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Abstract

The convergence of extremely high levels of hardware concurrency and the effective overlap of computation and
communication in asynchronous executions has resulted in increasing nondeterminism in High-Performance Computing
(HPC) applications. Nondeterminism can manifest at multiple levels: from low-level communication primitives to libraries
to application-level functions. No matter its source, nondeterminism can drastically increase the cost of result repro-
ducibility, debugging workflows, testing parallel programs, or ensuring fault-tolerance. Nondeterministic executions of
HPC applications can be modeled as event graphs, and the applications’ nondeterministic behavior can be understood and,
in some cases, mitigated using graph comparison algorithms. However, a connection between graph comparison algorithms
and approaches to understanding nondeterminism in HPC still needs to be established. This survey article moves the first
steps toward establishing a connection between graph comparison algorithms and nondeterminism in HPC with its three
contributions: it provides a survey of different graph comparison algorithms and a timeline for each category’s significant
works; it discusses how existing graph comparison methods do not fully support properties needed to understand
nondeterministic patterns in HPC applications; and it presents the open challenges that should be addressed to leverage the
power of graph comparisons for the study of nondeterminism in HPC applications.
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can slow down the transition from development to production
in HPC codes. Other scenarios that cannot be ignored are:
testing parallel programs to ensure numerical or scientific
repetition of results despite, for example, nondeterministic
message interleaving or reductions; and providing fault-
tolerance where the execution of one or more processes
may need to be rolled back and replayed to recover from a
fault. Case studies presented in Ahn et al. (2013); Sato et al.
(2017); Gioachin et al. (2010); Chiang et al. (2013) and the
expert consensus collected in Gopalakrishnan et al. (2017) are
indicative of a looming crisis.

Introduction

The convergence of extreme hardware concurrency and the
effective overlap of computation and communication in
asynchronous executions are resulting in growing non-
determinism in High-Performance Computing (HPC) appli-
cations, as illustrated in Figure 1 and presented in Ahn et al.
(2013); Gopalakrishnan et al. (2017); Sato et al. (2017); Chapp
et al. (2015, 2018, 2021). Nondeterminism can manifest at
multiple levels in the software stack: it can manifest in low-
level communication primitives (e.g., the inherent non-
determinism of nonblocking matching functions in MPI); it
can manifest in libraries (e.g., dynamic load-balancing li-
braries), as presented in Lusk et al. (2015); or it can display at
the application level (e.g., Monte-Carlo simulations). No
matter its source, nondeterminism can drastically increase the
cost of reproducibility (e.g., in terms of developer time and
computational resources), whether or not that reproducibility is
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desired for scientific outcomes. Moreover, debugging work-
flows that exhibit nondeterministic bugs, for example, moving
from a smaller to a larger scale or from one platform to another,
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Figure |. Growing nondeterminism, asynchrony, and concurrency trends in HPC applications. In exascale simulations, with the
increase of concurrency and asynchrony of executions, the guarantee of deterministic execution will be lost.

Nondeterministic executions of HPC applications can be
modeled as event graphs. Graph comparison algorithms, a
fundamental problem in graph theory, can be leveraged to
evaluate how “similar” are a set of given graphs. Ultimately,
the output of graph comparison algorithms could support
users in quantifying variations between multiple executions
of the same application, improving the efficiency of
checkpointing, detecting subtle differences between distinct
nondeterministic communication patterns, and automati-
cally identifying instances of abnormal nondeterministic
communication. However, existing graph comparison al-
gorithms do not fully support properties needed to under-
stand nondeterministic patterns in HPC applications, such
as sensitivity to different graphs, scalability to input graphs,
specialization to HPC systems, and tunability to user
specifications.

Our work builds on the rich history of graph comparison
algorithms and moves the first steps toward filling this gap
between existing graph comparison methods and their use to
study nondeterminism in real-world HPC applications.
Specifically, this article presents a survey of the state-of-the-
art algorithms for graph comparisons, identifying the study
of nondeterminism as a research domain still in its infancy.
While variations of graph comparison have been exten-
sively used for real-world problems such as protein
matching in biology (Ma and Liao, 2020), identifying
nondeterminism in HPC simulations (Bell et al., 2021), and
social network comparison (Liu et al., 2016); Zhang and
Philip, 2015), graph comparison methods have limited
deployment in HPC nondeterminism. Furthermore, while
there exist several surveys on different aspects of graph
comparison, including the latest methods on graph iso-
morphism (Grohe and Schweitzer, 2020), subgraph iso-
morphism and mining (Jiang et al., 2013), and graph kernel
methods (Kriege et al., 2020); Borgwardt et al., 2020), these
articles do not explicitly focus on applying these methods to

capture and interpret aspects of nondeterminism in HPC
applications. Our goal is to build the missing connection
between graph comparison algorithms and the causes of
nondeterminism in HPC applications as nondeterministic
behaviors rise due to the growth of exascale computation.

We classify the variations of graph comparison methods
into three broad categories based on how they are typically
used. Exact graph comparisons including graph and sub-
graph isomorphism, are generally designed for solving well-
defined theoretical problems, not always related to a specific
application. Graph alignment involves algorithms that fo-
cus on matching vertices of two or more graphs nearly
similar in size. Typically the matching criteria depend on the
application domain and user specifications. Quantitative

functions for graph comparisons comprise algorithms that

fall between the stringent theoretical work of isomorphism
and the user-oriented methods of graph alignment. These
include functions that take in properties or embeddings of
the graphs and return a real number that quantifies the
similarity between the graphs. Many such functions exist,
from classifying graphs based on degree distribution to
comparing them using graph kernels.

Throughout this article, we discuss the literature on these
categories of graph comparison using the Chapp-Taufer
format (Chapp et al., 2018) that maps publications based
on publication time and categories. A box represents each
article; color represents different solutions (i.e., general or
specific); and symbols represent algorithms features. Our
survey identifies the research gap (and opportunities) still
unexplored in graph comparison for studying nondeter-
ministic HPC applications. We define the research direc-
tions needed to fill the gap in modeling reproducible
executions, ensuring code replicability, and addressing
fault-tolerance in graph algorithms.

To summarize, our contributions in this article are
threefold. First, we provide a survey of different graph
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comparison methods and a timeline for each category’s
significant works, outlining missing properties that could
make existing solutions viable for nondeterminism in HPC.
Second, we discuss how graph comparison methods have
been applied to challenges in HPC simulations but not for
the understanding of nondeterminism. Last, we present the
open challenges that should be addressed to fully benefit
from graph comparison algorithms to study nondetermin-
istic HPC applications.

