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Abstract—With a greater emphasis on data confidentiality and
legislation, collaborative machine learning algorithms are being
developed to protect sensitive private data. Federated learning (FL)
is the most popular of these methods, and FL enables collaborative
model construction among a large number of users without the
requirement for explicit data sharing. Because FL. models are
built in a distributed manner with gradient sharing protocol, they
are vulnerable to "gradient inversion attacks,’” where sensitive
training data is extracted from raw gradients. Gradient inversion
attacks to reconstruct data are regarded as one of the wickedest
privacy risks in FL, as attackers covertly spy gradient updates
and backtrack from the gradients to obtain information about
the raw data without compromising model training quality. Even
without prior knowledge about the private data, the attacker can
breach the secrecy and confidentiality of the training data via
the intermediate gradients. Existing FL training protocol have
been proven to exhibit vulnerabilities that can be exploited by
adversaries both within and outside the system to compromise
data privacy. Thus, it is critical to make FL system designers
aware of the implications of future FL algorithm design on privacy
preservation. Motivated by this, our work focuses on exploring
the data confidentiality and integrity in FL, where we emphasize
the intuitions, approaches, and fundamental assumptions used by
the existing strategies of gradient inversion attacks to retrieve the
data. Then we examine the limitations of different approaches
and evaluate their qualitative performance in retrieving raw data.
Furthermore, we assessed the effectiveness of baseline defense
mechanisms against these attacks for robust privacy preservation
in FL.

Index Terms—Model inversion attacks, Gradient leakage
attacks, Mixed quantization, Federated learning.

I. INTRODUCTION

Preservation of data security while building a deep learning
model has always been a critical research problem. As a
decentralized alternative to traditional ML model development,
Federated Learning (FL) [1] is client-server based framework
that facilitates collaborative training in the client side. With
the advent of federated learning, research in this domain has
received a significant acceleration. FL is mainly utilized in the
areas where data confidentiality and information security is of
the utmost importance e.g., in contested environment [2]. By
design, the worker nodes (e.g., mobile devices) in federated
learning are protected from data intrusion; they are able to
keep their original data private on their devices while training
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a model in alongside with one another, and they only need to
send their local model updates to the server. However, FL's
default privacy is not sufficient to protect the confidentiality
of local training data. If an adversary is able to intercept the
local gradient update that a worker node shares with the FL
server, it will be able to rebuild the local training data with
high reconstruction accuracy. This gives the attacker a way
to secretly spy on the private training data and leaves the
FL system susceptible to privacy leakage attacks. Gradient
inversion attacks is a type of privacy leakage attacks which
allow attackers to recover private data by discreetly snooping
on gradient adjustments during iterative training [3], [4]. The
attacker can access the training data without having any prior
knowledge of the learning model by exploiting the intermediate
gradients.

Recently, privacy leakage attacks have been investigated
extensively, and there are several such methods e.g., DLG [5],
IDLG [6], GS [7], CPL [8], Grad Inversion [9], R-GAP [10],
COPA [11], etc. These attacks can completely steal the training
data and/or associated labels from gradients. Some of these
attacks are iteration-based and others are recursion-based. The
iteration-based attacks aim to minimize the distance between
the dummy gradients and ground-truth gradients. Taking the
distance between the gradients as error and the dummy inputs
as parameters, the recovery process is formulated as an
iterative optimization problem. DLG, iDLG, Grad Inversion
are the attacks of iteration-based framework. On the other
hand, recursion-based attacks [11]-[13] are also capable of
reconstructing the original data in a closed-form algorithm.
The key insight is to exploit the implicit relationships among
the input data, model parameters, and gradients of each layer
in order to find the optimal solution with the minimum error.
R-GAP, COPA are the attacks of such types.

Some of the most explored prevention methods are Gaussian
or Laplacian noise-based differential privacy (DP), gradient
comprerssion, and homomorphic encryption (HE). In the first
approach, to protect the confidentiality of training sample,
Gaussian or Laplacian noise is added with gradients during
training prior to share with the server [14], [15]. But the
expense of accuracy may deteriorate below the threshold level.
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The second is “gradient compression” such as pruning [5]
and mixed quantization [16]. In gradient pruning, a specific
pruning ratio is selected during training to make it robust
against leakage attacks. But, pruning the network from the
first epoch of training is not recommended as it may cause
the loss of fundamental feature-related information. Another
method of defending attacks is to use mixed precision and
quantization. Here, each layer of the deep model is quantized
into a different bit and because of different quantization in
different layers, gradient optimization suffers to minimize the
distance between dummy and ground truth gradients. The other
one is homomorphic encryption [4], [17], where key-based
encryption is proposed and often used in FL to protect the
data privacy. While preserving the privacy of training data
samples, HE theoretically ensures no performance loss in terms
of model convergence [4], [17]. However, the effectiveness of
HE comes at the expense of computation and memory, which
limits its application. Apart from the above mentioned defense
strategies, there are other ways to mitigate privacy leakage by
increasing the local iterations or batch sizes [8], [18] during
model training.

