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Abstract. SHMEM-ML is a domain specific library for distributed
array computations and machine learning model training & inference.
Like other projects at the intersection of machine learning and HPC
(e.g. dask, Arkouda, Legate Numpy), SHMEM-ML aims to leverage the
performance of the HPC software stack to accelerate machine learning
workflows. However, it differs in a number of ways.

First, SHMEM-ML targets the full machine learning workflow, not
just model training. It supports a general purpose nd-array abstraction
commonly used in Python machine learning applications, and efficiently
distributes transformation and manipulation of this ndarray across the
full system.

Second, SHMEM-ML uses OpenSHMEM as its underlying communi-
cation layer, enabling high performance networking across hundreds or
thousands of distributed processes. While most past work in high perfor-
mance machine learning has leveraged HPC message passing communi-
cation models as a way to efficiently exchange model gradient updates,
SHMEM-ML’s focus on the full machine learning lifecycle means that a
more flexible and adaptable communication model is needed to support
both fine and coarse grain communication.

Third, SHMEM-ML works to interoperate with the broader Python
machine learning software ecosystem. While some frameworks aim to
rebuild that ecosystem from scratch on top of the HPC software stack,
SHMEM-ML is built on top of Apache Arrow, an in-memory standard
for data formatting and data exchange between libraries. This enables
SHMEM-ML to share data with other libraries without creating copies
of data.

This paper describes the design, implementation, and evaluation of
SHMEM-ML – demonstrating a general purpose system for data trans-
formation and manipulation while achieving up to a 38× speedup in dis-
tributed training performance relative to the industry standard Horovod
framework without a regression in model metrics.
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1 Motivation

Data science and machine learning techniques have found broad applications,
from proxy modeling in scientific applications to consumer recommendation
engines to autonomous vehicles.

Most DS/ML frameworks are written to maximize programmability and
portability, sacrificing performance. For example, most are written for Python,
an extremely flexible but also interpreted programming language with high over-
heads. Pandas, a popular Python library for data scientists, mostly follows a
copy-on-write semantic for mutating large n-dimensional arrays. This can lead
to massive memory consumption on moderately-sized datasets. While this trade-
off makes sense for small-scale projects, this causes problems for even simple data
processing, exploration, and visualization workflows on the large-scale datasets
that are common place today.

As a result, several efforts have explored taking well-known techniques
and frameworks from the HPC community and applying them to DS/ML
frameworks to yield both productive and high performance domain specific
libraries/languages. These past works generally fall in to two buckets: (1) efforts
to transparently use HPC frameworks underneath existing, industry-standard
DS/ML frameworks, or (2) effort to replace existing DS/ML frameworks with
new ones built with HPC technologies from the start.

1.1 Related Work: Using HPC Frameworks Under Existing DS/ML
Frameworks

For example, in [11] the authors used OpenSHMEM [7] to accelerate distributed
Caffe training jobs of the LeNet Solver network by replacing the existing MPI-
based gradient exchange with equivalent OpenSHMEM operations. While this
yielded a 30% improvement in training time over the existing implementation,
this application of HPC technologies ignores the rest of the data science workflow.
Projects like this one focus on a relatively small segment of the data science
workflow (in this case, model gradient updates). Additionally, given that these
optimizations are generally done at the lowest level of the data science software
stack, they may miss optimizations that are only possible when higher level
semantics are exposed.

1.2 Related Work: Novel HPC DS/ML Frameworks

On the other hand, there are several recent projects that aim to offer an all new
data science software stack built on top of HPC technologies.

Legate Numpy [2] aims to offer a numpy-like [6] interface for multi-
dimensional array processing on top of a high performance, distributed pro-
gramming model called Legion [3]. Legate exposes a SPMD interface in Python,
and a bridge to arrays stored in Legion (called logical regions) that allows for
Python programmers to interact with Legion arrays in a similar manner to how
they would interact with a Numpy array. While the programming model will be
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familiar, the authors call out that only a “a subset of the full NumPy API” is cur-
rently supported. To our knowledge, there would also be no straightforward way
to use Legate arrays with other Python libraries (e.g. Tensorflow, scikit-learn).

