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Let X be a perfectoid space with tilt X”. We build a natural map 6 : PicX’® —
lim Pic X where the (inverse) limit is taken over the p-power map and show that 6 is
an isomorphism if R = I'(X, 0%) is a perfectoid ring. As a consequence, we obtain
a characterization of when the Picard groups of X and X’ agree in terms of the
p-divisibility of Pic X. The main technical ingredient is the vanishing of higher derived
limits of the unit group R*, whence the main result follows from the Grothendieck

spectral sequence.

1 Introduction

Scholze [14] introduced a class of algebro-geometric objects called perfectoid spaces
that arise naturally in the context of p-adic geometry. To a perfectoid space X over
the p-adic numbers, one can functorially assign a perfectoid space X’ in characteristic
p, called the tilt of X. Remarkably, X and X share many algebraic and topological
properties, enumerated through various tilting equivalences, including that they are
homeomorphic and have canonically identified étale sites. Perhaps surprisingly, given
their similarities, it is not true in general that X and X have isomorphic Picard groups
(see [8, Section 6] or Example 4.6 below). The goal of this paper is to describe exactly

how different these two Picard groups can be.

Received February 22, 2021; Revised July 29, 2021; Accepted September 28, 2021
Communicated by Prof. Bhargav Bhatt

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

€20z AN 91 Uo Jasn (J[eH J20g) MeT JO [00YOS EluIoj[e Jo ANSIBAIUN AQ YEZEYY/Z.GZ/E/EZ0Z/AI0NE/UILIWOS dNO olWapEdE/:SARY WOy POpeojumod



Untilting Line Bundles 2573

Observe that since X’ is perfect, p acts invertibly on its Picard group. We will
show that the only obstruction to the Picard groups of X and X" being isomorphic is the

failure of p to act invertibly on Pic X. To see this, we construct a map
6 : PicX” — lim Pic X,

where the (inverse) limit is taken along the p-power map on Pic X. A rough outline of the
construction is the following: the tilting equivalence identifies the étale sites of X and
X" [14, Theorem 7.9], so that we can view 0% and 0%, as objects in the same category.

The construction of tilting then provides an identification:
o = lim 0%,

where the limit is taken along the map f — fP. One can exhibit 6 by taking derived
global sections of this isomorphism and analyzing the Grothendieck spectral sequence.
The obstructions to # being an isomorphism are evidently controlled by derived limits
of 0% and R* = HO(X, 0%). Therefore, the main technical component of this paper is the

study of these derived limits. We do this in Section 2, showing the following.
Proposition 1.1. If R is a perfectoid ring then R! lim R* = 0.

We prove the main theorem in Section 3, constructing 6 and using the
Grothendieck spectral sequence to explicitly compute the obstructions to injectivity
and surjectivity in terms of derived limits of % and R*. This allows us to leverage

Proposition 1.1 to prove the main result.

Theorem 1.2. Let X be a perfectoid space with tilt X*. There is a natural surjection

PicX” — lim Pic X, which is an isomorphism if I'(X, Oy) is a perfectoid ring.

Composing the target of 6 with projection onto the 1st coordinate, one obtains a

characterization of when the Picard groups of X and X’ agree.

Corollary 1.3. Let X be a perfectoid space with tilt X*, and assume that I'(X, 0) is a
perfectoid ring. There is a natural map PicX” — Pic X, which is an isomorphism if and

only if Pic X is uniquely p-divisible.

In fact, the kernel and cokernel of this map can be explicitly computed in terms
of the action of p on Pic X. The kernel can be identified with the p-adic Tate module of

Pic X, and the image consists of the maximal p-divisible subgroup of Pic X.
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2574 G. Dorfsman-Hopkins

We continue by enumerating consequences and examples, including examples
where the Picard groups of X and X’ agree, and examples where they do not. For
instance, a consequence of Bhatt and Scholze’s theory of prismatic cohomology is
that the Picard groups of a large class of perfectoid rings are uniquely p-divisible

[1, Corollary 9.5], so that we may extract the following result.

Corollary 1.4. Let R be a perfectoid ring over a perfectoid field, and let R" be its tilt.
Then PicR’ = PicR.

In the final section, we apply these results to describe an example of a perfectoid
cover of an abelian variety over C, with good reduction, A — A (as in [13] and
[3]), where the natural map colimPicA — PicA is not surjective. This stands in
stark contrast to the cases of the perfectoid cover of projective space and perfectoid
covers of toric varieties where the analogous map is an isomorphism ([5, Theorem 3.4]
and [6, Theorem 4.1], respectively). To do this, we use an analog of Theorem 1.2 to
compare the Néron-Severi groups of A, A, and A", This is not exclusively a mixed
characteristic phenomenon, the work of Heuer [8, Section 6.2] constructs such an
example in characteristic p, using a comparison between the Picard group of A and
the Picard group of the perfection of the special fiber of A. In both cases, the
analysis boils down the phenomenon of Picard rank potentially jumping on a special
fiber.

