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Abstract—Heterogeneous compute nodes have become an in-
tegral component of today’s HPC systems. Recent research has
established the importance of data layout and placement on such
systems. This paper explores the power and energy aspects of
data layout and placement on heterogeneous systems. We present
results of an experimental study that evaluates the impact of data
layout and placement on candidate HPC node architectures for
kernels that exhibit a wide variety of performance characteristics.

The results of the study show that data layout and place-
ment can have a significant impact on the energy efficiency
of heterogeneous applications. On some platforms, selecting
the appropriate layout can yield up to an order-of-magnitude
improvement in energy efficiency. The study shows that the
conventional approach of using a structure-of-arrays for device-
mapped data structures is not always profitable and that in
addition to memory divergence, data layout choices are impacted
by a variety of factors including arithmetic intensity and task
granularity. The results of the study are used to establish a set
of energy imperatives to guide data layout and placement across
different architectures.

I. INTRODUCTION

There is mounting evidence that the first exascale sys-
tems will be highly heterogeneous where conventional high-
performance CPUs work in concert with energy-efficient ac-
celerators to yield scalable performance at prescribed power
budgets [1], [2]. These emerging architectures embody hetero-
geneity in both computation and memory resources. The mem-
ory system contains many SRAMs, DRAMs and NVRAMs
with different capacity, bandwidth and perceived latency.
Heterogeneous memory systems add a new dimension to
the already challenging problem of programming scalable
systems.

Task (and data) mapping must consider not only the avail-
able computational resources but the capabilities of the mem-
ory units as well. For instance, if the computation patterns
in a thread are such that the data is being accessed at a
relatively high rate then ideally it should be mapped to a
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Fig. 1. Performance and power variation across ADLP (Adaptive Layout and
Placement) configurations on a single node. ADLP i refers to a particular
layout and placement configuration on the target node

memory unit with higher bandwidth (e.g., HBM [3]). This
placement must also be weighed against the computation
capabilities and power demands of the processors attached
to that memory. Furthermore, care must be taken to ensure
that data is laid out in a way that favors the memory unit to
which it has the highest affinity. For instance, an array of
aggregate data types can be laid out with elements of the
aggregate in consecutive memory locations (such as Array
of Structures, AOS) which will favor the latency-optimized
CPU memory hierarchy. On the other hand, a layout where
elements from different aggregates are grouped and placed
consecutively (Discrete Arrays, DA) will favor a GPU memory
hierarchy with coalesced access for adjacent threads. In this
context, we term the combined task of (i) selecting suitable
layouts for data structures and (ii) controlling the placement of
data segments in different memory units as data organization.

Consequences for inefficient data organization on hetero-
geneous memory systems can be dire, for performance and
power. Fig 1 shows the performance and power variations of a
heterogeneous image processing application for different data
organization configurations. We observe up to a factor of five
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difference in performance and up to a factor of seven differ-
ence in power (ADLP 6 vs ADLP 2). Not surprisingly, no
particular organization provides the best power-performance
combination. It should be noted, that these numbers are for
a single node only. The difference in performance and power
will quickly escalate as we scale to larger systems.

This paper presents an extensive cross-platform empirical
study that aims to understand the effects of data organization
decisions on the energy and power consumption of emerging
heterogeneous applications. The study considers two classes
of heterogeneous memory systems mainly in use today: (i)
integrated CPU-GPU with shared DDR memory, and (ii)
discrete GPU with HBM or GDDR memory that is attached to
the main DDR memory via PCIe. The discrete GPU systems
provide limited software support for a shared virtual address
space. We study the effects of traditional data layout schemes
such as array of structures (AoS), discrete arrays (DA) and
structure of arrays (SoA). We also consider advanced layout
techniques that have been recently proposed for heterogeneous
memory architectures. We analyze these data layouts along
with the supported placement methods on each target platform.
We characterize the main considerations for power and identify
key program attributes that can potentially have the most
impact on data layout and placement decisions. We construct a
parameterized search space around these attributes and explore
each dimension to determine how changes in each dimension
affect power and energy consumption of the application.

