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Let X be a perfectoid space with tilt X�. We build a natural map θ : Pic X� →

lim Pic X where the (inverse) limit is taken over the p-power map and show that θ is

an isomorphism if R = �(X, OX) is a perfectoid ring. As a consequence, we obtain

a characterization of when the Picard groups of X and X� agree in terms of the

p-divisibility of Pic X. The main technical ingredient is the vanishing of higher derived

limits of the unit group R∗, whence the main result follows from the Grothendieck

spectral sequence.

1 Introduction

Scholze [14] introduced a class of algebro-geometric objects called perfectoid spaces

that arise naturally in the context of p-adic geometry. To a perfectoid space X over

the p-adic numbers, one can functorially assign a perfectoid space X� in characteristic

p, called the tilt of X. Remarkably, X and X� share many algebraic and topological

properties, enumerated through various tilting equivalences, including that they are

homeomorphic and have canonically identified étale sites. Perhaps surprisingly, given

their similarities, it is not true in general that X and X� have isomorphic Picard groups

(see [8, Section 6] or Example 4.6 below). The goal of this paper is to describe exactly

how different these two Picard groups can be.
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Untilting Line Bundles 2573

Observe that since X� is perfect, p acts invertibly on its Picard group. We will

show that the only obstruction to the Picard groups of X and X� being isomorphic is the

failure of p to act invertibly on Pic X. To see this, we construct a map

θ : Pic X� −→ lim Pic X,

where the (inverse) limit is taken along the p-power map on Pic X. A rough outline of the

construction is the following: the tilting equivalence identifies the étale sites of X and

X� [14, Theorem 7.9], so that we can view O
∗
X and O

∗
X� as objects in the same category.

The construction of tilting then provides an identification:

O
∗
X�

∼= lim O
∗
X ,

where the limit is taken along the map f �→ f p. One can exhibit θ by taking derived

global sections of this isomorphism and analyzing the Grothendieck spectral sequence.

The obstructions to θ being an isomorphism are evidently controlled by derived limits

of O
∗
X and R∗ = H0(X, O∗

X). Therefore, the main technical component of this paper is the

study of these derived limits. We do this in Section 2, showing the following.

Proposition 1.1. If R is a perfectoid ring then R1 lim R∗ = 0.

We prove the main theorem in Section 3, constructing θ and using the

Grothendieck spectral sequence to explicitly compute the obstructions to injectivity

and surjectivity in terms of derived limits of O
∗
X and R∗. This allows us to leverage

Proposition 1.1 to prove the main result.

Theorem 1.2. Let X be a perfectoid space with tilt X�. There is a natural surjection

Pic X� → lim Pic X, which is an isomorphism if �(X, OX) is a perfectoid ring.

Composing the target of θ with projection onto the 1st coordinate, one obtains a

characterization of when the Picard groups of X and X� agree.

Corollary 1.3. Let X be a perfectoid space with tilt X�, and assume that �(X, OX) is a

perfectoid ring. There is a natural map Pic X� → Pic X, which is an isomorphism if and

only if Pic X is uniquely p-divisible.

In fact, the kernel and cokernel of this map can be explicitly computed in terms

of the action of p on Pic X. The kernel can be identified with the p-adic Tate module of

Pic X, and the image consists of the maximal p-divisible subgroup of Pic X.
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2574 G. Dorfsman-Hopkins

We continue by enumerating consequences and examples, including examples

where the Picard groups of X and X� agree, and examples where they do not. For

instance, a consequence of Bhatt and Scholze’s theory of prismatic cohomology is

that the Picard groups of a large class of perfectoid rings are uniquely p-divisible

[1, Corollary 9.5], so that we may extract the following result.

Corollary 1.4. Let R be a perfectoid ring over a perfectoid field, and let R� be its tilt.

Then Pic R� ∼= Pic R.

In the final section, we apply these results to describe an example of a perfectoid

cover of an abelian variety over Cp with good reduction, Ã → A (as in [13] and

[3]), where the natural map colim Pic A → Pic Ã is not surjective. This stands in

stark contrast to the cases of the perfectoid cover of projective space and perfectoid

covers of toric varieties where the analogous map is an isomorphism ([5, Theorem 3.4]

and [6, Theorem 4.1], respectively). To do this, we use an analog of Theorem 1.2 to

compare the Néron–Severi groups of A, Ã, and Ã�. This is not exclusively a mixed

characteristic phenomenon, the work of Heuer [8, Section 6.2] constructs such an

example in characteristic p, using a comparison between the Picard group of Ã and

the Picard group of the perfection of the special fiber of A. In both cases, the

analysis boils down the phenomenon of Picard rank potentially jumping on a special

fiber.

