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Abstract—Graphics processing units (GPUs) provide high per-
formance at low power consumption as long as resources are
well utilized. Thread block size is one factor in determining
a kernel’s occupancy, which is a metric for measuring GPU
utilization. A general guideline is to find the block size that leads
to the highest occupancy. However, many combinations of block
and grid sizes can provide highest occupancy, but performance
can vary significantly between different configurations. This is
because variation in thread structure yields different utilization
of hardware resources. Thus, optimizing for occupancy alone is
insufficient and thread structure must also be considered. It is
the programmer’s responsibility to set block size, but selecting
the right size is not always intuitive. In this paper, we propose
using machine learning to automatically select profitable block
sizes. Additionally, we show that machine learning techniques
coupled with performance counters can provide insight into the
underlying reasons for performance variance between different
configurations.

I. INTRODUCTION

Graphics Processing Units (GPUs) can provide great per-
formance at low power consumption as long as there is good
utilization of resources. Thread block size is a key factor
in determining a kernel’s occupancy. Occupancy is the ratio
of the number of active warps running on a GPU to the
maximum number of warps that can be scheduled. Occupancy
provides intuition into how well a parallel kernel utilizes the
GPU and is closely related to resource allocation. A general
guideline is to find the thread configuration that leads to
the highest occupancy. However, it has been shown that for
some kernels the highest occupancy does not always yield
the best performance[22]. High occupancy leads to increased
resource contention, as more threads compete for limited
hardware resources such as registers and shared memory.
Low occupancy provides each thread with more resources
but this can have a negative impact due to low latency
hiding. Furthermore, multiple block sizes can provide highest
occupancy for a given kernel, but their performance can vary
at these different configurations. This is because variation in
thread configuration yields different utilization of hardware
resources. Thus, optimizing for occupancy alone is insufficient
and the thread geometry must also be taken into consideration.
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Fig. 1. Execution time of four applications with varying block sizes.

Current practice dictates that programmers choose the grid
and block size to optimize their GPU applications. Selecting
a good thread configuration is not always intuitive. Small
variations in the thread block size can have huge performance
impact. Consider the performance variations of four kernels
shown in Fig. 1. The performance can vary by as much as
a factor of three when selecting different block sizes for the
same kernel (depthvertex). Although larger block sizes
yields better performance on average, the largest block sizes do
not necessarily produce the best results. For instance, formriq,
it is most profitable to select a relatively smaller block size of
128.

Navigating the different choices for thread block config-
uration can prove time consuming for the programmer. It
may require the programmer to manually change the thread
configuration, re-run the program, and collect performance
results for each change until the desired performance level
has been reached. Additionally, the space that needs to be
considered when finding an optimal thread block size is multi-
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dimensional. This complex search space can prove to be
difficult to evaluate. As the size of this search space increases,
it soon becomes unfeasible to perform an exhaustive search
and many heuristic searches can easily become stuck in local
optima. Features of this search space include the size of input
data and the number of registers allocated, both of which are
correlated to the kernel’s performance under a given block
size. Another factor that can cause variance is the grid size.
Grid size reflects the total amount of work to be done in terms
of the number of threads launched. When a large grid size is
used, this results in less work for each thread to perform and
increased contention for limited hardware resources.

Using machine learning (ML), performance and power con-
sumption of GPU kernels can be improved through automatic
selection of profitable thread configurations. This reduces
the number of kernel runs necessary and allows for a more
efficient evaluation of the complex search space. In addition,
ML techniques coupled with hardware performance counters
can help provide insight into the underlying reasons for
performance variance between different thread configurations.

In this paper we present a strategy for selecting profitable
blocks sizes in GPU kernels using supervised ML. Our ML
model uses dynamic performance events as features. Given a
GPU kernel, our framework profiles the kernel and extracts the
relevant dynamic features. The model then predicts if a change
in block size will improve the performance of the given kernel.

Our framework automates all major steps in the ML
workflow, including feature extraction, feature selection, and
training data labeling. In order to ensure a sufficient sample
size for the training data, we generate multiple code variants
from a single base program. These variants all exhibit distinct
behavior on the target platform, allowing for a range of
program characteristics for the ML model to learn from.

