
A Machine Learning Approach to Automatic
Creation of Architecture-sensitive Performance

Heuristics
Biplab Kumar Saha
Texas State University

San Marcos, TX
Email: biplabks@txstate.edu

Tiffany A. Connors
Texas State University

San Marcos, TX
Email: tac115@txstate.edu

Saami Rahman
Texas State University

San Marcos, TX
Email: saamirahman@gmail.com

Apan Qasem
Texas State University

San Marcos, TX
Email: apan@txstate.edu

Abstract—Recent interest in machine-learning based methods
has produced many sophisticated models for performance mod-
eling and optimization. These models tend to be sensitive to
parameters of the underlying architecture and hence yield the
highest prediction accuracy when trained on the target platform.
Training a classifier, however, is a fairly involved process and re-
quires knowledge of statistics and machine learning that the end
users of such models may not possess. This paper presents a new
framework for automatically generating machine-learning based
performance models. A tool-chain is developed that provides
automated mechanisms for sample generation, dynamic feature
extraction, feature selection, data labeling, validation and hyper
parameter tuning. We describe the design and implementation of
this system and demonstrate its efficacy by developing a learning
heuristic for register allocation in GPU kernels. Results show that
auto-generated models can predict register thresholds that lead to
integer factor performance improvements over kernels produced
by state-of-the-art optimizing compilers.

I. INTRODUCTION

Machine learning has emerged as an effective strategy
for performance modeling and tuning. In this approach, a
supervised learning algorithm is trained to learn the complex
relationship between a program and its execution environment.
This learning is then used to guide the application of an
optimization or the allocation of a resource to improve a
target objective, such as execution time or power consumption.
Many sophisticated predictive models have been developed,
spanning the domains of HPC [10], [19], data centers [14],
desktop [1] and mobile computing [8]. Two recent trends
suggest that the area of machine learning based performance
modeling and tuning (MLMT)1 will grow in importance in
the near future. First is the availability of large code bases
in open software repositories such as GitHub and the second
is the increased number of exposed hardware performance
counters on newer processor architectures [9]. Both imply
greater access to pertinent data, creating new opportunities for
learning application behavior on future architectures.

In spite of its success and promise, a key limitation in
MLMT has been its lack of portability. The state-of-the-
practice maintains that learning algorithms be trained on the

1although abbreviated MLMT, it includes ML applied to resource alloca-
tion, compiler optimization and other performance-enhancement strategies

developer platform and the pre-built models be embedded
within a software tool, such as a compiler [7], runtime
system [6] or autotuner [5], before being shipped to the end-
user. This practice is adopted for two reasons. First, model
training is a time consuming process and performing the task
at the factory relieves the user of this burden. Second, training
requires knowledge of machine learning and statistics which
the practitioners (e.g., programmers, performance engineers)
may lack, making it difficult for them to carry out this task
in an error-free manner. This practice imposes an inherent
limitation on the models’ capabilities. Since program behavior
is intimately tied to characteristics of the target architecture,
prediction accuracy is highly sensitive to variations in param-
eters of the platform. Even a small change in the processor
configuration, such as the number of available P-states, can
render a model ineffective. This issue is further magnified
with the growing scale and heterogeneity of HPC architectures.
This makes it imperative that the learning occur in the target
environment.

This paper presents a new approach to building performance
classifiers to address this limitation. The proposed framework
consists of a language interface for MLMT model specifi-
cation, a benchmark repository and an extensible software
tool-chain for performing major tasks in the ML workflow.
In addition, plug-ins allow integration of open-source ML
libraries and crowd contribution to the benchmark repository.
Given the description of a desired learning outcome, the
system can automatically generate supervised classifiers for a
new target platform for a large subclass of MLMT problems.
All major steps in an ML workflow are automated, including
feature extraction, feature selection (FS), labeling, validation,
hyper-parameter tuning and the very challenging problem of
sample generation and training. We design the system around
a set of abstractions that effectively hide the complexities of
the ML workflow and have a natural correspondence to entities
in performance modeling and tuning. These abstractions are
developed based on the key observation that although the ML
workflow is extensive, many common elements can be found
when we specifically look at the construction of performance
models. For instance, a requirement in MLMT is that feature

values be comparable across two different program instances.
One way to achieve this is to normalize each feature value
with respect to the execution time of the program in favor of
a standard normalization technique. Similar commonalities can
be found in feature extraction, feature selection and training
data evaluation.