In [5], we constructed 6 from a geometric perspective using the notion of projec-
tivoid geometry. This construction required the existence of an ample line bundle on X°
to guarantee that one can associate line bundles on X” to maps to a perfectoid analog of
projective space using [5, Theorem 4.5], which in turn are in one-to-one correspondance
for X and X" by the tilting equivalence of Scholze [14, Proposition 6.17], thereby
giving 6. With this, we gave a geometric proof that 6 was injective [5, Theorem 5.13],

although in less generality than this paper.

2 Derived Limits of Unit Groups of Perfectoid Rings

For what follows, we will denote by lim the functor that takes an abelian group (or
sheaf of abelian groups) A to the inverse limit of the system (--- —- A — A) whose
transition maps are all multiplication by p (or p-power if the group is multiplicative).
We will denote the derived functors by Rilim and the derived inverse limit by R lim.

The main goal of this section is to establish the vanishing of derived limits of the
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unit groups of perfectoid rings, in both the integral and Tate cases. We begin with the

integral case.

Definition 2.1 (Integral perfectoid rings [2, Definition 3.5]). A topological ring R is

called an integral perfectoid ring if the following conditions hold.

1. There is some @w € R with @P|p such that R has the w-adic topology.
2. Frobenius surects on R/pR.

3. Fontaine's period map A;,¢(R) — R is surjective with principal kernel.

Remark 2.2, If » is a nonzero-divisor, then by [2, Lemma 3.10], one can replace
conditions (2) and (3) with the condition that Frobenius induces an isomorphism
R/wR —> R/wPR, thereby avoiding the need to invoke A

automatically a nonzero divisor if R is the ring of definition for a perfectoid Tate ring

inf- We point out that, @ is

(see Definition 2.6 below), which is our main case of interest.

We will first show that if R is integral perfectoid then R* has vanishing derived

limits. The following lemma sets up the argument.

Lemma 2.3. Let (4;) be an inverse system of abelian groups, and let A = lim;A4;.
Suppose the following two conditions hold.

1. Foralli, limA; =0.

2. Foralli, R'limA; = 0.
Then R!lim A = 0.

Proof. @ We derive the identification lim(lim;A;) = lim;(limA;) and consider the
composition of functors spectral sequence that induces the following:
0 —— Rllim(lim; 4;) —— R!(limolim;)(4;) — lim(R!lim; A4;)

I

0 — Rllim;(lim 4;) —— R!(lim; olim)(4;) — lim; R*lim A;.

The bottom left corner is 0 by condition (1), and the bottom right corner is 0 by condition

(2). Therefore, the top left corner is 0, but this is R! lim A, so we are done. [ |
We would like to apply this in the following case.

Lemma 2.4. Suppose A is an abelian group with a complete descending filtration

whose subquotients are p-torsion. Then R! lim A = 0.
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2576 G. Dorfsman-Hopkins

Proof. We denote the filtration by --- € F, € F; € Fy = A, let Q; = F;/F; be
the subquotients, and consider the inverse system (--- — Q; — Q;) whose transition
maps are multiplication by p—hence 0 since Q; is p-torsion. Therefore lim Q; = 0 and
the system has stable images (which are all 0), so that it satisfies the Mittag—Leffler
condition and R! lim Q; = 0 as well.

Let A; = A/F;. We have the following diagram of exact sequences for all i.

0 Fiy F; Qi 0
H L
0 Fiur A A 0.

Therefore, by the snake lemma, we obtain exact sequences
0—Q;— A, —A4,—0,

for all i. Passing to the limit along multiplication by p one obtains the following long

exact sequence:
0 — limQ; —» limA;,; —» lim4; — R'limQ; - R'lim4;,, —» R'limA4;,.