To facilitate the exploration of the search space, we develop
a micro-kernel generator and custom profiler. The kernel
generator creates synthetic micro-benchmarks, each of which
represent a specific point in the search space. Hardware
performance counter based profiles are collected for each run
and pushed to a profile database. The performance analyzer
analyzes the collected data to identify patterns along each
dimension.

The study reveals several interesting effects of data orga-
nization on power and energy. These include the interacting
effects of memory divergence, arithmetic intensity and task
granularity.

The rest of the paper is organized as follows: Section II
provides some background on heterogeneous architectures and
programming models; Section III presents related work on data
layout optimizations on heterogeneous platforms; Section IV
describes the data layout and data placement methods studied
in this paper; Section V discusses application characteris-
tics that are investigated in this study and the rationale for
their inclusion; Section VI describes the experimental setup;
Section VII presents experimental results and finally the key
findings are summarized in Section VIII

II. BACKGROUND

This section briefly reviews design of heterogeneous node
architectures and corresponding programming models.

A. Heterogeneous node architectures
Today, heterogenous architectures for HPC systems can be

mostly divided into two main classes: (i) integrated and (ii)

discrete GPU architectures. In general, integrated GPUs and
discrete GPUs differ in the physical memory organization and
the underlying interconnect between the compute and memory
elements in the system. Integrated GPUs typically share the
physical memory space between the CPU and GPU cores
and the memory is cache coherent. For added performance
capability, some integrated GPU systems reserve a portion of
the system memory to be exclusively accessed by the GPU
without being cache coherent with the rest of the system. In
contrast, discrete GPUs have a distributed physical memory
architecture, where the GPU has its private non-coherent
memory space and it communicates with the system memory
via PCIe. Sharing the system memory directly with the GPU
is done with driver support on demand by pinning parts of the
host memory.

Furthermore, discrete GPU systems have two physical mem-
ory spaces – (1) system memory and (2) GPU memory,
where the system memory can be shared with the GPU cores
but the GPU memory is not accessible by the CPU cores
directly. AMD software stack allows the system memory to
be accessed by the GPU in either a fine-grained or a coarse-
grained manner, whereas the Nvidia software stack allows the
system memory to only be shared in a coarse-grained manner,
where memory synchronization is explicitly performed with
the threadfence() API[4].

B. Programming models

AMD systems use the RadeonTMOpen Compute Runtime
(ROCR)[5], which is based on the Heterogeneous Systems Ar-
chitecture (HSATM) specification [6], for program execution.
HSA runtime is a thin, user-mode API that directly exposes the
graphics hardware capabilities to the end user. HSA includes
low-latency user-mode task dispatch, lightweight signaling to
trigger kernel execution and query task completion, a rich
memory management API and many more capabilities targeted
at heterogeneous computing and memory environments. The
memory API is used to allocate, move and de-allocate memory
from various physical memory spaces.

CUDA is Nvidia’s most widely used software platform,
whose API can be used to manage memory on the device as
well as share system memory between the host and the device.
In this paper, we study the traditional host-device explicit
data transfer model and the Unified Virtual Addressing (UVA)
model that allows the pinned system memory to be directly
accessed by the GPU cores. However, the very latest features
of CUDA, such as Unified Virtual Memory and host-device
page migration, are not studied in this paper and are considered
as future work.

III. RELATED WORK

Data layout transformations have long been a staple for
compiler writers for improving data locality [7], [8], [9], and
have seen use in additional homogenous memory architecture
contexts such as the compression of sensor data [10]. We
divide further discussion of recent work in data organization



based on their applicability to discrete GPU and integrated
CPU-GPU nodes.