Desirable properties of graph comparison
for nondeterministic HPC applications

Graph comparison presents an attractive approach to un-
derstanding the harmful aspects of nondeterminism in HPC
applications. Graph comparison algorithms provide the
ability to monitor and record changes in program state over
one execution (i.e., the recorded execution) of an appli-
cation and reproduce those changes, and thus, the appli-
cation’s behavior during a subsequent execution (i.e., the
replayed execution). Graph comparison algorithms can be
used for comparing execution sequences to identify non-
determinism, for comparing codes and expression DAGs to
determine correctness and replicability, and for comparing
input graphs to improve fault-tolerance and enable faster
computation. In the specific context of HPC applications on
exascale systems, graph comparison algorithms must record
sufficient and necessary execution events to model the
behavior of thousands of interacting processes or threads,
each of which may manifest multiple kinds of nondeter-
ministic behavior. To capture the unique properties of ex-
ecution patterns in nondeterministic HPC applications into
event graphs, we need expressive representations of exe-
cutions; a means of determining the cost of recording events
into event graphs; a rigorous notion of dissimilarity between
multiple executions of the same nondeterministic applica-
tion, and metrics for extracting quantitative dissimilarity.
Direct acyclic graphs are an example of general and
expressive execution representation where vertices define
relevant inter-process or inter-thread communication
events. This representation is commonly known as an event
graph (Kranzlmiiller, 2000) and has seen success as a de-
bugging aid. To capture the unique properties in HPC ap-
plications, graph representation has to be enriched with
vertices embedding, for example, information about the
chain of function calls that terminate in each communication
event. This data can link the runtime nondeterminism with
its sources in the call graph of the application, which is
critical for understanding how changes in application
configuration affect runtime nondeterminism, and by ex-
tension, the cost of recording events into graphs. Capital-
izing on the event graph representation of executions, graph
comparison methods address the need for execution

dissimilarity metrics to measure the “distance” between
executions in the space of all such possible event graphs.

Applications targeting exascale platforms push the en-
velope of performance. They do not tolerate the perfor-
mance degradation inherent in heavy-weight tooling, so
tools that capture execution patterns, as graph comparison
algorithms do, must afford lightweight implementations.
More perniciously, graph comparison algorithms’ over-
heads (or costs) must not perturb execution timings such
that the very phenomena (e.g., specific simulation trajec-
tories or subtle and intermittent bugs) are meant to be
recorded and are prevented from occurring in the first place.
Event graphs exist in memory during the graph comparisons
and may be persisted to disk, either in chunks during re-
cording or all at once at the end, and necessarily impose
some overhead to monitor events and update the repre-
sentation. Consequently, graph comparisons have to deal
with two kinds of overheads: memory overhead and exe-
cution time overhead. The memory overhead refers to the
size of the in-memory representation, and the execution
time overhead refers to the slowdown relative to a moni-
tored execution.

Tools to solve the graph comparison problem in HPC
applications require specific properties for the above-listed
challenges. A valid graph comparison tool for HPC applica-
tions must feature sensitivity to the differences between
graphs, scalability to the size of the input graphs, specialization
to HPC systems, and tunability to user specifications.

Sensitivity

Refers to whether the quantitative measures of graph
similarities or differences are commensurate with the
change in the graph. Specifically, small changes in graph
structure should result in a small quantitative value and
significant changes in larger values. Since the difference is
manifested not as the number of edges or vertices changed
but by how these elements affect the entire topology, de-
veloping sensitive, quantitative metrics for comparing
graphs is challenging. The sensitivity should also be an
essential parameter when designing scoring functions of
vertices. These scoring functions match vertices during
graph alignment, and if many vertices have similar scores,
the alignment may become incorrect.

Scalability. Refers to how well the graph comparison al-
gorithms handle large graphs. Due to non-localized memory
access, it is challenging to design scalable graph algorithms.
Among the current state-of-the-art graph comparison al-
gorithms, scalability is achieved if only a few (i.e., one or
two) motifs of reasonably small size (order of 10s or ver-
tices) are mined in massive graphs. However, the scalability
falls if the motifs’ size or diversity increases. In the case of
functions for graph comparison, the scalability depends on
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the function used. For example, degree distribution is
trivially parallelizable and scalable, but graph embedding
techniques required for graph kernel methods may not al-
ways scale. Identifying small motifs is needed in applica-
tions such as comparing critical elements of the expression
graphs or compressing graphs for improved checkpointing.
However, identifying nondeterminism in event graphs re-
quires comparing the entire graphs, and multiple/extensive
motif comparisons or advanced embedding techniques may
be needed.

Specidlization. Refers to the ability to process informa-
tion about the heavy structuring and unique metadata rel-
evant to HPC applications but not applications from other
domains. For example, in message-passing applications,
event graphs must capture communication events in an
application’s execution into a record, and graph comparison
tools must recognize information that unambiguously or-
ders the observed events into the record. One way to do this
task is with logical clocks and metadata. Metadata in
message-passing applications can be diverse, including
processes’ rank, tag, and communication event type (e.g.,
completion of a receive vs. invocation of function).

Tunability. Refers to the ability of users to specify what
kind of graph comparison they want, such as which types of
vertices to use and which node features to use. Most graph
comparison algorithms are designed for general graphs.
Graphs generated for HPC applications have unique fea-
tures. For example, event graphs are very sparse, with the
degree bounded by the number of processors. Moreover, in
these graphs, many vertices have similar neighbors, giving
rise to multiple competing candidates during graph align-
ment. Complex graphs expressing workflows have labels
describing input parameters, platform features, and envi-
ronment settings. These labels may need to be accounted for
during comparison. We posit that existing graph comparison
algorithms have to be adapted to the specific questions in
HPC for accuracy and tuned to the topology of the graphs
for efficiency.

The following four sections survey general graph
comparison algorithms and discuss how they miss meeting
the required properties.

Exact graph comparison

An exact graph comparison is used to determine whether
two graphs are structurally equivalent. An exact graph
comparison can be either a full graph isomorphism or a
subgraph isomorphism. A full graph isomorphism means
one whole graph is isomorphic to another. Subgraph iso-
morphism is when an induced subgraph is isomorphic to a
target graph. Figure 2 shows examples of different types of
exact graph comparison. Figure 3 provides an overview of

the timeline of critical articles in exact graph comparison.
The same articles are discussed in detail in this section.

Graph isomorphism

Let G=(Vg, Eg) and H= (Vy, Ep) be two graphs. G and H
are isomorphic if there exists a pair of bijective functions ¢ :
Ve — Vy and ¢z Eg — En. An example is given in
Figure 2(a). These bijections are called the isomorphism
between G and H. If G and H are isomorphic, we say that
G=H. The graph isomorphism problem belongs to the NP
complexity class but is one of the few ones not known to
belong to P or NP-complete subsets. Indeed it is defined to
be in its own special complexity class GI (GI for graph
isomorphism). In 2016, Babai (2016) proposed a quasi-
polynomial time algorithm for solving isomorphism on the
general graphs.'

One of the earliest articles on graph isomorphism
Whitney (1992) introduced the Whitney graph isomorphism
theorem. The theorem states that with one exception of the
K5 and K1)32 two connected graphs are isomorphic if and
only if their respective line graphs are isomorphic. The line
graph L(G) of a graph G is where the edges of G are the
vertices in L(G) and two vertices in L(G) are connected if the
corresponding edges in G have a vertex in common.