To summarize, the main contributions of this paper are as
follows:

« construction of a novel machine learning based heuristic
for selecting thread block sizes that accounts for multiple
performance trade-offs

« a general framework for automatically developing super-
vised classifiers for platform-specific performance mod-
eling and automating the machine learning workflow

o an analysis of the underlying causes of performance
anomalies due to thread block variation

II. BACKGROUND

A GPU is a highly parallel processor that is traditionally
used for rendering computer graphics. However, modern GPUs
are commonly used for performing computations in scientific
and engineering applications. A GPU consists of a set of
Streaming Multiprocessors (SMs), and each SM contains a
number of execution units called Stream Processors (SPs).
Modern GPUs contain thousands of SPs. An SM is designed
to execute hundreds of threads concurrently and follows the
single instruction, multiple data (SIMD) model of execution.
The compute capability of a NVIDIA GPU identifies the
features supported by the GPU hardware [2].

A. CUDA

CUDA is a programming interface which allows direct
programing of NVIDIA GPUs. CUDA C is an extension to
the C programming language that allows developers to write
parallel functions, called kernels, for execution on the GPU.
In the CUDA programing model, GPUs can achieve high-
performance by executing massively parallel threads simul-
taneously.

B. Thread Hierarchy

The most basic unit of execution in CUDA is a thread.
Warps, which are sets of 32 threads that are simultaneously
executed together, are divided into thread blocks. Thread
blocks execute independently of one another, allowing them
to be scheduled in any order across any number of cores.
Warps within the same thread block are executed on the same
multiprocessor and access the same shared memory unit. Each
thread block is assigned to a single SM during the execution of
a kernel. A grid is a collection of thread blocks. The number of
thread blocks in a grid is typically based on the size of the data
being processed. The thread blocks within a grid are mapped
across multiple SMs. The maximum number of threads which
can be assigned to each block varies depending on the GPU’s
architecture and compute capability. Likewise, the maximum
blocks per SM and maximum threads per SM also depends on
the compute capability. Limiting factors include the number
of registers and shared memory required by the kernel and the
number of registers and amount of shared memory available
on the multiprocessor [2].

C. Memory Hierarchy

A CUDA enabled GPU has six different memory compo-
nents: register, shared memory, local memory, global memory,
texture memory and constant memory. Every thread has its
own private local memory. Each block has its own shared
memory, which is shared among all the threads within that
block. Global memory, constant memory, and texture memory
can be accessed by all threads. Constant and texture memory
are read-only, while the other memory types are read/write. A
generalized diagram of this memory hierarchy is depicted in
Fig. 2.

D. Machine Learning

Machine learning (ML) is a method of data analysis that
uses algorithms which iteratively learn from data, allowing
computers to find hidden patterns without being explicitly
programmed. If a computer program is able to improve its
performance of accomplishing a task by using previous expe-
rience then it is said to have learned[17]. One of the biggest
strengths of ML is the ability to automatically apply complex
mathematical calculations to large sets of data with minimal
effort from the user.

The two most commonly used ML methods are supervised
and unsupervised learning. In unsupervised learning, the input
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Fig. 2. Generalized GPU memory diagram

data is not labeled with the correct output. The goal of unsu-
pervised learning is to discover similarities and find structure
within the data.

Supervised learning ML algorithms are trained using labeled
instances. The learning algorithm is provided with a set of
inputs and the corresponding correct output, typically referred
to as the training set. The goal of the learning algorithm is to
infer a function that minimizes the error with respect to these
inputs. Put briefly, the purpose of supervised ML algorithms
is to learn a mapping X — Y, where x € X is some instance
and y e Y is a class label.

A decision boundary is the hyper-surface that partitions
the learning space into sets, one for each class. A decision
boundary is the region of the learning space in which the
output label is ambiguous. The learning space is linearly
separable if the classes of the space can be separated with
a single linear surface.

