
Automatically Selecting Profitable
Thread Block Sizes for Accelerated Kernels

Tiffany A. Connors
Computer Science Dept.

Texas State University

San Marcos, TX 78666-4684

Email: tac115@txstate.edu

Apan Qasem
Computer Science Dept.

Texas State University

San Marcos, TX 78666-4684

Email: apan@txstate.edu

Abstract—Graphics processing units (GPUs) provide high per-
formance at low power consumption as long as resources are
well utilized. Thread block size is one factor in determining
a kernel’s occupancy, which is a metric for measuring GPU
utilization. A general guideline is to find the block size that leads
to the highest occupancy. However, many combinations of block
and grid sizes can provide highest occupancy, but performance
can vary significantly between different configurations. This is
because variation in thread structure yields different utilization
of hardware resources. Thus, optimizing for occupancy alone is
insufficient and thread structure must also be considered. It is
the programmer’s responsibility to set block size, but selecting
the right size is not always intuitive. In this paper, we propose
using machine learning to automatically select profitable block
sizes. Additionally, we show that machine learning techniques
coupled with performance counters can provide insight into the
underlying reasons for performance variance between different
configurations.

I. INTRODUCTION

Graphics Processing Units (GPUs) can provide great per-

formance at low power consumption as long as there is good

utilization of resources. Thread block size is a key factor

in determining a kernel’s occupancy. Occupancy is the ratio

of the number of active warps running on a GPU to the

maximum number of warps that can be scheduled. Occupancy

provides intuition into how well a parallel kernel utilizes the

GPU and is closely related to resource allocation. A general

guideline is to find the thread configuration that leads to

the highest occupancy. However, it has been shown that for

some kernels the highest occupancy does not always yield

the best performance[22]. High occupancy leads to increased

resource contention, as more threads compete for limited

hardware resources such as registers and shared memory.

Low occupancy provides each thread with more resources

but this can have a negative impact due to low latency

hiding. Furthermore, multiple block sizes can provide highest

occupancy for a given kernel, but their performance can vary

at these different configurations. This is because variation in

thread configuration yields different utilization of hardware

resources. Thus, optimizing for occupancy alone is insufficient

and the thread geometry must also be taken into consideration.

This work was supported by the National Science Foundation through
awards CNS-1305302 and CNS-1253292.

1.0

1.5

2.0

2.5

3.0

3.5

032 128 256 512 768 1024
Block Size

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

bilateral depthvertex integrate mriq

Fig. 1. Execution time of four applications with varying block sizes.

Current practice dictates that programmers choose the grid

and block size to optimize their GPU applications. Selecting

a good thread configuration is not always intuitive. Small

variations in the thread block size can have huge performance

impact. Consider the performance variations of four kernels

shown in Fig. 1. The performance can vary by as much as

a factor of three when selecting different block sizes for the

same kernel (depthvertex). Although larger block sizes

yields better performance on average, the largest block sizes do

not necessarily produce the best results. For instance, formriq,

it is most profitable to select a relatively smaller block size of

128.

Navigating the different choices for thread block config-

uration can prove time consuming for the programmer. It

may require the programmer to manually change the thread

configuration, re-run the program, and collect performance

results for each change until the desired performance level

has been reached. Additionally, the space that needs to be

considered when finding an optimal thread block size is multi-

2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems

978-1-5386-2588-0/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2017.58

442

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

dimensional. This complex search space can prove to be

difficult to evaluate. As the size of this search space increases,

it soon becomes unfeasible to perform an exhaustive search

and many heuristic searches can easily become stuck in local

optima. Features of this search space include the size of input

data and the number of registers allocated, both of which are

correlated to the kernel’s performance under a given block

size. Another factor that can cause variance is the grid size.

Grid size reflects the total amount of work to be done in terms

of the number of threads launched. When a large grid size is

used, this results in less work for each thread to perform and

increased contention for limited hardware resources.

Using machine learning (ML), performance and power con-

sumption of GPU kernels can be improved through automatic

selection of profitable thread configurations. This reduces

the number of kernel runs necessary and allows for a more

efficient evaluation of the complex search space. In addition,

ML techniques coupled with hardware performance counters

can help provide insight into the underlying reasons for

performance variance between different thread configurations.