Much of the early work in graph isomorphism focused on
algorithms for generic graphs without considering any
unique topological properties. Among these, a popular and
fast method for comparing graph isomorphism is iterative
refinement using colorings on nodes based on their
neighbors and their colors (Morgan, 1965). At each itera-
tion, the colors of the nodes in a graph are updated until the
coloring becomes stable (i.e., the colors do not change
anymore). Graphs having the same distribution of colors are
likely to be isomorphic. Iterative refinement methods are not
a perfect test of isomorphism, but they are accurate and fast
enough to be used in practice. The Weisfeiler-Leman
method is a generalization of the coloring approach,
where instead of single vertices, coloring is applied to tuples
of vertices (Weisfeiler and Leman, 1968).

The search tree method introduced in McKay (1981)
creates a tree that contains different partitions of the nodes
of a given graph. The partition tree (or search tree) is used to
search and locate automorphisms and isomorphisms of the
original graph. Other articles explore the use of probabilistic
“Las Vegas” (Monte-Carlo) methods for determining iso-
morphism between graphs (Babai, 1979). We note that all
these methods are based on traversing the graph to find
nodes with similar neighbors through deterministic iterative
methods or probabilistic algorithms.

Special topology and parallel algorithms. Despite the compu-
tational complexity of finding isomorphism in general graphs,
isomorphism can be determined in polynomial time for graphs
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Figure 2. Overview of different types of exact graph comparison.

with special topologies. Among these are isomorphism be-
tween planar graphs (Hopcroft and Wong, 1974), bounded
degree graphs (Luks, 1982), and tree graphs (Valiente, 2002).
An algorithm for isomorphism on directed graphs is given in
Lopez-Presa and Fernandez Anta (2009). It utilizes a method
similar to the search tree algorithm in McKay (1981) to
identify automorphisms through partitions of the graphs.
Furthermore, a parallel algorithm was developed for graph
isomorphism for general graphs Luks (1986), and a parallel
algorithm for planar graphs was proposed in Jaja and Kosaraju
(1988).

Despite these advances, current graph isomorphism al-
gorithms cannot scale to large graphs even if they are
parallel. Popular graph isomorphism software such as
NAUTY (McKay and Piperno, 2014) can efficiently handle
only graphs of about 100 vertices. We conjecture that this is
because although graph isomorphism has been applied
historically in computational chemistry (Akutsu and
Nagamochi, 2013) and electronic circuits (Abiad et al.,
2020), the problem scope is too stringent to scale for
large graphs of over a million vertices, as is the current
norm. More practical applications focus on subgraph iso-
morphism and pattern matching, as discussed in the fol-
lowing section.

Subgraph isomorphism and its variations

The subgraph isomorphism problem generalizes the graph
isomorphism problem as follows: given a smaller target

graph P and a graph G, “Does a subgraph G, & G such that
G is isomorphic to P?”. An example is given in Figure 2(b).
The subgraph isomorphism is NP-complete (Cook, 1971).
One of the first subgraph isomorphism algorithms was
proposed in Ullmann (1976). A more recent algorithm VF2
(Cordella et al., 2004), solves the general subgraph
matching problem by using a search tree with nodes rep-
resenting possible matchings between the pattern and target
graph. This tree is pruned and searched to identify a sub-
graph isomorphism. Subgraph isomorphism can be solved
with polynomial complexity on graphs with particular to-
pology, such as planar graphs in Eppstein (2002).

Due to its use in a wide range of disciplines, including
bioinformatics (Bonnici et al., 2013), security applications
(Chen and Tsourakakis, 2022), and social sciences (Zhao
et al., 2010) many parallel algorithms for solving subgraph
isomorphism exist. The “solution-biased” search algorithm
(Archibald et al., 2019) randomizes how to search the space
of possible isomorphisms. The parallel solution-biased
search algorithm uses a combined MPI plus shared mem-
ory approach. GraphPI (Shi et al., 2020) proposed a shared
memory subgraph matching algorithm. The cuTS tool
(Xiang et al., 2021) introduces a GPU-based parallel im-
plementation of subgraph isomorphism and can use mul-
tiple GPUs in a distributed memory format. Both these
articles focus on identifying an optimal path to search the
target graph, thereby reducing the redundancies and the
number of options to check. Neural Subgraph Matching tool
(Lou et al., 2020) uses neural networks to embed the
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Figure 3. A history of major articles summarizing the literature of exact graph comparison and graph isomorphism.

decomposition of a target graph into a space that orders the
decomposition based on features of subgraphs.

Frequent subgraph mining. The subgraph isomorphism can
be further extended to frequent subgraph mining (FSM)
problem, which asks whether there is a set of subgraphs G,
Gy, ..., G, © Gsuchthat Gy, Gy, ..., G, are each isomorphic
to P. An example is given in Figure 2(c).

Subgraph isomorphism algorithms influenced frequent
subgraph miners because each possible matching subgraph
in the target graph must be tested for isomorphism. FSM
algorithms were motivated by subgraph miners focusing on
mining for real-world subgraphs, such as the Warmr al-
gorithm (Dehaspe et al., 1998), which mined for specific
chemical substructures.

Early approaches to solving the FSM problem in general
graphs include the Apriori-based method (Inokuchi et al.,
2000) and the gSpan method (Yan and Han, 2002). Apriori-
based solutions to FSM generate “candidate matches,” or
possible isomorphisms, and then test the candidate match
for isomorphism. gSpan and similar methods instead

organize possible matches into a search tree and search that
space of options for subgraph isomorphisms. More recently,
AutoMine (Mawhirter and Wu, 2019) has generated code
for efficient mining for subgraphs by adjusting the code to
work well on the patterns specified by the user.

Probabilistic methods focus on sampling possible
subgraph matches (Zou and Holder, 2010) or identifying
graph statistics based on highly frequent subgraphs, like
with ScaleMine (Abdelhamid et al., 2016). The tool
SSIGRAM (Qiao et al., 2018) utilizes machine learning
functionality in Spark to calculate subgraph isomorphism.
This allows it to integrate with other machine learning
workflows. ScaleMine and SSIGRAM also utilize paral-
lelism to improve the scalability of their code. The study of
scalable FSM continues using parallelism in tools like
GraphPi and cuTs. SSIGRAM is implemented across 20
compute nodes using distributed memory parallelism and
uses one core per node. ScaleMine, GraphPi, and cuTs
execute at a higher scale combining distributed memory
and shared memory parallelism over graphs of a million
vertices.
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Motif finding is another crucial aspect of FSM (Yan and
Han, 2002); ?); Slota and Madduri, 2013). The goal is to find
topologically well-defined motifs such as triangles and
cliques (Gianinazzi et al., 2021) and k-truss (Kabir and
Madduri, 2017) to identify the properties of the graph.
Counting triangles are well studied as it estimates whether it
is community-like. Recent parallel algorithms for triangle
counting on massive graphs include (Kolda et al., 2014)
using MapReduce (Wolf et al., 2017), linear algebra
primitives on Kokkos Kernels, and dynamic load balancing
on distributed memory systems (Arifuzzaman et al., 2015).

Pattern matching. A further extension to subgraph isomor-
phism is pattern matching, where the goal is to find a to-
pologically equivalent subgraph and match the vertex
labels. An example is given in Figure 2(d). The term pattern
matching is overloaded and, in certain publications, is
treated interchangeably with subgraph isomorphism. Here
we use pattern matching to refer to algorithms matching
structure and labels.