Arkouda [5] is another example of a high performance data science frame-
work, in this case built on top of Chapel [4]. It aims to offer “distributed arrays
with parallel primitives”, a “familiar interactive interface”, and “smooth integra-
tion with mature HPC code”. In the case of Arkouda, the high level architecture
is a Chapel-based cluster communicating with a Jupyter/Python client. In this
way, the user can run their analyses in an easy-to-use and familiar Python envi-
ronment most of the time but still ship larger kernels to a massive, distributed
environment when needed (while accepting that the functionality supported in
that larger environment is also more limited).

In both the case of Arkouda and Legate, we can see some challenges with these
approaches. While Legate tries to offer a familiar programming model and Ark-
ouda supports single-threaded Python execution on the client, both approaches
essentially ignore the existing and massive DS/ML Python ecosystem of libraries
and tools that users may expect to have access to (even in an HPC, distributed
environment).

1.3 Contributions

SHMEM-ML is a new distributed nd-array and distributed inference/training
machine learning system built on top of OpenSHMEM, exposing productive
C++ & Python APIs, and leveraging Apache Arrow to support integration with
the broader Python ecosystem. SHMEM-ML is available open source at https://
github.com/agrippa/shmem ml.

The remainder of this paper is structured as follows. Section 2 will cover the
high level programming model and APIs of SHMEM-ML, as well as walk through
some simple examples of SHMEM-ML’s usage. Section 3 will describe its imple-
mentation in detail. Section 4 will walk through some illustrative performance
benchmarks, and Sect. 5 will wrap up with some discussion and conclusions.

2 Programming Model

2.1 Distributed SHMEM-ML Arrays

SHMEM-ML exposes C++ and Python APIs for:

1. Distributed nd-array creation, manipulation, and destruction.
2. Distributed training and inference of machine learning models, applied to

SHMEM-ML’s distributed nd-array abstractions.

Creating and mutating distributed SHMEM-ML arrays can be done concisely
in both C++ and Python. Table 1 includes a few example SHMEM-ML APIs.

The full SHMEM-ML C++ and Python APIs is too long to be included
inline, but in general SHMEM-ML arrays support:

https://github.com/agrippa/shmem_ml
https://github.com/agrippa/shmem_ml


114 M. Grossman et al.

Table 1. Example SHMEM-ML routines for creating, accessing, and manipulating
SHMEM-ML arrays in C++ and Python.

Operation C++ Python

Create a 1D array of
length N initialized to zero

ShmemML1D<float>
arr(N, 0.0);

PyShmemML1DD(N)

Create a 2D array of size
MxN initialized to zero

ShmemML2D<float>
arr(M, N, 0.0);

PyShmemML2DD(M, N)

Apply a function to each
element of an array

arr.apply ip([]
... );

arr.apply(lambda ...)

Access a single local or
remote element

arr.get(i); arr.get(i)

– Allocation of distributed one- and two-dimensional arrays of primitive types
and arbitrary size, up to the limits of the machine being used.

– Applying custom functions element-wise.
– Getting or setting elements.
– Clearing arrays to a specified value.
– Atomically updating local or remote array elements.
– Global reductions across the entire array (e.g. sum reduction).
– Saving and restoring of arrays to disk.

2.2 SHMEM-ML Arrays with Third Party Python Libraries

Additionally, today SHMEM-ML arrays integrate with commonly used Python
data science libraries, including numpy, scikit-learn [8], and keras [12]. Section 3
includes more details on the implementation of this integration. For example,
you can use a numpy random number generation API to populate data in a
distributed SHMEM-ML array:

from PyShmemML import rand
vec = rand(vec)

Under the covers, the above code snippet uses the numpy.random.rand inter-
face to implement random number generation.