In this paper we present a strategy for selecting profitable

blocks sizes in GPU kernels using supervised ML. Our ML

model uses dynamic performance events as features. Given a

GPU kernel, our framework profiles the kernel and extracts the

relevant dynamic features. The model then predicts if a change

in block size will improve the performance of the given kernel.

Our framework automates all major steps in the ML

workflow, including feature extraction, feature selection, and

training data labeling. In order to ensure a sufficient sample

size for the training data, we generate multiple code variants

from a single base program. These variants all exhibit distinct

behavior on the target platform, allowing for a range of

program characteristics for the ML model to learn from.

To summarize, the main contributions of this paper are as

follows:

• construction of a novel machine learning based heuristic

for selecting thread block sizes that accounts for multiple

performance trade-offs

• a general framework for automatically developing super-

vised classifiers for platform-specific performance mod-

eling and automating the machine learning workflow

• an analysis of the underlying causes of performance

anomalies due to thread block variation

II. BACKGROUND

A GPU is a highly parallel processor that is traditionally

used for rendering computer graphics. However, modern GPUs

are commonly used for performing computations in scientific

and engineering applications. A GPU consists of a set of

Streaming Multiprocessors (SMs), and each SM contains a

number of execution units called Stream Processors (SPs).

Modern GPUs contain thousands of SPs. An SM is designed

to execute hundreds of threads concurrently and follows the

single instruction, multiple data (SIMD) model of execution.

The compute capability of a NVIDIA GPU identifies the

features supported by the GPU hardware [2].

A. CUDA

CUDA is a programming interface which allows direct

programing of NVIDIA GPUs. CUDA C is an extension to

the C programming language that allows developers to write

parallel functions, called kernels, for execution on the GPU.

In the CUDA programing model, GPUs can achieve high-

performance by executing massively parallel threads simul-

taneously.

B. Thread Hierarchy

The most basic unit of execution in CUDA is a thread.

Warps, which are sets of 32 threads that are simultaneously

executed together, are divided into thread blocks. Thread

blocks execute independently of one another, allowing them

to be scheduled in any order across any number of cores.

Warps within the same thread block are executed on the same

multiprocessor and access the same shared memory unit. Each

thread block is assigned to a single SM during the execution of

a kernel. A grid is a collection of thread blocks. The number of

thread blocks in a grid is typically based on the size of the data

being processed. The thread blocks within a grid are mapped

across multiple SMs. The maximum number of threads which

can be assigned to each block varies depending on the GPU’s

architecture and compute capability. Likewise, the maximum

blocks per SM and maximum threads per SM also depends on

the compute capability. Limiting factors include the number

of registers and shared memory required by the kernel and the

number of registers and amount of shared memory available

on the multiprocessor [2].

C. Memory Hierarchy

A CUDA enabled GPU has six different memory compo-

nents: register, shared memory, local memory, global memory,

texture memory and constant memory. Every thread has its

own private local memory. Each block has its own shared

memory, which is shared among all the threads within that

block. Global memory, constant memory, and texture memory

can be accessed by all threads. Constant and texture memory

are read-only, while the other memory types are read/write. A

generalized diagram of this memory hierarchy is depicted in

Fig. 2.

D. Machine Learning

Machine learning (ML) is a method of data analysis that

uses algorithms which iteratively learn from data, allowing

computers to find hidden patterns without being explicitly

programmed. If a computer program is able to improve its

performance of accomplishing a task by using previous expe-

rience then it is said to have learned[17]. One of the biggest

strengths of ML is the ability to automatically apply complex

mathematical calculations to large sets of data with minimal

effort from the user.

The two most commonly used ML methods are supervised

and unsupervised learning. In unsupervised learning, the input

443

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Generalized GPU memory diagram

data is not labeled with the correct output. The goal of unsu-

pervised learning is to discover similarities and find structure

within the data.

Supervised learning ML algorithms are trained using labeled

instances. The learning algorithm is provided with a set of

inputs and the corresponding correct output, typically referred

to as the training set. The goal of the learning algorithm is to

infer a function that minimizes the error with respect to these

inputs. Put briefly, the purpose of supervised ML algorithms

is to learn a mapping X �→ Y , where x ε X is some instance

and y ε Y is a class label.

