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Abstract—This paper introduces a new energy-efficient FPGA
accelerator targeting the hotspots in Deep Neural Network
(DNN) applications. Our design leverages the Coherent Accel-
erator Processor Interface (CAPI) which provides a coherent
view of system memory to attached accelerators. Our im-
plementation bypasses the need for device driver code and
significantly reduces the communication and I/O overhead.
Performance is further improved by a tiling transformation
that exploits data locality in the computation kernel via the
CAPI Power Service Layer (PSL) cache. A new adder tree
configuration is proposed which achieves a tunable balance
between resource utilization and power consumption. An
implementation on a CAPI-supported Kintex FPGA board
achieves up to 155 GOPs/s and 15.79 GOPs/watt, improving
on the state-of-the-art of FPGA-based DNN implementations.

1. Introduction

We have witnessed an exponential growth in digital
data over the last decade. To extract knowledge from this
sea of information, researchers have developed sophisticated
data analytics techniques driven by Machine Learning (ML)
algorithms. Deep neural networks (DNNs) play a central role
in solving real-time tasks in various ML applications such as
image detection and classification, face recognition, natural
language processing, fraud detection, targeted marketing,
autonomous driving, and financial forecasting [1], [2], [3],
[4]. Because of the ability to train and classify data with high
accuracy, DNNs have emerged as the de facto algorithm for
data analytics frameworks and have received enthusiastic
interest from both academia and industry alike [5], [6], [7].

Because of the extremely high demands for both data
and computation, analytics workloads, at least in the train-
ing phase, are deployed on large-scale systems on data
warehouses. To achieve improved energy efficiency, the
power-hungry CPUs on these systems are complemented
with accelerators such as GPUs, and ASICs. Performance-
critical tasks are off-loaded to the accelerators, which work
in concert with the CPUs to attempt to deliver the desired
performance at acceptable energy levels [8], [9]. In this
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Figure 1. POWER8 CAPI Architecture

context, re-configurable FPGAs offer an attractive alterna-
tive in accelerating DNN algorithms [10], [11], [12], [13].
FPGAs can deliver higher performance per watt compared
to GPUs [14] and are more cost-effective than ASICs [15],
striking the right balance between these two classes of
devices. Furthermore, FPGAs can be useful in the inference
phase since inference tasks are often run on battery-powered
edge devices [16].

Hardware acceleration of DNNs poses significant chal-
lenges, however. Real-world DNNs are constructed with
millions of model parameters requiring hundreds of
megabytes of storage for each layer, which far exceeds
the capabilities of current FPGAs. As a result, accelerated
implementations incur high I/O overhead and performance is
often dominated by data transfer time over a low-bandwidth
I/O bus such as PCIe. Another major obstacle with FPGA
acceleration, DNN or otherwise, is the time to development.
In traditional HW-SW collaboration paradigm, the acceler-
ator is attached as a memory-mapped I/O device. A device
driver performs the virtual to physical address translation
and delivers the addresses of the pinned kernel buffer to the
accelerator. The burden of writing a custom device driver
falls on the developer.

This paper describes a new flexible approach to imple-
menting energy-efficient DNNs on FPGAs. Our implemen-
tation utilizes the Coherence Accelerator Processor Interface
(CAPI), recently introduced by IBM [17] (Fig. 1). CAPI-
supported systems allow the CPU and the attached acceler-
ator to share the same coherent memory space. This feature
provides two significant advantages.

(i) Coherent access to system memory implies that data
does not need to be explicitly copied to device memory



prior to launching the computation on the FPGA board.
This opens up new avenues for implementations that
can mitigate the capacity and bandwidth constraints
faced by FPGAs when executing DNN kernels.

(ii) Pointers within the shared address space can be passed
freely between the CPU and the FPGA. This obviates
the need for writing a custom device driver to access
memory-mapped I/O and communicate with the ac-
celerator, which can significantly reduce development
time.