A. Data Layout for Discrete GPU Nodes
Data re-organization techniques have been developed to re-

duce non-coalesced memory access on discrete GPU systems.
Baskaran et al. present a polyhedral technique for determining
suitable padding factors to improve shared memory local-
ity [11]. Lee et al. describe a matrix-transpose transformation
for improving memory coalescing in thread-private data struc-
tures. This layout conversion is implemented as a source-level
transformation in their OpenMP-to-CUDA compiler frame-
work [12]. Liu et al. describe a layout transformation that
attempts to address channel skewing, non-coalescing and bank
conflicts. The key idea is to divide arrays into blocks and
map them to processing units with minimal overlap [13].
Wu et al. looks at the problem of data re-organization for
irregular GPU applications. They show that in general the
problem of minimizing non-coalesced memory accesses with
data re-organization is NP-complete [14]. They propose two
new algorithms that make appropriate trade-offs among time,
space and complexity. One algorithm uses padding to avoid
duplication while the other takes advantage of shared memory.

B. Data Layout for Integrated GPU Nodes
Work on data organization techniques for heterogeneous

memory systems with shared memory is less common. Sung
et al. propose a tiled layout for arrays of aggregate types
and a runtime marshaling technique for in-place data-layout
conversion [15]. They are able to achieve performance gains
on four kernels on both NVIDIA and ATI GPUs. Although
the strategy is aimed at heterogeneous shared memory sys-
tems the evaluation is done on discrete GPUs only. Che
et al. describe Dymaxion, an extension of the CUDA API,
that allows programmers to remap data layout structures to
match the GPU memory [16]. They also provide an efficient
method for performing remaps by overlapping them with
PCIe transfers. The actual decisions for data mapping are
left to the programmer, however. Majeti et al. describe a
compiler framework for selecting between AoS and SoA. The
selection heuristic is guided by meta information supplied
by the programmer [17]. In more recent work, Majeti et al.
present a greedy algorithm for selecting between AoS and
SoA for array sections. They provide an automatic method for
generating these layouts for CPU-GPU hybrid applications.
However, the framework is evaluated on only one platform
with a discrete GPU [18].

Two key aspects distinguish this work from earlier work in
data organization. First, this is the first study to focus on data
layout effects on power and energy. Second, unlike previous
approaches, this work consider data layout and placement in
conjunction.

IV. DATA LAYOUT AND PLACEMENT

A. Data Layout Methods
Data layout refers to the organizational structure of data

in memory and, while optimizing data layout with regards to

various performance metrics is still an open problem, there
are three data layouts for aggregate types that are commonly
used in heterogeneous memory systems. These are (i) array
of structures (AoS), (ii) structure of arrays (SoA) and (iii)
discrete array (DA).

We provide brief descriptions of these data layouts next. To
describe each layout, we consider an aggregate data structure
containing n observations of k integer values.

1) Array-of-Structs (AoS): The AOS data layout bundles
each observation as a discrete structure in series. Disregarding
any padding added to align structure members along word
boundaries, the AOS data layout ensures that features of any
given observation are adjacent in memory, while subsequent
iterations of any given feature will be separated in memory by
a distance the size of an observation.
s t r u c t o b s e r v a t i o n {

i n t f e a t u r e 1 ;
i n t f e a t u r e 2 ;
i n t f e a t u r e 3 ;
. . .
i n t f e a t u r e k ;
} ;

s t r u c t o b s e r v a t i o n AOS[ n ] ;

2) Structure-of-arrays (SoA): The SOA data layout, by
contrast, bundles series of features. In memory, this guarantees
that subsequent iterations of any given feature will be adjacent,
while the constituent features of any given observation i will
each occupy index i of that feature array. In addition feature
arrays are adjacent in memory.
s t r u c t SOA {

i n t f e a t u r e 1 [ n ] ;
i n t f e a t u r e 2 [ n ] ;
i n t f e a t u r e 3 [ n ] ;
. . .
i n t f e a t u r e k [ n ] ;
} ;

