SO.f o¢,"/ B STO..Cf ¢ *"“*GY reduces to 0 D 0). By the description above, to

2270 avoid a collision of notation in our exposition, we write L-;, Lj, yi, J, yp where Wald-

spurger writes F - E. X Xp
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refine the stable conjugacy class .Fi; F-i; xi; | / to a conjugacy class is to give elements c;
2F, =Ng-¢ F, such thati.ci/ D ci. Foreachi there are two choices for this, so we get
2 #1 conjugacy classes inside the stable conjugacy class.

To refine the stable twisted conjugacy class .L-i; Li; yi; J/ to a twisted con-
jugacy class is to lift y; under the mapping L=N, -1 .L/ L=L,. Thereare#L =N -
.L ./ D 2 choices for such a lift for each i 2 J. We gétiz I I #) choices to
refine the colidction .yi/i2s . Finally, we also have to choose an elementyp 2 F=F2. In
total we have jF =F 2j2* twisted conjugacy classes inside the stable twisted con-jugacy

class. Thus if we take C D jF=F 2j ? the lemma follows. .

We also need Lefschetz functions on the group GSp,,.F/ and its nontrivial inner
form G. Unfortunately, Proposition A.1 does not apply since the center of GSp,,,.F/ is
not compact. Following Labesse, we construct Kottwitz functions generally for an arbit-
rary reductive group G over F. Let A denote the maximal split torus in the center of G.
DefineVW6.F/ ! X.A/”z R asin [60, §3.9] and put G.F /* WDker. Consider the exact
sequence

11 Al G ¥ GOWDG=A! 1

and a Lefschetz function f, % 2 H.G°/ as in Proposition A.1. The pullback f % 1 &is a
function on G.F /. Multiplying with the characteristic function 1¢ ¢ ;1, we obtain

flet D f 5 WD1g ppn fi 51 & 2 H.G.F//: (A.4)

Let G denote a quasi-split inner form of G. Suppose that the Haar measures on G°.F / and
.G/C°.F/ are chosen compatibly in the sense of [54, p. 631]. Given a Haar measure on
A.F / this determines Haar measures on G.F / and G.F /. Let us normalize the trans-fer
factor between G and G to be (whenever nonzero) the Kottwitz sign e.G/, which is equal
to. 1/9:¢/ 9:6/ by [50, pp. 296-297].

Lemma A.4. With the above choices,. 1/9¢/f S and. 1/9:¢/f S are associated.

Remark A.5. Our lemma specifies the constant in [60, Prop. 3.9.2] when D 1 and
H D G.

Proof of Lemma A.4. The proof is quickly reduced to the case when the center is aniso-
tropic, the point being that G.F /1 and G.F /! are invariant under conjugation. From
Proposition A.1 we deduce that SO ¢f, . is zero if is nonelliptic, and equals the num-ber
of G.F /-conjugacy classes in the stable conjugacy class of if is elliptic. Since the same
is true for G it is enough to show that the number of conjugacy classes in a stable
conjugacy class is the same for and when they are strongly regular and have
matching stable conjugacy classes. This follows from the p-adic case in [54, proof of
Thm. 1]. [

Definition A.6 ([60, Def. 3.8.1, 3.8.2]). Let 2 H.G.F//. We say that is cuspidal if the
orbital integrals of wvanish on all regular nonelliptic semisimple elements, and strongly
cuspidal if the orbital integrals of wvanish on all nonelliptic elements and the
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trace of is zero on all constituents of induced representations from unitary represent-
ations on proper parabolic subgroups. The function is said to be stabilizing if is
cuspidal and the -orbital integrals of vanish on all semisimple elements for all non-trivial

Lemma A.7. The function € ¢ is strongly cuspidal and stabilizing. If Tr.f &/ & 0 for
an irreducible unitary representation of G.F / then is an unramified character twist

of either the trivial or the Steinberg representation.

Proof. The first assertion is [60, Prop. 3.9.1]. By construction f G; is constant on
Z.F/\ G.F/t, which is compact. Since Tr .f &/ is the sum of Tr 1.f &/ over irre-
ducible constituents 1of js ¢ ,1, we may choose 1such that Tr 1if & % 0. The
nonvanishing implies that has trivial central characteronZ.F /\ G.F/ . Let ! denote

the central character of . Then ! s trivial on the subgroup A.F/\ G.F/' A.F/, and
hence induces a morphism

lj & /WAF/=AF/\ G.F/*/! C:
We have a short exact sequence
1! G.F/*! G.F/! G.F/=G.F/*! 1

and G.F/=G.F /! is a lattice of X.A/g via . The image of A.F/ in X.A/r, namely
A.F/=A.F/\ G.F/Y, is a sublattice of G.F/=G.F/* since the map clearly factors
through WG.F/ ! X.A/r. Thus A.F/G.F /! is a subgroup of G.F/ with a finite
abelian quotient. We can think of

A.F/G.F/*=A.F/D G.F/*=A.F/\ G.F/?

as a subgroup of G.F /=A.F/ D G°.F/ with a finite abelian quotient as well.