We exploit the above CAPI features and present a new
pipelined implementation for the matrix-multiplication ker-
nel within DNN applications. Matrix-multiplication is at
the core of neural network algorithms and is considered
to be the principal hotspot. It has been shown, that in a
typical DNN application up to 95% of the time is spent
performing matrix multiplication [18], [19], making it an
ideal candidate for accelerator off-load. The key idea in
our FPGA design is to fetch the matrix data from system
memory in pipelined fashion and instantiate hardware blocks
for a single row rather than for each data point in the
output matrix. The hardware blocks are reused during the
computation of each row and are populated with data for
the next row when calculation for one row is complete.
We augment this design with a tiling transformation that
exploits data locality within the pre-fetched data in device
memory. We implement tiling for both resource-constrained
and unconstrained systems. We further optimize the design
for resource usage by developing a novel tree-structured
configuration for the adder units.

We also propose a new design for non-linear activation
functions within DNN applications. Specifically, we look
at the Rectified Linear Unit, which is the most commonly
used activation function in deep learning. We provide the full
implementation on a CAPI-supported Xilinx Kintex FPGA
board. Experimental evaluation shows that the proposed
design yields improved performance/watt over prior efforts.
Our evaluation also shows that although DNN applications
are dominated by matrix-multiplication computation, op-
timization of the activation layer tasks can also have a
significant performance impact. To summarize, the main
contributions of this work are as follows:

• a pipelined implementation of the matrix-multiply ker-
nel in DNNs on a coherently attached FPGA

• a method that leverages CAPI features to exploit data
locality in device memory

• a new tree-structured layout for adder units for im-
proved resource utilization

• an FPGA implementation of the Rectified Linear Unit,
which makes the case for accelerator off-loading of
other layers in DNN application

2. Background

2.1. CAPI

The CAPI technology, introduced by IBM in 2014, is
a hardware-software interface that enables coherent connec-

tion to custom acceleration engines within a heterogeneous
compute unit [17]. Fig. 1 gives an overview of the CAPI
architecture. The Coherent Accelerator Processor Proxy
(CAPP), hosted on POWER CPUs and the Power Service
Layer (PSL), installed on the accelerator, work collabora-
tively to provide a coherent view of system memory. This
essentially turns the accelerator into a functional unit within
the CPU (called Accelerator Function Unit or AFU in CAPI
terminology). The PSL contains a 256 KB cache which
can be accessed by the accelerator. An application running
on the CPU sends a Work Element Descriptor (WED) to
the AFU. WED contains pointers to data and meta-data
in the system userspace on which accelerated computation
is performed by the AFU. This is in stark contrast to the
traditional paradigm, in which the accelerator is attached as
a memory-mapped I/O device, and device driver performs
the virtual to physical address translation.

CAPI adds an Effective-to-Real-Address Translator
(ERAT) within PSL which translates the addresses, signifi-
cantly reducing address translation overhead. In traditional
systems, when an accelerator finishes its computation, it
writes the data in the kernel space. A device driver then
copies the data to the user space, generates a pointer to the
data, and passes it to the application. Thus, the same data
is copied twice. In CAPI, the pointer to the user space data
is sent from the application directly to the FPGA, thereby
eliminating the cost of copying data from kernel to user
space.

2.2. Deep Neural Networks

A neural network composed of more than one hidden
layer qualifies as a deep neural network. In practice, how-
ever, DNNs can consist of many layers containing millions
of nodes. Each layer trains on a distinct feature vector based
on the previous layer’s output. Each layer is initialized with
a weight matrix and then goes through multiple forward and
backward passes. In forward propagation, a loss function is
evaluated and output is calculated from each layer which is
fed into the next layer. In backward propagation, gradients
of the parameter matrices are calculated (e.g., Jacobian
matrix) and weight matrices in different hidden layers are
updated iteratively to minimize the loss function. In general,
in a forward-pass, a huge amount of data is cached in
memory, and during back-propagation, those values are re-
used for updating the loss function. Each node of any layer
is activated by an activation function such as Sigmoid, or
Rectified Linear Unit (ReLu). After being triggered by the
activation function, the node produces an output.

Fig. 2 shows the workflow of a typical DNN in terms
of the core computation tasks. The figure also shows the
mapping of the tasks to the available computation units. The
fully connected layers which involve matrix computation are
the prime targets for offloading to an FPGA. In this work,
we show that the activation functions (highlighted in red
rectangles) are also suitable for acceleration.



Figure 2. DNN workflow and their mapping to computation units in a CPU-FPGA collaborative environment
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Figure 3. FPGA hardware architecture overview

3. Hardware Design

The design goal of our FPGA is to take advantage of
the shared coherent space afforded by CAPI. The matrix-
multiplication operation is decomposed into a series of
vector dot-product computations, and a specialized hardware
unit is constructed to execute the dot products in parallel.