In [5], we constructed θ from a geometric perspective using the notion of projec-

tivoid geometry. This construction required the existence of an ample line bundle on X�

to guarantee that one can associate line bundles on X� to maps to a perfectoid analog of

projective space using [5, Theorem 4.5], which in turn are in one-to-one correspondance

for X and X� by the tilting equivalence of Scholze [14, Proposition 6.17], thereby

giving θ . With this, we gave a geometric proof that θ was injective [5, Theorem 5.13],

although in less generality than this paper.

2 Derived Limits of Unit Groups of Perfectoid Rings

For what follows, we will denote by lim the functor that takes an abelian group (or

sheaf of abelian groups) A to the inverse limit of the system (· · · → A → A) whose

transition maps are all multiplication by p (or p-power if the group is multiplicative).

We will denote the derived functors by Ri lim and the derived inverse limit by R lim.

The main goal of this section is to establish the vanishing of derived limits of the
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Untilting Line Bundles 2575

unit groups of perfectoid rings, in both the integral and Tate cases. We begin with the

integral case.

Definition 2.1 (Integral perfectoid rings [2, Definition 3.5]). A topological ring R is

called an integral perfectoid ring if the following conditions hold.

1. There is some � ∈ R with �p|p such that R has the � -adic topology.

2. Frobenius surects on R/pR.

3. Fontaine’s period map Ainf(R) → R is surjective with principal kernel.

Remark 2.2. If � is a nonzero-divisor, then by [2, Lemma 3.10], one can replace

conditions (2) and (3) with the condition that Frobenius induces an isomorphism

R/�R
∼

−→ R/�pR, thereby avoiding the need to invoke Ainf. We point out that, � is

automatically a nonzero divisor if R is the ring of definition for a perfectoid Tate ring

(see Definition 2.6 below), which is our main case of interest.

We will first show that if R is integral perfectoid then R∗ has vanishing derived

limits. The following lemma sets up the argument.

Lemma 2.3. Let (Ai) be an inverse system of abelian groups, and let A = limi Ai.

Suppose the following two conditions hold.

1. For all i, lim Ai = 0.

2. For all i, R1 lim Ai = 0.

Then R1 lim A = 0.

Proof. We derive the identification lim(limi Ai)
∼= limi(lim Ai) and consider the

composition of functors spectral sequence that induces the following:

The bottom left corner is 0 by condition (1), and the bottom right corner is 0 by condition

(2). Therefore, the top left corner is 0, but this is R1 lim A, so we are done. �

We would like to apply this in the following case.

Lemma 2.4. Suppose A is an abelian group with a complete descending filtration

whose subquotients are p-torsion. Then R1 lim A = 0.
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2576 G. Dorfsman-Hopkins

Proof. We denote the filtration by · · · ⊆ F2 ⊆ F1 ⊆ F0 = A, let Qi = Fi/Fi+1 be

the subquotients, and consider the inverse system (· · · → Qi → Qi) whose transition

maps are multiplication by p−hence 0 since Qi is p-torsion. Therefore lim Qi = 0 and

the system has stable images (which are all 0), so that it satisfies the Mittag–Leffler

condition and R1 lim Qi = 0 as well.

Let Ai = A/Fi. We have the following diagram of exact sequences for all i.

Therefore, by the snake lemma, we obtain exact sequences

0 −→ Qi −→ Ai+1 −→ Ai −→ 0,

for all i. Passing to the limit along multiplication by p one obtains the following long

exact sequence:

0 → lim Qi → lim Ai+1 → lim Ai → R1 lim Qi → R1 lim Ai+1 → R1 lim Ai.

Arguing inductively, we may assume that lim Ai = 0 = R1 lim Ai (since A1 = Q1),

so that lim Ai+1 = 0 = R1 lim Ai+1. Lastly, since we are assuming that A is com-

plete with respect to the topology induced by the Fi, we see that the natural map

A → limi Ai is an isomorphism, so that by Lemma 2.3, we may conclude that

R1 lim A = 0. �

With this in hand, we can take care of the main result of this section in the

integral perfectoid case.

Proposition 2.5. Let R be an integral perfectoid ring. Then R1 lim R∗ = 0

Proof. Since � lives in the Jacobson radical of R, the projection map R → R/�R

remains surjective on unit groups, so that we have an exact sequence

1 −→ (1 + �R)∗ −→ R∗ −→ (R/�R)∗ −→ 1.