A decision boundary is the hyper-surface that partitions

the learning space into sets, one for each class. A decision

boundary is the region of the learning space in which the

output label is ambiguous. The learning space is linearly

separable if the classes of the space can be separated with

a single linear surface.

III. RELATED WORK

IV. OPTIMIZATIONS FOR THREAD CONFIGURATION

Seo et al. developed a heuristic for work group size selection

for OpenCL kernels running on multicore processors [20].

They use static estimation and runtime feedback to fine-tune

the workgroup size for improved locality and load balanc-

ing. They compare their numbers to an exhaustive search

of all possible workgroup configurations. These results show

that their strategy can get the same performance at a much

lower cost. Their experiments do show significant variation in

performance for the NAS SP kernel for different workgroup

sizes. They do not extend this technique to GPUs, where the

performance issues are much different.

Tran et al. proposed a tuning model for calculating can-

didate grid and block sizes to achieve optimal performance

based on highest occupancy [21]. Their approach is able to

calculate a set of candidate grid and block sizes faster than

using exhaustive search. However, their model relies solely

on the thresholds of the block and grid sizes enforced by a

GPU architecture. They do not consider the characteristics of

the kernel, which is be essential in determining optimal thread

configuration. Their model is mainly used to reduce the search

space rather than using a ML predictor and may output a list

of multiple candidate configurations.

Magniet al. implemented thread-coarsening compiler trans-

formations by developing a LLVM-based OpenCL com-

piler [14]. Additionally, they utilized regression trees and

hardware performance counters to identify performance fea-

tures that are affected by thread-coarsening. They evaluated

the effect of the coarsening factor on performance and found

that regression trees are able to identify the hardware features

relevant to performance. Magniet al. conducted another study

where they use source-level directives to tune thread config-

uration parameters. However, their tuning approach does not

explicitly model the resource usage of the kernel [15].

Gupta et al. designed STATuner, which identifies a feature

set of static metrics that characterize a CUDA kernel and

builds a Support Vector Machine classifier to predict which

block size provides the best performance [9]. Static metrics are

obtained by compiling CUDA kernels in LLVM. Static anal-

ysis of the generated LLVM binary code and IR is performed

to get metrics for instruction mix, loops, register usage, shared

memory per block, and thread synchronization. Our approach

differs in that our framework uses dynamic kernel features as

input to the ML model.

V. MACHINE LEARNING IN PERFORMANCE MODELING

A study of recent applications of ML techniques in per-

formance modeling and tuning in HPC shows a pattern of

incoming challenges and how ML practitioners have tackled

them. The initial application of machine learning modeling

and tuning (MLMT) emerged as a response to prohibitively

long tuning times for search-based autotuning. As such, some

of the earliest work in this area were based on using heuristic

modeling, pruning and empirical search in order to reduce the

parameter space and find early stopping criteria [23]. As neural

networks and logistic regression models gained popularity,

they were applied to autotuning problems in HPC. Cavazos

et al. led the charge in this venture beginning with their

work on identifying optimal compiler optimization sequences

using multiple logistic regression models [3]. Estimating the

performance gain or loss of applying a particular optimization

as a reduction of the larger problem of finding an optimal set

of optimizations worked well for a multitude of scenarios. This

technique, however, overlooks the possibility of synergistic

and antagonistic behavior between multiple optimizations.

Moreover, as the number of optimizations available remains

large, the time to generate training data and the number of

classifiers required also remains large. For instance, GCC 4.8.2

has 193 optimizations and choosing an optimal sequence es-

sentially means creating an array of 193 classifiers and training

data sets for each classifier. Furthermore, the widely changing

architectures in HPC landscape has posed the challenge of

adaptability. Fursin et al. turned to crowd-sourcing to address

this challenge by gathering collective optimization knowledge

across architectures [8].