3.1. Architecture overview

This section represents an overview of the architecture.
Fig.3 depicts the hardware architecture. The AFU consists of
computational kernel units (CKUs), a controller unit (CU),
multi-ported buffer unit (MBU), extra computational unit
(ECU) and an address computing unit (ACU). The CKU
consists of two specialized computation kernels (i) matrix-
multiplication (MMU) and (ii) ReLu unit (RLU). MMUs
are the largest computational blocks in the accelerator. An
n×n MMU kernel consists of n vector-dot-product (VDP)
units. Each VDP unit computes the vector dot product of
two vectors of size n. In the baseline design, a VDP unit
consists of n multipliers and (n/2) adders. The CU is
responsible for extracting information from meta-data in
WED and maintaining hardware state. The ECU is used
in the pipelined computation for performing additions on
intermediate data. The ACU calculates the virtual address
for reading and writing user space data to- and from- the
coherent shared memory.

We first describe a non-CAPI based canonical imple-
mentation of matrix-multiply in this architecture and then
present our pipelined implementation.

3.2. Canonical implementation

In an A×B = C matrix multiplication, elements of the
ith row in A are combined with elements of the jth column
of B to form the resultant C(i, j) element. An element-
wise multiplication is performed between A(i :) and B(: j)
followed by a summation of results of the multiplication.
In the canonical implementation, multipliers and adders
are dedicated to computing each element in the resultant
matrix C. For an n × n weight matrix, to compute each
element in the resultant matrix, n multipliers are initialized
which operate in parallel. The summation cannot be fully
parallelized due to dependencies and is therefore performed
in stages. For each element of the resultant matrix, a total of
n/2 adders are initialized. In the first stage, n/2 additions
are completed in parallel. Each subsequent stage operates on
the results from the previous, thus reducing the number of
additions by half. Adders are re-used from one stage to the
next via a buffering mechanism. For n/2 adders, number of
stages required to complete the summation is log2(n+ 1).

In the first stage, input to the adders, {m1,m2, . . .m16}
are received from the output of the multipliers. The adders
produce output {s1, s2 . . . s8} which are propagated on to
the next stage. In this design, the number of required adders
and multipliers grows quadratically with the problem size.
For an (n× n) matrix-multiplication with canonical design,
a total of (n× n× n) multipliers and (n× n× n/ 2) adders
are required. This can prove problematic when n is large, as
larger instances will fail to execute on many of today’s FP-
GAs due to resource limitations. Furthermore, a non-CAPI
implementation will require the entire A and B matrices
to reside in the on-chip buffer of the FPGA before the
computation can begin. This will cause further strain on
the limited accelerator resources.

3.3. CAPI-based Pipelined Implementation

Our enhanced CAPI-based design exploits pipelined
parallelism and access to shared memory space and can
operate with limited resources while still delivering superior
performance. The key idea is to instantiate hardware blocks
for a single row rather than for each data point in the
output matrix. The hardware blocks are reused during the
computation of each row, and data is passed to the blocks
in a pipelined fashion when computation for one row is
complete. An additional benefit of this approach is that it is
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Figure 4. Tiled computation of matrix-multiply on coherent FPGA

only necessary to keep one multiplicand in device memory
at a time. This allows for better utilization of bus bandwidth
(PCIe) between host and device.

The design consists of an MMU unit which contains
all computational hardware blocks. For an n × n matrix
multiplication, MMU instantiates n hardware blocks with
each block containing n multipliers, n/2 adders and two
data buffers, DA and DB of size n. The two buffers store
the row and column elements of the two input matrices,
respectively. To begin the computation, A(0 :) is copied
into the DA buffer in each hardware block, while B(: j)
(the jth column in B) is copied into the DB buffer in the
jth hardware block. Each hardware block then performs n
multiplications in parallel and n− 1 additions in log2(n/2)
stages to produce one element in C(0 :). The hardware
blocks themselves execute in parallel, and thus an entire
row of C is computed in parallel. The result is buffered,
and its transfer to the physical storage location of C is
overlapped with subsequent computation. In the next stage,
A(1 :) is copied into DA overwriting A(0 :) and the same
steps are repeated. Note, DB remains untouched after the
first iteration, as the entire B matrix is fetched during the
initial stage.