Pattern matching is increasingly becoming critical with
the rise of knowledge graphs, where the vertices and edges
contain essential information. Knowledge graphs are typ-
ically formed of heterogeneous vertices of different types,
such as relations between co-authors and the articles they
publish in social networks, connections between various
diseases and compounds in medical networks, or relations
between words in a text in natural language processing.
Apart from sequential algorithms (von Der Malsburg,
1988), efficient parallel algorithms also exist that scale to
million node graphs (Reza et al., 2018). A survey of pattern
matching for large graphs with attributes is given in
Bouhenni et al. (2021).

Graph alignment

In contrast to exact graph comparison, graph alignment
provides matching between vertices of graphs with high
correspondence. The network (or graph) alignment (NA)
problem focuses on matching vertex pairs as follows; Let
G = Vg, Eg) and H = (Vy, E) be graphs. G and H are
aligned if there exists a function ¢ 4: Vi — Vy such that ¢4
(vg) = vy for a pair of vertices vg € Vi and vy € Vy, that
have similar properties, such as similar local substructures
or common node labels. Network alignment uses variations
of subgraph isomorphism to compare two graphs which
may be of different sizes Kuchaiev et al. (2010); Khan et al.
(2012). Each approach to solving the graph alignment
problem uses different similarity definitions based on fac-
tors including computational scalability, domain knowl-
edge, and accuracy metrics. Unlike exact graph comparison
tools, graph alignments do not need to be perfectly matched.
Graph alignment is used to compare graphs known to be
nearly, but not exactly, similar. Figure 4 provides an

overview of the timeline of critical articles in graph
alignment. The same articles are discussed in detail in this
section.

The global network alignment problem (GNA) is sat-
isfied if every vertex vg € Vi and vy € Vy, are aligned to a
vertex in the opposing graph. The local network alignment
problem (LNA) requires only a subset of the vertices to be
aligned. A one-to-one alignment occurs when the alignment
function ¢ is bijective. This means that each node in one
input graph is aligned to exactly one node from the other. A
many-to-many alignment is when the function is not bi-
jective. This means that each node in one input graph can be
aligned with multiple nodes from the other. Figure 5 vi-
sualizes how different one-to-one and many-to-many
alignments can be.

A graph alignment software tool can be a pairwise or
multiple network aligner. A pairwise network alignment
(PNA) exists when the tool creates alignments between
exactly two graphs. A multiple network alignment (MNA)
exists when the tool simultaneously creates alignments
between three or more graphs. A comparison of PNA and
MNA methods is given in the survey (Vijayan et al., 2020).
Figure 6 visualizes the difference between multiple and
pairwise alignments.

Pairwise network alignment

Early graph alignment tools were designed to align nodes
across protein networks. PathBLAST (Kelley et al., 2004)
introduced the concept by matching sequences (or paths)
of proteins with similar sequences in more extensive
protein networks. NetworkBLAST (Kalaev et al., 2008)
expanded on this idea by matching complex structures of
proteins with similar structures in more extensive protein
networks. This expansion allowed aligning graphs more
generally than just as protein networks. PathBLAST and
NetworkBLAST only match a pattern with a subgraph of
a larger graph. This inexact matching of subgraphs is
called a local network alignment (LNA). Isorank intro-
duced the concept of a global network alignment (GNA),
or the alignment of whole graphs to compare entire graph
structures. The recent survey (Meng et al., 2016b) dis-
cusses the differences between LNA and GNA methods
and reconciles them by introducing methods for com-
paring tools across both LNA and GNA.

Both NetworkBLAST and Isorank utilize a scoring and
alignment system called two-stage alignment. The first stage
of two-stage alignment extracts a matrix of similarities
between pairs of nodes by applying a measure of com-
monality (similarity score) to the data. The second stage
calculates the best alignment matches by applying an op-
timization method (alignment method) to the similarity
matrix data. Every alignment method can use a different
similarity scores and optimization metric. For example,
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Figure 4. A history of major articles summarizing the literature of graph alignment.
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Figure 5. The left subfigure displays a one-to-one alignment. Each node in one graph is matched to exactly one node in the other graph.
The right subfigure displays a many-to-many alignment. Each node in one graph can be matched to multiple nodes in the other graph.

similarity for Isorank means similar local substructures for alignment. HopeMap (Tian and Samatova, 2013) is a
each node and similar BLAST scores for matched nodes. pairwise aligner that makes a many-to-many alignment.

Figure 7 visualizes this framework for two-stage aligners. Many network aligners inspired by PathBLAST and
Most pairwise network aligners produce a one-to-one Isorank provide the option to utilize node-label information
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about proteins to improve accuracy while aligning protein
networks. GRAAL (GRAph ALigner) (Kuchaiev et al.,
2010) measures the similarity between nodes of graphs
by calculating local substructures called graphlets for each
node. Graph nodes are similar when they have similar
graphlets. GRAAL can be used across any graph structure
because it is not built around the possible use of protein
information.

NATALIE 2.0 (El-Kebir et al. 2011) is based on op-
timizing a Lagrangian relaxation of a maximum weight
matching problem. SiGMa (Lacoste-Julien et al., 2013)
utilizes information about edge direction and generic
node labels within input graphs to improve the accuracy
of results on graphs with edge direction and node labels.
BigAlign (Koutra et al., 2013a) introduces a closed-form
solution to the alignment problem when aligning bipartite
graphs. All these examples are for global network
alignment.

AlignNemo (Ciriello et al.,, 2012) introduces a local
network aligner that aligns networks faster and more ac-
curately than its predecessors. A survey of local and global
network alignment tools in biology is provided in Guzzi and
Milenkovi¢ (2018). Network alignment has also been used
in specific domains other than biology. MAH (Tan et al.,
2014) creates local alignments of social networks. GE-
DEVO (Ibragimov et al., 2013) uses an existing measure of
graph difference, GED (Sanfeliu and Fu, 1983), to create an
alignment. MAGNA++ (Vijayan et al., 2015) aligns graphs
by matching the topological information of both the nodes
and the edges of graphs. GEDEVO and MAGNA++ utilize
a method different from two-stage alignment, called search-
based alignment. Search-based alignment methods optimize
alignment while calculating the commonality score between
nodes. This is opposed to two-stage aligners, which separate
those tasks into different stages. Figure 8§ visualizes how
search-based aligners work. Unlike two-stage aligners,

Pairwise Alignment

Multiple Alignment

Figure 6. The left subfigure displays a pairwise network alignment. Exactly two graphs are aligned. The right subfigure displays a multiple
network alignment. More than two graphs are aligned at once. In practice, many MNA tools can simultaneously align an arbitrary

number of graphs.