Since C is divisible, we can extend !j , ¢ ; to a character IWG.F/=G.F/* | C.
Twisting by | 1, we may assume that !j AF 7 is trivial. Let us write f for f, . Now we
compute

Z Z
Tr.f/D .ag/f.ag/dadg
g2G.F /=A.F/ a2A.F£
D vol.A.F/\ G.F/Y/ .g/f.g/dg
ZG.F/1=A.F/\G.F/1
D vol.A.F/\ G.F// .g/f%g/dg;

G.F/1=A.F/\G.F /!

where is viewed as a representation of G°.F/ (since !j sF, D 1), in which
G.F/Y=A.F/\ G.F /% is afinite index subgroup, and where f %is a Lefschetz function
for GO.F /. Notice that the integral after the second equality is well defined as f and are
invariant under A.F /\ G.F /1.
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Write X for the finite set of characters of G.F /=A.F /G.F /1 D G°.F/=G.F /. They

are unramified characters of G°.F /. Then
Z

X
Tr.f/D vol.A.F/\ G.F/Y/jXj * .g/.g/f’g/dg,y
GO.F/

X
D vol.A.F/\ G.F/Y/iXj *" Tr.” /.f%2x

Thus if Tr .f /& 0 then “ is the trivial or Steinberg representation of G°.F/. We
conclude that is the trivial or Steinberg representation of G.F/ up to an unramified
twist. ]

When the center of G is not compact, it is also convenient to work with functions with
fixed central character. We adopt the notation and convention from §6. We record a result in
the following, where a representation is said to be essentially unitary if its character twist
is unitary.

Corollary A.8. Let WG.F/! C be a character, and write ! WDj -F 4 Define a func-tion
fler, 20H.G.F/; 1 1/ by f ,.8/5WD Lg/f.+".g/,Sihefe g 2 G.F/=A.F / denotes
the image of g under the quotient map. Then f .¢. has tife following properties:

(1) f &, is stabilizing .in particular cuspidal/.

(2) Let be an irreducible essentially unitary G.F /-representation whose central char-
acter on A.F / coincides with | . The® Tr.fles;/ D Ounless 27;Stgr/” 2

(3) f.&.zg/ D t.g/f B/ forallz2Zc.F/andg2 G.F/.

Proof. Let us write G WDG=A in this proof. The second point quickly follows from the
analogue for fL§f on G.F/ D G.F/=A.F/. Let us show the first point. Let g 2 G.F/
be a semisimple element, and g 2 G.F / its image. Write | (resp. T) for the connected
centralizer of g in G (resp. g in G). Then the natural map | ! 1 induces|=A" T, asin
[49, proof of Lem. 3.1 (1)]. Putting quotient measures on | and G with respect to those on
A, |, and G, we have

Og.fLer;/ D 'g/og'fLef;lG/ D .g/Og.fLac/:G (A.S)

This implies that f &. is cuspidal since f,.Sis cuspidal.
It remains to verify that the -orbital integrals O,.ff../ vanish for each
semisimple g and X 1. The first observation is that | | induces a canonical iso-
morphism K.I=F/ | K.I=F/ in the notation of [53, §4]. To see this, one can dually
check that the induced map E.I=F /! E.I=F/ (in the notation there) is an isomor-
phism. This follows from the following commutative diagram with exact rows, coming
from the long exact sequence associated with0! A ! 1! T ! 0,sinceE.I=F/ and

E.I'=F / are the kernels of the first and second vertical maps, respectively (we have used
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Hilbert 90 for the split torus A):

0——HF;1/

The second observation is that the map G G induces a surjection from the set of
conjugacy classes in the stable conjugacy class of g onto the analogous set for g, where the
cardinality of fibers remains constant, as explained in [37, pp. 611-612].

From these two observations combined with (A.5), we deduce that Og.fLer,./ D 0if
and only if O.f,gef/ ® 0 for each ® 1 (viewed in either K.1=F /or K.1=F / viathe
isomorphism above). Since f| . isstabilizing, O .f ./ vanishes, therefore so does

g

Og.fLefg/.

The last assertion of the corollary boils down to the statement that f $.gz/ D
fof:A.g/ for all g2 G=A.F/ and z 2 Zg-A.F /. This follows from Harish-Chandra’s
Plancherel theorem [105, Thm. VIII.1.1(3)] (applied with f D fL(Z:A) since the right
hand side of that theorem does not change when fLefe=is translated by z; the point is that

the only irreducible tempered representation of .G=A/.F / with nonzero trace against f =*

is the Steinberg representation, which has trivial central character. [ ]

Assume from now on that G is a nonsplit inner form of a quasi-split group G over F.
Consider a finite cyclic extension E=F with generating the Galois group. Put G WD
Resg-¢ G equipped with the evident -action. (The case G D GSp,, is used in the main

text.)