It is also possible to train and apply scikit-learn models on SHMEM-
ML distributed arrays. In the example below, Xtrain, Ytrain, Xvalid, and
predictions are all distributed SHMEM-ML arrays.

from PyShmemML import SGDRegressor
clf = SGDRegressor(max_iter=niters)

clf.fit(Xtrain, Ytrain)
predictions = clf.predict(Xvalid)

The same can be done with Keras:
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from tensorflow import keras
from PyShmemML import Sequential

clf = Sequential()
clf.add(tensorflow.keras.Input(shape=(5,)))
clf.add(tensorflow.keras.layers.Dense(3, activation=’relu’))
clf.add(tensorflow.keras.layers.Dense(1, activation=’relu’))
opt = keras.optimizers.SGD(learning_rate=0.01)

clf.compile(optimizer=opt, loss=’mse’)

clf.fit(Xtrain, Ytrain, epochs=niters)
predictions = clf.predict(Xvalid)

The structure of the code above will be very familiar to any existing Python
data scientists. However, behind the scenes the data and workload is being dis-
tributed across an OpenSHMEM-based cluster. At the same time, we are leverag-
ing all of the existing software in the Python data science ecosystem by relying
on third party libraries like scikit-learn and keras for algorithms like forward
propagation, backward propagation, gradient calculation, optimizers, etc.

2.3 Client-Server vs. SPMD

One of the main differences between how data scientists and HPC programmers
interact with high performance clusters today is in the fundamental parallelism
model exposed to them. Most data scientists are familiar with a client-server
style model, in which a single Python notebook or shell distributes work to a
large cluster. This is also the approach taken in Arkouda. However, most HPC
programmers are more familiar with SPMD-style programming as it generally
offers better scalability by removing the bottleneck of distributing work from a
single client. This is the approach taken by Legate.

While it is safe to assume that SPMD-style programming will be more scal-
able for most use cases, it is also important to meet data scientists where they
are comfortable. As a result, SHMEM-ML supports both a client-server style
interface and an SPMD-style interface.

By default, SHMEM-ML in Python runs in SPMD mode with each pro-
cess executing the same Python program in parallel. Processes have access to
a PyShmemML.pe() function to fetch their unique OpenSHMEM PE ID, and
PyShmemML.npes() to fetch the number of running OpenSHMEM PEs.

To run in client-server mode, rather than launching the Python pro-
gram using the python interpreter (e.g. python foo.py), the program-
mer uses a SHMEM-ML wrapper called shmem ml client server (e.g.
shmem ml client server foo.py). Then, the SHMEM-ML program will be run
with a single process distributing work to the entire cluster.

In this way, users in both the data science and HPC communities can choose
the programming abstractions they are most comfortable with. In the case of
Arkouda and Legate, each programming system dictated whether the program-
mer worked in client-server or SPMD mode.
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3 Implementation

SHMEM-ML is built on top of a number of open source or third party software
packages. This section offers a brief overview of the fundamental building blocks
of SHMEM-ML, as well as how they are put together to support distributed
arrays and integration with the broader Python ecosystem.

At a high level, SHMEM-ML uses:

– Apache Arrow [1] for in-memory data storage and zero-copy data exchange
with third party Python libraries.

– OpenSHMEM [7] for distributed job creation, inter-process communication,
and inter-process coordination.

– Tensorflow, Keras, scikit-learn, numpy and other Python data science libraries
for the implementation of more algorithmically complex data science function-
ality such as training and inference of deep neural networks.

3.1 Background: OpenSHMEM

The OpenSHMEM library provides a single program, multiple data (SPMD) exe-
cution model in which N instances of the program are executed in parallel. Each
instance is referred to as a processing element (PE) and is identified by its integer
ID in the range from 0 to N − 1. PEs exchange information through one-sided
get (read) and put (write) operations that access remotely accessible symmetric
objects. Symmetric objects are objects that are present at all PEs and they are
referenced using the local address to the given object. By default, all objects
within the data segment of the application are exposed as symmetric; additional
symmetric objects are allocated through OpenSHMEM API routines. OpenSH-
MEM’s communication model is unordered by default. Point-to-point ordering is
established through fence operations, remote completion is established through
quiet operations, and global ordering is established through barrier operations.

3.2 Background: Apache Arrow

Apache Arrow is an open community effort to define a universal in-memory data
format for n-dimensional arrays. Arrow’s aim is to enable zero-copy, efficient
data exchange between different libraries regardless of language and without
each library having to provide explicit support for every other library. Apache
Arrow defines a number of commonly used objects and functionalities, including
one-dimensional arrays, two-dimensional tables, and file I/O.