III. RELATED WORK
IV. OPTIMIZATIONS FOR THREAD CONFIGURATION

Seo et al. developed a heuristic for work group size selection
for OpenCL kernels running on multicore processors [20].
They use static estimation and runtime feedback to fine-tune
the workgroup size for improved locality and load balanc-
ing. They compare their numbers to an exhaustive search
of all possible workgroup configurations. These results show
that their strategy can get the same performance at a much
lower cost. Their experiments do show significant variation in
performance for the NAS SP kernel for different workgroup
sizes. They do not extend this technique to GPUs, where the
performance issues are much different.

Tran et al. proposed a tuning model for calculating can-
didate grid and block sizes to achieve optimal performance
based on highest occupancy [21]. Their approach is able to
calculate a set of candidate grid and block sizes faster than
using exhaustive search. However, their model relies solely
on the thresholds of the block and grid sizes enforced by a
GPU architecture. They do not consider the characteristics of
the kernel, which is be essential in determining optimal thread
configuration. Their model is mainly used to reduce the search

space rather than using a ML predictor and may output a list
of multiple candidate configurations.

Magniet al. implemented thread-coarsening compiler trans-
formations by developing a LLVM-based OpenCL com-
piler [14]. Additionally, they utilized regression trees and
hardware performance counters to identify performance fea-
tures that are affected by thread-coarsening. They evaluated
the effect of the coarsening factor on performance and found
that regression trees are able to identify the hardware features
relevant to performance. Magniet al. conducted another study
where they use source-level directives to tune thread config-
uration parameters. However, their tuning approach does not
explicitly model the resource usage of the kernel [15].

Gupta et al. designed STATuner, which identifies a feature
set of static metrics that characterize a CUDA kernel and
builds a Support Vector Machine classifier to predict which
block size provides the best performance [9]. Static metrics are
obtained by compiling CUDA kernels in LLVM. Static anal-
ysis of the generated LLVM binary code and IR is performed
to get metrics for instruction mix, loops, register usage, shared
memory per block, and thread synchronization. Our approach
differs in that our framework uses dynamic kernel features as
input to the ML model.

V. MACHINE LEARNING IN PERFORMANCE MODELING

A study of recent applications of ML techniques in per-
formance modeling and tuning in HPC shows a pattern of
incoming challenges and how ML practitioners have tackled
them. The initial application of machine learning modeling
and tuning (MLMT) emerged as a response to prohibitively
long tuning times for search-based autotuning. As such, some
of the earliest work in this area were based on using heuristic
modeling, pruning and empirical search in order to reduce the
parameter space and find early stopping criteria [23]. As neural
networks and logistic regression models gained popularity,
they were applied to autotuning problems in HPC. Cavazos
et al. led the charge in this venture beginning with their
work on identifying optimal compiler optimization sequences
using multiple logistic regression models [3]. Estimating the
performance gain or loss of applying a particular optimization
as a reduction of the larger problem of finding an optimal set
of optimizations worked well for a multitude of scenarios. This
technique, however, overlooks the possibility of synergistic
and antagonistic behavior between multiple optimizations.
Moreover, as the number of optimizations available remains
large, the time to generate training data and the number of
classifiers required also remains large. For instance, GCC 4.8.2
has 193 optimizations and choosing an optimal sequence es-
sentially means creating an array of 193 classifiers and training
data sets for each classifier. Furthermore, the widely changing
architectures in HPC landscape has posed the challenge of
adaptability. Fursin et al. turned to crowd-sourcing to address
this challenge by gathering collective optimization knowledge
across architectures [8].

Similar to many ML problems, success of ML techniques
hinges on accurate input characterization. Researchers have
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Fig. 3. Overview of our machine learning framework

attempted to characterize programs using program control flow
graph [6] static program features [8] and hardware perfor-
mance counters [19]. Hardware performance counters have
the added benefit of being dynamic and are able to capture
architecture-specific system response. However, there is a large
number of performance events and it is difficult to pick effec-
tive ones. Many have resorted to hand-picking them [16] while
some have employed statistical methods to select events that
vary most across different program executions [11], [19]. Wu
et al. designed a model that uses neural networks and k-means
clustering to estimate the performance and power of a kernel
on other hardware configurations [24]. Hardware performance
counter values collected on one hardware configuration are
used as input to the model for predicting performance of the
kernel on the other configurations. The focus not on optimizing
a kernel for a given system, but rather determining how well
the kernel will perform on other systems.