3) Discrete Array (DA): The DA data layout, similarly to
the SOA data layout, bundles series of features, but does not
encapsulate the data itself within a c structure. This implies
that there are no guarantees about the location of a feature
array in memory. Often the DA data layout is used rather than
the SOA data layout due to language restrictions on dynamic
allocation of arrays within structs.
s t r u c t DA {

i n t ∗ f e a t u r e 1 ;
i n t ∗ f e a t u r e 2 ;
i n t ∗ f e a t u r e 3 ;
. . .
i n t ∗ f e a t u r e k ;
} ;

da . f e a t u r e 1 = ( i n t ∗) m a l lo c ( s i z e o f ( i n t ) ∗ n ) ;
da . f e a t u r e 2 = ( i n t ∗) m a l lo c ( s i z e o f ( i n t ) ∗ n ) ;
da . f e a t u r e 3 = ( i n t ∗) m a l lo c ( s i z e o f ( i n t ) ∗ n ) ;
. . .
da . f e a t u r e k = ( i n t ∗) m a l lo c ( s i z e o f ( i n t ) ∗ n ) ;

B. Data Placement

Discrete GPU systems have two physical memory spaces,
which allows for two data placement options for heterogeneous
applications. A data structure can be explicitly copied to GPU



device memory or it can be be mapped to page-locked system
memory and accessed directly from the GPU using demand
paging. We call these two placement method DEV and HOST,
respectively.

Shared memory spaces may support fine-grained or coarse-
grained accesses, where updates to memory in a fine-grained
region are immediately visible to all devices that can access
it, but only one device can have access to a coarse-grained
allocation at a time. Synchronization in coarse-grained mem-
ory is performed through explicit memory fence operations,
either by the driver or by the programmer. We refer to these
two placement methods as FINE and COARSE, respectively.

V. APPLICATION CHARACTERISTICS

In this study, we explore a range of application charac-
teristics that have potential interplay with data layout and
placement decisions. We develop a micro-kernel generator
(Section VI) to create kernels that exhibit one or more of these
properties in varying degrees.

A. Memory divergence

Most accelerators are equipped with coalescing units that
attempt to combine memory requests emanating from threads
in the same warp. If threads request data from the same cache
line then the requests are coalesced into a single memory
transaction. Un-coalesced memory requests increase memory
traffic, potentially increasing power draw and simultaneously
causing performance degradation. Below we present three
scenarios for memory divergence and discuss how these can
be addressed with data layout changes.

1) Indirect indexing: In the code example below, values in
indices[] are being used to access into the val array.

f o r ( i n t k = 1 ; k < bound ; k ++) {
j = i n d i c e s [ k ] ;
v a l = v a l u e s [ j ] ;
/∗ . . . ∗ /

}

Values in the indices array are not guaranteed to be con-
tiguous, i.e. indices[i] + 1 6= indices[i+ 1]. Hence, val may
not be accessed contiguously by consecutive threads.

2) Transposed access: This kernel code below uses two
square matrices with column-major indices.

i n t i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
i n t j = 0 ;
f o r ( j = 0 ; j < d i m s i z e ; j ++)
i f ( i < d i m s i z e ) {

B[ i ∗ d i m s i z e + j ] = A[ i ∗ d i m s i z e + j ] ;
/∗ . . . ∗ /

}

As with the first example, cache misses occur due to non-
contiguous access. In particular, the array access is strided
within each warp, where the size between access is equal to
dimsize. For a fully coalesced access pattern, the code would
need to use row-major indices. That is for the above example
that following must hold

B[j ∗ dimsize+ i] = A[j + dimsize+ i]

3) Aggregate data access: Here we have code that manip-
ulates images whose pixels are stored as an array of structs.

i n t t i d x = t h r e a d I d x . x + blockDim . x ∗ b l o c k I d x . x ;
f o r ( i n t j = 0 ; j < NUM IMGS; j ++) {

d s t i m a g e s [ j ] . r [ t i d x ] = x ;
d s t i m a g e s [ j ] . g [ t i d x ] = y ;
d s t i m a g e s [ j ] . b [ t i d x ] = z ;
/∗ . . . ∗ /

}

When a warp on the GPU stores the red value, the access
pattern is once again strided, skipping the green and blue
fields in between. This strided access pattern invokes memory
divergence in the same way as example 2.