In our system, training data is generated on the target
platform for each new instance of a model. This results in
heuristics that are customized for a specific execution environ-
ment which addresses the portability concern. A key challenge
in training data generation, automatically or otherwise, is
to be able to generate a sufficiently large sample from a
relatively small number of programs. We tackle this problem
by leveraging the machinery of an autotuning system. From the
same base program, the autotuner generates multiple variants
that exhibit distinct behavior in the target environment with
respect to the particular objective that is being modeled.

Another issue that is implicitly addressed by this work
is the black-box treatment of ML models. MLMT models
have mostly been predictive rather than descriptive. In the
few instances, where a descriptive model has been used [10],
[16], its descriptive properties have not been exploited. As a
consequence we have gained little insight about application
behavior from the many excellent heuristics that have been
developed and the large volume of training data that has
been generated. To address the issue of opaque models, we
incorporate in the framework, analyses to expose the internals
of the learning algorithm and the salient properties of the
generated training data.

We demonstrate the utility of our system by deriving a
heuristic for predicting the number of registers to be allocated
to a GPU kernel. Based on execution time feedback, the
model makes recommendations that improve the performance
of kernels that suffer from high register pressure. We analyze
the feature space and the learned heuristic to gain insight into
performance problems caused by ineffective use of the register
space. The analysis also provides guidance for developing
effective strategies for MLMT model construction.

To summarize, the main contributions of this paper are as
follows:

• a tool-chain for automating MLMT workflow and gener-
ating platform-specific performance heuristics

• a novel autotuning-based approach for generating repre-
sentative sample instances from a small number of seed
applications

• analyses and visualization techniques to gain performance
insight from generated MLMT models

• an ML heuristic to determine the number of registers to
be allocated to a GPU kernel

II. RELATED WORK

A study of recent applications of machine-learning tech-
niques in performance modeling and tuning in HPC shows
a pattern of incoming challenges and how ML practitioners
have tackled them. The initial application of MLMT emerged

as a response to prohibitively long tuning times for search-
based autotuning. As such, some of the earliest work in
this area were based on using heuristic modeling, pruning
and empirical search in order to reduce the parameter space
and find early stopping criteria [20]. As neural networks and
logistic regression models gained popularity, they were applied
to autotuning problems in HPC. Cavazos et al. led the charge
in this venture beginning with their work on identifying opti-
mal compiler optimization sequences using multiple logistic
regression models [1]. Estimating the performance gain or
loss of applying a particular optimization as a reduction of
the larger problem of finding an optimal set of optimizations
worked well for a multitude of scenarios. This technique,
however, overlooks the possibility of synergistic and antag-
onistic behavior between multiple optimizations. Moreover,
as the number of optimizations available remains large, the
time to generate training data and the number of classifiers
required also remains large. For instance, GCC 4.8.2 has 193
optimizations and choosing an optimal sequence essentially
means creating an array of 193 classifiers and training data
sets for each classifier. Furthermore, the widely changing
architectures in HPC landscape has posed the challenge of
adaptability. Fursin et al. turned to crowd-sourcing to address
this challenge by gathering collective optimization knowledge
across architectures [7].

Similar to many ML problems, success of ML techniques
hinges on accurate input characterization. Researchers have
attempted to characterize programs using program control flow
graph [4], [15], static program features [7] and hardware per-
formance counters [1], [17]. Hardware performance counters
have the added benefit of being dynamic and are able to
capture architecture-specific system response. However, there
is a large number of performance events and it is difficult to
pick effective ones. Many have resorted to hand-picking them
[18], while some have employed statistical methods to select
events that vary most across different program executions [11],
[17].

In spite of challenges faced by HPC researchers in their
application of ML, the evolution of ML in HPC has been
impressive. Many variants of popular ML techniques have
been successfully applied to different branches of HPC -
in performance optimization through code changes [3], [18],
predicting optimal build configurations [12], runtime config-
urations [6], [14], identifying performance bottlenecks [10],
[11] and recently, also in efficient energy management [2],
[8].

The use of MLMT in HPC has garnered much success and
also resulted in a broad spectrum of applications. While this
emerging landscape is exciting and full of potential, it is also
difficult to navigate for non domain experts. There is a vacuum
for a generalist tool-chain or approach to HPC problems and
this has been the primary motivation behind this work.