In spite of challenges faced by HPC researchers in their
application of ML, the evolution of ML in HPC has been
impressive. Many variants of popular ML techniques have
been successfully applied to different branches of HPC - in
performance optimization through code changes [5] predict-
ing optimal build configurations [12], runtime configurations
[71, [13], identifying performance bottlenecks [10], [11] and
recently, also in efficient energy management [4]

VI. DESIGN AND IMPLEMENTATION

Fig. 3 gives an overview of our framework. To begin, our
framework generates custom scripts that drive the tasks of
feature extraction, feature selection, training data generation,
model training, evaluation, and selection. The newly created
model is stored as an R script and provides an interface for
the user to invoke it on unseen programs. An interactive mode
is also supported to perform subtasks selectively.

A. Configuration

We provide a simple interface which allows users to specify
the directory of the programs to be used as input for the
training data generation. This configuration interface sets en-
vironment paths, detects CUDA enabled devices, and creates
customized build and execute scripts that are tailored to the
user’s environment. In this phase, instructions for generating
training data are specified in a file called proglist.

B. Training Data Generatator

After generating the custom makefiles and execute scripts
the configurer creates a proglist file that encapsulates necessary
information for generating training data on the target platform.
Each line of the file contains information for executing each
program that is to be used in the training set. This file serves as
input into a script called varlist_gen.sh. varlist_gen.sh reads
each line of the proglist and outputs a file, named varlist,
containing instructions for creating program variants for each
baseline program that was listed in the proglist. These variants
include modifying the -maxrregcount flag, thread block
configuration in the kernel launch, and differing program
input data (when available). The varlist is sent to a script
that generates, builds, and executes each program variant. In
this phase, the runtime features of each program contained
in varlist is collected using nvprof. The collection and
processing of data in this phase is explained in more detail
in Section X.

C. ML Engine

In the Machine Learning (ML) Engine phase, the training
data is supplied to an R script. Within this script, the training
dataset is randomly partitioned into training and testing sets.
An SVM model is trained using the training set and its
performance is evaluated using cross-fold validation. This
process is repeated 10 times, adjusting tuning parameters each
time, and the model yielding the highest accuracy during
validation is selected. The final model’s performance is further
evaluated using the testing set in order to ensure that overfitting
has not occurred.

D. Analyzer

The framework currently supports three types of analysis
visualizations to provide insight to the user about the training
data and the generated model.

1) Cluster-PCA plots: Cluster-PCA plots are used to ex-
amine properties of the training data. k-means clustering is
applied on the feature space, where the value of k is determined
via the silhouette method. We perform principal component
analysis (PCA) on the feature space and the clustering results
are visualized on scatter plots by projecting the clusters onto
the two principal components (PCs) that explain the most
variation in the data. A point in the plot represents a code
variant. Points can be annotated to show base program, class
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label, or threshold-delineated PCA values. Ellipses represent
clusters and two points falling within the same cluster indicates
that they exhibit similar behavior. Cluster-PCA plots can
provide intuition about the training data in several ways. The
number of clusters is a reflection of the the number of different
types of codes present.

2) PCA-VR segment plots: Although PCAs are primarily
used for dimensionality reduction, in MLMT they can be use-
ful in other ways. We can think of a PC as a compound feature
that describes a broad performance pattern. For instance, a PC
might represent memory-bound behavior and contain related
features such as LLC miss rate, DRAM accesses and stalled
cycles. In general, however, the relationship between many of
the performance events is either unknown or not obvious to the
user. Identifying major performance events that comprise a PC
can provide valuable insight about both program performance
and architectural characteristics. The challenge, however, is
that PCs are not amenable to direct visualization. To address
this, we apply Varimax Rotation on the sub-space discovered
through PCA and then use a segment plot to visualize the
contribution of each feature to the top k£ PCs. These segment
plots provide the practitioner with a quick way to identify
related features (although the nature of the relationship is not
revealed) in the feature space. This knowledge can be used to
optimize code independent of the model being generated.