As R is perfectoid, Frobenius surjects on R/�R [2, Lemma 3.9], so that the p-power

map surjects on (R/�R)∗. In particular, the system (· · · → (R/�R)∗ → (R/�R)∗)

satisfies the Mittag–Leffler condition and so R1 lim(R/�R)∗ = 0. Considering the long

exact sequence derived from applying lim to the sequence above therefore provides a
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Untilting Line Bundles 2577

surjection

so that it suffices to prove the source vanishes. But (1 + �R)∗ has a complete filtration

by (1 + �nR)∗ for n ≥ 0, and the subquotients are (1 + �nR/�n+1R)∗. Since � |p, we

may observe that these subquotients are p-torsion. Indeed, lifting an arbitrary element

to 1 + f �n ∈ (1 + �nR)∗, we have

(1 + f �n)p = 1 + (pf �n + · · · ) = 1 + �n+1(· · · ) ≡ 1 mod �n+1.

Therefore, by Lemma 2.4, we deduce that R1 lim(1 + �R)∗ = 0 completing the proof. �

For the remainder of this section, we extend this result to the perfectoid Tate

case. We first recall the definition.

Definition 2.6 (Perfectoid Tate Rings). A complete topological ring R is Tate if there

exists an open subring of definition R0 ⊆ R whose topology is � -adic for some unit

� ∈ R0 ∩ R∗. The element � is called a pseudouniformizer for R.

A Tate ring R is called a perfectoid Tate ring if the subring R◦ of power bounded

elements in R is an integral perfectoid ring.

Remark 2.7. To a perfectoid ring R, one can associate a perfectoid ring R� of

characteristic p called the tilt of R. As a multiplicative monoid R� = limx �→xp R so

that it comes equipped with a multiplicative map � : R� → R, which is identified

with projection onto the 1st coordinate. R� and R share many algebraic and topological

properties, explored through the various tilting equivalences of Scholze [14].

Remark 2.8. By taking � = (� �)� for any pseudouniformizer � � of R�, one obtains

a pseudouniformizer of R equipped with a compatible set of p-power roots � 1/pn
for

every n. This way, the symbol �d makes sense for any d ∈ Z[1/p]. For what follows, we

always use such a � .

Fix a perfectoid Tate ring R. We will reduce the study of the derived limits of R∗

to that of R◦∗ (whose derived limits we already know vanish by Proposition 2.5) using

the following exact sequence:

0 −→ R◦∗ −→ R∗ −→ R∗/R◦∗ −→ 0. (1)

It suffices to show that the right-hand side of this sequence is p-divisible. We can in

fact show something slightly stronger: that it is uniquely so.
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2578 G. Dorfsman-Hopkins

Proposition 2.9. Let R be a perfectoid Tate ring. Then R∗/R◦∗ is uniquely p-divisible.

Proof. We first show the p-divisibilty. Fix f ∈ R∗. We hope to show that there is some

g ∈ R∗ so that f /gp ∈ R◦∗. We first take care of the case where f ∈ R◦. Let X = Spa(R, R◦).

As f is invertible, one has |f (x)| > 0 for all x ∈ X. Since X is compact, there is some

d with |�d| < |f (x)| for all x ∈ X. Applying an approximation lemma [4, Lemma 2.3.1],

there exists some g ∈ R� so that for all x ∈ X.

|f (x) − g�(x)| ≤ |p| · max{|f (x)|, |�d|}

= |p| · |f (x)|

< |f (x)|.

The nonarchimedean propety of the valuations x ∈ X therefore implies |f (x)| = |g�(x)|

for all x ∈ X (cf. [14, Remark 6.6]). In particular, we know |g�(x)| > 0 for all x ∈ X,

so that g� ∈ R∗ [10, Lemma 1.4]. Let u = f /g�. As anything in the image of � is a

p-power, it suffices to show u ∈ R◦∗. Since the valuations associated with x ∈ X are

multiplicative, one has |u(x)| = 1 for all x ∈ X, so that u ∈ R∗, and |u−1(x)| = 1

for all x ∈ X. In particular, by [9, Lemma 3.3(i)], u, u−1 ∈ R◦ so that u ∈ R◦∗.

For the general f ∈ R∗, we note that there exists d > 0 so that �df ∈ R◦. By

the previous paragraph, there exists g ∈ R∗ so that �df /gp = f /(�d/pg)p ∈ R◦∗,

as desired.

To establish uniqueness, we must show that the p-power map is injective on

R∗/R◦∗. We first observe that the following diagram together with the snake lemma

implies that O
∗
X/O+∗

X is uniquely p-divisible.
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Untilting Line Bundles 2579

The long exact sequence in cohomology for the bottom 2 rows induces

In particular, the injectivity of the vertical map on the left follows from the commuta-

tivity of the left square and the fact that the remaining three maps in the square are all

injective. �

Now, we can prove the main result of this section in the perfectoid Tate case.

Proposition 2.10. Let R be a perfectoid Tate ring. Then R1 lim R∗ vanishes.