III. CONVENTIONAL ML VS MLMT WORKFLOW

Fig. 2 outlines a typical ML workflow that may be used in
scientific or social studies. The unique aspects of the MLMT

Evaluation and
RefinementTraining

Feature
SelectionLabeling

Inter.
Models

Final
Model

Training
Set

Deployment

program execution;;
explicit generation

deploym
ent as S

W
;;

runtim
e invocation

Data Collection
Feature Extraction

Clean-­up and
Processing

relative
perf. measure

reliance on
expert knowledge

context-­specific
scaling and norm.

m
an
ua
l in
vo
lv
em
en
t

low

high

Fig. 1. Conventional ML and MLMT workflow

workflow and degree of manual input required and currently
practiced in different steps are also indicated in the figure. We
elaborate on these distinctions next.

Training data collection - In most domains, data collection
does not play a major role in the process of building a
model. The data is either already available in some form
(e.g., social network data) or handled in a separate phase
(e.g., gene sequencing). In MLMT, training data needs to be
explicitly generated for each new model that is to be created.
Training data for optimization X , is unlikely to be useful for
optimization Y . Developing a database of performance data
is problematic, as it will need to be updated for each new
architectural model. Training data generation is not only the
most time consuming step in the MLMT workflow but also
requires significant manual involvement. Furthermore, because
data needs to be collected explicitly in many cases, there is
often insufficient data or the quality of the data is poor.

Clean-up and Processing - Standard scaling and normaliza-
tion, based solely on the values present in the training data are
ineffective for MLMT. Context-aware scaling and normaliza-
tion algorithms need to be developed. Ideally, scaling should
be done not based on the magnitude or range of an attribute
but on how it affects performance. For instance, an LLC miss
should carry higher weight than an L1 miss. Normalization
should generally be done with respect to the execution time to
obtain attribute values that capture performance snapshot per
unit time across different programs.

Labeling - Unlike other domains, unlabeled data is not
a major problem in MLMT since domain expertise is not
required to label training instances. All that is needed is a
means to measure relative performance of the unoptimized
and optimized versions of workloads. The exceptions are cases
where ML is being used to classify bottlenecks. In those
situations an expert will need to label the instances based on
knowledge of the workload being executed.

Feature selection - Standard practice in most domains is to
perform FS with the help of domain experts either manually
or semi-automatically. This practice is problematic for MLMT
because in most cases what is needed is a committee of ex-
perts, including architects, system engineers, compiler writers,
programmers, and algorithm developers. There is evidence
that focusing on attributes from a particular layer can lead
to omission of critical features [13].

Deployment - MLMT models are typically deployed as
software, either standalone or embedded inside a performance-
enhancement tool. Thus, the models operate in a dynamic envi-
ronment and must make decisions at runtime. This implies that
model invocation must have minimal overhead and features
must be extractable from the target environment.

IV. MLMT ABSTRACTIONS

To build an automated system, we need to establish a set of
abstractions that (i) capture essential elements of a generic
ML workflow, (ii) effectively hide complexities in MLMT
that would otherwise prevent automation (e.g., disparity in
objective metrics) and (iii) are relatable to practitioners (e.g.,
representation of programs). In this section, we describe the
abstractions that serve as the foundation of the proposed
software tool-chain. We discuss the rationale behind their
construction and outline the terminology and notation used
in the remainder of the paper.

Feature: A feature f is a source-level, assembly-level,
or runtime attribute of a code variant (described below). A
runtime attribute is one that can be measured or estimated
via hardware performance event counters. All features are
numeric. fv = {f0, ..., fn} denotes a feature vector.

Decision: This is the final desired outcome of the learning
model. A decision d is a recommended action about a code
transformation, a transformation parameter, or a resource
allocation directive. Multiple decisions can be combined to
create a composite decision D = {d0, ..., dn}. For instance,
predicting a compiler optimization sequence involves compos-
ing a series of atomic decisions involving the application of
an individual optimization.

Variant: A variant v is a multi-program workload, a
single application, an accelerator kernel, or an extracted code
fragment (e.g., a loop-nest). v can be in either binary or
source form and is represented solely in terms of a feature
vector. d(v) → vd denotes an application of decision d to
v. Application of a sequence of k decisions produces a new
variant shown by D(v)→ vD, where D = {d0, ..., dn}.