3) Decision tree analysis: Decision trees are prone to
overfitting and their ability to learn complex spaces is limited.
Despite these shortcomings, decision trees are easy to visualize
and can provide an intuitive way to understand the learning
behind the predictions.

VII. MODEL FORMULATION

Our model uses machine learning to provide the user with
suggestions on how to modify the thread block size of their
code. Given a kernel, our model will determine if the thread
block size should be increased or decreased to achieve better
performance.

VIII. DETERMINING LEGAL THREAD BLOCK DIMENSIONS

When determining legal thread block dimensions, several
factors need to be taken into consideration:

e The hardware constraints of the GPU
o The original thread block dimensions
e The correctness of the kernel’s results

Often the kernel has been coded such that the correctness of
the results is dependent on the block size. This means that
while a given block size is legal in CUDA, it may not be valid
in context of the program in question. It can be determined
whether or not a block size is valid by checking the results of a
program run using the new block size with the original results.
Note that this approach only works for programs whose output
is deterministic. For these reasons, we have chosen to create a
model that suggests relative changes in block size rather than
giving absolute numbers. The programmer can then select the
next valid block size in the direction of the change.

IX. ML ALGORITHM SELECTION

To make predictions on the direction of change in block size
for a given kernel, we use Support Vector Machines (SVMs).
In selecting which machine learning algorithm to use, we
took into consideration what type of decision boundaries we
expected in our feature space. Specifically, whether or not the
feature space is linearly separable is important in selecting
which machine learning model to use.

Although our data includes only three classifications, the
feature space is much more complex. Because of this, our data
does not exhibit a linearly separable decision boundary. Thus,
we opted to use an algorithm capable of learning complex
spaces that are not linearly separable. We selected SVMs due
to their high accuracy and ability to learn complex search
spaces. Other strengths of SVMs are that they aren’t overly
influenced by noisy data and are not prone to overfitting. We
use the kernel trick, which maps the feature space into higher
dimensional space, in order to enable learning of nonlinearly
separable decision boundaries. We also employ the all-versus-
all strategy, which combines several binary SVMs, to allow
for multi-class predictions.

Additionally, we also rely on clustering to evaluate the
feature space and decision trees to provide meaningful insight
into the reasons why some kernels perform better with smaller
block sizes over larger block sizes.

X. TRAINING DATA GENERATION

Our framework is able to manipulate the max register
allocation and block size of CUDA kernels in order to generate
multiple code variants from the same base program. Next,
dynamic metrics of each of the kernel variations are collected
using performance counters. This set of metrics becomes the
input feature vector for the ML model.

A. Feature Extraction

Our framework uses runtime events as features. To collect
runtime events, we read values from hardware performance
counters using nvprof. We created a shell script which reads
a list of the selected events from a text file and passes them
to nvprof. To reduce the time required for collection of these
events, we take of advantage of multiplexing and divide the
events into groups that can be measured during a single
program run without causing conflicts in hardware counters.
Based on expert knowledge and analysis, we selected events
which are closely related to thread block size. The selected
events are shown in Table I. In addition to considering resource
utilization, we model the following program characteristics.

1) Memory Divergence: Memory access can greatly impact
a kernels performance. Coalescing is a memory access tech-
nique in which memory requests to the same cache line are
grouped together to create a single transaction. Coalescing is
typically performed at the warp level. Address-aligned requests
to contiguous memory locations from threads in the same
warp are combined into a single transaction, greatly reduc-
ing memory traffic. With a greater number of warps, more
coalesced memory accesses can occur at a time. However, too
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TABLE I
NVPROF EVENTS COLLECTED

Events Collected

fb_read_sectors
fb_write_sectors
11_local_load_miss
11_local_store_miss
11_global_load_miss
global_store_transaction
inst_issued
inst_executed
thread_inst_executed

gld_request

gst_request
11_local_load_hit
11_local_store_hit
11_global_load_hit
uncached_gld_transaction
gld_inst_32bit
gst_inst_32bit
not_predicated
_off_thread_inst_executed
12_write_sector_misses
12_read_11_hit_sectors
12_total_write_sector_queries
global_ld_mem
_divergence_replays

12_read_sector_misses
12_total_read_sector_queries
shared_load_replay
global_st
_mem_divergence_replays

many warps per SM can degrade performance due to increased
resource contention. For these reasons, kernels which are
memory-bound tend to be more sensitive to changes in block
size.