[ Similarity Score J

[ Alignment Method ]

Input Graph Data

Matrix of Similarities

Aligned Graphs
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;Y_/
Stage 1: Extract
similarities
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Figure 7. An overview of how two-stage network aligners work. In Stage |, a similarity score is applied to input graph data to extract the
similarities between nodes of the graphs. In Stage 2, an optimization algorithm (alignment method) is applied to the matrix of similarities

to determine which nodes are most similar and should be aligned.
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visualized in Figure 7, search-based aligners utilize an
alignment method that directly applies a similarity score
while searching over the optimization space.

Generadlizing alignment methodology. Recently, pairwise
network aligners are generalizing alignments to allow users
to incorporate more problem-specific information into their
alignments. The FINAL (Zhang and Tong, 2016) graph
aligner models graphs as structures with node attributes and
edge attributes in matrices. The attribute generalization
allows FINAL to utilize any graph node data and edge data
to improve the accuracy of alignments. FINAL also allows
the user to define prior alignment data in a matrix, which lets
the algorithm adjust when the alignment of some parts of a
graph is already known. The alignment tool IGLOO (Meng
et al., 2016a) generalizes the construction of a global net-
work alignment by creating a temporary local network
alignment between two networks and extending it until the
entire graphs are aligned. iNEAT (Zhang et al., 2017)
generalizes the alignment methodology to align graphs
with incomplete information.

In the cross-lingual knowledge graph alignment article
(Wang et al., 2018), graphs are modeled as knowledge
graphs. This representation allows the graph alignment to
use graph data to improve the alignments. MOANA (Zhang
et al., 2019) builds alignments by comparing the alignment
quality of the input graph’s substructures across many
granularities of the input networks.

Generalization of Alignment. Researchers are also gen-
eralizing search-based network alignment. DynaMAGNA-++
(Vijayan et al., 2017) aligns dynamic graphs, which gener-
alizes to graphs that can evolve with time. CAlign (Chen et al.,
2017) generalizes by allowing the user to decide whether to
make a one-to-one or a many-to-many alignment.

Using Machine Learning. REGAL (Heimann et al.,
2018) utilizes machine learning to learn the features of

each node in the input graphs. It then compares the graphs
based on these learned features. G-CREWE (Qin et al.,
2020) uses graph convolutional networks to learn features to
embed nodes into. The learned features and embedding
compress the graph into a smaller one. This smaller graph is
aligned as a representative of the original graph to make the
alignment easier to compute. Additional machine learning-
based methods for aligning graphs are introduced as search-
based methods. RANA (Ren et al., 2019) uses an adversarial
learning approach to embed two graphs into a space for
alignment. CONE-Align (Chen et al., 2020) embeds graphs
into a space to match the neighborhoods of nodes in that
space. These neighborhoods are then used to match indi-
vidual nodes. CLMNA (Ma et al., 2020) simultaneously
learns three different alignments (or proximity) between the
nodes of two graphs and then combines the information
from these three proximities to form a final alignment.
DANA (Derr et al., 2021) uses adversarial learning like
RANA to embed two graphs into a space of features, and it
uses a nearest-neighbor approach to align the embedded
graphs.

Multiple network alignment. Multiple network alignment was
initially motivated to solve local network alignment similar
to pairwise network alignment. Graemlin 1.0 (Flannick
et al.,, 2006) was designed to solve the alignment prob-
lem across multiple graphs simultaneously. The authors
next utilized Graemlin 1.0 to create Graemlin 2.0 (Flannick
et al., 2008), a global network alignment that is also a
multiple network alignment. SMETANA (Sahraeian and
Yoon, 2013) utilizes random walk probability methods to
estimate the similarity across nodes of different graphs.
GEDEVO-M (Ibragimov et al., 2013) extends the existing
pairwise network alignment method, GEDEVO (Ibragimov
et al., 2013), to allow it to align multiple graphs at once
without a conflicting alignment. GEDEVO-M and BEAMS

Graph Search
Alignment Method

Input Graph Data
G G

1 2

Similarity Score i—- G, G,

Aligned Graphs

A4

Search and optimize
alignment space

Figure 8. Overview of search-based methods for network alignment. An optimization algorithm (alignment method) leverages a
similarity score to search the space of possible alignments. This optimal alignment from the search is selected as the network alignment.
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(Alkan and Erten, 2014) introduce the existence of search-
based multiple network aligners. MAPPIN (Djeddi et al.,
2018) utilizes shared memory parallelism to improve the
runtimes of calculating the similarities and alignments
between graphs.

Alignment versus isomorphism

Because network alignments calculate mappings be-
tween the vertices of input graphs based on common-
alities, an alignment has the potential to identify an
isomorphism between the graphs. Both graph isomor-
phism and global network alignment calculate a map-
ping between whole graphs. Both subgraph
isomorphism and local network alignment calculate
mappings between subgraphs of the input graphs. Graph
isomorphisms and network alignments, however, are not
the same. A graph isomorphism constitutes two bijective
functions that match both the vertices and the edges of
the input graphs. A graph alignment only requires a
mapping between the vertices, and the alignment
mapping need not be bijective unless the alignment is
one-to-one.

Quantitative functions for
graph comparison

Graph and subgraph isomorphism produce a one or zero
output; either the isomorphism exists or does not exist.
Frequent subgraph matching and graph alignment extend
the output to several patterns or vertices matched. More
fine-grained quantitative metrics for graph comparisons
exist and go under the designation of quantitative
function methods because they use graph metrics. Graph
metrics quantify the correspondence between two graphs
G € Gand H € G by the output of a function S: GxG—R.
Many variations exist, including edit distances, graph
kernels, and statistical measures such as degree distri-
bution. A graph metric can be an unknown node corre-
spondence (UNC) metric or a known node
correspondence (KNC) metric (Koutra et al., 2013b). A
UNC metric measures the correspondence between
graphs without prior knowledge of the correspondence
between the graphs. A KNC metric uses prior knowledge
about the correspondence between graphs during the
metric calculation. A graph metric can be a similarity, a
distance, or a kernel metric. A graph similarity metric
measures how much is in common between two graphs. A
graph kernel measures how much is in common between
the embeddings of two graphs into a feature space.
Figure 9 displays the history of the graph metrics in
literature. The articles are discussed in detail in this
section.

Graph similarities and distances

Early in graph similarities and distances development, the
graph edit distance (GED) (Sanfeliu and Fu, 1983) intro-
duced a way to measure the difference between two graphs.
Graph edit distance measures the number of changes re-
quired to transform from one graph to another. Other metrics
of similarity include vertex/edge overlap (VEO), and
Vertex/edge vector similarity (VS) (Papadimitriou et al.,
2010). VEO measures similarity between graphs as sharing
common vertices and edges. VS instead measures similarity
between graphs as sharing similar vertex and edge weights.
The degree distribution of the graph is typically used to
classify large graphs. A graph distance can also be formed
from the degree distribution statistic (Malod-Dognin et al.,
2014) by measuring the difference between two graphs as
the difference between the degree distributions of the
graphs.

DeltaCon (Koutra et al., 2013b) measures the similarity
between two graphs based on their familiar neighbors up to
a given distance. This method is similar to the iterative
method of graph isomorphism and can scale to graphs of
over one million nodes. NetDis (Ali et al., 2014) uses
graphlets as representations of graph nodes to rapidly
compare the two graphs’ differences. Using graphlets
provides the ability to compare large graphs based on
comparing many small structures.