Environment: The execution platform in which a variant
v is executed is referred to as the environment E. The
environment consists of architectural, compilation and system
parameters. These values are not included in fv but implicitly

incorporated into the model by generating training data and
creating models for each E separately.

Target: A target T is a performance metric such as
throughput or energy and must be readily measurable in the
execution environment. We use T (v) to denote an objective
metric measured while executing variant v.

We can use the above abstractions to express the objective
of any MLMT model as follows

Learn how code variants, described by feature vectors,
behave in an execution environment with respect to a specific
target and use this learning to take a decision that maximizes
(or minimizes) the target for an unseen variant

To reach this objective, the model needs to pose a series
of queries of the form “What happens to variant v with
respect to target T when decision d is taken?” To provide the
answer to these queries, training data needs to be compiled
with instances of the form I = {f0, f1, ..., fn, l}, where
{f0, f1, ..., fn} are feature values collected for some variant v
during execution in environment E in the absence of decision
d. l is a label that captures the effects on target T when
decision d is applied to variant v in the same execution
environment. When the goal is to minimize an objective, label
l can be derived from the ratio T (v)/T (d(v)). For instance,
for execution time this is simply the speedup obtained when
applying the decision to the variant. A ratio of > 1 implies a
positive effect of d while < 1 implies a negative effect and
this forms the basis for classification.

Let S describe an MLMT model, then model construction
and invocation can be concisely expressed as follows

gen train data(S) → {I}
train({I}) → ME

T

invoke(ME
T , fv′) → {D} (1)

Given this formulation, we observe that automatic model
construction is essentially reduced to (i) constructing S and
(ii) defining gen train data(). We explain how these tasks
are carried out in our framework in Section V.

V. DESIGN AND IMPLEMENTATION

Fig. 2 gives an overview of our framework. Based on a
concise specification of an abstract model, a set of custom
scripts are generated for the target platform on which the
model is to be developed. These scripts drive the tasks of
feature extraction, feature selection, training data generation,
model training, evaluation, and selection. The newly created
model is stored as a Python script or a Java class file,
depending on the ML engine used, and provides an interface
for the user to invoke it on unseen programs. An interactive
mode is also supported to perform subtasks selectively. The
framework, including the benchmark repository, is available
for download at https://github.com/biplabks/MLTUNE.

A. MLSPEC

MLSPEC is a simple language interface to allow users
to fully describe an abstract MLMT model, as defined in
Section IV. A sample specification is presented in Table I.

TABLE I
SAMPLE MLSPEC INPUT FILE

user training programs? : Y
path to user programs: /path/to/user_programs
training time: relaxed
rule 0
trivial statement
;; nvcc $v.cu -o $v.o;
nvcc main.o -o $v
outcome statement
;; nvcc $v.cu --maxrregcount=$d0 -o $v.o;
nvcc main.o -o $v
rule 1
;; nvcc $v.cu -o $v.o;
nvcc main.o -o $v
;; nvcc $v.cu --maxrregcount=$d1 -o $v.o;
nvcc main.o -o $v

An MLMT specification is comprised of two sections: a set
of parameter values that control different aspects of model
construction followed by a sequence of rule blocks. A rule
block is an example of how a decision, d is applied to a
variant, v. A rule consists of a pair of action statements
called the trivial and outcome statements. The trivial statement
describes the sequence of actions needed to build and/or
execute v in the absence of d. The outcome statement lists
the actions for d to be applied. Actions can be either build
or execute commands. A build command denotes that d is
taken at some stage prior to execution (e.g., source-to-source
transformation) while an execute command denotes that d is
taken at runtime (e.g., resource allocation). One rule must be
specified for each di ∈ D.

The MLSPEC parser processes the specification file and
generates custom scripts for training data generation. For each
rule, the tool calculates the difference between the trivial
and outcome statements and uses this information to generate
build and execute scripts for each program in the benchmark
repository.

B. AutoTrainer

Following the creation of custom makefiles and execute
scripts, the system generates an actionlist file which encap-
sulates necessary information for collecting training data on
the target platform. An actionlist is a series of instructions,
where each instruction takes the form of an action statement,
with the variant placeholder replaced with actual program ids
from the repository. There is one action statement for each
(v,d) pair. Feature values are extracted when the trivial action
is taken. Performance metrics are collected for both trivial and
output statements.