Arguing inductively, we may assume that limA; = 0 = R!limA; (since 4, = Q,),
so that limA;,; = 0 = R'limA, . Lastly, since we are assuming that A is com-
plete with respect to the topology induced by the F;, we see that the natural map
A — lim;A; is an isomorphism, so that by Lemma 2.3, we may conclude that
R'limA = 0. [

With this in hand, we can take care of the main result of this section in the

integral perfectoid case.
Proposition 2.5. Let R be an integral perfectoid ring. Then R! limR* = 0

Proof. Since @ lives in the Jacobson radical of R, the projection map R — R/@R

remains surjective on unit groups, so that we have an exact sequence

l1— 1+@wR* — R* — (R/oR)" — 1.
As R is perfectoid, Frobenius surjects on R/@wR [2, Lemma 3.9], so that the p-power
map surjects on (R/wR)*. In particular, the system (--- — (R/@wR)* — (R/wR)*)

satisfies the Mittag-Leffler condition and so R! lim(R/@R)* = 0. Considering the long

exact sequence derived from applying lim to the sequence above therefore provides a
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surjection

R!'lim(1 + wR)* — R!lim R*,

so that it suffices to prove the source vanishes. But (1 + @ R)* has a complete filtration
by (1 + @™R)* for n > 0, and the subquotients are (1 + @R/ !R)*. Since w|p, we
may observe that these subquotients are p-torsion. Indeed, lifting an arbitrary element

tol+fo™ € (1 4+ o@"R)* we have
A+fo™ WP =1+ @fo"+--)=1+o"(--)=1 mod =o"*'.

Therefore, by Lemma 2.4, we deduce that R! lim(1 + @ R)* = 0 completing the proof. W

For the remainder of this section, we extend this result to the perfectoid Tate

case. We first recall the definition.

Definition 2.6 (Perfectoid Tate Rings). A complete topological ring R is Tate if there
exists an open subring of definition R, € R whose topology is w-adic for some unit
@ € Ry N R*. The element @ is called a pseudouniformizer for R.

A Tate ring R is called a perfectoid Tate ring if the subring R° of power bounded

elements in R is an integral perfectoid ring.

Remark 2.7. To a perfectoid ring R, one can associate a perfectoid ring R’ of
characteristic p called the tilt of R. As a multiplicative monoid R” = lim, ., R so
that it comes equipped with a multiplicative map # : R”> — R, which is identified
with projection onto the 1st coordinate. R* and R share many algebraic and topological

properties, explored through the various tilting equivalences of Scholze [14].

Remark 2.8. By taking @ = (”)" for any pseudouniformizer @’ of R”, one obtains
a pseudouniformizer of R equipped with a compatible set of p-power roots @ !/P" for
every n. This way, the symbol &% makes sense for any d € Z[1/p]. For what follows, we

always use such a w.

Fix a perfectoid Tate ring R. We will reduce the study of the derived limits of R*
to that of R°* (whose derived limits we already know vanish by Proposition 2.5) using

the following exact sequence:
0 — R** — R* — R*/R°* — 0. (1)

It suffices to show that the right-hand side of this sequence is p-divisible. We can in

fact show something slightly stronger: that it is uniquely so.
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2578 G. Dorfsman-Hopkins

Proposition 2.9. Let R be a perfectoid Tate ring. Then R*/R°* is uniquely p-divisible.

Proof. We first show the p-divisibilty. Fix f € R*. We hope to show that there is some
g € R* so that f/gP € R°*. We first take care of the case where f € R°. Let X = Spa(R, R°).
As f is invertible, one has |f(x)| > 0 for all x € X. Since X is compact, there is some
d with |@?| < |f(x)| for all x € X. Applying an approximation lemma [4, Lemma 2.3.1],

there exists some g € R” so that for all x € X.

IFx) —g*®| < |Ipl-max{|fx)|, o)

= |pl- lfx)]
< @l
The nonarchimedean propety of the valuations x € X therefore implies |f(x)| = |g*(x)|

for all x € X (cf. [14, Remark 6.6]). In particular, we know |g?(x)| > O for all x € X,
so that g € R* [10, Lemma 1.4]. Let u = f/g". As anything in the image of # is a
p-power, it suffices to show u € R°*. Since the valuations associated with x € X are
multiplicative, one has |u(x)| = 1 for all x € X, so that u € R*, and |u"!(x)| = 1
for all x € X. In particular, by [9, Lemma 3.3(i)], u, u! € R° so that u € R°%.
For the general f € R*, we note that there exists d > 0 so that @w%f e R°. By
the previous paragraph, there exists g € R* so that w@f/gP = f/(w¥Pg)? € R,
as desired.

To establish uniqueness, we must show that the p-power map is injective on
R*/R°*. We first observe that the following diagram together with the snake lemma

implies that ﬁ;/ﬁ;* is uniquely p-divisible.

Hp

l

0% )0% —— 0

0
!
|

0 Z 0% 0% )0t —— 0
|
0 oL 0%
%
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The long exact sequence in cohomology for the bottom 2 rows induces

0 —— R*/R* —— HO(X, 0% /0%") —— HY(X, 08 —— -

| = |

0 — R*/R>* —— HYX,0%/0%") —— HYX,0%") —— -+

In particular, the injectivity of the vertical map on the left follows from the commuta-
tivity of the left square and the fact that the remaining three maps in the square are all

injective. |
Now, we can prove the main result of this section in the perfectoid Tate case.
Proposition 2.10. Let R be a perfectoid Tate ring. Then R! lim R* vanishes.