The directed graphlet correlation distance (DGCD)
(Sarajlic et al., 2016) uses directed graphlets to represent
graph nodes. This allows measuring the distance between
directed graphs using the information encoded in graphlets.
The family of tractable graph distances (FTD) (Bento and
Ioannidis, 2018) introduces a graph distance that takes a
different arbitrary distance between graph nodes and creates
a new distance metric by combining it with the difference
between the adjacency matrices of the two graphs.

Another critical graph similarity measure is based on
their spectral properties R. et al. (2018). The spectrum of a
graph is the eigenvalue distribution of either their adjacency
or Laplacian matrices and provides insights into the graph’s
topology. In Wilson and Zhu (2008), the authors compare
the edit distance and graph spectra. Since graph spectrum
can change significantly with a small change in graphs, this
metric is useful for detecting small changes. However, the
spectrum is not unique to a graph. Thus zero difference does
not necessarily mean that the graphs are isomorphic.

Graph kernels

The kernel trick is a method for binary classification.
Consider a set of points in an input space that is challenging
to classify using a support vector machine, that is, partition
using a hyperplane. However, if these points were em-
bedded in a different feature space, they could be partitioned
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Figure 9. A history of major articles summarizing the literature of quantitative functions for graph comparison.

more easily. Graph kernel functions apply this kernel trick to
compare graphs. The kernel function takes the vectors in the
original input space, maps them to a feature space, and
returns the dot product of the vectors in the feature space.

Formally, given two graphs G, and G’ and an graph
embedding ¢, a graph kernel is defined as K (G, G') =
(¢(G), ¢(G")) where ¢(G) denotes the embedding of G in a
specific kind of vector space. Thus, the kernel similarity K
(G, @) is the value of the inner product of the embeddings
of G and G’ in that vector space. Graph kernel methods
focus on designing embeddings that can appropriately
quantify the difference between the graphs.

The random walk (RW) (Gértner et al., 2003) graph
kernel introduces the label pairs and the contiguous label
random walk. The label pairs kernel measures the similarity
of graphs based on the similarity of the labels that exist
between paths through the graphs. The label pairs kernel
only measures the similarity between graphs with discrete
node labels. The contiguous labels kernel compares the
input graphs based on the similarity of their labels within the
space of all possible labeled paths. The contiguous label
kernel measures the similarity between graphs with con-
tinuous labels by comparing the similarity between paths
with continuous labels.

The neighborhood hash (NH) kernel (Hido and Kashima,
2009) iteratively hashes the labels of a node’s neighbors into
the node’s label so that the kernel can compare graphs based
on these hashed labels. It can hash the labels and calculate the
kernel in linear time complexity. The graphlet kernel (GK)
(Shervashidze et al., 2009) compares graphs based on the
similarity of their graphlets. The Weisfeiler-Lehman graph
kernels (Weisfeiler and Leman, 1968); Shervashidze et al.,
2011) is a set of kernels that use an iterative node-label
refinement like the NH kernel but instead apply a separate
arbitrary kernel at each iteration and combine the results of
those calculations for a final measure of similarity. Thus it has
the advantages of both iterative refinement and the base
kernel used.

The fast computation of shortest path (FCSP) kernel (Xu
et al., 2014) uses parallelism on both the CPU and GPU to
speed up the existing shortest path kernel (Borgwardt and
Kriegel, 2005) calculation. FCSP uses shared memory
parallelism for both the CPU and GPU parallelism. The
global Lovasz kernel (Johansson et al., 2014) compares
graphs based on the similarity of the Lovasz number Lovasz
(1979) of the graphs. Recently, the vertex histogram (VH)
kernel (Sugiyama and Borgwardt, 2015) compares graphs
based on the frequency of their node labels. The deep graph
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kernel (DGK) (Yanardag and Vishwanathan, 2015) uses
machine learning to learn the input graphs’ subgraphs and
compare them based on their similarity subgraphs.

In contrast to graph/subgraph isomorphism or graph
alignment methods, graph comparison functions provide a
single actual number as output, providing a quantitative
measure of the similarity between two graphs. Based on the
functions used, these metrics can differ considerably.

A rare case of graph kernel application
to nondeterminism

ANACIN-X (Chapp etal., 2021) is a rare case of application
of graph kernel for identifying the percentage and sources of
communication nondeterminism. The software framework
models parallel executions as directed graphs and leverage
graph kernels to characterize run-to-run variations in inter-
process communication. ANACIN-X demonstrates the
potential of graph kernel similarity as a proxy for non-
determinism by showing that these kernels can quantify the
type and degree of nondeterminism present in communi-
cation patterns. To demonstrate the framework’s ability to
link and quantify runtime nondeterminism to root sources,
Chapp and coworkers showed results for an adaptive mesh
refinement application, where our framework automatically
quantifies the impact of function calls on nondeterminism,
and a Monte-Carlo application, where our framework au-
tomatically quantifies the effect of parameter configurations
on nondeterminism.

Limits of general graph
comparison methods

For a realistic deployment of graph comparison methods for
the study of nondeterminism in HPC applications, we have
to capitalize on the methods’ sensitivity, scalability, spe-
cialization, and tunability. Our literature survey outlines
how existing comparison tools commonly pursue one or
several of the features but none of the existing tools pursues
all of the four features simultaneously. Existing algorithms
primarily compare graphs based on their commonality
rather than their difference. Commonality refers to how
much is in common across graphs and is distinct from
similarity quantifying the commonality between graphs as a
single value (e.g., graph kernels). Sensitivity costs for re-
cording changes in event graphs depend on the application
configuration. Scalability cannot be achieved via sampling
because every node in an HPC graph is important. The
memory overhead associated with comparison tools is
considered a major obstacle to scalability. There are no
current tools or methods that are specialized to HPC domain
knowledge and metadata because graph comparison has not
been well studied with regard to its applications in HPC.

Existing forms of graph comparison often use pre-defined
nodes, features, or comparison types because otherwise, the
comparison is difficult to tune. These challenges are ex-
acerbated when the nondeterminism of the application in-
duces nondeterminism in the overhead imposed by the tool.
‘When tool overheads become nondeterministic, the tradeoff
between tool utility and tool overhead becomes infeasible
for the HPC user to consider. Unfortunately, the user may
opt not to use the tool rather than deal with unpredictable
overheads. To make the problem worse, application inputs
and system configurations influence the degree of non-
determinism in the executions.

Properties such as sensitivity, scalability, specialization,
and tunability highlight the open challenges for graph
comparison algorithms to understand nondeterministic
patterns in HPC applications at exascale. A collaboration
between the graph algorithm community and the HPC
community can ultimately lead to transformative techniques
to address HPC’s robustness (e.g., dealing with rare bugs)
and reproducibility (e.g., dealing with different application
results) issues.

Existing graph algorithms in HPC and
unaddressed needs in hondeterminism

The HPC community has recently deployed graph com-
parison algorithms for optimizing HPC simulations and
network analysis, record-and-reply of HPC applications in
production HPC environments, and, in a few cases, studying
individual aspects of nondeterminism in HPC executions.
There are still important unaddressed research needs to fill
the gap between graph comparison algorithms and non-
determinism in HPC.