3.3 Background: Scikit-Learn, Tensorflow, and Horovod

scikit-learn and Tensorflow/Keras are industry standard libraries for training and
applying data-driven or machine learned models. Scikit-learn focuses on provid-
ing classes for more classical and statistically-derived machine learning models
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(e.g. linear regressors, support vector machines, random forests, gaussian mix-
tures). Tensorflow/Keras focus on more recent developments in deep learning
models, making it simple and straightforward to create deeply layered mod-
els with a variety of built-in layer types supported (e.g. Dense, Convolutional,
Pooling, Recurrent, Normalization). Custom layer types can also be added by
programmers. While Keras was started as an independent framework for train-
ing deep learning models, it was eventually merged into Tensorflow in 2017 as
an alternative API.

While scikit-learn does not support distributed training today, Tensor-
flow/Keras offer a number of options. The most commonly used framework for
distributed training of Keras models is Horovod [9] which uses an efficient ring-
allreduce method to distributed gradient updates while sitting on top of high
performance communication libraries (e.g. MPI) when supported. The introduc-
tion of Horovod to the Tensorflow/Keras communities drastically improved the
scalability and productivity of distributed training.

3.4 ND-Array Implementation

Today, SHMEM-ML distributed arrays are limited to being either one- or two-
dimensional – in the future, this restriction could be lifted. In either case, the
core data backing a SHMEM-ML array is an Apache Arrow data structure allo-
cated on the OpenSHMEM symmetric heap. In the case of a one-dimensional
array, we use Arrow’s FixedSizeBinaryArray class which allows us to allocate
a contiguous array of elements, each containing sizeof(T) bytes. In the case
of two-dimensional SHMEM-ML arrays, we use Arrow’s Table class to store
columns of Arrow Arrays.

To have the backing allocations for Arrow’s Table and Array classes allo-
cated in the OpenSHMEM symmetric heap, we have also implemented a custom
Arrow MemoryPool that supports Allocate, Reallocate, and Free functions
that operate on memory regions in the symmetric heap. This custom memory
pool is passed to the Arrow runtime when constructing a new Array or Table,
and in turn the Arrow runtime calls it when memory is needed.

One-dimensional SHMEM-ML arrays are distributed in chunks across the
available OpenSHMEM PEs, and two-dimensional arrays are chunked across
rows. Today, the type of distribution and chunk size is chosen for the program-
mer – future work could extend this to support different data distributions (e.g.
cyclic). SHMEM-ML also supports what we call “replicated” arrays. When allo-
cated with a size N, they allocate N elements on every PE (rather than distribut-
ing them across PEs). In general, replicated arrays are useful when a programmer
wants to update the local copy and then perform some type of a global sync of
every PE’s local updates (e.g. a global sum of all local values).

SHMEM-ML arrays include functions for looking up basic information on a
distributed array, including the number of elements in the array, which PE stores
a given element based on its index, and the starting/ending indices of elements
stored on the local PE.
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SHMEM-ML arrays also support a number of getter and setter APIs. For
example, one-dimensional arrays support both getting and setting elements in
the array using either global indices into the entire distributed array or local
indices into the local chunk of the array. Some example one-dimensional APIs
are included below. Under the covers, all remote operations are performed using
OpenSHMEM APIs (e.g. shmem putmem or shmem getmem).

// A remote get based on the global index in the distributed array
inline T get(int64_t global_index);

// A remote set based on the global index in the distributed array
inline void set(int64_t global_index, T val);

The getter and setter methods above are not atomic (i.e. if two PEs try to
set the same global index, the result is undefined). As a result, SHMEM-ML also
supports atomic operations on elements of arrays. There are two implementations
of atomic operations in SHMEM-ML: OpenSHMEM-based and message-based.
OpenSHMEM-based atomic operations are directly implemented using OpenSH-
MEM atomics APIS (e.g. shmem longlong atomic fetch add. Message-based
atomics are packaged up by the SHMEM-ML runtime as a small packet encod-
ing the operation to be performed and sent in batches to the target PE through
asynchronous mailboxes. In the cases of workloads performing large numbers
of atomic operations, this approach increases latency of individual operations
but can also drastically improve throughput. On the receiving side of an atomic
message, updates are simply done using memory reads and writes – this means
that the two types of atomics in SHMEM-ML are not atomic with respect to
each other. Additionally, because message-based atomics are asynchronous an
additional sync call is needed on the array in question to ensure all outstanding
atomics have been sent and processed. Some example atomics APIs are included
below.