4. Design Optimizations

4.1. Tiled Computation

We improve on our design described in Section 3 by
developing a tiled-version of the matrix-multiplication unit.
This design exposes temporal locality which we exploit via
the CAPI PSL cache. This design also further reduces the
storage requirements on the FPGA, enabling us to tackle
larger matrices, representative of real data sets.

In the tiled design, larger weight matrices are segmented
into smaller sub-matrices. Each MMU kernel operates on
these smaller sub-matrices, storing the intermediate results
in temporary buffers until the final result is computed. The

model exhibits high degrees of temporal locality since each
sub-matrix is accessed many times by the accelerator with
the degree of reuse increasing with matrix size.

Fig. 4 illustrates our tiling strategy. Consider two 4× 4
matrices, X and Y. The first contains the letters A-P and
the second a-p. Each matrix is segmented into four 2 × 2
sub-matrices. X is tiled into X1 −X4 while Y is tiled into
Y1 − Y4. The result of the matrix multiplication between
X and Y is shown in the Out matrix in expression form.
We observe that if we group the first two elements in
the Out(1, 1) expression with the first two elements in
Out(2, 1), it produces the result of multiplying X1 and Y1.
Similarly, if we group the second two elements in Out(1, 1)
expression with the first two in Out(2, 2), it produces
X2×Y3. Finally, X1Y1+X2Y3 gives a 2× 2 matrix whose
elements are exactly the same as the elements of the first
quadrant of the matrix Out. The remaining quadrants can be
computed in a similar fashion.

Implementation of tiled matrix-multiply requires mini-
mal changes to the baseline architecture presented in Fig. 3.
Additional data buffers (MBUs) are needed to hold the input
sub-matrices, intermediate results, and output sub-matrices.
These MBUs are implemented as BRAMs on the board.
CKUs are replicated to process each sub-matrix in parallel.
After computing the intermediate matrix multiplication, data
is passed to the EKU for element-wise multiplication among
the intermediate matrices.

4.1.1. Tiling for resource-constrained systems. Depend-
ing on the availability of resources in an FPGA, the tiled
matrix multiplication can be designed in two ways. In the
first approach, all intermediate result matrices are buffered
locally within the FPGA. The second approach assumes the
FPGA does not have sufficient BRAM to buffer all inter-
mediate results. After computing the intermediate matrix
multiplication in the CKU (Fig. 3), the data is passed to
the EKU for element-wise multiplication. Depending on the
requirements of the addition stages, the CU requests input
data from system memory via the PSL. When the addition



Figure 5. Resource-conscious MMU unit (MMU RC) with limited-depth adder tree. Figures shows data flow for computing C(0,0) in a single VDB unit

is completed, the control unit directs the PSL to write back
the result into system memory. As the number of MBUs is
limited in the design consideration, the AFU may not be
able to use the same input tile multiple times and the PSL
may need to fetch the same data several times. Therefore,
this resource-aware implementation will come at a cost of
the reduced locality.

4.1.2. Selecting a Tile Size. The tile size can have a sig-
nificant impact on the performance of our implementation.
Selecting a tile that is too large will lead to an unexploited
locality in the PSL cache while a smaller tile size can cause
extra overhead. We take a conservative approach in selecting
the appropriate tile size. We assume each FPGA has a
computational unit that can compute a matrix multiplication
with a minimum size. We call this the kernel and set this
as the maximum size for each sub-matrix. We base this
selection on the following rationale: selecting a smaller
tile size will maximize reuse in the PSL cache (even for
caches with smaller capacity), but at the same time it will
enable concurrent processing of the maximum number of
tiles allowed by the system.

Let, kernel = n×n, size of the input matrices = N×N
and k = N/n. Then the total number of tiles (and sub-
matrices) is given by (N × N)/(n × n) × 2 = 2k2; total

number of (sub) matrix-multiplications is given by k3 and
the number of additions required is (k − 1)k2. Since the
number of matrix multiplication is k3, we need k3 buffers to
hold the intermediate results and another k2 to hold the final
results. So the total number of buffers required is 3k2 + k3.
We can use this as a basis to compute the largest matrix
sizes that can be efficiently processed by our design on
a particular board. For example, The KU115 FPGA has
4.5KB 2160 BRAM blocks. If we consider 32× 32 single-
precision floating-point matrices, a tiled matrix will require
4KB space. Hence, using our design, without re-utilizing
the MBUs, we can efficiently compute a 352× 352 matrix-
multiplication with k = 11.