Proof. We apply lim to Sequence (1) to obtain the long exact sequence,
... — R'limR** — R!limR* — R!limR*/R** — ...

The left term vanishes by Lemma 2.5. Meanwhile, by Proposition 2.9, we know R*/R°* is
p-divisible, so that the inverse system (--- — R*/R°* — R*/R°*) has surjective transition
maps and therefore satisfies the Mittag-Leffler condition. This implies that the right

term vanishes, and so the middle one must as well by exactness and we win. [ |

3 Untilting Line Bundles

Definition 3.1. A perfectoid space is an adic space with an open cover by affinoid adic
spaces Spa(R, RT) where R is a perfectoid Tate ring, or Spa(R, R) where R is an integral
perfectoid ring. (In the literature, the latter is often called a perfectoid formal scheme,

but we will not distinguish between the two cases in what follows.)

Remark 3.2. The tilting process of Remark 2.7 glues, so that to a perfectoid space X
one can associate its tilt: a perfectoid space X” of characteristic p that is locally covered
by the adic spectra of the tilts of the perfectoid affinoid rings defining the charts of X.
The various tilting equivalences referred to in Remark 2.7 globalize as well, for example

X and X" are homeomorphic and have equivalent étale sites [14].

Let X be a perfectoid space with tilt X”. We begin this section by constructing
the desired map between the Picard groups of X and X”. By [11, Theorem 3.5.8], vector
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2580 G. Dorfsman-Hopkins

bundles on X in the analytic, étale, pro-étale, and v-topologies all agree (and similarly
for X”), so there is no confusion by what we mean by the Picard group. Denote the
sheaves of units of X and X by Ox and 0%,
isomorphic analytic, étale, pro-étale, and v-sites, we can view both as sheaves on X.

respectively. As X and X” have canonically

With this perspective in mind, we have an identification:

%, = lim 6%, 2)

The desired map is easily obtained from this identification.
Lemma 3.3. There is a natural map @ : PicX* — lim Pic X.

Proof. Using the identification in Equation (2), we obtain projections O — - —
0} — 0}%. Taking the 1st cohomology group gives PicX” — ... — PicX — PicX, and ¢

arises as the universal factorization through the inverse limit. |

We can explicitly study the obstructions to 6 being an isomorphism by exhibit-
ing it in a spectral sequence. In particular, we apply derived global sections to Equation
(2) and analyze the Grothendieck spectral sequence. We have the following diagram of

functors.

ShAb(X)

/

ShAb(X)

N

Ab - (3)

lim

N A

lim
T
Ab

Lemma 3.4. T takes injective sheaves to lim-acyclic abelian groups, and lim takes

injective sheaves to I'-acyclic sheaves.

Proof. In fact, the global sections functor takes injectives to injectives because it has
an exact left adjoint (given by the constant sheaf associated to an abelian group).

To show lim takes injectives to acyclics, we fix an injective module .# and
observe that for every U, .#|; is injective also (since restriction to U is right adjoint to
extension by 0, which is exact). The global sections of an injective sheaf is an injective
abelian group and is therefore divisible. Thus, the multiplication by p-map on .# is

surjective. Furthermore, by injectivity we have H{(U, .#) = 0 for all i > 0, so that for any
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i and U, the inverse system along multiplication by p
(- HU.»H > HWU )

has surjective transition maps and therefore satisfies the ML-condition. Therefore,

applying [7, Proposition 13.3.1], we observe that for all i the natural map,
H'(X,lim .#) - limH'(X, %)
is an isomorphism. In particular, lim .# is I'-acyclic as desired. ]

This allows us to harness the composition of functors spectral sequence to study

morphism at the center of the manuscript and prove our main theorem.

Theorem 3.5. Let X be a perfectoid space with tilt X”. Then ¢ fits into an exact

sequence:
0 — R!limI'(X, &%) —> PicX’ - lim PicX —> 0. (4)
In particular, if I'(X, Oy) is a perfectoid ring, then 6 is an isomorphism.