2) Control Divergence: Control divergence is another fac-
tor that can influence a kernels performance. Frequent branch
instructions and branch divergence can degrade performance.
A control instruction is divergent if it forces threads within a
warp to take different execution paths. In CUDA, divergence
results in serialization of the execution paths, thereby increas-
ing the total number of instructions executed. Additionally,
threads within a warp cannot continue until all threads of the
warp have exited the conditional path. Smaller block sizes
can reduce the overhead of control divergence by reducing
the number of instructions executed per warp and limiting the
number of threads that must wait due to divergence. However,
if too few threads are launched, it may be insufficient to hide
instruction latency.

B. Event Collection

The baseline version of each kernel is considered as the
execution using the default thread block size and register
pressure. For each baseline version, we modified the block size
in the kernel launch configuration of the code. We executed
the baseline and all variants and collected runtime events and
kernel execution time using nvprof. Next, we computed the
speedup of each instance over the baseline version. Labels
were added to each instance in the dataset based on the
speedup and block size.

C. Data Labeling

To train the ML model, we must provide it with labeled
instances that it will learn from. Manually labeling each
instance in the training dataset is time consuming. To alleviate
the user of this task, our framework automates the process
using scripts and a simple algorithm to determine the labels.
For each instance in the training data set, the speedup over the
baseline is computed. We consider a speedup < 1 to be bad,
a speedup = 1 to be neutral, and a speedup > 1 to be good.

Next, the block size of the variant is compared to the baseline
block size and the label is assigned using Algorithm 1.

Algorithm 1 Labeling algorithm

1: for all d €D do

2 if speedup < 1 and newBlock < origBlock then

3 new.Label < increase.

4 orig.Label <— noChange.

5. else if speedup < 1 and newBlock > origBlock then
6

7

8

new.Label < decrease.
orig.Label <— noChange.
else if speedup > 1 and newBlock < origBlock then

9: new.Label <— noChange.

10: orig.Label < decrease.

11:  else if speedup > 1 and newBlock > origBlock then
12: new.Label < no Change.

13: orig.Label < increase.

14:  end if

15: end for

D. Feature Selection

Feature selection is important for improving accuracy of
a ML model. Features which are redundant or provide no
additional information to the model should be removed. First,
we removed any events that had a value of O for all pro-
gram runs. Next, we evaluated the association between the
remaining features by calculating the correlation coefficients
using the Pearson correlation formula, which measures a linear
dependence between two variables, X and Y:

. SX X))
VI X2y - V)

Features with a correlation coefficient greater than 0.9 were
removed from the set. Features which are highly correlated to
all other features do not add any additional information to the
data, hence they are redundant and can reduce model predic-
tion accuracy. The remaining features and their correlation are
shown in figure 4. These features are estimated to provide the
highest predictive power.

XI. EXPERIMENTAL SETUP

We evaluated our model using a Nvidia Tesla K40c GPU
on a linux system that had CUDA 7.5 installed. The K40c
has a compute capability of 3.5, supports a maximum of 1024
threads per block, and a maximum of 2048 threads per SM.

A. Benchmarks

We used kernels from the Parboil [1] and SLAMBench [18]
benchmark suites to generate training data.

XII. RESULTS
A. Training Space Characterization

The complexity of the feature space can be evaluated by
performing principle component analysis (PCA) and k-means
clustering on our training dataset. As we can see in Fig. 5,
in which many different block sizes are contained within the
same cluster, the best thread block size is not always easy to
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determine. This implies that even though two programs may be
very similar, subtle differences can lead to variance in resource
utilization and the need for different block sizes.