Proof. We apply lim to Sequence (1) to obtain the long exact sequence,

· · · −→ R1 lim R◦∗ −→ R1 lim R∗ −→ R1 lim R∗/R◦∗ −→ · · · .

The left term vanishes by Lemma 2.5. Meanwhile, by Proposition 2.9, we know R∗/R◦∗ is

p-divisible, so that the inverse system (· · · → R∗/R◦∗ → R∗/R◦∗) has surjective transition

maps and therefore satisfies the Mittag–Leffler condition. This implies that the right

term vanishes, and so the middle one must as well by exactness and we win. �

3 Untilting Line Bundles

Definition 3.1. A perfectoid space is an adic space with an open cover by affinoid adic

spaces Spa(R, R+) where R is a perfectoid Tate ring, or Spa(R, R) where R is an integral

perfectoid ring. (In the literature, the latter is often called a perfectoid formal scheme,

but we will not distinguish between the two cases in what follows.)

Remark 3.2. The tilting process of Remark 2.7 glues, so that to a perfectoid space X

one can associate its tilt: a perfectoid space X� of characteristic p that is locally covered

by the adic spectra of the tilts of the perfectoid affinoid rings defining the charts of X.

The various tilting equivalences referred to in Remark 2.7 globalize as well, for example

X and X� are homeomorphic and have equivalent étale sites [14].

Let X be a perfectoid space with tilt X�. We begin this section by constructing

the desired map between the Picard groups of X and X�. By [11, Theorem 3.5.8], vector
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2580 G. Dorfsman-Hopkins

bundles on X in the analytic, étale, pro-étale, and v-topologies all agree (and similarly

for X�), so there is no confusion by what we mean by the Picard group. Denote the

sheaves of units of X and X� by O
∗
X and O

∗
X� , respectively. As X and X� have canonically

isomorphic analytic, étale, pro-étale, and v-sites, we can view both as sheaves on X.

With this perspective in mind, we have an identification:

O
∗
X�

∼= lim O
∗
X . (2)

The desired map is easily obtained from this identification.

Lemma 3.3. There is a natural map θ : Pic X� → lim Pic X.

Proof. Using the identification in Equation (2), we obtain projections O
∗
X� → · · · →

O
∗
X → O

∗
X . Taking the 1st cohomology group gives Pic X� → · · · → Pic X → Pic X, and θ

arises as the universal factorization through the inverse limit. �

We can explicitly study the obstructions to θ being an isomorphism by exhibit-

ing it in a spectral sequence. In particular, we apply derived global sections to Equation

(2) and analyze the Grothendieck spectral sequence. We have the following diagram of

functors.

(3)

Lemma 3.4. � takes injective sheaves to lim-acyclic abelian groups, and lim takes

injective sheaves to �-acyclic sheaves.

Proof. In fact, the global sections functor takes injectives to injectives because it has

an exact left adjoint (given by the constant sheaf associated to an abelian group).

To show lim takes injectives to acyclics, we fix an injective module I and

observe that for every U, I |U is injective also (since restriction to U is right adjoint to

extension by 0, which is exact). The global sections of an injective sheaf is an injective

abelian group and is therefore divisible. Thus, the multiplication by p-map on I is

surjective. Furthermore, by injectivity we have Hi(U, I ) = 0 for all i > 0, so that for any
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Untilting Line Bundles 2581

i and U, the inverse system along multiplication by p
(
· · · → Hi(U, I ) → Hi(U, I )

)

has surjective transition maps and therefore satisfies the ML-condition. Therefore,

applying [7, Proposition 13.3.1], we observe that for all i the natural map,

Hi(X, lim I ) → lim Hi(X, I )

is an isomorphism. In particular, lim I is �-acyclic as desired. �

This allows us to harness the composition of functors spectral sequence to study

morphism at the center of the manuscript and prove our main theorem.

Theorem 3.5. Let X be a perfectoid space with tilt X�. Then θ fits into an exact

sequence:

0 −→ R1 lim �(X, O∗
X) −→ Pic X� θ

−→ lim Pic X −→ 0. (4)

In particular, if �(X, OX) is a perfectoid ring, then θ is an isomorphism.

Proof. Consider the compositions in Diagram (3). Applying Lemma 3.4 and [16, Tag

015M], one obtains natural isomorphisms of derived functors:

R�(X, R lim(·))
∼

←− R(�(X, ·) ◦ lim(·)) ∼= R(lim ◦�(X, ·))
∼

−→ R lim R�(X, ·). (5)

Furthermore, the cohomology of the middle complex computes the sheaf cohomology of

lim of a sheaf. Therefore, identifying O
∗
X�

∼= lim O
∗
X as abelian sheaves on X, as well as

making the appropriate identifications using Equation (5), we obtain the following two

composition of functors spectral sequences:

E
p,q
2 : Hp(X, Rq lim O

∗
X) �⇒ Hp+q(X, R lim O

∗
X),

E
′p,q
2 : Rp lim Hq(X, O∗

X) �⇒ Hp+q(X, R lim O
∗
X).