Similar to many ML problems, success of ML techniques

hinges on accurate input characterization. Researchers have

444

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

Training
Data

custom
scripts

proglist

Fig. 3. Overview of our machine learning framework

attempted to characterize programs using program control flow

graph [6] static program features [8] and hardware perfor-

mance counters [19]. Hardware performance counters have

the added benefit of being dynamic and are able to capture

architecture-specific system response. However, there is a large

number of performance events and it is difficult to pick effec-

tive ones. Many have resorted to hand-picking them [16] while

some have employed statistical methods to select events that

vary most across different program executions [11], [19]. Wu

et al. designed a model that uses neural networks and k-means

clustering to estimate the performance and power of a kernel

on other hardware configurations [24]. Hardware performance

counter values collected on one hardware configuration are

used as input to the model for predicting performance of the

kernel on the other configurations. The focus not on optimizing

a kernel for a given system, but rather determining how well

the kernel will perform on other systems.

In spite of challenges faced by HPC researchers in their

application of ML, the evolution of ML in HPC has been

impressive. Many variants of popular ML techniques have

been successfully applied to different branches of HPC - in

performance optimization through code changes [5] predict-

ing optimal build configurations [12], runtime configurations

[7], [13], identifying performance bottlenecks [10], [11] and

recently, also in efficient energy management [4]

VI. DESIGN AND IMPLEMENTATION

Fig. 3 gives an overview of our framework. To begin, our

framework generates custom scripts that drive the tasks of

feature extraction, feature selection, training data generation,

model training, evaluation, and selection. The newly created

model is stored as an R script and provides an interface for

the user to invoke it on unseen programs. An interactive mode

is also supported to perform subtasks selectively.

A. Configuration

We provide a simple interface which allows users to specify

the directory of the programs to be used as input for the

training data generation. This configuration interface sets en-

vironment paths, detects CUDA enabled devices, and creates

customized build and execute scripts that are tailored to the

user’s environment. In this phase, instructions for generating

training data are specified in a file called proglist.

B. Training Data Generatator

After generating the custom makefiles and execute scripts

the configurer creates a proglist file that encapsulates necessary

information for generating training data on the target platform.

Each line of the file contains information for executing each

program that is to be used in the training set. This file serves as

input into a script called varlist gen.sh. varlist gen.sh reads

each line of the proglist and outputs a file, named varlist,
containing instructions for creating program variants for each

baseline program that was listed in the proglist. These variants

include modifying the -maxrregcount flag, thread block

configuration in the kernel launch, and differing program

input data (when available). The varlist is sent to a script

that generates, builds, and executes each program variant. In

this phase, the runtime features of each program contained

in varlist is collected using nvprof. The collection and

processing of data in this phase is explained in more detail

in Section X.

C. ML Engine

In the Machine Learning (ML) Engine phase, the training

data is supplied to an R script. Within this script, the training

dataset is randomly partitioned into training and testing sets.

An SVM model is trained using the training set and its

performance is evaluated using cross-fold validation. This

process is repeated 10 times, adjusting tuning parameters each

time, and the model yielding the highest accuracy during

validation is selected. The final model’s performance is further

evaluated using the testing set in order to ensure that overfitting

has not occurred.

D. Analyzer

The framework currently supports three types of analysis

visualizations to provide insight to the user about the training

data and the generated model.
1) Cluster-PCA plots: Cluster-PCA plots are used to ex-

amine properties of the training data. k-means clustering is

applied on the feature space, where the value of k is determined

via the silhouette method. We perform principal component

analysis (PCA) on the feature space and the clustering results

are visualized on scatter plots by projecting the clusters onto

the two principal components (PCs) that explain the most

variation in the data. A point in the plot represents a code

variant. Points can be annotated to show base program, class

445

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

label, or threshold-delineated PCA values. Ellipses represent

clusters and two points falling within the same cluster indicates

that they exhibit similar behavior. Cluster-PCA plots can

provide intuition about the training data in several ways. The

number of clusters is a reflection of the the number of different

types of codes present.

2) PCA-VR segment plots: Although PCAs are primarily

used for dimensionality reduction, in MLMT they can be use-

ful in other ways. We can think of a PC as a compound feature

that describes a broad performance pattern. For instance, a PC

might represent memory-bound behavior and contain related

features such as LLC miss rate, DRAM accesses and stalled

cycles. In general, however, the relationship between many of

the performance events is either unknown or not obvious to the

user. Identifying major performance events that comprise a PC

can provide valuable insight about both program performance

and architectural characteristics. The challenge, however, is

that PCs are not amenable to direct visualization. To address

this, we apply Varimax Rotation on the sub-space discovered

through PCA and then use a segment plot to visualize the

contribution of each feature to the top k PCs. These segment

plots provide the practitioner with a quick way to identify

related features (although the nature of the relationship is not

revealed) in the feature space. This knowledge can be used to

optimize code independent of the model being generated.