Lemma A.9. The function fLeéf is strongly cuspidal and stabilizing on the twisted
group @. There exist constants ¢ 2 C such that the functions Qf ;6 and f & are
associated .via base change/.

Proof. See [60, Prop. 3.9.2]. (Take D 1,H D G in loc. cit. for the first assertion.) ™

Now we turn our attention to Lefschetz functions (also called Euler—Poincaré func-
tions) on connected reductive groups G over F D R. We assume that G.R/ has dis-
crete series representations. Let be an irreducible algebraic representation of G g C.

Denote by VL.R/ | C the restriction of - to the center Z.R/. Writef D f& 2
H.G.R/; 1/ foran Euler—Poincaré function associated to , characterized by the iden-
tity
s , .
Tr.f/DepKl.” / WD . 1/'dimH'.LieG.R/; K¢l 7/
iDO
for every irreducible admissible representation of G.R/ with central character , where

K 1 is afinite index subgroup in the group generated by the center and a maximal compact
subgroup of G.R/. (The main example for us is Ky in Definition 1.12.) The
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formula does not determine f uniquely but the orbital integrals of f are well-defined. The
function f exists by Clozel and Delorme and can be constructed as the average of pseudo-
coefficients as follows. Let ...¢ denote the L-packet consisting of (the isomorph-ism
classes of) the irreducible discrete series representations of G.R/ whose central
character and infinitesimal character are the same as -. Write f 2 H.G.R/; 1/ for a
pseudo-coefficient of , and q.G/ 2 Z for the real dimension of G.R/=K1. Then f can be
defined by

few. 1/9¢/ X (A.6)

2.. G

Let G denote a quasi-split inner form of G over R. Then the same gives rise to the
functions f © . Note that Definition A.6 makes sense verbatim when F is archimedean

and the function has central character.

Lemma A.10. Any pseudo-coefficient f for a discrete series representation is
cuspidal. In particular, f G and f Gare cuspidal.

Proof. It suffices to check that f is cuspidal, or equivalently that the trace of every
induced representation from a proper Levi subgroup vanishes against f (cf. [2, p. 538]), but
this is true by the construction of pseudo-coefficients. (The cuspidality of f also follows
from [56, proof of Lem. 3.1].) -

Let A denote the maximal split torus in the center of G (hence also in G). Equip
G.R/=A.R/ and G.R/=A.R/ with Euler—Poincaré measures and A.R/ with the Lebesgue
measure so that the Haar measures on G.R/ and G.R/ are determined. Define q.G/ (resp.
q.G/) to be the real dimension of the symmetric space associated to the derived
subgroup of G.R/ (resp. G.R/). Normalize the transfer factor between G.R/ and G.R/
to be .G/ D . 1796/ 9.6/ \write ...S (resp. ...S ) for the discrete series L-packet for
G.R/ (resp. G.R/) associated to (cf. Example 1.13).

Lemma A.11. Thefunctions. 1/9:6/j..6j 1fS and. 1/9¢/j..%j 1f G areasso-
ciated.

Proof. This follows from the computation of stable orbital integrals in [56, Lem. 3.1]; see
also [21, Prop. 3.3] when A D 1. n

A similar construction works in the base change context (cf. [21]). We are only
concerned with a particular case that GO G G (d copies) and is the automorphism
g1;:::;84/ ) .g2;:11;84;81/. Write WD “ . A fulctionf 2 H.G.R/; /is said
to.be a (twWisted) Lefschetz function for if (

X1 ) )
TQ.f/D . 1/ Tr.jH.LieG.R/*;K* 1" //ivo
for every irreducible admissible representation of G.R/ with central character .
Definition A.6 carries over to this base change setup as in [60, Def. 3.8.1, 3.8.2].
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Lemma A.12. The function fq is cuspidal.”> Moreover, fq and @f ¢ are associated for
some @2 C.

Proof. The first assertion is [21, Prop. 3.3]. The second assertion follows from [21,
Prop. 3.3, Thm. 4.1]. (The reference assumes that A D 1 but the arguments can be adapted to
the case of nontrivial A as in the untwisted setup above). [ ]

We end this appendix with a global result. We change notation. Let F be a totally real
number field and vs; a finite F -place. Let G be an inner form of either the group GSp, .

or the group Sp, ¢ -

Lemma A.13. Assume that n > 1. Let be a nonabelian discrete automorphic repres-
entation of G.Af /, and assume that Tr,.f, Z}iu 0. Then v, is an unramified twist of the
Steinberg representation.

Remark A.14. The lemma is false forn D 1.