Fig. 6 shows a VR-PCA segment plot for our training
dataset. We can see that the fourth principle component,
shown in red, is dominated by features related to global load
memory transactions. This further demonstrates that memory
access patterns and memory divergence is a primary factor
in determining a kernel’s classification and selecting a good
block size. Another principal component worth noting is the
second principal component, shown in blue, in which features
related to instruction execution have the most contribution.
The first and third principal components, in purple and green
respectively, appear to be less significant.

<

uncached_gld_trans
gld_inst_32bit

A

11_gld_trans

1A

gld_request

gst_request

< 1.4

thrd_inst_exec

inst_exec not_pred_off_thrd_inst 12_total_read_sector_queries

12_read_I1_hit_sectors

Fig. 6. The segment plot shows the contribution of each attribute to the
principal components.

ves] not_pred_off_thrd_inst >= 41e+6
gld_mem_div < 107e+3 gld_mem_div < 1564
-—noChange

11_gst_trans >= 177e+3 fb_read_sectors >= 45e+3

fb_read_sectors < 113e+3
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Fig. 7. The decision tree’s splitting criteria.

B. Model Evaluation

We evaluated our model’s accuracy using 10-fold cross vali-
dation. We split the training set in 10 groups of approximately
the same size, then iteratively train a SVM using 9 groups and
make a prediction on the group which was excluded. We set
the value of k to be 10. Our SVM model had an accuracy rate
of 83.7%. Our decision tree model had an accuracy rate of
81.4%.

We created a visualization of the splitting criteria used by
the decision tree in order to understand which variables of the
feature vector were used to make predictions. As seen in Fig.
7, the choice of the thread block size is sensitive to memory
divergence, L1 cache behavior, and reading from DRAM.

C. Performance and Energy Gains

We used our model to tune 6 kernels that were not contained
in the training or validation data. For these kernels, we
followed the model’s suggestions of adjusting the block size,
selecting the next valid size and reinvoking the model until a
”no change” suggestion was provided. We then compared the
execution time of the unmodified kernel to that of the modified
kernel to determine the speedup.

When we adjusted the block size in accordance with the
suggestions provided by our model, we were able to obtain
up to 1.8x speedup over the baseline versions. The tuning
results of 6 programs is shown in Fig. 8. In regards to energy,

448

Authorized licensed use limited to: Texas State University. Downloaded on July 16,2023 at 14:52:14 UTC from IEEE Xplore. Restrictions apply.

gst_inst_32bit

gld_mem_div



Performance Gains

1
0.8
0.6
0.4
0.2

0

bilasteral  depthvertex  halfsample integrate  rendertrack  vertexnorm

® baseline ™ tuned

Fig. 8. Speedup gained in relation to the baseline from using our model to
tune 6 programs.

we found that adjustments in thread block size provided no
significant change in a kernel’s power consumption.

XIII. CONCLUSION

This paper presents the construction of a ML-based heuristic
for selecting profitable block sizes. Using supervised ML
algorithms and dynamic performance events as features, our
ML model predicts if a change in block size will improve the
performance of a given kernel. The framework presented in
this paper introduces strategies for automating time consuming
aspects of training data generation and building a ML model,
such as feature extraction, feature selection and labeling. We
address the common issue of not having enough programs
to build a sufficiently large and diverse training dataset by
generating multiple code variants for a single base program.

We demonstrated the effectiveness of our ML model on
a mix of programs from the SLAMBench and Parboil bench-
mark suites. We show that our framework can produce accurate
models for making predictions. The visualizations allowed us
to better analyze the training dataset and results of the ML
models in order to identify underlying causes of performance
anomalies when varying thread block size. We found that
subtle differences in a kernel’s runtime behavior can result
in the need for different block sizes. Additionally, the choice
of thread block size is sensitive to memory access patterns,
especially memory divergence.

By using our machine learner on 6 unseen kernels that were
excluded from the training data generation phase, we were able
to achieve up to 1.8x speedup over the baseline versions.
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