3) Decision tree analysis: Decision trees are prone to

overfitting and their ability to learn complex spaces is limited.

Despite these shortcomings, decision trees are easy to visualize

and can provide an intuitive way to understand the learning

behind the predictions.

VII. MODEL FORMULATION

Our model uses machine learning to provide the user with

suggestions on how to modify the thread block size of their

code. Given a kernel, our model will determine if the thread

block size should be increased or decreased to achieve better

performance.

VIII. DETERMINING LEGAL THREAD BLOCK DIMENSIONS

When determining legal thread block dimensions, several

factors need to be taken into consideration:

• The hardware constraints of the GPU

• The original thread block dimensions

• The correctness of the kernel’s results

Often the kernel has been coded such that the correctness of

the results is dependent on the block size. This means that

while a given block size is legal in CUDA, it may not be valid

in context of the program in question. It can be determined

whether or not a block size is valid by checking the results of a

program run using the new block size with the original results.

Note that this approach only works for programs whose output

is deterministic. For these reasons, we have chosen to create a

model that suggests relative changes in block size rather than

giving absolute numbers. The programmer can then select the

next valid block size in the direction of the change.

IX. ML ALGORITHM SELECTION

To make predictions on the direction of change in block size

for a given kernel, we use Support Vector Machines (SVMs).

In selecting which machine learning algorithm to use, we

took into consideration what type of decision boundaries we

expected in our feature space. Specifically, whether or not the

feature space is linearly separable is important in selecting

which machine learning model to use.

Although our data includes only three classifications, the

feature space is much more complex. Because of this, our data

does not exhibit a linearly separable decision boundary. Thus,

we opted to use an algorithm capable of learning complex

spaces that are not linearly separable. We selected SVMs due

to their high accuracy and ability to learn complex search

spaces. Other strengths of SVMs are that they aren’t overly

influenced by noisy data and are not prone to overfitting. We

use the kernel trick, which maps the feature space into higher

dimensional space, in order to enable learning of nonlinearly

separable decision boundaries. We also employ the all-versus-

all strategy, which combines several binary SVMs, to allow

for multi-class predictions.

Additionally, we also rely on clustering to evaluate the

feature space and decision trees to provide meaningful insight

into the reasons why some kernels perform better with smaller

block sizes over larger block sizes.

X. TRAINING DATA GENERATION

Our framework is able to manipulate the max register

allocation and block size of CUDA kernels in order to generate

multiple code variants from the same base program. Next,

dynamic metrics of each of the kernel variations are collected

using performance counters. This set of metrics becomes the

input feature vector for the ML model.

A. Feature Extraction

Our framework uses runtime events as features. To collect

runtime events, we read values from hardware performance

counters using nvprof. We created a shell script which reads

a list of the selected events from a text file and passes them

to nvprof. To reduce the time required for collection of these

events, we take of advantage of multiplexing and divide the

events into groups that can be measured during a single

program run without causing conflicts in hardware counters.

Based on expert knowledge and analysis, we selected events

which are closely related to thread block size. The selected

events are shown in Table I. In addition to considering resource

utilization, we model the following program characteristics.

1) Memory Divergence: Memory access can greatly impact

a kernels performance. Coalescing is a memory access tech-

nique in which memory requests to the same cache line are

grouped together to create a single transaction. Coalescing is

typically performed at the warp level. Address-aligned requests

to contiguous memory locations from threads in the same

warp are combined into a single transaction, greatly reduc-

ing memory traffic. With a greater number of warps, more

coalesced memory accesses can occur at a time. However, too

446

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NVPROF EVENTS COLLECTED

Events Collected
gld request fb read sectors
gst request fb write sectors
l1 local load hit l1 local load miss
l1 local store hit l1 local store miss
l1 global load hit l1 global load miss
uncached gld transaction global store transaction
gld inst 32bit inst issued
gst inst 32bit inst executed
not predicated

off thread inst executed
thread inst executed

l2 write sector misses l2 read sector misses
l2 read l1 hit sectors l2 total read sector queries
l2 total write sector queries shared load replay
global ld mem

divergence replays
global st

mem divergence replays

many warps per SM can degrade performance due to increased

resource contention. For these reasons, kernels which are

memory-bound tend to be more sensitive to changes in block

size.