B. Arithmetic Intensity

Arithmetic intensity is defined as the number floating-point
operations relative to the amount of data movement [19].
Arithmetic intensity is a key performance indicator for many
classes of applications. It can also be a good indicator of
power consumption. In general, higher intensity implies in-
creased power consumption. On heterogeneous memory sys-
tems, however, the relationship between arithmetic intensity,
data organization, and power-performance is more complex.

The GPU programming model relies on hiding memory
latency with overlapped computation. If there is sufficient
computation in the kernel to hide the excess latency caused by
increased bandwidth pressure then no discernible performance
loss will be observed. Thus, to clearly identify performance
problems with memory divergence, the rate of computation
in the kernel must be considered. Higher arithmetic intensity
implies more computation in the kernel that can potentially
hide the latency resulting from un-coalesced access. Thus,
for high intensity kernels, memory divergence caused by data
layout may not be as significant and layout decisions will be
more heavily influenced by the cost of conversion.

C. Data Access Patterns

Data access patterns in the kernel dictate which segments
of a shared data structure will be accessed by a thread or
a thread block. Independent of data locality, access patterns
can determine how much data is touched in a thread block
(e.g., requirements for shared/scratchpad memory) and the
amount of memory divergence. In this study, we focus on
a particular class of data access patterns known as sparsity.
Sparsity is defined as the distance between memory references
in consecutive threads. Two threads are considered consecutive
if they belong to the same warp/wavefront and their thread
indices are separated by one. A sparsity value of k implies
that consecutive threads are accessing values that are k bytes
apart in memory.

D. Task Granularity

The next consideration for data layout efficiency is task
granularity which refers to the amount of work done by each
thread. Increased granularity implies that more data is being
fetched and more computation being performed with the actual
arithmetic intensity remaining constant. However, depending



TABLE I
CONFIGURATION OF EXPERIMENTAL PLATFORMS.

AMD
Kaveri

AMD
Carrizo

Radeon Fiji Nvidia
Kepler

Architecture integrated integrated discrete discrete
Software HSA HSA HSA CUDA
CUs 8 8 64 14
Cores/CU 4 (SIMD) 192
GPU clock 720 MHz 800 MHz 1 GHz 811 MHz
GPU Mem 1 GB none 4 GB 3 GB
Peak GPU BW 25 GB/s 31 GB/s 512 GB/s 134 GB/s
L1 cache 16 KB 16 KB 16 KB 16 KB
L1 cache line 64 B 64 B 64 B 128 B
PCIe BW none none 13 GB/s 8 GB/s

on the occupancy and wavefront scheduling, the effective rate
at which data is requested can change. In the degenerate
case, if computation from all warps occur in parallel (i.e.,
low occupancy) then an increase in task granularity will see
a proportional increase in bandwidth pressure. The rate of
increase in bandwidth pressure will drop as the occupancy
increases. Increased bandwidth pressure, and consequently
increased memory traffic, will increase application power
draw.

Task granularity can be controlled by increasing the prob-
lems size, modifying the number of threads or by directly
changing the amount of work done per thread. In our frame-
work, we measure granularity as the number of objects pro-
cessed per thread.

VI. EXPERIMENTAL SETUP

A. Evaluation Platforms

Table I describes the four heterogeneous platforms used in
this study. Systems were selected with both integrated and
discrete GPUs from two major vendors, AMD and Nvidia.
The selected platforms also exhibit variations in the memory
sub-system.

B. Micro-kernel generator

To characterize impact of data organization on heteroge-
neous memory, we developed a micro-kernel generator.