// Perform an atomic compare-and-swap at the designated element.
// Return the previous value at that location.
T atomic_cas(int64_t global_index, T expected, T update_to);

// Perform an atomic compare-and-swap at the designated element,
// using the message-based atomics implementation.
void atomic_cas_msg(int64_t global_index, T expected, T update_to);

// Wait for all pending message-based atomics to complete on the
// target array.
void sync();

Finally, SHMEM-ML arrays also support global reductions performed on
their contained elements (e.g. max reduction, sum reduction). In general, a
local result is computed sequentially and then an OpenSHMEM reduction is
performed to compute the global result based on each PE’s local result. Some
example reduction array APIs are shown below.
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T max(T min_val);
T sum(T zero_val);

3.5 Client-Server Implementation

Section 2 described the difference between SPMD and client-server execution
from the user’s perspective. All that was needed to switch to a client-server
architecture for SHMEM-ML was to use a special shmem ml client server exe-
cutable when launching your distributed Python program, rather than the stan-
dard python interpreter.

Under the covers, this custom executable does the following:

1. Initializes OpenSHMEM and the Python runtime (if we are running client-
server mode from Python, and not from C++).

2. Sets a flag on each OpenSHMEM PE to indicate which are servers/workers,
and which is the client. In general, we select PE 0 as the client.

3. Symmetrically allocates what we call a command mailbox on every PE. This is
the only mechanism by which the client PE issues work to worker/server PEs.
Every time a distributed operation occurs on the client PE (e.g. distributed
array allocation, a distributed apply, a global reduction), coordination mes-
sages are sent from the client PE to all server PEs informing them of the
distributed operation to be performed.

4. All PEs that are servers then enter a command loop, waiting on new incoming
commands from the client and then performing the requested operations.

5. The client PE then launches the provided Python program using
PyRun SimpleFileExFlags. When it completes, it sends all servers a com-
mand to indicate that the program has completed and a collective
shmem finalize occurs.

Naturally, client-server mode faces some intrinsic scalability bottlenecks that
SPMD mode does not. However, for programmers that are less familiar with an
HPC-style programming environment it offers a more comfortable on-ramp to
using SHMEM-ML.

3.6 Integration with Scikit-Learn and Tensorflow/Keras

SHMEM-ML’s use of Apache Arrow enables zero-copy data exchange between
SHMEM-ML and other Arrow-based libraries, including numpy, Pandas, scikit-
learn, and Tensorflow. However, integrating into their workflows (particularly
for model training) does require some added logic.

Supporting executing numpy functions on SHMEM-ML arrays is relatively
straightforward. All SHMEM-ML arrays expose functions for (1) getting the
local Arrow arrays backing them (get local arrow array), and (2) updating
their contents from another Arrow array (update from arrow). Arrow arrays can
then be converted to or from numpy arrays, which can be passed to numpy’s
routines.
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Model inference workloads are also relatively simple, and generally consist of
applying a model element-wise to an input SHMEM-ML array after it has been
converted to a numpy array via Apache Arrow. Below is a simplified example
of the glue code between SHMEM-ML arrays and scikit-learn models for model
inference.

def predict(self, x):
# Convert the local chunk of our SHMEM-ML array to a Pandas
# Dataframe using Apache Arrow
x_arr = x.get_local_arrow_table().to_pandas(

zero_copy_only=True, split_blocks=True)

# Run the trained scikit-learn model on our local chunk,
# producing a new numpy array as output
pred = self.model.predict(x_arr)

# Allocate a new distributed SHMEM-ML array to store the
# result of the inference
dist_pred = PyShmemML1DD(x.M())

# Update the contents of dist_pred with the output of the model
dist_pred.update_from_arrow(pyarrow.array(pred))

# Return the new SHMEM-ML array containing the predictions
return dist_pred

However, model training workloads require more extensive glue code between
SHMEM-ML arrays and scikit-learn/Tensorflow models. In particular, because
the models themselves are responsible for updating their weights but are not
aware that they are being trained in parallel (i.e. that there are updates occurring
on remote PEs to remote copies of the model), SHMEM-ML must (1) take
over the iterative training process, (2) manage inter-process gradient exchange
between iterations, and (3) rely on models’ incremental training APIs to support
iteration-by-iteration training updates. This is in contrast with how models are
generally trained, by passing in the full training dataset and training for a large
number of iterations.