Proof of Lemma A.13. We give the argument only in case G is an inner form of GSp, ¢ ;

the argument for inner forms of Sp, . is similar. By the assumption Tr . f G }Er\I,StO, v, IS

either a twist of the Steinberg representation or a twist of the trivial representation (Lemma
A.7). We assume that we are in the second case; after twisting we may assume

that v, is the trivial representation. Let G1 G be the kernel of the factor of similitudes. By
strong approximation the subset G1.F /G1.Fy,/ G1.Af /is dense if G1;f, ., s not
anisotropic; let us assume this for now. Let f 2 . Since v, is the trivial representation, f is
invariant under G.Fy,, /. Thus f is G1.F/G1.Fy,, /-invariant, and hence Gi.Af /-
invariant. This implies that is abelian. It remains to check that G1;r, is notanisotropic. In
the split case, we have G1;¢, ' Sp,,.¢ - Inthe nonsplit case, the group Gi,r, is of the
following form. Let D=F,, be the quaternioh algebra, and consider the involution of D
defined by x D Trx/ x where Tr is the reduced trace. Then G.1; Fy /' Sp,.D/ isthe
group of g 2 GL,.D/ such that gAntg D -€.g/An for some c.g/ 2 F , where A, is the
matrix with 1’s on the anti-diagonal, and 0’s elsewhere [79, item (3), p. 921'5Forn > 1

the group Sp,,.D/ has a strict parabolic subgroup and thus G1;F,,, is notanisotropic. m

Appendix B. Conjugacy in the standard representation

Let V be a finite-dimensional Q.-vector space and h;i a nondegenerate, symmetric or
skew-symmetric bilinear form on V. Let H GL.V / be the subgroup of elements that
preserve h; i (resp. preserve it up to scalar). Thus, H.Q./ is either an orthogonal group
or a symplectic group (resp. of similitude). Write smWH.Q-/ ! Q. for the factor of
similitude. Note sim is nontrivial only for the groups GO.V; h; i/ and GSp.V; h;i/.

_ BWhenH?! R; G/ D 1 (assuming A D 1), Clozel and Labesse prove that f is also stabilizing
in [60, Thm. A.1.1]. However, we do not use it in the main text but instead appeal to the fact that
the (twisted) Lefschetz function at a finite place is stabilizing.
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The results of this appendix largely overlap with [107, Prop. A (and Prop. 2.1)],
although Wang works in a slightly different setting.

Proposition B.1 (Larsen, cf. [65, proof of Prop. 2.3, 2.4]). Let € be a topological group.
Consider two .continuous/ representations 1; W€ | H.Q-/ such that 1 is semi-simple.
Then 1;2 are H.Q:/-conjugate if and only if sim1 1 D sim1 2 and std1 1,std1 > are
GLm.Q:/-conjugate.

Remark B.2. The conclusion of Proposition B.1 fails in general for the special ortho-
gonal group in even dimension. In odd dimension the group O2nc1.Q-/ equals ' 12
SO2nc1.Q-/ and so the proposition is true for SO2nc1.Q-/ as well.

Proof of Proposition B.1. We consider the group H D GO.V; h;i/ with h;i symmet-ric
and nondegenerate the other groups are treated in a similar fashion. Fix a morphism WE!
GO.V; h;i/ with std 1 semisimple. Write D sim1 WE! Q . Consider the set X./ of
GO.V; h;i/-conjugacy classes of morphisms W€l  GO.V; h;i/suchthatstdi °' std1 and
D sim1 ° We view the space V as a €-representation via . We have the injection

X./ lsome.V;V “ /=Aute.V/; Ewgdi © e stdi o h ;i

whose image is the set of nondegenerate symmetric pairings taken modulo Aute.V /,
where the automorphisms 2 Aute.V /act on Isome.V;V “ Jvial . /1 1 . /. Using the
pairing h;i on V we can further identify

Isome.V;V “ /=Aute.V/ | Aute.V /=Aute.V /-congruence;

where by congruence we mean the action ! ! for 2 Aute.V /; here the transpose is defined
using h;i. Since .V;/ is semisimple we can consider the isotypical decompos-ition V D
L 'o1 Vidi, and so by Schur’s lemma Ende.V /D Q}Dl Mg, .Q:/. We obtain

an embedding

Yt

X./ Glg,.Q-/=GLg,.Q./-congruence;

jD1
where two matrices X; Y 2 GlLg, .Q./ are Glg, .Q./-congruent if there exists a third
matrix g 2 GLg,.Q / such that Y D gXg. The image of X./ in the set on the right hand
side decomposes along the product and is in each GLg, .Q./-factor equal to the set of
congruence classes of invertible symmetric matrices. Since Q- Ts algebraically closed (of
characteristic ¥ 2), these classes have exactly one element. -
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