At its core, the kernel-generator contains a synthetic micro-
benchmark that performs 3 FP add and 2 FMA operations
on an array of aggregate types. This baseline kernel is im-
plemented with alternate data layout, placement and partition
configurations. Each variant is then parameterized to expose
several tunable parameters as listed in Section V. Seven of
these are controlled by directly modifying the kernel while
the rest are controlled externally through a driver program.
The variants are constructed such that each dimension in the
parameter space can be controlled independently, allowing us
to examine the impact of each dimension in isolation, as well
as explore the space in a non-orthogonal manner. Many of the
parameters are controlled by manipulating loop headers. Loop
bounds determine the degree while a custom function deter-
mines the thread index. This method can introduce overhead
for some variants. This is accounted for during profiling.

Problem (N), grid (T) and workgroup (W) size are con-
trolled in the driver program by replacing launch configuration

parameters. T is chosen for a given N and W is selected to
evenly divide T. Specific constraints imposed by the target
architecture (e.g., W > 32) are also accounted for.

C. Profiler

The micro-kernel generator is coupled with a profiling tool
which consists of an execution harness, a a HW perfor-
mance counter reader and a performance analyzer. The tool
is used to discover performance patterns in the parameter
space and evaluate the relative effectiveness of a pair of data
layout configurations. On invocation, the profiler first gathers
pertinent architectural information such as memory capacity
and available bandwidth. This information is then used to
establish the range of each dimension in the parameter space.
Some values are obtained directly (e.g., maximum number of
threads), others via experimentation (e.g., when problem size
exceeds memory capacity). The tool then proceeds to generate
alternate kernel variants by systematically adjusting parameter
values.

VII. EVALUATION

A. Memory Divergence

Fig. 2 shows how data layout choices impact power on three
heterogeneous platforms. On Carrizo and Kepler there is very
little variation in power consumption for different data layout
choices. On Fiji, there is a band of memory divergence values
for which the application operates at a higher power level
with all three data layouts. This increase is mainly attributed
to the increased rate of data transfer on the PCIE bus. Small
values of memory divergence (≤ 3) do not create sufficient
pressure on the bus to substantially increase its power draw.
On the other hand when the memory divergence is high, the
application spends most of its time stalled in memory and is
not able to consume data at a rate that would stress the bus.
This is the reason for the higher plateau in the power values.

The impact of data layout on energy consumption can be
seen in Fig. 3. Only SoA is able to maintain a consistent level
of energy efficiency on all three platforms for the range of
memory divergence values. DA maintains a consistent level on
Kepler but experiences a gradual rise in energy consumption
on Carrizo and Fiji. This increase was primarily due to
performance loss due to increased register pressure causing
spills to local memory. AoS performs worst in terms of energy
efficiency. On Carrizo and Kepler, there is a linear increase in
energy consumption as a function of the amount of memory
divergence. On Fiji, the case is more severe, where its energy
efficiency is worse by almost a factor of 10 for many values
of the memory divergence.

B. Data Access Patterns

To evaluate the impact of data access patterns, we consider
kernels with sparsity values that range from 1 to 64. At
the lowest sparsity value, contiguous memory locations are
accessed consecutively, while at the highest value distance is
equal to the size of the wavefront. On Kepler, the highest value
is twice the size of a wavefront.
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Fig. 2. Impact of memory divergence on power
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Fig. 3. Impact of memory divergence on energy
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Fig. 4. Data access pattern and its impact on power
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Fig. 5. Data access pattern and its impact on energy

Fig. 4 shows how data access patterns impact application
power draw when AoS, DA and SoA data layouts are used. On
Fiji and Kepler, application power draw is generally insensitive
to data layout choice for all sparsity. Nevertheless, we do
notice that DA incurs a higher power draw on Kepler. On

Carrizo, there is a clear delineation point beyond which both
AoS and DA incur a higher level of power draw. This rise can
be attributed to increased local (for DA) and global memory
(for AOS) traffic.