Graph methods for HPC optimizations

There is a rich history of graph algorithms in optimizing
HPC simulations to study properties of complex HPC
systems, with the goal of (a) finding significant subgraphs in
networks (e.g., by using community detection and network
motifs) and (b) developing metrics of comparison across
networks, in the context of identifying nondeterminism
(e.g., network alignment).

Graph theory is used to optimize the computational
resources in HPC simulations. Graph partitioning algo-
rithms (Bulug et al., 2016) and software such as METIS
(Karypis and Kumar, 1998) and Zoltan (Boman et al., 2012)
are extensively used to reduce communication and balance
workload across processes. Graph algorithms are used in
sparse matrix solvers, from lowering the extra memory costs
of fill-in (Bui and Jones, 1993) to compiler optimization by
analyzing dependency graphs (Cheshmi et al., 2017) and
reducing communication costs on large parallel systems
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(Mohiyuddin et al., 2009). Graph algorithms are also used in
different aspects of automatic differentiation, a method for
computing more accurate derivatives using the chain rule.
Minimizing vertex coloring reduces the memory require-
ment for computing the Jacobian matrix (first-order de-
rivatives) (Gebremedhin et al., 2005). Finding the line of
symmetry in directed acyclic graphs reduces the compu-
tation costs of the Hessian matrix (second-order derivative)
(Bhowmick and Hovland, 2008).

Software solutions for nondeterministic executions

In recent years, increasing awareness of the need to manage
nondeterminism in parallel applications (Gopalakrishnan
et al.,, 2017) has given rise to a few software solutions.
Three important solutions most closely address the problem:
PopMine (Seo et al., 2011), SABALAN (Alimadadi et al.,
2018), and ANACIN-X (Chapp et al., 2021). PopMine Seo
et al. (2011) is a tool that analyzes traces of message orders
in MPI applications, also represented by an event graph-like
structure to determine a minimal DAG that triggers a given
bug. PopMine does not search for a message order that
triggers a specific bug. SABALAN (Alimadadi et al., 2018)
is a tool that analyzes trace data, albeit not from MPI ap-
plications, and finds hierarchies of motifs that can poten-
tially be linked in bug manifestation. SABALAN cannot
compare communication patterns across multiple execu-
tions and searches for possibly nondeterministic execution
motifs within a single run. ANACIN-X enables a gener-
alized notion of anomaly detection for nondeterministic
communication patterns and thus allows localization of
nondeterminism that impacts scientific correctness (e.g.,
through the interaction between nondeterministic commu-
nication and floating-point non-associativity) rather than
being restricted to bugs that cause crashes or hang. How-
ever, it supports only point-to-point MPI communications.

In production HPC environments, record-and-replay
tools allow users to record a nondeterministic applica-
tion’s execution and then replay it exactly, thus enabling the
reproducibility of nondeterministic bugs (Chapp et al.,
2018). State-of-the-art record-and-replay tools such as
ReMPI (Sato et al., 2015) target production-scale runs and
prioritize scalability in terms of runtime and record size.
Other record-and-replay tools target hybrid MPI + OpenMP
executions (Budanur et al., 2012), MPI applications using
one-sided communication (Qian et al., 2016b,a), replay of
isolated subgroups of processes (Xue et al., 2009), and
probabilistic replay (Park et al., 2009). In addition, tools
such as NINJA (Sato et al., 2017) are used in conjunction
with record-and-replay tools to improve the chances of
capturing nondeterministic bugs. These record-and-replay
tools do not focus on localizing nondeterminism and
mapping it back to previously unknown root causes, but
rather they aim at determinizing executions.

Four critical unaddressed needs

Our study of the current literature points out how manu-
scripts on graph comparison methods target essential as-
pects in scientific domains in general and HPC in particular
but miss to address four critical needs of HPC communities
dealing with nondeterministic applications: debugging and
testing, fault-tolerance, resilience, and reproducibility; data
center administration; and training.

The first need is for agnostic tools that can be applied to a
broad range of applications across four communities (i.e.,
HPC application developers, HPC researchers, data center
administrators, and educators) rather than being of interest
to a single one dealing with a single programming model,
application, comparison technique, or platform.

The second need is the scale at which the communities
must address recording overheads without the need to run
the applications on real platforms. Current graphs repre-
senting executions have grown in complexity; however, the
scale at which the associated graph recording can run
strongly depends on desired fidelity. Recording and re-
playing execution traces on over SK processes is feasible for
reproducibility studies but is still a barrier for debugging,
particularly for long-running applications.

The third need is identifying frequently occurring
subgraphs representing nondeterministic executions
motifs and quantifying dissimilarities across the motifs
observed within execution or across independent exe-
cutions of the same HPC application. The challenge here
is that motifs are based not only on the graph structure but
also on annotations of the vertices and edges; these an-
notations describe function calls and their nondeter-
ministic resource usage components (i.e., CPU, memory,
and power) that lead to recording overheads.

A fourth need is to integrate power usage in a graph
recording an execution in addition to time and other
resource information. Haider and coworkers (Haidar
et al., 2017) showed substantial value in supporting
power monitoring in conjunction with performance
counter monitoring. Currently, no framework exists for
modeling nondeterminism and recording power metrics
gearing toward energy-efficient nondeterministic
applications.

Graph comparison and nondeterministic
applications: opportunities and challenges

The rise of exascale computation has introduced new
challenges to HPC, particularly in ensuring the reproduc-
ibility and robustness of computation in nondeterministic
HPC applications. We define three instances where graph
comparison techniques can be used for the reproducibility
of executions, replicability of code, and fault-tolerance in
graph algorithms.
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Reproducibility of executions

As the number of processors increases, the asynchronous
executions also increase, leading to nondeterminism in the
execution. While nondeterminism is an inevitable byproduct
of concurrency, nondeterminism can also hamper the repro-
ducibility of executions. One method of studying reproduc-
ibility at runtime is by studying the event graphs of the
executions of the same simulation code at multiple instances.
Using event graphs to study simulations has been proposed by
Kranzlmiiller (Kranzlmiiller, 2000). However, the event
graphs described in Kranzlmiiller’s article are not feasible for
studying simulations on exascale systems because debugging
through visualization cannot scale to orders of millions of
events. Moreover, event graphs in Kranzlmiiller’s work store
all forms of nondeterminism regardless of the type of repro-
ducibility under study, making it challenging to identify
commonly occurring patterns in the graphs.

We address these deficiencies by modeling event graphs to
represent the continuity or the chain of dependencies across the
execution rather than simply listing each dependency sepa-
rately on a time scale. We combine multiple events into one
vertex as required by the aspect of nondeterminism under
study. Our event graphs will form a directed network, where
each weakly connected component represents a system of
interdependent events. Consider a set of consecutive send
functions from a single process without any receive function
interleaving the associated send operations as an example of
how events can be merged. Because there is no receive in
between, the order in which they send messages is executed
does not affect the final result. Thus, if our reproducibility
concern is only obtaining the same result at each run, we can
combine events representing a series of consecutive sends
from a single process. Note that the techniques for combining
events can be tailored to the reproducibility criteria (e.g.,
debugging the code), ensuring the reproducibility of results.
Thus merging events gives us a flexible tool where we can
create an event graph to represent exclusively the non-
determinism aspect being studied.