4.2. Activation Functions

To improve the energy efficiency of the overall ap-
plication, in addition to matrix-multiplication, we devel-
oped an FPGA implementation for a linear activation func-
tion. Specifically, we focused on the Rectified Linear Unit
(ReLU), which has become the de facto choice in recent
years due to its simplicity and ability to enable fast train-
ing [20]. ReLUs in DNNs compute the function f (x) =
max (0, x) which triggers the neurons in the previous layer.
We designed a hardware computation unit, RLU to perform



this operation. The RLU checks the sign bit of the input
operand and passes it to the output if the sign bit is 0
otherwise it replaces the input data with 32-bit zeros. Thus
it accomplishes the functionality of a basic ReLU operation.
ReLU unit takes only one clock cycle to complete its oper-
ation. A 32× 32 ReLU unit with 150 MHz clock performs
256 GFLOPS in an FPGA.

Generally, non-linear activation layers are placed after
each fully connected layer. If the activation layers are im-
plemented in the host side then there is a need to move data
from FPGA to the host. Due to the high latency of PCIe,
it may take several cycles to transfer a single byte of data.
Since the FPGA implementation of the activation function
takes only one cycle to operate, the entire cost of this data
movement can be eliminated.

4.3. Resource-conscious Convolution

We modified the MMU computation block to make it
more resource-conscious. This new MMU, referred to as
MMU RC, optimizes the area utilization on the FPGA to
reduce power consumption. In the MMU RC, the input ma-
trices are divided into two segments and the computation on
the two segments are performed using pipelined-parallelism.
Hardware resources are reused in each stage of the pipeline.

Fig. 5 shows the basic configuration of the resource-
conscious multiplier. For an n×n matrix multiplication, The
VDB unit in MMU RC consists of one row of (n/2) parallel
multipliers. The adder units are configured in a reverse-tree
organization. The first level of the tree includes of n/4
adders, and the number of adders is cut in half for each
subsequent level. Adder trees in a given level run in parallel.
The depth of the tree is tuned for resource utilization. For
maximum utilization, a complete tree of depth log2(n/2)
is constructed while for minimum utilization and maximum
power savings, the adders are arranged in a single row of
n/4 adders. The optimal trade-off point lies somewhere in
between. Fig. 5 shows an arrangement with a two-level tree
consisting of a total of (3n/8) adders. As in the baseline
MMU, MMU RC also contains two buffers to hold an entire
row and column of the two input matrices, respectively.

When MMU RC is initiated, the first segment of the
input data is passed to the multiplier row. After completion
of the multiplications on the first segment of data, the result
is transferred to the first level of adders, ADD1 as input
and the result from ADD1 is sent to ADD2 as input. In
parallel to the additional operations, the second block of
input data is transferred to the input buffer of the multipliers.
When results from the first stage have been sent from ADD1

to ADD2, ADD1 becomes available for the second stage
computation. The final result for a single row is available
after two stages of multiplication and log2(n/4)+log2(n/8)
stages of addition.

TABLE 1. PLATFORM DETAILS

FPGA Clk 250 MHz
CLB LUTs 663360

CLB Registers 1326720
Block RAM Tile 2160

PSL Cache 256 KB
PCIe Gen3

CPU CLK 3.2 GHz
RAM 256 GB

L1 Cache 64 KB
L2 Cache 512 LB
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Figure 6. Resource utilization with different adder tree configuration

5. Evaluation

5.1. Experimental Setup

We evaluated our design on a CAPI-enabled POWER8
system which hosts a Xilinx Kintex Ultrascale 115 FPGA.
Xilinx Kintex has a xcku-115-flva1517-2e chip on an Alpha
Data ADM-PICE-KU115 board with an X16 PCI-Express
interface. Table 1 provides further details.