Fig. 5 shows how data access patterns impact application
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Fig. 6. Impact of arithmetic intensity on power
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Fig. 7. Impact of arithmetic intensity on energy

power draw when AoS, DA and SoA data layouts are used. Like
memory divergence, SoA shows tolerance for different values
of sparsity, delivering consistent energy efficiency across all
three platforms. Both AoS and DA suffer from increased
energy consumption for increased sparsity. This increase is
less pronounced on Fiji than on Kepler and Carrizo. For large
values of sparsity, SoA, can yield a factor of three energy
improvement over the other two approaches.

C. Arithmetic Intensity

We explore a range of the arithmetic intensity. The lowest
value represents a 25% utilization of compute units while the
highest value represent full saturation.

Fig. 6 shows how arithmetic intensity impacts application
power draw when AoS, DA and SoA data layouts are used.
Similar to results observed in the memory divergence experi-
ments, there is little variation in power on Carrizo and Kepler
for any of the three layouts. However, SoA, again emerges
as the layout of choice on these two platforms. On Kepler,
DA incurs higher power draw while on Carrizo, AoS incurs
a higher power draw. On Fiji, the power draw for all three
layouts increases in a staggered fashion, with two inflection
points being observed in the range of intensity values over
which experiments were conducted.

The impact of data layout on energy consumption can
be seen in Fig. 7. There is a gradual increase in energy
consumption on all three platforms. This is expected because
a higher arithmetic intensity implies more computation for
the kernel which adds to execution time, leading to increased
energy. Interestingly, there does not appear to be a clear winner
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Fig. 8. Impact of data placement strategy on energy and power

in this case. On Fiji, DA is the best candidate while on
Carrizo, SoA holds a slight advantage over DA. On Kepler,
DA is preferred for lower values of arithmetic intensity but
this advantage diminishes for higher intensity.



D. Data Placement

In this section, we explore the effect of data placement.
We assume the shared data structure is initially allocated in
host memory. Then it is either copied to device memory (e.g.,
discrete GPU systems) or it is kept in host memory in a shared
location. Since Carrizo does not have separate device memory,
we evaluate the AMD Kaveri board.

Fig. 8 shows average power draw and energy consumption
with different placement strategies. Kaveri incurs higher power
draw than Fiji. We observe significant interplay between
data layout and placement and application power draw. For
instance, on Fiji, if the data is allocated to device memory
then an SoA layout should be used. On the other hand, an AoS
layout should be used for device-mapped data structures on
Kaveri.

In terms of energy, AoS is clearly a poor choice on Fiji
for both host and device-mapped data structures. Again, this
is mainly due to the un-coalesced memory references that in-
creases kernel execution time. Interestingly, on Kaveri, HOST
placement is advantageous for all three data layouts.

VIII. CONCLUSIONS

This paper presented an experimental study that evaluated
the impact of data layout and placement decisions on power
and energy consumption. Applications were evaluated along
several dimensions including memory divergence, arithmetic
intensity and data access patterns. Experiments were con-
ducted on four different heterogeneous platforms with different
memory configurations.

Below are the key findings of this study
Data layout has low impact on application power draw:

Generally, application power draw appears insensitive to
changes in data layout and placement. Fiji is a notable excep-
tion, displaying increased levels of power draw with changes
in memory divergence and arithmetic intensity.

Data layout and placement has significant impact on energy
efficiency: Considerable variation in energy consumption was
observed for different layout strategies on all platforms. On
some platforms the best and the worst configuration differed
by an order of magnitude.

Layout and placement decision must be taken in concert:
For improved energy efficiency, it is imperative that data layout
decisions consider the placement of data. For instance, for
device placement on discrete GPUs, an SoA layout should
be chosen, while a discrete array layout is preferred for host
placement.

SoA is not always the optimal choice for device-mapped
data structures: When considering performance, it is generally
advisable to use SoA for GPU data structures over other
layouts. However, our study shows that, when considering
energy efficiency, SoA may not always be the best choice. For
instance, the study shows that for lower levels of arithmetic
intensity a discrete array layout can produce more energy ef-
ficient kernels on heterogeneous systems with discrete GPUs.
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