In this paper, we provide an overview of existing iteration-
based and recursion-based gradient inversion attacks and
compare their effectiveness in retrieving the ftraining data.
Through attack characterization, we provide a comprehensive
understanding of the various attack mechanisms and attack
surfaces that an adversary may exploit to reconstruct the
private local training data from local model updates. For a
comprehensive analysis of privacy threats, we present existing
baseline mitigation strategies to defend the attacks and assess
the maximum tolerance of attack methods against these defense
strategies by attack effect analysis. We also compare how well
these defense strategies work in a federated framework and
what effect they have on the performance of global model.

II. FEDERATED LEARNING

[~ Server

Operafion

@

Updates

hod

Edge

sgentt  Agent2. ... sgentN image data | Operation
Local agents with acoustic and camera sansors.
= ¥
| [
Training —] L[ Daa

| preprocess

Fig. 1: Architecture of Federated Learning Framework.

In this section, we describe the detailed architecture and
work flow of federated training set up based on FedAvg [1]
algorithm where some of the notations used in this description
are N" = {1,..., N} signify the set of N clients, each of which
has their own dataset Dy Each of them trains a local model

using their own dataset and only shares the model parameters
with the FL server. Then, the global model, w¢ formation takes
place with all the local model updates which can denoted by
w = Ugen Wi The proposed federated framework is depicted
in figure 1. The process based on the workload of server and
client is described below:

1) Executed at the client level

e Local training and updated parameter transmission:
Each client will be trained on local training samples
to learn parameters after receiving the global model
w, from the server, where ¢ stands for each iteration
index. For each client image data D! are fed to
the local model for training. The client tries to
minimize the loss function [19] L (w}) and searches
for optimal parameters wi,.

1

wf: = argminl (Wi)
wt.
k
After each round of training, updated local model
parameters are sent to the server afterwards. In
addition, each client will sent the last "Relu” layer
activation value of local training samples that will
be utilized to detect data level poisoning.

2) Executed in server

s Weight initialization: The server determines the type
of application and how the user will be trained. Based
on the application, the global model is built in the
server. The server then distributes the global model
w, to selected clients.

» Aggregation and global update: The server aggre-
gates the local models from the participants by
discarding the detected compromised clients and then
sends the updated global model parameters wgf g

back to the clients. The server wants to minimize

the global loss function [19] L (wk), i.e.

N
L(w) = L (w)) @
k=1

This process is repeated until the global loss function
converges or a desirable training accuracy is achieved.
The Global Updater function runs on the SGD [20]
formula for weight update. The formal equation of
global loss minimization formula by the averaging
aggregation at the ¢! iteration is given below:

1 N

1
Wo == =
ZkEN D k=1

III. GRADIENT INVERSION ATTACKS

3)

i
Dkwi

In FL, server and clients exchange intermediate learning
results such as models or gradient updates. Local gradient
updates could be leaked during the transmission period and/or
in the honest-but-curious server side, as shown in figure 1.
And existing researches already established that an adversary
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can launch gradient inversion attacks to retrieve the training
samples if the local gradient updates are obtained.

Most of the existing gradient inversion attacks solve an
optimization problem, as illustrated in Figure 2. After retrieving
gradient updates AW, the attacker generates dummy samples
()'(,j!), then dummy samples are fed through the obtained model
to get the dummy gradients, and next minimizes the distance
between the real gradients AW and dummy gradients AW'.
During the optimization process, the values of the dummy
samples are optimized, so that the dummy samples approximate
the training samples as optimization progresses. And this
optimization typically relies on an objective given below:

min Dist (—d‘: EW.X).9) oy

X ow

) +Reg(X,9) 4
Here, W is the current values of the trainable parameters
of the attacked neural network. F' is the forward propagation
function of the model. L is the loss function of the model. X
is the generated reconstruction samples and ¥ is the labels of
the samples. AW is the gradient update received from a client
where, EW == %ﬂaﬁl Dz’sf is a distance function such
as the L2 distance [5]and the cosine distance [7], which are the
two most widely used distance functions in gradient inversion
attacks. Reg refers to regularization terms. For attacks on
image classification tasks, additional regularization terms can
be leveraged to generate more natural images. For example,
total variation [7] is employed to reduce image noise, whereas
clipping terms are utilized to prevent out-of-range values for
a pixel. Finally, the objective is to minimize the sum of the
distance and regularization terms for generated samples.
Here Both dummy samples X and dummy labels § are
simultaneously optimized to retrieve the local training data
(X.y). Recently, to reduce the complexity and avoid joint
optimization problem, some analytical approaches [6], [9]
propose to infer the labels before conducting the optimization
by analyzing the distribution of the gradient tensor of the
last fully connected layer. Label inference is important to

Algorithm 1: Generalized Gradient Inversion Attacks
Require: F(X;W): Differentiable learning model, W:
Model parameters, AW: Gradients produced
by private training datum (X,y), N: maximum
number of iterations, u: learning rate.

Ensure:

(X.9): Dummy datum and label.
1 X < N(0,1) (Initialize the dummy datum.)
2 y + argmin;(A;W) (Extract ground truth label)
3 for each iteration i from I to N do

v | Lo Dist Q%ﬂ;:{,;fﬁl,vw) +Reg(X,9)
t

(Calculate the loss.)

5 X ¢ X—pAy L (Update dummy data to match
gradients.)

6 end
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Fig. 2: Diagram of Gradient Inversion Attacks.

improve the reconstruction quality of gradient inversion attacks.
Pseudocode for iteration based gradient inversion attacks is
shown in algorithm 1. The basic optimization strategy of attacks
are described below.

DLG: In deep leakage gradient, Lo distance between the
private gradients and dummy gradients is considered to retrieve
the training samples, no regularization term is used, as in eqn
5. DLG currently works for batch size up to 8 and image
resolution up to 64x64. Increasing the batch size makes the
leakage more difficult because it needs to solve more variables
during optimization.

Le = ||AW — AW||? (5)

iDLG: In iDLG, the ground-truth labels from the shared
gradients are extracted first, then the data is extracted more
effectively based on correct labels which makes the training
of iDLG easier to converge. iDLG always extracts the correct
label as opposed to DLG which extracts wrong labels many
times. iDLG can extract samples for batch size 1 and image
resolution up to 32x32. iDLG also consider the Ly distance
between the gradients as in eqn 5.

GS: In GS attacks, authors propose to use a cost function
based on angles, i.e. cosine similarity and add total variation
as regularization term. In comparison to euclidean distance,
the objective is not to find images with a gradient that best
fits the observed gradient, but to find images that lead to a
similar change in model prediction as the ground truth. And
optimization is based on eqn 6

Le=1—cos(AW — AW) +aTV (X) (6)

CPL: Client Privacy Leakage (CPL) attack is most effective
when working with the gradient generated from the local
training data of batch size 1. Furthermore, when the input
data samples in a batch of size larger than one belong to only
one or two classes, the CPL attacks can effectively reconstruct
the training data of the entire batch. CPL attack can handle
image resolution of size of 32 x 32, 64 x 64, and 128 x 128. It
requires a much larger number of attack iterations in order to
succeed the attack with high reconstruction performance. CPL
also utilizes Lo distance between the gradients in addition with
a label-based regularizer to improve the stability of the attack
optimization, as in eqn 7.

Lo = ||AW — AW|? +o||[F(X,W)—4I? @)
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Grad-Inversion: To recover more realistic data from the
batch, some auxiliary regularization terms are incorporated into
the cost functions, as in eqn 8. These regularizers are classified
into two types- one that constrains the fidelity of images, and
the other that revises the position of the main object. Fidelity
regularization steers the reconstructed data from impractical
images, including total variation norm (TV), L norm and
batch normalization (BN). Group consistency regularization
jointly considers multiple random seeds for initialization, and
calculates the averaged data as reference.

Lg= ”AW’ - A"V”2 =+ ]Rfideiity()z) + Rg'roup(x) (8)

R-GAP: R-GAP is a recursion based gradient inversion attack.
R-GAP recursively reconstructs each layer’s input from the last
layer to first by solving linear equations, which is limited to a
batch size equal to 1. Here, the key insight is to exploit the
implicit relationships among the input data, model parameters,
and gradients of each layer in order to find the optimal solution
with the minimum error.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS

This section will step through the detailed experiment setup
and result analysis. Experiments are conducted on a system
with an Intel(R) 8 core Core(TM) i9-11900K CPU and an
NVIDIA GeForce RTX 3090 GPUs.