Proof. Consider the compositions in Diagram (3). Applying Lemma 3.4 and [16, Tag

015M], one obtains natural isomorphisms of derived functors:
RI(X,Rlim(-)) «— R(I'(X, ) o lim(-)) = Rlimol'(X, :)) — RUmRI(X, ). (5)

Furthermore, the cohomology of the middle complex computes the sheaf cohomology of
lim of a sheaf. Therefore, identifying ﬁ;b = lim 0% as abelian sheaves on X, as well as
making the appropriate identifications using Equation (5), we obtain the following two
composition of functors spectral sequences:

EY?: HP(X,Rlim0}) = HPTY(X,RlimO}),

EP?. RPLmHIX,0%) = HPTY(X,Rlim0}).
Considering the low degree terms gives us the following diagram whose rows are exact,
and 6 appears as the diagonal arrow.

0 — HY(X,0%,) —— H'(X,Rlim &%) — [(X,R'lim 0%) —— H(X, 0%,)

0 — R'limI'(X, 0%) — H'(X,Rlim %) — limH'(X, 6%) —— R2Lm (X, 0%).
(6)
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R!lim U% is the sheafification of the presheaf U — R!lim Ox(U)*. But X has a basis of
affinoid perfectoids U, on which 0y (U) is a perfectoid ring, so R! lim 5 (U)* = 0 (by
Proposition 2.5 or 2.10 in the integral or Tate cases, respectively). Since the presheaf is
0 on a basis, its sheafification is 0 so that I'(X, R! lim 0%) = 0 and the top row exhibits

an isomorphism:
H'(X, 0%,) = H' (X, Rlim 0%).

On the other hand, we know derived limits of abelian groups have cohomology
concentrated in degrees 0 and 1 (see, e.g., [16, Tag 07KW]), so that the bottom right term
of Diagram (6) is 0. Therefore, Sequence (4) emerges as the bottom row. If we assume
further that I'(X, Oy) is a perfectoid ring, then the left term of Sequence (4) is 0 (again
by Proposition 2.5 or 2.10), completing the proof. |

4 Consequences and Examples
4.1 The untilting homomorphism

Let us set some notation. For an for an abelian group A we denote by T,A = lim A[p"]

the p-adic Tate module of A, and by A the maximal p-divisible subgroup of A, or

pDiv’
equivalently, the subgroup of elements with infinite systems of p”th roots. In particular,

one always obtains an exact sequence 0 — T,A — limA — A — 0.

pDiv

Now, let X be a perfectoid space. One can compose 6 : Pic X” — lim Pic X together
with the projection : lim PicX — PicX onto the 1st coordinate to obtain the untilting
homomorphism 6, : PicX” — PicX. If '(X, Uy) is a perfectoid ring, Theorem 3.5 and the

previous paragraph tell us that 6, fits into following exact sequence:
. . 0 .
0 — T, PicX —> PicX’ —> (PicX),p;, — O.

In particular, we have the following corollary to Theorem 3.5.

Corollary 4.1. Let X be a perfectoid space, and suppose I'(X,0y) is perfectoid.
Consider the untilting homomorphism 6, : PicX” — PicX.

1. 6, is injective if and only if T, PicX = 0.

2. 6, is surjective if and only if Pic X is p-divisible.

3. 6§, is an isomorphism if and only if Pic X is uniquely p-divisible.

As a special case of (1), we see that if Pic X is p-torsion free, or more generally if

Pic X has bounded p*>-torsion, then 6, is injective.
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As a consequence of the étale comparison theorem in prismatic cohomology,
Bhatt and Scholze [1, Corollary 9.5] show that a large class of perfectoid affinoid adic
spaces have uniquely p-divisible Picard groups. In particular, they show that if R is
integral perfectoid, then R and R[1/p] have uniquely p-divisible Picard groups. This

gives us the following immediate corollary.

Corollary 4.2. Let R be an integral perfectoid ring. Then,
PicR”> = PicR and Pic(RI1/p]’) = Pic(RI1/p)).
In particular, 6, is an isomorphism for any perfectoid algebra over a field.

One observes that the same is true in a number of global examples.

Example 4.3. In[5, Theorem 3.4], we computed the Picard group of projectivoid space,
showing that Pic PP = 7[1/p], which is uniquely p-divisible. Therefore, the untilting
map for projectivoid space is an isomorphism. Of course, since the value of Pic P*Perf ig

independent of perfectoid base field (and therefore tilting), this is unsurprising.

Example 4.4. Generalizing the previous example, if XPe™f is the perfectoid cover of a
smooth proper toric variety X (as in [14, Section 8]), then Pic(XP®) = Pic(X)[1/pl, (by
[6, Theorem 4.1]). In particular, p acts invertibly on Pic(XPef) and so fy is an isomor-

phism.