We used Xilinx Vivado’s Out of Context (OOC) syn-
thesis and implementation feature to synthesize and route
results. OOC enabled us to synthesize the RTL design for
which the pin numbers exceed the maximum pin numbers
of the FPGA board. For offloading, implementing, routing,
and placement of the architecture, non-project batch mode
of design flow has been used with tcl scripting. To sim-
ulate the software-hardware interaction in CAPI, PSLSE
simulator was used[21]. For each experiment, we instan-
tiated the application with randomly generated weights and
dimensions for the fully connected layers. We generated
reference output using a reference CPU implementation. We
validated our implementation against this reference output.
Each performance experiment was repeated 10 times, and
only the average numbers are reported here.

5.2. Resource Utilization

The primary metric to quantify the capacity in an FPGA
is CLB utilization. CLB utilization is an important parameter
as it plays a vital role in the complexity of the circuit when it
is placed and routed in the FPGA. For our design, the CLB
utilization is a function of the computational units and the
data buffers in the architecture. Fig. 6 reports resource usage



TABLE 2. POWER CONSUMPTION ESTIMATION OF ON-CHIP
COMPONENTS

On-Chip Components Power (W) % power
Clocks 0.606 4.06
CLB Logic 1.427 9.57
—–LUT as Logic 1.382 9.27
—–Register 0.031 < 1
—–CARRY8 0.013 < 1
—–F7/F8 Muxes < 0.001 < 1
—–Others 0.000 0.00
Signals 1.034 6.93
DSPs 0.261 1.75
I/O 10.002 67.07
Static Power 1.583 10.61
Total 14.912 100

of the MMU RC computation kernel in terms of CLB and
DSP utilization. Data is shown for three different adder tree
configurations: (i) flat tree (single row of adders) (ii) limited-
depth (two rows) and (iii) full tree (depth = log2(n/4). We
observe that the full tree configuration utilizes more CLBs
than the other two. It utilizes the same number of DSP
blocks as the flat tree but twice as many as the limited
depth tree. Not much variation is observed in terms of CLB
register usage. Overall, the limited depth tree is the best
choice for the resource-constrained boards.

5.3. Power Analysis

We back-annotated the switching activity in Vivado’s
RTL simulation to estimate our design’s power consumption.
Vivado supports both dynamic and static power estimation.
Dynamic power is estimated at an ambient temperature of
25◦C and includes power dissipation due to input data access
patterns and the design’s internal activity, and total on-
chip and off-chip power. Static power measures the power
consumption as a result of transistor leakage current.

Table 2 shows the on-chip power consumption of
the MMU computation kernel for a 32 × 32 matrix-
multiplication. The report is generated from an OOC syn-
thesized architecture. We observe that a large portion of
the total dynamic power is consumed in the I/O bus. As
it is an OOC synthesized model, all input and output port
declarations are mapped onto the I/O pins. In a physical
implementation, the unit will be instantiated in the PSL, and
there will be no associated I/O power cost. As expected, the
LUT logic activity dominates the rest of the dynamic power
consumption. BRAM activity accounts for close to 30% of
the off-chip dynamic power while PCIE accounts for a mere
7%. This indicates that our approach of pipelined matrix-
multiply in which matrices are fetched in a staggered fashion
over PCIe, does not have a significant negative impact on
off-chip power consumption.

5.4. Performance

Fig.7 shows the theoretical peak and the actual achieved
performance of the different design variants discussed in
this paper. The theoretical peak is calculated as the sum of
adders and multipliers multiplied by the maximum operating
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frequency. We look at the performance of both the pipelined
(MMU) and the resource-conscious (MMU RC) implemen-
tations. For each of these, we also consider the impact of
tiling. Finally, we look at a fifth category that is tuned for
both the tile size and the adder tree configuration.

We observe that tiling provides a significant performance
boost for both MMU and MMU RC, yielding integer factor
improvements over the non-tiled counterparts. As expected,
the resource saving mechanisms in MMU RC causes some
performance to be sacrificed. In general, the resource-
oblivious implementations almost double the performance
of MMU RC. The fraction of peak achieved by the different
design is somewhat low ( 30% average). Notwithstanding,
these numbers are fairly typical for these types of designs,
particularly when an attempt has been made to conserve
power.

Finally, we observe that the tuned-MMU is a head above
all other implementations. This reiterates the need for the
careful selection of tile sizes and adder tree configurations.
The power numbers presented in § 5.3 are obtained from
the tuned implementation. When excluding I/O overhead,
our tuned implementation can deliver 15.79 GFLOPs/watt
for a 32× 32 matrix multiplication.

