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1 Introduction

Classical Yang-Mills (YM) theory is invariant under O(4,2) conformal transformations. In
quantum theory, at the tree level, gluon scattering amplitudes are conformally invariant,
but this invariance is broken by loop corrections. Furthermore, there is an overwhelming
evidence for the existence of a mass gap in YM theory. Hence studying conformal properties
of gluon amplitudes should lead to a better understanding of conformal symmetry breaking
in gauge theories.

There had not been much attention given to the conformal properties of YM scattering
amplitudes until Witten formulated perturbative YM as a string theory in conformally-
invariant twistor space in 2003 [1]. More recently, two of us [2] examined the symmetries
of celestial amplitudes [3, 4] obtained by applying Mellin transforms to the conventional
(momentum space) amplitudes that convert them into the correlators of a putative two-
dimensional conformal theory on the celestial sphere (CCFT). In CCFT, the dimensions
of primary field operators associated to gluons are A, = 1+ i)\,, with real A\, [5]. The
dilatation generator [2] acts on the celestial amplitudes as

D=—i) (Ap—1)=> Ay, (1.1)

therefore scale-invariant tree-level gluon amplitudes are non-zero only if >, A, = 0. This
constraint is enforced in all celestial gluon amplitudes by the universal delta-function factor
0(>>,, An). Furthermore, the invariance under special conformal transformations implies a
set of second order differential equations for celestial amplitudes.



In celestial holography, the directions of four-dimensional momenta are mapped into the
positions of primary field operators. As a result, the momentum conservation law imposes
constraints [6] on these positions, what, from the point of view of two-dimensional CFT, is
an unwanted feature of the correlation functions. In a recent work [7], we circumvented
these constraints by constructing the “single-valued” CCF'T correlation functions. They
are obtained from the Mellin transforms of the scattering amplitudes evaluated in the
presence of a dilaton background with the source located on the celestial sphere. While this
background violates translational symmetry, it preserves scale invariance. In this work, we
discuss the properties of “single-valued” CCFT correlators. We find new representations of
the celestial four-gluon correlator and discuss its relation to the limits of D = 4 conformal
blocks at null infinity.

2 Integral representation of the single-valued four-gluon amplitude

The four-gluon celestial MHV amplitude is expressed in terms of two partial amplitudes,
M (z;, z;) and M (z;, z;) in the following way [7]:

(00 (21, 21) 052 (22, ) 61 (25, 28) 60 (20, 20) ) =
— falaQbf%a‘le(Zi,Zi) + fa1a3bfa2a4bM(zi,§i)' (2'1)

Here, the subscripts A;, J; = +1 refer to the dimensions and spins (gluon helicities) of
the primary fields, respectively, group indices are labeled by a;, while the superscripts
+e indicate incoming (—e) and outgoing (+e¢) particles. Taking advantage of conformal
symmetry, one defines

G(z,z) = lim thléfi”M(zl;zg =123 =x;24 =0), (2.2)
21,21—00

G(z,Z) = lim fhl th(Zj;ZQ =123 =224 =0), (2.3)
21,2100

with the conformal weights hy = (Ay + J1)/2,h1 = (A1 — J1)/2. The complex variable = is
identified with the complex cross ratio

x = 12 (2.4)
213224

For the future use, it is convenient to define another cross ratio,

212243 x
p=20 - T (2.5)
2142923 r—1

and real conformal invariants

2 2 1 2
:‘Z| N U:m:|1—2| . (26)

X

r—1

Note that upon interchanging 3 <» 4, x < z.
The partial amplitudes can be written as

M(Zi,gi) == H(Zi,zi) G(a:,:?:) s M(z,-,zi) == H(ZZ',EZ') G(.CU,J_,‘), (27)



where
5.\ — ,—hi—hathz+ths —2h3 _hothz—hi1—hg _h1—h2—hs—hg
(2, %) = 215 213 "*14 %24
s—h1—ho+ha+hy z—2h3 Sho+hz—h1—hy zhy—hy—hz—hy
X 219 213 %14 224 . (2.8)
With the dimensions parameterized as A, = 1 + i\,, A\, € R, the conformal prefac-
tor (2.8) becomes

DN A —ida42 —2—iXg _—iX1—idg _id1—2 2—iA1—ida—2 —iXg s—iA] —idg ZiA1
(2, 2i) = 219 213 214 Ro4  *12 213 "R14 Ro4 - (2.9)

There are three ways of constructing the “single-valued” four-gluon correlators, all of them
leading to the same result.

In refs. [8, 9], we started from the celestial amplitude of Pasterski, Shao and Stro-
minger [3] and performed the shadow transformation on one of gluons. The shadow transform
relaxes the kinematic constraints due to momentum conservation, but it leads to a correlator
that is a multi-valued function of complex coordinates. It can be used, however, to construct
a single-valued correlator by applying the same procedure as in minimal models [10], by
adding a contribution of additional conformal blocks. At the end, we inverted the shadow
transformation and obtained a well-defined “unshadowed” four-gluon correlator. In [9], this
procedure was performed explicitly only in the “soft” limit A — 1 of the shadowed gluon,
but it can be easily extended to arbitrary A.