Dataset: We utilized MNIST, FASHION-MNIST, and CI-
FARI10 dataset to retrieve the training samples and evaluate
the performance of defense strategies.

Gradient Inversion Attack Methods: We utilized the LeNet-
5 CNN architecture as the global target model. In this work,
the gradient inversion attacks such as DLG, iDLG, GS, CPL,
Grad Inversion and R-GAP were utilized to retrieve the training
samples. And extracted samples from the attacks were depicted
in figure 3 and figure 4.

(b) Extracted by CPL Attacks

Fig. 3: Gradient Inversion Attacks on batch data.

Defense Methods: Here we experimented with baseline
defense strategies: Mixed precision and quantization [16],
Gradient Pruning and Differential Privacy (DP). DP protects
privacy with theoretical guarantee by injecting noise to the
gradients. Due to the fact that the majority of DPSGD
implementations for image classification tasks employ a pre-
training and fine-tuning pipeline, it is difficult to fairly compare
them to other defense techniques that can directly apply when
training the model from scratch. Thus, we separately apply

ger=0 Iter=10 ILl! =20 iter=30 Rer=40 ter=50 RKer=E0 ier=70 fter=80  iter=9

EEEEEEEE B

(a) Extracted by Deep Leakage Gradient (DLG)

ter=50 fter=100 #er=150 iter=200 iter=250 iter=300 ter=350 iter=400

iter=450

(b) Extracted by Inverting Gradient (GS) attacks

Fig. 4: Gradient Inversion Attacks on single training sample.

Gaussian and Laplacian noise to develop two DP baselines,
namely DP-Gaussian and DP-Laplacian.

We examined and discussed the efficacy of these defensive
measures below:

s Mixed Precision and Quantization: In mixed precision
and quantization, each layer of deep model is quantized
with different bits before sharing the local model updates
to server. According to this study [16], authors utilized the
combination of int8 and int16 quantization bit to quantize
the gradients. Figure 5 depicted the retrieved training
samples from gradients. In figure 5b, training images
were not retrieved from the quantized gradients even after
450 iterations of distance minimization, whereas training
samples were retrieved within 40 iterations when gradients
are not quantized, shown in figure 5a.

ter=0 =10 20 fer=60 Rer=70  {ter=80 IDer !|IJ

iter=30 fter=40 iter=50 Geound Teulh
. g —

(a) Leakage from gradients

ger=0 Iter=50 lter=100 Iter=150 Rer= ker=250 fer=300 H{er=350 er=400 ger=4a5 Goound Truth

(b) No leakage after mixed precision applied

Fig. 5: Gradient Inversion attack. (a) Training sample retrieved
within 40 iterations, (b) no leakage from gradients after mixed
precision applied.

e DP-Gaussian and DP-Laplacian: To evaluate, we ex-
perimented with Gaussian and Laplacian noise variance
range from 10~! to 10~* with mean 0. Figure 6 depicts
the impact of varying noise levels against the leakage
attack. When variance is at the scale of 10~% or 103, the
noisy gradients do not prevent the attack. For noise with
variance level 1072, though with artifacts, the leakage
can still be performed. Furthermore, noise with variance
larger than 10~2 can defend attacks. To defend against the
leakage attack, Gaussian/Laplacian noise with a minimum
variance level of 10~ should be added to the gradients. In
addition, we empirically tested this level of noise against
all existing gradient inversion attacks and found that it
can prevent them. However, this amount of noise has a
significant degradation in performance.

s Gradient Pruning: Gradient Pruning prunes gradients that
are smaller than a certain threshold. In figure 7, it is
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Fig. 6: Effect of Gaussian and Laplacian noise against attacks.

observed that pruning in the range of 1% to 10% cannot
defend the attacks because the reconstructed image reveals
the data and is easily recognizable. For gradients with
20% pruning, though with artifacts, the gradient inversion
attack is still successful. But when 30% pruning is applied
on gradients, the attack is prevented for cifar-10 images.
As we know recovering monochromatic images with a
clean background (MNIST) is easier, and so it requires
around 60% pruning to defend the attacks in retrieving
mnist training samples. So the pixel complexity of training
samples determines the required pruning rate to defend
the attacks. For simple images, we need higher pruning
rate.

A. Defense Result Analysis

From the above result, we found out that Gaussian and
Laplacian noise with variance level 10~! can defend the
gradient inversion attacks. Secondly, gradients with above 30%

pruning for Cifar-10 data can prevent the leakage attacks.