However, this process is relatively uniform across frameworks. Indeed, the
SHMEM-ML code base uses a single model training function to perform dis-
tributed training of both scikit-learn and Tensorflow models – with some model-
specific logic plugged in (e.g. to fetch the weights from a given model type).
A simplified version of that training function is shown below. Note that this
implementation is likely making some assumptions about the type of model and
type of optimizer being used for training, such that an averaging of weights on
each iteration will yield convergence. While this approach has been tested for
stochastic gradient descent optimizers, it may need customization for different
types of model optimization.
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def _training_driver(model, x_arr, y_arr, epochs, **custom_args):
dist_weights_grad = PyReplicatedShmemML1DD(...)

for it in range(epochs):

# Rely on the model supporting incremental training
model._fit_one_epoch(x_arr, y_arr, **custom_args)

# Fetch the model’s new weights as an arrow array, and
# convert it to a distributed, replicated SHMEM-ML array
arrow_weights = pyarrow.array(model._copy_weights())
dist_weights_grad.update_from_arrow(arrow_weights)

# Perform a sum reduction across all PEs on the model
# weights following this iteration’s updates
dist_weights_grad.reduce_all_sum()

# Extract a local numpy array containing the summed
# weights, and normalize the new weights by number of
# PEs (taking the mean of model weights across all PEs)
all_weights_grads = dist_weights_grad \

.get_local_arrow_array() \

.to_numpy(zero_copy_only=True) / npes()

# Update the model itself with the new average of all
# model updates across all PEs
model._update_weights(all_weights_grads)

4 Performance Evaluation

In this section, we will compare the performance and accuracy of models trained
on scikit-learn, Tensorflow, and SHMEM-ML. All results were collected on the
TACC Frontera machine’s primary compute system [10]. Each node of Frontera
includes a dual-socket Intel Xeon Platinum 8280 “Cascade Lake” CPU with 56
cores per node. Each node also includes 192 GB of DDR4 system memory. Nodes
are connected by a Mellanox Infiniband HDR-100 interconnect.

SHMEM-ML was built using OSSS-UCX OpenSHMEM and Apache Arrow
built from source code as of October 2020. GCC 9.1.0 was used. Tensorflow
v2.1.0, scikit-learn 0.23.2, and Horovod 0.21.1 were used in this evaluation.

To evaluate SHMEM-ML’s performance when training a scikit-learn model,
we will compare the performance of training a scikit-learn linear regression model
in a single-threaded Python process to distributed training in SHMEM-ML using
both client-server and SPMD modes.

To evaluate SHMEM-ML’s performance when training a Tensorflow model,
we will compare between (1) Tensorflow single-node, (2) Tensorflow multi-node
using Horovod, (3) SHMEM-ML SPMD, and (4) SHMEM-ML client-server.
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4.1 Scikit-Learn

The source code for model training in both the SHMEM-ML and scikit-learn
implementations of this benchmark are identical:

clf = SGDRegressor(max_iter=50)
clf.fit(X, Y);
predictions = clf.predict(X)

We use a synthetic dataset with 5 million samples and 5 32-bit floating point
features per sample for the purposes of benchmarking.

Table 2 includes wall times for training on a single node for scikit-learn and
SHMEM-ML. Note that running SHMEM-ML on a single node implies running
one PE per core, and so the SHMEM-ML numbers are with 56-way parallelism.
As expected, that added parallelization yields large speedups for SHMEM-ML in
client-server and SPMD mode relative to scikit-learn (37.3× and 45.3×, respec-
tively) with SPMD achieving slightly higher throughput. The sublinear speedup
on a single node for even the SPMD version can be attributed to coordination
and communication overheads required to exchange gradient updates between
PEs on each iteration of training. This is commonly the largest challenge to train-
ing scalability, and a source of future work for SHMEM-ML (e.g. by leveraging
more efficient communication patterns, similar to Horovod).