Example 4.5. Let A be an abelian variety (over a perfectoid field) and [p] : A — A
the multiplication by p map. Then passing to the inverse limit, there is a perfectoid
space A ~ limA (by [13, Lemme A.16] in the case where A has good reduction over an
algebraically closed field, and by [3, Theorem 4.6] in general). The work of Heuer [8,
Theorem 1.10] shows that if A has good reduction, then p acts invertibly in the Picard
group of A, so that by Corollary 4.1, we may conclude that Pic A® = PicA.

We also include an example where 6, is neither injective nor surjective, coming
from a construction of [3] and [8, Section 6.3] of a perfectoid space whose Picard group

is not p-divisble nor p-torsion free.

Example 4.6. Let K be a perfectoid field of characteristic 0, and consider the Tate
uniformization of an elliptic curve E = Gm/qZ, considered as an adic space over K.
Suppose g has a coherent system of p-power roots—for example, if g is in the image of

#: (K")* — K*. Fix such a system so that the symbol g'/?" makes sense for all n > 0. The
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p-power map induces a sequence of isogenies:
i G/ = G /qP - G/,
and by [3], passing to the “tilde” inverse limit produces a perfectoid space:
E, ~1imG,,/q""".

n

By [8, Proposition 6.1] the Picard group of E_ fits into the following exact sequence:
0 — K*/q"V/P! s PicE —> Z[1/p] —> O.

Consider multiplication by p on this sequence:

0 —— K*/¢*M/P]l — & PicEy, —— Z[1/p] —— 0

Js P

0 —— K*/q?V/Pl —— Pic By — Z[1/p] — 0

Corollary 4.1 says that the injectivity and surjectivity of the untilting map 6, : Pic E} —
PicE_, is controlled by the kernel and cokernel of ¥, and since Z[1/p] is uniquely p-
divisible the snake lemma tells us that these are in turn isomorphic to the kernel and
cokernel of ®. But these are easy to compute. Consider the square whose rows are the

p-power map

K — K~

| l

K*)qP/e] 25 ox [g2L/p)
The kernel of the composition consists of functions f € K* such that f? = g¢ for some
d € ZI1/pl. Thus, f/q%P € Kp is a pth root of unity. In particular, f is given by an element
of ¢!/} and one of 11, and furthermore g“'/P! N 1, = 1 so that the kernel is isomorphic
to u, x g”/Pl. We get the ker ® modding out by the 2nd factor, so that ker® = p,,.
Arguing for successively higher powers of p we see that the kernel of the projection
lim Pic E,, — Pic E_, is isomorphic to lim,, Ppn = Zp(l), so that by Theorem 3.5, we have

a left exact sequence:
. b .
0 —> Z,(1) —> PicEy —> PicE,, (7)

whose right exactness is controlled by coker ®. The cokernel of the p-power map from
K* to itself is K*/(K*)P, and we chose g so that gZ11/P! C (K*)P so that

coker ® = (K* /qZ“/P]) / ((K*)P /qZ“/P]) ~ K /(K*)P.
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Therefore, Sequence 7 is right exact if and only if every element of K* is a pth power. In
particular, we see that it is right exact if K is algebraically closed but is not in general—
for example if K = Q, (pl/pm)f

In fact, we can give a concrete description of the kernel and cokernel of 6, for
elements that arise from divisors on the Tate curve. Observe that the choices of p-power
roots of g € K* determines a unique element ¢” € (K°)*. Then we can compute the tilt of
E_ as

(Ex)’ ~Um(G,,)’/(@)'P".
n

Identifying colimPic E as a subset of Pic E,, (and similarly for Pic Ego), we can identify
points of K*/q”!!/P! (respectively (K°)*/(q")“!}/P}) with certain degree 0 line bundles on
E_ (respectively (E, )"). On these line bundles, 6, descends from the untilting map f.

| !

(Kb)*/(qb)Z[l/p] o K*/qZ[l/p].

With this presentation, we see that divisors in the kernel are precisely those with
coordinates that map to 1 under f (i.e., elements of Zp(l)), elements of the cokernel come

from points in K* that do not have infinitely many p-power roots.

4.2 Trivializing inverse systems of line bundles in the analytic topology

Let £, %4, %,, -+ be a system of line bundles on a perfectoid space X with 92”1.?’; = <.
There is an obvious way to construct a pro-étale cover of X, which simultaneously
trivializes all of the .}, by further refining étale covers trivializing each ., individually
and letting i go to infinity. Nevertheless, it is not immediately clear that there should be
an étale cover, which simultaneously trivializes all the .Z,. A consequence of Theorem 3.5

is that there is, and in fact there is even an analytic cover that does so.

Corollary 4.7. Let X be a perfectoid space and .%, .}, - - - , a system of line bundles on
X with ‘fﬁlf = .Z,. Then there is an analytic cover U — X that simultaneously trivializes

all the .Z,.