Considering the low degree terms gives us the following diagram whose rows are exact,

and θ appears as the diagonal arrow.

(6)
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2582 G. Dorfsman-Hopkins

R1 lim O
∗
X is the sheafification of the presheaf U �→ R1 lim OX(U)∗. But X has a basis of

affinoid perfectoids U, on which OX(U) is a perfectoid ring, so R1 lim OX(U)∗ = 0 (by

Proposition 2.5 or 2.10 in the integral or Tate cases, respectively). Since the presheaf is

0 on a basis, its sheafification is 0 so that �(X, R1 lim O
∗
X) = 0 and the top row exhibits

an isomorphism:

H1(X, O∗
X�) ∼= H1(X, R lim O

∗
X).

On the other hand, we know derived limits of abelian groups have cohomology

concentrated in degrees 0 and 1 (see, e.g., [16, Tag 07KW]), so that the bottom right term

of Diagram (6) is 0. Therefore, Sequence (4) emerges as the bottom row. If we assume

further that �(X, OX) is a perfectoid ring, then the left term of Sequence (4) is 0 (again

by Proposition 2.5 or 2.10), completing the proof. �

4 Consequences and Examples

4.1 The untilting homomorphism

Let us set some notation. For an for an abelian group A we denote by TpA = lim A[pn]

the p-adic Tate module of A, and by ApDiv, the maximal p-divisible subgroup of A, or

equivalently, the subgroup of elements with infinite systems of pnth roots. In particular,

one always obtains an exact sequence 0 → TpA → lim A → ApDiv → 0.

Now, let X be a perfectoid space. One can compose θ : Pic X� → lim Pic X together

with the projection : lim Pic X → Pic X onto the 1st coordinate to obtain the untilting

homomorphism θ0 : Pic X� → Pic X. If �(X, OX) is a perfectoid ring, Theorem 3.5 and the

previous paragraph tell us that θ0 fits into following exact sequence:

0 −→ Tp Pic X −→ Pic X� θ0
−→ (Pic X)pDiv −→ 0.

In particular, we have the following corollary to Theorem 3.5.

Corollary 4.1. Let X be a perfectoid space, and suppose �(X, OX) is perfectoid.

Consider the untilting homomorphism θ0 : Pic X� → Pic X.

1. θ0 is injective if and only if Tp Pic X = 0.

2. θ0 is surjective if and only if Pic X is p-divisible.

3. θ0 is an isomorphism if and only if Pic X is uniquely p-divisible.

As a special case of (1), we see that if Pic X is p-torsion free, or more generally if

Pic X has bounded p∞-torsion, then θ0 is injective.
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Untilting Line Bundles 2583

As a consequence of the étale comparison theorem in prismatic cohomology,

Bhatt and Scholze [1, Corollary 9.5] show that a large class of perfectoid affinoid adic

spaces have uniquely p-divisible Picard groups. In particular, they show that if R is

integral perfectoid, then R and R[1/p] have uniquely p-divisible Picard groups. This

gives us the following immediate corollary.

Corollary 4.2. Let R be an integral perfectoid ring. Then,

Pic R� ∼= Pic R and Pic(R[1/p]�) ∼= Pic(R[1/p]).

In particular, θ0 is an isomorphism for any perfectoid algebra over a field.

One observes that the same is true in a number of global examples.

Example 4.3. In [5, Theorem 3.4], we computed the Picard group of projectivoid space,

showing that PicPn,perf ∼= Z[1/p], which is uniquely p-divisible. Therefore, the untilting

map for projectivoid space is an isomorphism. Of course, since the value of PicPn,perf is

independent of perfectoid base field (and therefore tilting), this is unsurprising.

Example 4.4. Generalizing the previous example, if Xperf is the perfectoid cover of a

smooth proper toric variety X (as in [14, Section 8]), then Pic(Xperf) ∼= Pic(X)[1/p], (by

[6, Theorem 4.1]). In particular, p acts invertibly on Pic(Xperf) and so θ0 is an isomor-

phism.

Example 4.5. Let A be an abelian variety (over a perfectoid field) and [p] : A → A

the multiplication by p map. Then passing to the inverse limit, there is a perfectoid

space Ã ∼ lim A (by [13, Lemme A.16] in the case where A has good reduction over an

algebraically closed field, and by [3, Theorem 4.6] in general). The work of Heuer [8,

Theorem 1.10] shows that if A has good reduction, then p acts invertibly in the Picard

group of Ã, so that by Corollary 4.1, we may conclude that Pic Ã� ∼= Pic Ã.