2) Control Divergence: Control divergence is another fac-

tor that can influence a kernels performance. Frequent branch

instructions and branch divergence can degrade performance.

A control instruction is divergent if it forces threads within a

warp to take different execution paths. In CUDA, divergence

results in serialization of the execution paths, thereby increas-

ing the total number of instructions executed. Additionally,

threads within a warp cannot continue until all threads of the

warp have exited the conditional path. Smaller block sizes

can reduce the overhead of control divergence by reducing

the number of instructions executed per warp and limiting the

number of threads that must wait due to divergence. However,

if too few threads are launched, it may be insufficient to hide

instruction latency.

B. Event Collection

The baseline version of each kernel is considered as the

execution using the default thread block size and register

pressure. For each baseline version, we modified the block size

in the kernel launch configuration of the code. We executed

the baseline and all variants and collected runtime events and

kernel execution time using nvprof. Next, we computed the

speedup of each instance over the baseline version. Labels

were added to each instance in the dataset based on the

speedup and block size.

C. Data Labeling

To train the ML model, we must provide it with labeled

instances that it will learn from. Manually labeling each

instance in the training dataset is time consuming. To alleviate

the user of this task, our framework automates the process

using scripts and a simple algorithm to determine the labels.

For each instance in the training data set, the speedup over the

baseline is computed. We consider a speedup < 1 to be bad,

a speedup = 1 to be neutral, and a speedup > 1 to be good.

Next, the block size of the variant is compared to the baseline

block size and the label is assigned using Algorithm 1.

Algorithm 1 Labeling algorithm

1: for all d ∈D do
2: if speedup < 1 and newBlock < origBlock then
3: new.Label ← increase.
4: orig.Label ← noChange.
5: else if speedup < 1 and newBlock > origBlock then
6: new.Label ← decrease.
7: orig.Label ← noChange.
8: else if speedup > 1 and newBlock < origBlock then
9: new.Label ← noChange.

10: orig.Label ← decrease.
11: else if speedup > 1 and newBlock > origBlock then
12: new.Label ← no Change.
13: orig.Label ← increase.
14: end if
15: end for

D. Feature Selection

Feature selection is important for improving accuracy of

a ML model. Features which are redundant or provide no

additional information to the model should be removed. First,

we removed any events that had a value of 0 for all pro-

gram runs. Next, we evaluated the association between the

remaining features by calculating the correlation coefficients

using the Pearson correlation formula, which measures a linear

dependence between two variables, X and Y :

r =

∑
(X −X)(Y − Y)√∑

(X −X)2
∑

(Y − Y)2

Features with a correlation coefficient greater than 0.9 were

removed from the set. Features which are highly correlated to

all other features do not add any additional information to the

data, hence they are redundant and can reduce model predic-

tion accuracy. The remaining features and their correlation are

shown in figure 4. These features are estimated to provide the

highest predictive power.

XI. EXPERIMENTAL SETUP

We evaluated our model using a Nvidia Tesla K40c GPU

on a linux system that had CUDA 7.5 installed. The K40c

has a compute capability of 3.5, supports a maximum of 1024

threads per block, and a maximum of 2048 threads per SM.

A. Benchmarks

We used kernels from the Parboil [1] and SLAMBench [18]

benchmark suites to generate training data.

XII. RESULTS

A. Training Space Characterization

The complexity of the feature space can be evaluated by

performing principle component analysis (PCA) and k-means

clustering on our training dataset. As we can see in Fig. 5,

in which many different block sizes are contained within the

same cluster, the best thread block size is not always easy to

447

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

bl
oc

ks
_p

er
_g

rid
gs

t_
re

qu
es

t
l1

_g
st

_t
ra

ns
gs

t_
in

st
_3

2b
it

fb
_r

ea
d_

se
ct

or
s

th
rd

s_
pe

r_
bl

oc
k

gl
d_

in
st

_3
2b

it
in

st
_i

ss
ue

d1
no

t_
pr

ed
_o

ff_
th

rd
_i

ns
t

un
ca

ch
ed

_g
ld

_t
ra

ns
gl

d_
m

em
_d

iv

blocks_per_grid
gst_request
l1_gst_trans

gst_inst_32bit
fb_read_sectors
thrds_per_block

gld_inst_32bit
inst_issued1

not_pred_off_thrd_inst
uncached_gld_trans

gld_mem_div

Fig. 4. The correlation matrix of the remaining features after feature selection
is performed.