Proof. Although the global sections of Oy are not a priori perfectoid, there is
an analytic open cover ¥V — X where I'(V,0y) is. Therefore, by Theorem 3.5, the

inverse system (%|;) € limPicV is the untilt of a unique ¥ € PicV’. There
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is an analytic cover U’ — V’ trivializing .#, which is the tilt of an analytic
cover U — V. By functoriality the inverse system (Z|;) € limPicU is the untilt
of Z», which is trivial. Again, by Theorem 3.5, each .Z|; is trivial, completing
the proof. |

Remark 4.8. In the case that X is integral or over a field, Corollary 4.7 is an easy
consequence of [1, Corollary 9.5]. Indeed, in this case, if U — X is an affinoid cover
trivializing %}, then their result implies that Pic(U) is uniquely p-divisible. Therefore,
since ., |y has trivial p”-th power, it must be trivial as well. Corollary 4.7 is slightly
more general, allowing for Tate perfectoid spaces that are not over fields (cf. [15,
Example 6.1.5.4]).

4.3 (-Adic cohomological Néron-Severi groups

We would like to study how the untilting maps 6 and 6, act on Néron-Severi groups
of perfectoid spaces. Since we do not have representability of the Picard functor, we
need a notion of Néron-Severi groups to make sense of this, so we take a cohomological
approach. We begin by defining the ¢-adic cycle class map.

Let X be an adic space and ¢ a prime invertible in . From the long exact
sequence on étale cohomology associated with the Kummer sequence 1 — u,;n — G, —
G,, — 1 one obtains an injection:

PicX
€ PicX
Passing to the inverse limit among all n, one obtains a map PicX®Z,(1) — Hgt(X, Z,(1))

> HZ(X, [t4n)- 8)

and precomposing with the natural map from Pic X, one obtains the ¢-adic cycle class

map:

¢, : PicX — HZ (X, Z,(1)).
Definition 4.9. Let X be an adic space and ¢ a prime invertible in 0. Then the ¢-adic
cohomological Néron-Severi group is defined to be the image of the ¢-adic cycle class

map.
NS, (X) := im(c,).
In certain nice situations, including the case of an abelian variety over an

algebraically closed field, this definition agrees with the usual notion of Néron-Severi

groups.
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Lemma 4.10. Let A be a proper nonsingular variety over an algebraically closed field
of characteristic not equal to ¢, and suppose further that NS(A) is torsion free. Then
NS, (A) = NS(A).

Proof. This is well known but we include the proof for completeness. We first observe
that because Pic°(A) is divisible, we have Pic® A C ¢ Pic A so that
PicA __ PicA/Pic’A _ NS(A)
fmPicA  ("PicA/Pic°A  ("NS(A)’

In particular, the source of the injection from Equation (8) can be identified with
NS(A)/L" NS(A) and passing to the inverse limit along n one obtains the following

composition whose image agrees with the image of the ¢-adic cycle class map ¢;:
NS(A) — NS(4) ® Z,(1) — HZ(X,Z,(1)).

We finish by observing that the 1st map is injective because NS(A) is torsion free. ]

The ¢-adic cohomological Néron-Severi group plays well with the untilting

homomorphism that is the subject of this paper.

Proposition 4.11. Let X be a perfectoid space and ¢ prime to the residue characteristic

of X. Then the untilting homomorphism 6, passes to an injection:
NS,(X") < NS,(X).

Proof. Identify the étale sites of X and X”. Since the projection map t: G?n =limG,, - G,

is multiplicative, for all n it induces a map of Kummer sequences

1 MZn G, G, 1
|
1 Jhon G G 1.

Since the p-power map on x4, is an isomorphism, the projection u;n — [n is too. Taking

the long exact sequences on étale cohomology fits 6, into the following diagram.

. o .
Pic X* —— Pic X’ —— HZ, (X", pe)

PR

Pic X —— Pic X —— HZ(X, )
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Passing to the limit among all n we obtain the following commutative square.

Cb
Pic X* — H2,(X*,Z(1))

P

Pic X —“— HZ,(X,Z(1)).

In particular, the vertical map on the right restricts to an injection between the images

of the cycle class maps, completing the proof. |

Proposition 4.11 has the following immediate corollary, arguing analogously to

Corollary 4.1.

Corollary 4.12. Let X be a perfectoid space and ¢ prime to the residue characteristic
of X. f T'(X, U%) is a perfectoid ring, then T, NS, (X) = 0.