We re-purpose an autotuner to perform the task of variant
generation. Autotuners expose control knobs at different layers
and provide a mechanism to manipulate these knobs to create
multiple variants from the same base program. The resulting
variants can exhibit widely varying behavior and thus can
represent independent instances within the training data set.
We take advantage of this and use the autotuner to generate
performance-distinct code variants from each program in the
repository. A subset of the controls knobs are listed in Table II.
Not all parameters are applicable to every program and the

aaa a Training
m(fv)
→ d0

m(fv)
→ dn

Training
Data M(fv) →D

Feature
Extraction

Feature
Selection

Labeling

Variant
Generation

user
apps.

ft.
vec

benchmark
database

Validation

Evaluation

Composition

AutoTrainer ML Engine

Evaluator

model spec
{d(v) → v’}

MLSPEC

crowd

user

Analyzer

weka

custom

scikit

algm
plugins

Invocation

Analysis

Visualization

Model
Formulation

Script
Generation

Input
Processing custom

scripts

action
list

Fig. 2. MLMT framework overview

TABLE II
CONTROL KNOBS FOR VARIANT GENERATION

level control knob example value
source tiling tile sizes
source interchange loop combination
source unrolling unroll factors
compile optimization level O1, O2, O3, O4
compile optimization flag inline, prefetch etc.
runtime thread affinity consolidate, disperse
runtime thread geometry block and grid size

TABLE III
MLMT FORMULATION OF RECAP

D composite decision; what is the register cap that most
improves T ?
D = {di|16 ≤ i ≤ 512 && i mod 8 = 0}

di elementary decision; how much improvement is expected in
T when i is set as the cap?

v CUDA executable kernel
fv all runtime performance metrics and events measurable in

E
E Nvidia GPU based on Fermi, Kepler or Maxwell architec-

ture; CUDA RT 7.0; nvcc 7.0
T kernel execution time (Tt), power consumption (TP); en-

ergy (TE = Tt × Tp)
I training instance; {f0, f1, ..., fn, L},

nFermi = 382, nkepler = 294, nmaxwell = 480

fi ith feature value; measured, scaled and normalized runtime
event

L speedup T (di(v))/T (v); powerup and greenup computed
analogously

range of values for parameters is application and platform
dependent. The minimum number of alternate variants for a
program in the database is 16 and the maximum is 256. Each
time a variant is generated, a similarity check on the feature
vector is performed to discard instances that are too similar.

VI. EVALUATION

A. ReCAP: A Model for Capping Register Allocation

Using our framework, we derived a model that recommends
a cap for the number of registers to be allocated to a CUDA
kernel to maximize performance and/or energy efficiency.
ReCAP is mapped to (1) as shown in Table III.

We evaluate the quality of auto-generated ReCAP models
in terms of prediction accuracy, portability and performance

TABLE IV
CLASSIFIER PREDICTION ACCURACY ON Kepler

ML Models Prediction
Accuracy

Precision Recall F1-Score

Scikit-learn
Logit 85.13 0.72 0.56 0.63
Naive Bayes 82.05 0.58 0.52 0.54
SVM 82.84 0.67 0.50 0.57
Decision Tree 80.92 0.53 0.71 0.60
MOE 93.84 0.96 0.83 0.83

Weka
Logit 72.50 0.31 0.52 0.37
Naive Bayes 78.87 0.56 0.67 0.61
SVM 91.60 0.71 0.59 0.64
Decision Tree 90.96 0.75 0.67 0.71
MOE 95.77 0.96 0.92 0.90

improvement on unseen kernels. We train and evaluate the
models on three Nvidia GPUs from three different generations,
(i) Tesla C2050 (Fermi) (ii) Tesla K20 (Kepler) and (iii) GTX
Titan X (Maxwell).

B. Prediction Quality

Summary evaluation statistics for ReCAP derived from four
classifiers in Scikit and Weka are presented in Table IV.
Reported prediction accuracy is for 10-fold cross-validation
and is averaged over all di. These numbers are comparable,
and in many cases superior, to numbers that have been reported
in previous MLMT work [16], [18], [19]. Notwithstanding,
we observe that not all classifiers achieve the same level
of accuracy. In analyzing training sets for individual di, we
observed a greater disparity in accuracy. For instance, for logit
from Weka, although average prediction accuracy is 72.5%,
on individual di datasets, the accuracy ranged from 63.2%
to 94.1%. The highly disparate accuracy levels reiterate the
need for an MOE approach for MLMT, as adopted in our
framework. With MOE our system selects the best classifier
for each individual di and achieves higher overall accuracy
levels of 93.84% and 95.77% for Scikit and Weka, respectively.