+

+

++
++
O__

O
OOOO
OOOOOOOO++
_OOOOO_OOOOOOOOOO

OOO
OOOOOOOOOOOO_OOOOOOOOOOOOOOOO

+
+++++++++O++++
________O________

OO+
++O+_O_______

+OOOOOOO_O

OOOOO

+O+++++O
___OOOOO

OO_OOOO

+
+
O

++O_

_

_

OOO+O
+

+_

_

__
O_

_
_

_

OOOOOOO
__OOOOOOO

-6

-3

0

3

-10 -5 0 5

PCA1 (33.9%)

P
C

A
2

(2
8.

7%
)

Label
_

+

O

decrease
increase
noChange

Fig. 5. A Cluster-PCA plot analysis on our training dataset.

determine. This implies that even though two programs may be

very similar, subtle differences can lead to variance in resource

utilization and the need for different block sizes.

Fig. 6 shows a VR-PCA segment plot for our training

dataset. We can see that the fourth principle component,

shown in red, is dominated by features related to global load

memory transactions. This further demonstrates that memory

access patterns and memory divergence is a primary factor

in determining a kernel’s classification and selecting a good

block size. Another principal component worth noting is the

second principal component, shown in blue, in which features

related to instruction execution have the most contribution.

The first and third principal components, in purple and green

respectively, appear to be less significant.

Fig. 6. The segment plot shows the contribution of each attribute to the
principal components.

Fig. 7. The decision tree’s splitting criteria.

B. Model Evaluation

We evaluated our model’s accuracy using 10-fold cross vali-

dation. We split the training set in 10 groups of approximately

the same size, then iteratively train a SVM using 9 groups and

make a prediction on the group which was excluded. We set

the value of k to be 10. Our SVM model had an accuracy rate

of 83.7%. Our decision tree model had an accuracy rate of

81.4%.

We created a visualization of the splitting criteria used by

the decision tree in order to understand which variables of the

feature vector were used to make predictions. As seen in Fig.

7, the choice of the thread block size is sensitive to memory

divergence, L1 cache behavior, and reading from DRAM.

C. Performance and Energy Gains

We used our model to tune 6 kernels that were not contained

in the training or validation data. For these kernels, we

followed the model’s suggestions of adjusting the block size,

selecting the next valid size and reinvoking the model until a

”no change” suggestion was provided. We then compared the

execution time of the unmodified kernel to that of the modified

kernel to determine the speedup.

When we adjusted the block size in accordance with the

suggestions provided by our model, we were able to obtain

up to 1.8x speedup over the baseline versions. The tuning

results of 6 programs is shown in Fig. 8. In regards to energy,

448

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Speedup gained in relation to the baseline from using our model to
tune 6 programs.

we found that adjustments in thread block size provided no

significant change in a kernel’s power consumption.

XIII. CONCLUSION

This paper presents the construction of a ML-based heuristic

for selecting profitable block sizes. Using supervised ML

algorithms and dynamic performance events as features, our

ML model predicts if a change in block size will improve the

performance of a given kernel. The framework presented in

this paper introduces strategies for automating time consuming

aspects of training data generation and building a ML model,

such as feature extraction, feature selection and labeling. We

address the common issue of not having enough programs

to build a sufficiently large and diverse training dataset by

generating multiple code variants for a single base program.

We demonstrated the effectiveness of our ML model on

a mix of programs from the SLAMBench and Parboil bench-

mark suites. We show that our framework can produce accurate

models for making predictions. The visualizations allowed us

to better analyze the training dataset and results of the ML

models in order to identify underlying causes of performance

anomalies when varying thread block size. We found that

subtle differences in a kernel’s runtime behavior can result

in the need for different block sizes. Additionally, the choice

of thread block size is sensitive to memory access patterns,

especially memory divergence.