We also include an example where θ0 is neither injective nor surjective, coming

from a construction of [3] and [8, Section 6.3] of a perfectoid space whose Picard group

is not p-divisble nor p-torsion free.

Example 4.6. Let K be a perfectoid field of characteristic 0, and consider the Tate

uniformization of an elliptic curve E = Gm/qZ, considered as an adic space over K.

Suppose q has a coherent system of p-power roots—for example, if q is in the image of

� : (K�)∗ → K∗. Fix such a system so that the symbol q1/pn
makes sense for all n > 0. The
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2584 G. Dorfsman-Hopkins

p-power map induces a sequence of isogenies:

· · · → Gm/q1/p2
→ Gm/q1/p → Gm/q,

and by [3], passing to the “tilde” inverse limit produces a perfectoid space:

E∞ ∼ lim
←−
n

Gm/q1/pn
.

By [8, Proposition 6.1] the Picard group of E∞ fits into the following exact sequence:

0 −→ K∗/qZ[1/p] −→ Pic E∞ −→ Z[1/p] −→ 0.

Consider multiplication by p on this sequence:

Corollary 4.1 says that the injectivity and surjectivity of the untilting map θ0 : Pic E�
∞ →

Pic E∞ is controlled by the kernel and cokernel of �, and since Z[1/p] is uniquely p-

divisible the snake lemma tells us that these are in turn isomorphic to the kernel and

cokernel of �. But these are easy to compute. Consider the square whose rows are the

p-power map

The kernel of the composition consists of functions f ∈ K∗ such that f p = qd for some

d ∈ Z[1/p]. Thus, f /qd/p ∈ μp is a pth root of unity. In particular, f is given by an element

of qZ[1/p] and one of μp, and furthermore qZ[1/p] ∩μp = 1 so that the kernel is isomorphic

to μp × qZ[1/p]. We get the ker � modding out by the 2nd factor, so that ker � ∼= μp.

Arguing for successively higher powers of p we see that the kernel of the projection

lim Pic E∞ → Pic E∞ is isomorphic to limn μpn = Zp(1), so that by Theorem 3.5, we have

a left exact sequence:

0 −→ Zp(1) −→ Pic E�
∞

θ0
−→ Pic E∞, (7)

whose right exactness is controlled by coker �. The cokernel of the p-power map from

K∗ to itself is K∗/(K∗)p, and we chose q so that qZ[1/p] ⊆ (K∗)p so that

coker � =
(
K∗/qZ[1/p]

)
/

(
(K∗)p/qZ[1/p]

)
∼= K∗/(K∗)p.
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Untilting Line Bundles 2585

Therefore, Sequence 7 is right exact if and only if every element of K∗ is a pth power. In

particular, we see that it is right exact if K is algebraically closed but is not in general—

for example if K = Qp

(
p1/p∞

)
.̂

In fact, we can give a concrete description of the kernel and cokernel of θ0 for

elements that arise from divisors on the Tate curve. Observe that the choices of p-power

roots of q ∈ K∗ determines a unique element q� ∈ (K�)∗. Then we can compute the tilt of

E∞ as

(E∞)� ∼ lim
←−
n

(Gm)�/(q�)1/pn
.

Identifying colim Pic E as a subset of Pic E∞ (and similarly for Pic E�
∞), we can identify

points of K∗/qZ[1/p] (respectively (K�)∗/(q�)Z[1/p]) with certain degree 0 line bundles on

E∞ (respectively (E∞)�). On these line bundles, θ0 descends from the untilting map �.

With this presentation, we see that divisors in the kernel are precisely those with

coordinates that map to 1 under � (i.e., elements of Zp(1)), elements of the cokernel come

from points in K∗ that do not have infinitely many p-power roots.

4.2 Trivializing inverse systems of line bundles in the analytic topology

Let L0, L1, L2, · · · be a system of line bundles on a perfectoid space X with L
⊗p
i+1

∼= Li.

There is an obvious way to construct a pro-étale cover of X, which simultaneously

trivializes all of the Li, by further refining étale covers trivializing each Li individually

and letting i go to infinity. Nevertheless, it is not immediately clear that there should be

an étale cover, which simultaneously trivializes all the Li. A consequence of Theorem 3.5

is that there is, and in fact there is even an analytic cover that does so.

Corollary 4.7. Let X be a perfectoid space and L0, L1, · · · , a system of line bundles on

X with L
⊗p
i+1

∼= Li. Then there is an analytic cover U → X that simultaneously trivializes

all the Li.