C. Portability

By allowing users to generate training data on the target
platform, our system can produce implicitly portable perfor-
mance heuristics. To demonstrate the significance of target-
specific models, we tested each model on non-native data.

0

20

40

60

80

100

MX-­MX MX-­KP KP-­KP KP-­MX

cl
as
si
fic
at
io
n
ac
cu
ra
cy

dtree svm logit bayes

0.00

0.20

0.40

0.60

0.80

1.00

MX-­MX MX-­KP KP-­KP KP-­MX

sc
or
e

precison recall F-­score

Fig. 3. Cross-platform accuracy of four classifiers. X-Y indicates model trained
on X and tested on Y

That is, model trained on platform X is evaluated with test
data generated on Y . For example, the Maxwell model is asked
to make predictions for each instance in the training data of
Kepler and vice versa. Classification accuracy is computed
by taking the ratio of correctly predicted instances over total
instances (since cross-validation is not applicable).

Figs. 3 shows the results of these experiments. The accuracy
drops dramatically when models are asked to make cross-
platform predictions. All four classifiers show a significant
decline in accuracy with logit being affected the most. Maxwell
models suffer a 30% decrease in accuracy, while Kepler mod-
els take a 25% hit. It is interesting to note that although there
have been substantial changes in the Maxwell architecture,
the register capacity and register to DRAM datapath remains
unaffected (unlike the transition from Fermi to Kepler). We
found that when Maxwell models made incorrect predictions,
they typically recommended a lower register cap than one that
would lead to better performance. This is evidenced by the low
recall value of MX-KP. The low accuracy values make cross-
platform models essentially invalid and clearly demonstrate
the need for native training, which our system provides.

D. Performance Gains

Although performance and energy improvements were not
the primary focus of this work, we did want to evaluate
how the model fared in this area. From our analysis of the
training data we found that kernels with low register pressure
are insensitive to changes in the register cap. Hence, for
performance experiments, we choose 12 kernels from Parboil,
SLAM and Lonestar GPU suites with relatively high register
pressure (¿ 30). Each kernel is run through the AutoTrainer to
create four alternate variants with different register pressure
and thread geometry, for a total of 48 test instances. Each
instance is presented to ReCAP to obtain a prediction and then

compiled and executed twice2, once with default and once with
predicted register cap. We then compute speedup over default
cap.

Fig. 4 shows the performance improvements obtained from
ReCAP. Not surprisingly, we find a direct correlation between
the amount of performance gained via ReCAP models and
the register pressure of the kernel. sad and reduce, the
two kernels with the highest register pressure (44 and 51,
respectively) yield the best speedups. Interestingly, however,
ReCAP did not always recommend an increase in register cap.
In several cases, lowering the register cap led to improved
performance. On further analysis, we found that for certain
kernels (e.g., raycast) when register cap is lowered, nvcc
is able to generate code with more efficient use of shared
memory.

We observe that in no instance the ReCAP predictions
lead to performance degradation. This is a direct result of
constructing conservative models (as explained in Section V).
By creating a wider band of neutral values, we ensure that the
model recommends a change only when there is a likelihood
of significant (¿ 1.05 for ReCAP models) performance gains.
Among the 48 test instances, ReCAP predicted a no-change
cap in 13 cases.

VII. ANALYSIS

In this section, we utilize the tools available in our MLMT
framework to take a more detailed look at the feature space
and the generated models. The goals of this analysis is two-
fold (i) gain insight into register-pressure related performance
issues and improve our understanding of effective techniques
for MLMT construction.

Training data for ReCAP was partitioned into eight sets
to produce the eight di models. Each partition and model
was analyzed separately. In the interest of space, we present
detailed results for a subset of these training sets and models
and provide summary statistics when appropriate.

A. Sample Generation

Our framework provides a mechanism to create many
sample instances from the same program. To determine the
utility of such an approach we analyze the training data set
using cluster-PCA bi-plots. Fig. 5 shows a cluster-PCA plot
for d0. In this instance, the points, which represent code
variants, are annotated with the base program from which
they were derived. We see that for some base kernels, the
variants are concentrated in the same cluster while for others
they are distributed across several. For instance, ⊕ variants
(tacpf from Parboil) appear in five different clusters. This
distribution pattern suggests that variants derived from the
same base program can exhibit very different performance
characteristics and therefore can add useful information to the
training set. This provides justification for an autotuner-driven
sample generation approach.