In ANACIN-X (Chapp et al., 2021), we demonstrate that
quantitative comparison using graph kernels can indeed be an
appropriate proxy for nondeterminism and can further be used
to identify the functions of the root cause of nondeterminism.
ANACIN-X takes as input execution traces for a nondeter-
ministic synthetic application using the DUMPI tracing library
Wilke and transforms them into event graphs. The event
graphs are subsequently compared using the Weisfeiler-
Lehman graph kernel. Figure 10 shows this comparison for
the miniAMR applications presented in Chapp et al. (2021).

Replicability of code

Another challenge arising from exascale computations is
ensuring the replicability of code. Optimized execution of

large-scale simulations on heterogeneous systems neces-
sitates software-hardware co-design. Ensuring correctness
and replicability across the different code versions for the
same simulation is essential. Graphs, particularly DAGs
(Cosnard et al., 2004), are regularly used to represent codes
at various levels, and as schedulers in heterogeneous ar-
chitectures (Bosilca et al., 2011) The source code can be
modeled as a graph representing each function as a vertex
and dependencies between the functions as edges. More-
over, compiler optimization and automatic code generation
regularly use expression graphs in their algorithms (Herholz
et al., 2022); Kramer et al., 1992) Comparing the DAGS for
the different refactored codes is an orthogonal method to
identify whether the code is replicable after various
optimizations.

This technique is already being used in software engi-
neering to trace the evolution of software (Meyer et al.,
2014); Quetal., 2021). In a graph theory context, it has been
observed that the essential functions are retained in the
innermost k-cores of the graph. For HPC codes, the problem
is more involved as the code will include lower-level op-
erations, and it is not sufficient to only test whether func-
tions are retained. In addition to the core-periphery analysis
proposed in Meyer et al. (2014), we would also need to
identify subgraphs that ensure certain operations are exe-
cuted correctly and ensure their subgraphs or their equiv-
alent exist in each of the expression graphs.

Fault-tolerance in graph algorithms

Despite the rise of parallel algorithms for graphs and fault-
tolerance for large HPC simulations (Benoit et al., 2022);
Nicolae et al., 2021), fault-tolerance for graph algorithms is
in its infancy. Checkpointing is an essential component of
fault-tolerance, which involves storing partially computed
data between iterations. The challenge in keeping infor-
mation about graphs is that every vertex is associated with
unique data. For example, when adding single source
shortest paths, each vertex will likely contain a partially
calculated distance. Similarly, most community detection
algorithms require multiple iterations over which the ver-
tices can change communities. As the graphs can extend to
millions of nodes, storing the information for every vertex is
very expensive, and algorithms are needed to identify where
the change occurred between two consecutive check-
pointing steps.

Thus the checkpointing strategy has to be aware of the
graph topology and the underlying algorithm. One approach
would be to find frequently occurring subgraphs in the
graph following similar computing patterns. For example,
vertices belonging to a clique are likely to be in the same
community, and thus, all the vertices in the same clique can
be stored as one data point. Indeed using subgraph iso-
morphism to compress the graph can reduce the memory
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Figure 10. Event graph for aminiAMR simulation on |6 vertices (a) and co-relation between graph kernel distance and the work done at

each time step (b) from Chapp et al. (2021).

requirements for checkpointing. If the checkpointing in-
formation can be retained even after the execution is
complete, we can leverage this knowledge to predict the
partial computation of a graph with a similar structure. For
example, a graph G whose communities have been com-
puted and selected checkpoints are stored at some of the
iterations. If a graph H has a similar structure to G, then we
can use the partial results of G as the starting iteration of H
for faster convergence.

Conclusion

Leveraging graph comparison methods for understanding
nondeterminism in HPC applications can impact four com-
munities that are driving the exascale transition: HPC appli-
cation developers can identify unintended sources of
nondeterminism and manage necessary nondeterminism (e.g.,
associated with asynchronous executions of computation and
communication), especially in the context of debugging and

testing; the HPC researchers can tackle fault-tolerance, resil-
ience, and reproducibility at exascale associated with non-
deterministic patterns in application executions; data center
administrators can develop, integrate, and manage scheduling
policies and resources management of nondeterministic ap-
plications on the HPC machines; and educators can reach out
to their students and postgraduates to promote HPC in general
and exascale research in particular, without needing to access
high-end, expensive computers. This article presents the state
of art-of-the-art graph algorithms and outlines directions in
which the existing algorithms should be designed and de-
ployed to advance the need of these communities when
solving the pending issues associated with nondeterministic
HPC applications.
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Notes

1. The claim of the proof was debated, and the new proof after
correction is available online but yet to be published in a
journal.

2. K3 is a complete graph with three vertices (i.e., a triangle). K1,3
is a bipartite graph with one set containing one vertex and the
other containing three vertices.
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Appendix

Graph notation and terminology

We provide a brief overview of the common notations
and terminology to support this article.
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A graph G is defined by a pair of sets (¥, E) and an incidence
function y: E— V' x ¥V, where Vis the set of vertices (or nodes),
E is the set of edges between the nodes, and for any e € E, there
exists a pair of vertices # € Vand v € V'such that yg(e) = {u, v}.
The edge e is said to join vertices u and v. If edge e joins vertices
u and v, we often denote this by e = {u, v}.

An undirected graph is where for an edge e = {u, v} € E,
the pair {u, v} =e= {v, u}. G is directed if the vertices of an
edge pair are not interchangeable. G is cyclic if there exists a
path of n edges eg = {ug, u1}, ey = {uy, Uz}, ..., e, = {uy, Up}
such that no edge appears twice in the path. G is acyclic if no
such path exists. G is a weighted graph if it is combined with
a set of weights W; SR and weight function wg: £ — Wg
that assigns a number w to each edge. It is unweighted if it
has no such function. G is a labeled graph if it is combined
with a label set Ls and a label function /g: V' — L that

assigns a label to / to each vertex. Label sets will vary based
on the problem or application.

If two vertices u and v are connected by an edge, then u is
the neighbor of v and v is the neighbor of u. In an undirected
graph, the degree of a vertex the number of its neighbors. In
a directed graph, the number of neighbors pointing to a
vertex is its indegree and the number of neighbors pointing
away is its outdegree.

A subgraph Gy = (Vy, Ey) & Gisagraphsuchthat Vy & V'
and £y € E. The k-core is a maximal subgraph G;_,,. such
that each node in Gy_.,. has a degree at least £.

The adjacency matrix, 4, of an unweighted graph G is as
follows; A[7, j] =1 if there exists an edge between vertices i
andj in G. The Laplacian matrix, L, of the graph G is; L[i, i]
is the degree of i and L[i, j] = —1, if there is an edge between
vertices i and j in G, and i # .
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