By using our machine learner on 6 unseen kernels that were

excluded from the training data generation phase, we were able

to achieve up to 1.8x speedup over the baseline versions.

REFERENCES

[1] Parboil Benchmark Suite. http://impact.crhc.illinois.edu/parboil.php.
[2] CUDA Programming Guide, Version 3.0. NVIDIA, 2010.
[3] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and

O. Temam. Rapidly Selecting Good Compiler Optimizations using
Performance Counters. In Proc. of the International Symposium on
Code Generation and Optimization (CGO ’07), Washington, DC, USA,
2007.

[4] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Pack & cap:
adaptive dvfs and thread packing under power caps. In Proc. of the
44th annual IEEE/ACM international symposium on microarchitecture,
2011.

[5] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
De Supinski, and M. Schulz. Prediction models for multi-dimensional
power-performance optimization on many cores. In Proc. of the
17th international conference on Parallel architectures and compilation
techniques, 2008.

[6] J. Demme and S. Sethumadhavan. Approximate graph clustering for
program characterization. ACM Transactions on Architecture and Code
Optimization (TACO), 8(4), 2012.

[7] M. K. Emani and M. F. P. O’Boyle. Celebrating diversity: a mixture
of experts approach for runtime mapping in dynamic environments. In
Proc. of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, 2015.

[8] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois,
F. Bodin, P. Barnard, E. Ashton, E. Bonilla, J. Thomson, C. Williams,
and M. O’Boyle. Milepost GCC: Machine Learning Enabled Self-
Tuning Compiler. International Journal of Parallel Programming, 39,
2011.

[9] R. Gupta, I. Laguna, D. Ahn, T. Gamblin, S. Bagchi, and F. Lin.
Statuner: Efficient tuning of cuda kernels parameters. In Supercomputing
Conference (SC 2015), poster, Nov 2015.

[10] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale.
Predicting application performance using supervised learning on com-
munication features. In Proc. of the International Conference on High
Performance Computing, Networking, Storage and Analysis.

[11] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu. Detection of false
sharing using machine learning. In Proc. of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
2013.

[12] Y. Kashnikov, J. C. Beyler, and W. Jalby. Compiler optimizations:
Machine learning versus O3. In Languages and Compilers for Parallel
Computing, 25th International Workshop, LCPC 2012, Tokyo, Japan,
2012, Revised Selected Papers, 2012.

[13] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou.
Machine Learning-Based Prefetch Optimization for Data Center Appli-
cations. In Proc. of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009.

[14] A. Magni, C. Dubach, and M. F. P. O’Boyle. A large-scale cross-
architecture evaluation of thread-coarsening. In Proc. of the 2013
ACM/IEEE conf. on Supercomputing, 2013.

[15] A. Magni, D. Grewe, and N. Johnson. Input-aware auto-tuning for
directive-based gpu programming. In Proc. of the 6th Workshop on
General Purpose Processor Using Graphics Processing Units, 2013.

[16] C. McCurdy, G. Marin, and J. S. Vetter. Characterizing the impact of
prefetching on scientific application performance. In High Performance
Computing Systems. Performance Modeling, Benchmarking and Simu-
lation. Springer, 2013.

[17] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

[18] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly,
A. J. Davison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham,
and S. Furber. Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), May 2015.

[19] S. Rahman, M. Burtscher, Z. Zong, and A. Qasem. Maximizing
hardware prefetch effectiveness with machine learning. In 17th IEEE
International Conference on High Performance Computing and Com-
munications (HPCC15), Aug 2015.

[20] S. Seo, J. Lee, G. Jo, and J. Lee. Automatic opencl work-group
size selection for multicore cpus. In Proc. of the 22Nd International
Conference on Parallel Architectures and Compilation Techniques, 2013.

[21] N. P. Tran and M. Lee. Parameter tuning model for optimizing
application performance on gpu. In 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W),
Sept 2016.

[22] V. Volkov. Better performance at lower occupancy. 2010.
[23] R. Vuduc, J. Demmel, and J. Bilmes. Statistical Models for Empirical

Search-Based Performance Tuning. International Journal of High
Performance Computing Applications, 18(1), 2004.

[24] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou.
Gpgpu performance and power estimation using machine learning.
In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Feb 2015.

449

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