2executions are repeated five times and only the average is considered

0.0

0.4

0.8

1.2

1.6

2.0

sp
ee
du
p

(o
ve
r	
 n

vc
c	

	
 fu
ll	

op
tim

iza
tio

n)

unseen	
 kernel	
 from	
 CUDA	
 SDK,	
 Parboil	
 and	
 SlamBench	

(a) moderate-to-low register pressure (=< 32)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

cutcp mrig reduce sad

sp
ee
du
p

(o
ve
r	
 n

vc
c	

fu
ll	

op
tim

iza
tio

n)

unseen	
 kernels	
 with	
 high	
 register	

pressure

(b) high register pressure (> 32)

Fig. 4. Performance improvement with RML prediction on unseen kernels. Speedup reported over kernels fully optimized by nvcc

Fig. 5. Cluster-PCA plot visualizing distribution of code variants in d0

B. Performance Insight

Analysis of the feature space also provide insight about
register usage and its impact on performance. Fig. 6 shows a
varimax rotation PCA segment plot for d1 with four PCs and
20 contributing features. A VR-PCA plot is another feature
of the visualization module in our framework. To create these
plots, we apply Varimax Rotation on the sub-space discovered
through PCA and then use a segment plot to visualize the
contribution of each feature to the top k PCs. Intuitively, a
PC in this context describes an observed performance pattern
and collectively the VR-PCA plot gives intuition as to which
specific attributes are causing this performance variations.

We observe the two most dominant attributes
for PC4 are gst_requested_throughput and
gst_effective_throughput. Thus, PC4 clearly
indicates a performance problem related to increased register
pressure. When register pressure increases to the point where
values have to spilled to local memory (which requires
global memory access on Nvidia systems), the demand for
bandwidth increases. When this demand increases to the
point where it cannot be satisfied by the memory subsystem,
the effective bandwidth and performance start to drop. This
is precisely the pattern that is being captured by PC4. PC3
also captures a similar performance problem with excessive
register pressure. But it distinguishes kernels in which a
higher fraction of register spill requests are serviced by the L2

cache. This can be inferred by the difference in contribution
of L2 related attributes in the two PCs.

PC1 represents issues related to the arithmetic intensity (AI).
When AI is high, global memory references due to register
spills may not necessarily result in a performance inefficiency.
This is because the kernel has sufficient computation to hide
the extra latencies created by register spills. PC1 helps the
model distinguish programs based on arithmetic intensity.

PC2 is dominated by IPC related features. Since IPC is
another measure for performance, it is obviously a good
predictor of program performance. In this context, however,
it is not particularly useful because we are interested in the
cause of the performance problem not the effect. Thus, this
PC is an example of a special case of multicolinearity in the
training data and should be eliminated in more sophisticated
models. Interestingly, attributes related to L1 cache do not
appear in any PC. This suggests that register spills only have
a significant impact on performance when they are not serviced
by the L1 cache.

VIII. CONCLUSIONS

This paper outlines a path towards automatically generating
ML based performance models. First, we establish a set of
abstractions that capture the central elements of ML-based
performance modeling, and then provide software support
for these abstractions to automate the workflow. We further
enhance the framework by developing MLMT-specific strate-
gies for automatic sample generation, feature extraction and
selection, normalization, and labeling.

We demonstrated the utility of the framework by using
it to predict the number of registers to be allocated to a
GPU kernel. The constructed models achieve high degrees of
prediction accuracy. For kernels with high register pressure
ReCAP is able to improve the performance significantly, in
some instances achieving integer factor improvements.

The analysis and visualization techniques provided useful
insight into the internal decision-making process of the clas-
sifiers. We found that reasonable accuracy can be achieved
using very disparate feature vectors. We also discovered that,
the GPU performance metric local_replay_overhead
captures the cost of register spills more accurately than other
events that are typically used in register pressure analysis.

Fig. 6. PCA-VR segment plot showing the contribution of each attribute to four top PCs

We demonstrated that an autotuner can be re-purposed to
generate meaningful training data from a relatively small set
of programs. The generated data shows good distribution of
data instances across feature values and class labels.