Table 2. Training performance running SHMEM-ML and scikit-learn on a single node

Framework Training (s) Training speedup

Single-threaded scikit-learn 509.83 1.0×
Client-server SHMEM-ML on one node 13.67 37.3×
SPMD SHMEM-ML on one node 11.26 45.3×

Figure 1 shows the execution time of SHMEM-ML’s scaling while training the
SGDRegressor model. We can observe the throughput benefits of SPMD mode,
though both modes of execution fail to scale beyond 1,792 PEs (32 nodes).

4.2 Tensorflow

Like scikit-learn, the source code for the SHMEM-ML and Tensorflow imple-
mentations of this benchmark are identical:

clf = Sequential()
clf.add(tensorflow.keras.Input(shape=(nfeatures,)))
clf.add(tensorflow.keras.layers.Dense(1, activation=’relu’))

opt = keras.optimizers.SGD(learning_rate=0.005)
clf.compile(optimizer=opt, loss=’mse’)
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Fig. 1. SHMEM-ML execution time in client-server and SPMD modes for training.
Note the log scale Y axis.

clf.fit(X, Y, epochs=niters, batch_size=128)
pred = clf.predict(X)

Like with scikit-learn, we use a synthetic dataset with 5 million samples and
5 32-bit floating point features per sample for the purposes of benchmarking.

There are additional hyperparameters in training of deep learning models
which did not have to be considered in the scikit-learn comparison. In particular,
we increase both the number of iterations/epochs in the distributed case and
the batch size per iteration to yield better convergence. In general, the following
tables and figures will report performance per iteration to ensure an apples-to-
apples comparison. Table 3 describes the full set of hyperparameters tuned for
our local and distributed jobs.

Table 3. Per framework hyperparameters

Framework Iterations Batch size

Single node tensorflow 40 32

Multi node tensorflow 5 128

Multi node SHMEM-ML 400 128

Table 4 includes wall times for training on a single node for Tensorflow
and SHMEM-ML. Again, the parallelism added by SHMEM-ML yields large
speedups in both client-server and SPMD mode relative to Tensorflow (111.98×
and 116.57×, respectively). Numbers are not reported for Horovod+Tensorflow,
as an OOM was encountered with only a single node.

Additionally, we ran experiments to compare the accuracy of the models pro-
duced by each framework – attempting to optimize hyperparameters for model
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Table 4. Training performance running SHMEM-ML and tensorflow on a single node

Framework Seconds per iteration Speedup

Single node tensorflow 142.22 1.0×
Client-server SHMEM-ML on one node 1.27 111.98×
SPMD SHMEM-ML on one node 1.22 116.57×

metrics rather than for an apples-to-apples throughput comparison. Table 5
summarizes the results. Not surprisingly, SHMEM-ML’s increased throughput
enables more iterations and therefore better model metrics.

Table 5. Model metrics and performance

Tensorflow Horovod SHMEM-ML

Iterations 40 130 500

Batch size 32 128 128

# Nodes 1 32 32

Total wall time 5899.15 2334.89 61.21

Seconds per iter. 147.48 17.96 0.12

RMSE 4.504500E−08 5.000000E−06 9.676908E−23

Finally, Fig. 2 shows the elapsed time per iteration of SHMEM-ML out to
32 nodes. While Horovod fails with an out of memory error below 16 nodes, its
execution time per iteration at 16 and 32 nodes is much higher than SHMEM-
ML. At 16 nodes, Horovod takes 65.65 s per iteration while SHMEM-ML SPMD
takes 0.15 s per iteration. At 32 nodes, Horovod takes 14.13 s and SHMEM-ML
SPMD takes 0.09 s.

Fig. 2. SHMEM-ML execution time per iteration for training
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5 Conclusions

SHMEM-ML leverages OpenSHMEM to accelerate data science and machine
learning workflows. By focusing on a scalable distributed array data structure
and composability with the existing Python data science ecosystem, SHMEM-
ML aims to enable scalable end-to-end data science workflows – including data
loading, data manipulation, model training, and model inference.
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