5.5. Comparison to Previous Work

We compare our design with some recently proposed
FPGA implementations of matrix multiply [22], [23], [24],
[25]. Performance of the previous implementation as re-
ported in [22], [23], [24], [25] are shown in Table 3. Our
implementation not only achieves the highest performance
but also has better energy efficiency. It should be noted, how-
ever, that none of the previous efforts targeted a coherently
attached accelerator (i.e., CAPI). Also, currently, our design
only supports 32-bit floating point data; theoretically a fixed-
point implementation will demand fewer FPGA resources.

6. Related Work

In recent years, there has been a plethora of work in
accelerating DNN applications. Most of these use GPUs
or ASICs as the acceleration device. Work on FPGA-based



TABLE 3. COMPARISON WITH PREVIOUS WORK

[22] [23] [24] [25] Ours
Year 2010 2014 2015 2016 2018

Platform Virtex5
SX240t

Zynq
XC7Z045

Virtex7
VX458t

Zynq
XC7Z045

CAPI
KU115

Clock (MHz) 120 150 100 150 250

Quantization 48-bit
fixed

16-bit
fixed

32-bit
float

16-bit
fixed

32-bit
float

Performance
(GOP/s) 16 23.18 61.62 136.97 155.08

Power(W) 14 8 18.61 9.63 9.82
Energy

Efficiency
(GOP/s/W)

1.14 2.90 3.31 14.22 15.80

acceleration is limited and have mostly focused on Convolu-
tion Neural Networks (CNN) rather than DNNs in general.

Chakradhar et al. present a dynamically configurable
architecture for CNN. Their design exploits parallelism
and optimized memory throughput across different layers.
The techniques are implemented on-the-fly based on the
demands of a specific layer and a particular CNN work-
load [22]. Gokhale et al. present an accelerator for DNNs
targeting mobile computing platforms (rather than data cen-
ters). They use pipelined parallelism and quantization (Q8.8)
as optimization methods. Their implementation achieves a
peak performance of 200 GOPs/s [23]. Suda et al. explore
the design space of OpenCL-based accelerators for CNNs.
They identify key design variables and demonstrate that fine-
tuning these parameters, both analytically and empirically,
can lead to improved hardware acceleration [11]. Qiu et
al. show that in general fully-connect layers in CNNs are
memory bound while the convolution layers are computed
bound [25]. The develop a dynamic-precision data quan-
tization method and a convolver design to address these
issues. Their CNN implementation on a Xilinx Zynq ZC706
board achieves 137 GOPs/s. Caffeine [12] and Dianno[26]
frameworks both provide acceleration support for DNN
workloads. However, these designs are meant to be used
standalone with very lightweight processors to control the
flow. The work presented in this paper is distinct from earlier
work on DNN because none the previous efforts target a
coherently attached FPGA, as we do.

There have been a few studies of non-DNN applica-
tions on CAPI-supported systems. For example, Giefers et
al. accelerate FFT on a CAPI-enabled FPGA accelerator.
They demonstrate that CAPI’s shared virtual memory space
can significantly reduce system call overheads for the FFT
kernel [27]. Ito and Moriyoshi present an implementation
of the Pair-HMM algorithm optimized with multi-threading
and data padding on a POWER8-CAPI system [28]. To the
best of our knowledge, this is the first attempt at optimizing
DNN applications on a CAPI-based system.

7. Conclusions

This paper presented a CAPI-based accelerated imple-
mentation of key computation steps in a Deep Neural Net-
work application. The work demonstrates that utilization
of the shared virtual memory, as enabled by the CAPI

technology, can provide a significant performance boost for
these kernels. Specifically, we show that the coherent system
memory space can be leveraged to optimize data transfer
times between host and device and exploit temporal locality
within the the matrix-multiply kernel. Our implementation
not only yields superior performance than previous efforts
but also delivers higher performance/watt. The results also
show that the activation functions in DNN are also suitable
candidates for FPGA acceleration and can lead to overall
performance benefits. Finally, the adder tree configuration
described in this paper can help achieve a tunable balance
between resource utilization and power consumption.

In future work, we plan to explore a hybrid implemen-
tation of DNN in which the CPU and the accelerator collab-
orate in executing the computation kernel by leveraging the
shared memory space. We are also looking at quantization
of the of floating-point data elements to further improve the
performance of our CAPI-enabled implementation.
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