For the complex training samples, we need less pruning
percentage whereas for monochromatic images with a clean
background (e.g. MNIST), it requires higher pruning rate
to prevent the attacks. So, we need to set perfect pruning
rate by experimenting in an iterative way. However, the basic
framework for pruning is to train the network first, then prune
the less important part of network by setting it to 0, and
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Fig. 7: Effect of Pruning against gradient leakage attacks.

TABLE I: Accuracy comparison of baseline defense strategies

Dataset
g 1 Mnist | Fashion Mnist | Cifarl0
Base FL (vulnerable to attack) 97.05 | 86.8 60.04
DP-Gaussian (variance=10"1) 8554 | 738 42.64
DP-Laplacian (variance=10"T) 78.66 | 66.19 3341
Mixed Precision and Quantization | 96.67 | 85.22 58.9

finally fine-tuning the network. Pruning removes the neuron
that is the least significant. But in the first training round,
the model cannot determine which neurons are significant
and which are not. So, pruning the network from the first
epoch of training is not recommended and may result in poor
training performance. Moreover, convergence is an issue in
federated training and clients may have local training data in an
imbalanced fashion with varying class distributions. Therefore,
pruning the network during training, particularly in a federated
setup, may result in no convergence at all. Thirdly, in mixed
quantization approach, each layer of any deep model can be
quantized with different bits. Because of varying bit size in each
layer, the existing gradient inversion attacks can not minimize
the distance between private quantized gradients and dummy
gradients and thus it is robust against the attacks. Besides
defending the attack, authors of [16] suggested to dequantize
the gradients in the server after/before aggregation to achieve
desired performance in FL. And to dequantize the gradients
and get the ground truth values, the set of operations that was
used to quantize, the same set of reverse operations is needed.
So, inherent limitation of this approach is that the server needs
to know the operations that were used on the client side during
quantization.

As stated earlier, recursion-based gradients inversion algo-
rithms e.g., R-GAP, COPA does not minimize the distance
between the dummy and ground truth gradients. Rather these
attacks exploit the implicit relationships among the input data,
model parameters, and gradients of each layer in order to find
the optimal solution with the minimum error. Thus, defending
such attacks is easier than the iterative optimization based
attacks. To defend, adding a small amount of random noise
with gradients is enough. Even pruning rate of only 1% can
defend the recursion-based attacks.

Finally, we compared the performance accuracy of all the
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baseline strategies by incorporating them in FL framework,
results shown in table I. The server-clients-based federated
learning framework is implemented on Keras, which is built
on the TensorFlow backend. We utilized the LeNet-5 CNN
architecture as a global model and simulated FL training
with 15 clients. For each round, 1 epoch of local training
is conducted on the client side. We used SGD optimizer and
set the learning rate 7 to 0.01 during training. To compare the
effect of each baseline defense strategy on the performance, we
reported the performance of FL utilizing the DP-Gaussian and
DP-Laplacian with variance level 10~ because this amount of
noise is the least to prevent the attacks. And we determined that
incorporating the DP-Gaussian and DP-Laplacian with variance
level 10~1 in FL framework deteriorates the performance of
global model. Then, we evaluated the performance of mixed
quantization approach and found out that it can keep the desired
accuracy level in FL while defending the attacks because
it is possible to dequantize the gradients in the server end
after/before aggregation. Since dequantization is not a fully
reversible operation, we will not get the exact ground truth
gradients and so, the accuracy will decrease slightly, but it is
still superior to others approaches. In comparison with base FL
(model with no defense against attacks), mixed precision and
quantization achieved almost the same level of performance-
only 0.5% drop for MNIST and FASHION MNIST, and 1%
drop for CIFAR10, demonstrated in table I. On the other hand,
DP-Gaussian has on average 15% drop and for DP-Laplacian
20% on average.

V. CONCLUSION

In this paper, we explore the data confidentiality and
model integrity in federated learning, where we emphasize
the intuitions, approaches, and fundamental assumptions used
by state-of-the-art gradient inversion attacks. We demonstrate
how adversaries can reconstruct the private local training data
from the shared parameter updates (e.g., gradient or weight
updates) by launching different attack methods. Then we
evaluate the performance of existing defense approaches against
the attacks and assess the maximum tolerance of different
attack methods against these defense strategies. Finally, we
examine the effectiveness of defense mechanisms in federated
framework and their impact on the performance of the global
model.
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