We substantiated the notion that cross-platform predictive
models are likely to perform poorly by showing that for some
classifiers the accuracy can drop by as much as 53%, when
trying to make predictions across different generations of GPU
architecture, making them essentially invalid.

ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion through awards CNS-1305302 and CNS-1253292. Biplab
Saha, Saami Rahman and Tiffany Connors contributed to this
work while they were students at Texas State University.

REFERENCES

[1] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and
O. Temam, “Rapidly Selecting Good Compiler Optimizations using
Performance Counters,” in Proceedings of the International Symposium
on Code Generation and Optimization (CGO ’07). Washington, DC,
USA: IEEE Computer Society, 2007, pp. 185–197.

[2] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
Adaptive DVFS and thread packing under power caps,” in MICRO, 2011,
pp. 175–185.

[3] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in Proc. of the 17th
international conference on Parallel architectures and compilation tech-
niques, 2008.

[4] J. Demme and S. Sethumadhavan, “Approximate graph clustering for
program characterization,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 8, no. 4, p. 21, 2012.

[5] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,”
in PLDI, 2015, pp. 379–390.

[6] M. K. Emani and M. O’ Boyle, “Celebrating diversity: A mixture of
experts approach for runtime mapping in dynamic environments,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2015. New
York, NY, USA: ACM, 2015, pp. 499–508. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737999

[7] G. F. et al., “Milepost GCC: Machine Learning Enabled Self-Tuning
Compiler,” International Journal of Parallel Programming, vol. 39,
2011.

[8] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia
applications using machine learning,” in Proceedings of the 48th Design
Automation Conference, ser. DAC ’11. New York, NY, USA: ACM,
2011, pp. 95–100.

[9] Intel, Intel 64 and IA-32 Architectures Optimization Reference Manual.
Intel Corp, 2016.

[10] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale,
“Predicting application performance using supervised learning on com-
munication features,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. New York, NY, USA: ACM, 2013, pp. 95:1–95:12.

[11] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu, “Detection of false
sharing using machine learning,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 30:1–30:9.

[12] Y. Kashnikov, J. C. Beyler, and W. Jalby, “Compiler optimizations:
Machine learning versus O3,” in Languages and Compilers for Parallel
Computing, 25th International Workshop, LCPC 2012, Tokyo, Japan,
September 11-13, 2012, Revised Selected Papers, 2012, pp. 32–45.

[13] H. Leather, E. V. Bonilla, and M. F. P. O’Boyle, “Automatic feature
generation for machine learning-based optimising compilation,” TACO,
vol. 11, no. 1, p. 14, 2014.

[14] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou,
“Machine Learning-Based Prefetch Optimization for Data Center Ap-
plications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09, 2009, pp.
56:1–56:10.

[15] E. Park, J. Cavazos, and M. A. Alvarez, “Using graph-based program
characterization for predictive modeling,” in Proceedings of the Tenth
International Symposium on Code Generation and Optimization. ACM,
2012, pp. 196–206.

[16] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki, “Fact: A
framework for adaptive contention-aware thread migrations,” in Proceed-
ings of the 8th ACM International Conference on Computing Frontiers,
ser. CF ’11. New York, NY, USA: ACM, 2011, pp. 35:1–35:10.

[17] S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing
hardware prefetch effectiveness with machine learning,” in 17th IEEE
International Conference on High Performance Computing and Com-
munications (HPCC15), Aug 2015.

[18] M. Stephenson and S. Amarasinghe, “Predicting Unroll Factors Using
Supervised Classification,” in CGO, San Jose, CA, USA, March 2005.

[19] K. Stock, L.-N. Pouchet, and P. Sadayappan, “Using Machine Learning
to Improve Automatic Vectorization,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 50:1–50:23, Jan. 2012.

[20] R. Vuduc, J. Demmel, and J. Bilmes, “Statistical Models for Empiri-
cal Search-Based Performance Tuning,” International Journal of High
Performance Computing Applications, vol. 18, no. 1, pp. 65–94, 2004.

http://doi.acm.org/10.1145/2737924.2737999

	Introduction
	Related Work
	Conventional ML vs MLMT Workflow
	MLMT Abstractions
	Design and Implementation
	MLSPEC
	AutoTrainer

	Evaluation
	ReCAP: A Model for Capping Register Allocation
	Prediction Quality
	Portability
	Performance Gains

	Analysis
	Sample Generation
	Performance Insight

	Conclusions
	References