Proof. Although the global sections of OX are not a priori perfectoid, there is

an analytic open cover V → X where �(V, OV) is. Therefore, by Theorem 3.5, the

inverse system (Li|V) ∈ lim Pic V is the untilt of a unique L ∈ Pic V�. There
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2586 G. Dorfsman-Hopkins

is an analytic cover U� → V� trivializing L , which is the tilt of an analytic

cover U → V. By functoriality the inverse system (Li|U) ∈ lim Pic U is the untilt

of LU� , which is trivial. Again, by Theorem 3.5, each Li|U is trivial, completing

the proof. �

Remark 4.8. In the case that X is integral or over a field, Corollary 4.7 is an easy

consequence of [1, Corollary 9.5]. Indeed, in this case, if U → X is an affinoid cover

trivializing L0, then their result implies that Pic(U) is uniquely p-divisible. Therefore,

since Ln|U has trivial pn-th power, it must be trivial as well. Corollary 4.7 is slightly

more general, allowing for Tate perfectoid spaces that are not over fields (cf. [15,

Example 6.1.5.4]).

4.3 	-Adic cohomological Néron–Severi groups

We would like to study how the untilting maps θ and θ0 act on Néron–Severi groups

of perfectoid spaces. Since we do not have representability of the Picard functor, we

need a notion of Néron–Severi groups to make sense of this, so we take a cohomological

approach. We begin by defining the 	-adic cycle class map.

Let X be an adic space and 	 a prime invertible in OX . From the long exact

sequence on étale cohomology associated with the Kummer sequence 1 → μ	n → Gm →

Gm → 1 one obtains an injection:

Pic X

	n Pic X
↪→ H2

ét(X, μ	n). (8)

Passing to the inverse limit among all n, one obtains a map Pic X ⊗Z	(1) ↪→ H2
ét(X,Z	(1))

and precomposing with the natural map from Pic X, one obtains the 	-adic cycle class

map:

c	 : Pic X → H2
ét(X,Z	(1)).

Definition 4.9. Let X be an adic space and 	 a prime invertible in OX . Then the 	-adic

cohomological Néron–Severi group is defined to be the image of the 	-adic cycle class

map.

NS	(X) := im(c	).

In certain nice situations, including the case of an abelian variety over an

algebraically closed field, this definition agrees with the usual notion of Néron–Severi

groups.
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Lemma 4.10. Let A be a proper nonsingular variety over an algebraically closed field

of characteristic not equal to 	, and suppose further that NS(A) is torsion free. Then

NS	(A) ∼= NS(A).

Proof. This is well known but we include the proof for completeness. We first observe

that because Pic◦(A) is divisible, we have Pic◦ A ⊆ 	n Pic A so that

Pic A

	n Pic A
∼=

Pic A/ Pic◦ A

	n Pic A/ Pic◦ A
∼=

NS(A)

	n NS(A)
.

In particular, the source of the injection from Equation (8) can be identified with

NS(A)/	n NS(A) and passing to the inverse limit along n one obtains the following

composition whose image agrees with the image of the 	-adic cycle class map c	:

NS(A) → NS(A) ⊗ Z	(1) ↪→ H2
ét(X,Z	(1)).

We finish by observing that the 1st map is injective because NS(A) is torsion free. �

The 	-adic cohomological Néron–Severi group plays well with the untilting

homomorphism that is the subject of this paper.

Proposition 4.11. Let X be a perfectoid space and 	 prime to the residue characteristic

of X. Then the untilting homomorphism θ0 passes to an injection:

NS	(X
�) ↪→ NS	(X).

Proof. Identify the étale sites of X and X�. Since the projection map � :G�
m

∼= limGm →Gm

is multiplicative, for all n it induces a map of Kummer sequences

Since the p-power map on μ	n is an isomorphism, the projection μ
�

	n → μ	n is too. Taking

the long exact sequences on étale cohomology fits θ0 into the following diagram.
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2588 G. Dorfsman-Hopkins

Passing to the limit among all n we obtain the following commutative square.

In particular, the vertical map on the right restricts to an injection between the images

of the cycle class maps, completing the proof. �

Proposition 4.11 has the following immediate corollary, arguing analogously to

Corollary 4.1.

Corollary 4.12. Let X be a perfectoid space and 	 prime to the residue characteristic

of X. If �(X, OX) is a perfectoid ring, then Tp NS	(X) = 0.