4.4 Appearances of new line bundles at infinite level

Both [5, Theorem 3.4] and [6, Theorem 4.1] study examples of varieties X, together with
a “Frobenius like” map @ : X — X so that there is a mixed characteristic perfection, a
perfectoid space X ~ lim X (as the notation suggests, this can be thought of in certain
cases as a sort of universal cover). The content of the theorems in each case is that this
limit commutes with taking Picard groups, that is, that the natural map colim PicX —
PicX is an isomorphism. The work of Heuer [8, Section 6.2] shows that this is not true in
general, giving an example where this fails in characteristic p. We conclude by giving an
example of this failure in characteristic 0. In both cases, the counterexample consists
of an abelian variety A over a perfectoid field and its perfectoid cover A ~ lim,; A — A
(as in Example 4.5) such that the induced map colim PicA — Pic A is not surjective.

The idea is to start with an abelian variety A whose Neron-Severing rank
p(A) jumps modulo p and then use Proposition 4.11 to inject the (now larger) Néron-
Severi group of A" into the Néron-Severi group of A, thus exhibiting line bundles
that cannot come from A. For the perfectoid covers, we will need to use the ¢-adic
cohomological Néron-Severi groups introduced above, observing by Lemma 4.10 that
for abelian varieties over algebraically closed fields the two notions are interchangable.
We first confirm that the Néron-Severi rank does not decrease when passing to the

perfectoid cover.
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Lemma 4.13. Suppose A is an abelian variety over a perfectoid field, and let ¢ be
prime to the residue characteristic. Let A — A be its perfectoid cover. The induced map
colimNS(4) — NS, (A) is injective.

Proof. The Kummer sequence 0 — u;m — G,, — G,, — 0 induces the following
diagram whose rows are exact:

PicA —— PicA —— H2,(A, uen)

! J l

colim Pic A —— colim Pic A —— colim HZ, (A, f1¢n)

! l [

PicA —— PicA —— HZ,(A, jm).

Suppose (%) € colimPic A maps to 0 in NS, (A). This means that for n large enough, it
maps to 0 in Hgt(ﬁ, ten). By [14, Corollary 7.8], n,, is an isomorphism, so that (.Z;) maps
to 0 in colim Hgt(A,Wn). By exactness, .Z; is an ¢"*th power for i > 0, so that the class
of %, in NS(A) = 7™ is a multiple of ¢" for all n > 0, so that it must be 0. Therefore,

(Z,) € colim Pic® A and we win. [ |
We now have a model for our counterexample.

Proposition 4.14. Let K be an algebraically closed perfectoid field with tilt K°.
Suppose that A is an abelian variety over K, and B an abelian variety over K”, whose
perfectoid covers satisfy A =B.If p(B) > p(A), then the map colimPicA — PicA is not

surjective.

Proof. Weremind the reader that for any abelian variety X over an algebraically closed
field, if [n] : X — X is multiplication by n, then the pullback map [n]* : NSX — NSX
is multiplication by n? (see, e.g., [12, 2.8(iv)]). Therefore, as NS(X) = Z*%), we know
colimy,;. NS(X) = Z[1/n]*®).

Therefore, the assumptions of the proposition, together with Lemma 4.13 and

Proposition 4.11 give us the following chain of inequalities:
rky, ) cOim NS(A) < kg, /) colim NS(B) < rkyy; 1, NS, (B) < rkyy; ) NS, (A).

In particular, colim NS(4) — NS, (A) cannot surject and therefore neither can the map

in question. u
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We conclude by giving examples of abelian varieties that satisfy the assump-
tions of Proposition 4.14. Let A be the integral model over Z,, of an abelian variety with
good reduction over Q,,. Let C,, be the completion of the algebraic closure of Q,, and let
(C';, be its tilt. Then one can consider the base change of A to (Cp and (C;), which we denote

by A(Cp and A(CZ , respectively.

Lemma 4.15. In the setup of the previous paragraph, we have
—\b
(A(Cp) =24,

Proof. Let” be a pseudouniformizer for C;, and @ = (")’ By the tilting equivalence
[14], both ZE; and Zg are determined (up to almost isomorphism) by their models over
P

O(Cb Jw’ = O(Cp/zzr =: R, which extends Fp. In each case, we observe that this model must
p

be the scheme lgn[p] (A]Fp Xspeck, SPEC R). |

To construct abelian varieties satisfying the assumptions of Proposition 4.14,
we may therefore start with abelian varieties with good reduction over Q,. Abelian
varieties over Q, whose Néron-Severi ranks increase upon reduction modulo p are
abundant. Take, for example, A = E x E where E is a non-CM elliptic curve over Qp
with supersingular reduction. In this case, we have ,o(A(C;) =6>3= ,o(ACp), giving the

desired example.
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