4.4 Appearances of new line bundles at infinite level

Both [5, Theorem 3.4] and [6, Theorem 4.1] study examples of varieties X, together with

a “Frobenius like” map � : X → X so that there is a mixed characteristic perfection, a

perfectoid space X̃ ∼ lim X (as the notation suggests, this can be thought of in certain

cases as a sort of universal cover). The content of the theorems in each case is that this

limit commutes with taking Picard groups, that is, that the natural map colim Pic X →

Pic X̃ is an isomorphism. The work of Heuer [8, Section 6.2] shows that this is not true in

general, giving an example where this fails in characteristic p. We conclude by giving an

example of this failure in characteristic 0. In both cases, the counterexample consists

of an abelian variety A over a perfectoid field and its perfectoid cover Ã ∼ lim[p] A → A

(as in Example 4.5) such that the induced map colim Pic A → Pic Ã is not surjective.

The idea is to start with an abelian variety A whose Neron–Severing rank

ρ(A) jumps modulo p and then use Proposition 4.11 to inject the (now larger) Néron–

Severi group of Ã� into the Néron–Severi group of Ã, thus exhibiting line bundles

that cannot come from A. For the perfectoid covers, we will need to use the 	-adic

cohomological Néron–Severi groups introduced above, observing by Lemma 4.10 that

for abelian varieties over algebraically closed fields the two notions are interchangable.

We first confirm that the Néron–Severi rank does not decrease when passing to the

perfectoid cover.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/3

/2
5
7
2
/6

4
3
2
3
9
4
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

 S
c
h
o
o
l o

f L
a
w

 (B
o
a
lt H

a
ll) u

s
e
r o

n
 1

6
 J

u
ly

 2
0
2
3



Untilting Line Bundles 2589

Lemma 4.13. Suppose A is an abelian variety over a perfectoid field, and let 	 be

prime to the residue characteristic. Let Ã → A be its perfectoid cover. The induced map

colim NS(A) → NS	(Ã) is injective.

Proof. The Kummer sequence 0 −→ μ	n −→ Gm −→ Gm −→ 0 induces the following

diagram whose rows are exact:

Suppose (Li) ∈ colim Pic A maps to 0 in NS	(Ã). This means that for n large enough, it

maps to 0 in H2
ét(Ã, μ	n). By [14, Corollary 7.8], ηn is an isomorphism, so that (Li) maps

to 0 in colim H2
ét(A, μ	n). By exactness, Li is an 	nth power for i � 0, so that the class

of Li in NS(A) ∼= Zρ(A) is a multiple of 	n for all n � 0, so that it must be 0. Therefore,

(Li) ∈ colim Pic◦ A and we win. �

We now have a model for our counterexample.

Proposition 4.14. Let K be an algebraically closed perfectoid field with tilt K�.

Suppose that A is an abelian variety over K, and B an abelian variety over K�, whose

perfectoid covers satisfy Ã� = B̃. If ρ(B) > ρ(A), then the map colim Pic A → Pic Ã is not

surjective.

Proof. We remind the reader that for any abelian variety X over an algebraically closed

field, if [n] : X → X is multiplication by n, then the pullback map [n]∗ : NS X → NS X

is multiplication by n2 (see, e.g., [12, 2.8(iv)]). Therefore, as NS(X) ∼= Zρ(X), we know

colim[n]∗ NS(X) ∼= Z[1/n]ρ(X).

Therefore, the assumptions of the proposition, together with Lemma 4.13 and

Proposition 4.11 give us the following chain of inequalities:

rkZ[1/p] colim NS(A) < rkZ[1/p] colim NS(B) ≤ rkZ[1/p] NS	(̃B) ≤ rkZ[1/p] NS	(Ã).

In particular, colim NS(A) → NS	(Ã) cannot surject and therefore neither can the map

in question. �
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2590 G. Dorfsman-Hopkins

We conclude by giving examples of abelian varieties that satisfy the assump-

tions of Proposition 4.14. Let A be the integral model over Zp of an abelian variety with

good reduction over Qp. Let Cp be the completion of the algebraic closure of Qp, and let

C
�
p be its tilt. Then one can consider the base change of A to Cp and C

�
p, which we denote

by ACp
and A

C
�
p
, respectively.

Lemma 4.15. In the setup of the previous paragraph, we have

(
ÃCp

)�
∼= Ã

C
�
p
.

Proof. Let � � be a pseudouniformizer for C�
p and � = (� �)�. By the tilting equivalence

[14], both Ã
Cp

and Ã
C

�
p

are determined (up to almost isomorphism) by their models over

O
C

�
p
/� � = OCp

/� =: R, which extends Fp. In each case, we observe that this model must

be the scheme . �

To construct abelian varieties satisfying the assumptions of Proposition 4.14,

we may therefore start with abelian varieties with good reduction over Qp. Abelian

varieties over Qp whose Néron–Severi ranks increase upon reduction modulo p are

abundant. Take, for example, A = E × E where E is a non-CM elliptic curve over Qp

with supersingular reduction. In this case, we have ρ(A
C

�
p
) = 6 > 3 = ρ(ACp

), giving the

desired example.
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