More recently [7], we constructed this correlator by solving the differential equations
written by Banerjee and Ghosh (BG) in ref. [11] and further developed in ref. [12]. BG
equations follow from the consistency of soft theorems with the operator product expansions
of CCFT. They are similar to the equations describing the decoupling of null states in
minimal models. In ref. [7], we also showed that the same correlator describes four-gluon
scattering in the presence of a dilaton background. This (third) representation of the
single-valued celestial gluon amplitude is given by the following integral:

1
T) = 2.1
G({L‘,J}) (5()\1+)\2+)\3+/\4) x(l—x) ( O)
1 . .
X /dtB(—z‘Al,—MQ)(1+M1+M2)75M3—1(1—t)W—l
0
_ A1 —i)\l,—i)\g t(l—t)xi )
t(l—x)(1— 1—t F ;
(=) (1 =2)+1-4)" 1(—l—i)\l—i/\g’t(l—x)(l—a‘:)+1—t
1 . . L
+/ dt B(24iA1,240X2) (3+iA; +idg) t1 7 (1 —t) 193 (gz) 2 HAFid
0
_ —2—iXo 2+i/\1,2+i)\2 t(l—t)aci: )
t(l—x)(1— 1—t F: ;
(1 -2)(1-2)+1-1) 2 1( 3+iMi+idy t(1—z)(1—2)+1—t) [
where 9 F7 denotes Gaufl hypergeometric function. Similarly,
G(z,z) = —2G(z, T) . (2.11)



By a series of algebraic manipulations and changes of integration variables described in
appendix A, eq. (2.10) can be recast as

o 5 |1_x|2z'>\1
) =0(AM+ X+ A3+ Ny) ————— 2.12
(z,7) (A1 + A2+ A3+ M) 2(1—2) (2.12)
x D, {B(—l + i)\4,i)\3) B(—i)\Q, -1 - i)\l)
< o F <—1—|—2')\4,—1—Z')\1‘ ) <_1+i)\4’_1_i)\1‘2)
I a4 tin ) T Sl ing+iNg
—B(l—i)\g,Q—i)\4) B(2+i)\1,1+i>\2)
o 1—idX3, 14+ 1—13X3, 1412
2(2+iMi+ida) | 3, 2, ) F( 3, 2,_)
<2l 2 1< 3t tide ) T 3 in ting o
=71
with the differential operator:
1 0
DZ: — Z__ z = —— . 21
p— (20, — Z 0z) 5 (2.13)

The expression in the curly bracket of (2.12) can be related to the complex integrals
considered by Dotsenko and Fateev [13, 14] in the context of Coulomb gas models. To that
end, we define

I(Z,E) — /de wd+a u—]d+& (w _ 1)13+b (7I) _ 1)3+5 (w _ Z)é+c (U_} _ E)é+6’ (2.14)

with the parameters a,b,e ¢ Z and a,b,c,a,b,¢ € Z. The integral (2.14) can be evalu-
ated through analytic continuation, by disentangling the holomorphic and antiholomor-
phic parts [15]. This procedure, which is also known as the Kawai-Lewellen-Tye (KLT)
method, yields

61D 1<&+a,5+b,é+0;z) L (d+&,3+5,é+6,2)
+(cq)ptirere “”S((‘;)j_(é))[g (&+a,l§+b,é+c;z) I (a+&76+6,é+5,2),
(2.15)
with s(a) := sin(wa) and
Li(a,b,c;2) :/ dw w® (w—1)" (w — 2)°
1
—c,—a—b—c—1
=B(-a—b—c—1,b+1) 2F1< ;z), (2.16)
—a—c
Ir(a,b,c; 2) :/ dw w® (1 —w)? (z — w)°
0
—-b,14+a
=21 Bla+1,c+1 F( ’ > 2.17
z (a+1,c+1)2F a+c+2’z ( )



By comparing the above equations with (2.12), we obtain
|1 o ﬂf|2i>\1
z(1—z)
X (24 iA1 +1iX2) B(24 A1, 1 +1iX) B(idg, —1 +iXg) D, Z(z, 2)]

1
G(x,a_c) = % 5()\1 + /\2 + )\3 + )\4)

2=t 0
(2.18)
with the assignments:
a=—i\3, a=a=0,
T(2,2) {b=—ixy, b =b=-1, (2.19)
c=—1iM\g, c=c=1.

To be more explicit, we can replace the cross ratio z by = and express (2.18) in terms of

I(%@b;ﬁ |1 — g2 /de |22 [y — 1|20 2 gy — |28 (2.20)
d
al |1 B x|2
D= {a(1-2) 8 —5(1-7) 5} . (2.21)

The fact that the four-gluon celestial amplitude can be expressed in terms of the integrals
encountered in Coulomb gas models points to a deeper relation between CCFT and the
Coulomb gas models and more generally, to a relation between CCFT and the complexified
Liouville theory.

3 Relation to Aomoto-Gelfand hypergeometric functions

In this section, we wish to discuss an interesting relation of the four-gluon celestial amplitude
to the Aomoto-Gelfand hypergeometric functions. This relation remains somehow outside
the main scope of this paper, therefore it can be skipped at the first reading.

The Aomoto-Gelfand hypergeometric functions are constructed in the framework of
Grassmannians [16]. Among some well-known examples, there are four hypergeometric
functions of two variables, introduced by Appell. Here, we focus on Appell’s Fy, which is
given by the following integral [16]

I'l—a)
F a7 ) b /; u7/v =
B = T T+ —a =D
/ , —B
X dry deg 1" x5 " (1 — 2y — z9) T —a—2 <1 v U) :

Ao r1 T2

(3.1)
over the two-dimensional simplex:
AQZ{(xl,Ig) e R? | |x1|+|x2] < 1}. (32)



Appell’s Fy has the following power series expansion around u,v = 0:

00 m,n
Fy [a,ﬁ,’y,’y’;u,v] _ Z (a)gfny-;-n (($§m+n an';}l' L uveC, ‘u|1/2 + ‘0’1/2 <1.
m,n=0 m n o

(3.3)
The above series solves a system of two partial (hypergeometric) differential equations
called the Fj equations. The general solution of the Fj system can be written as a linear
combination of four independent functions [17]:

fi=Fyla, 8,775 u,0]
f2:U177/ F4 [a—|—1—’yl7/8—|—]_—7/7772—’)//;U,U] )
fs=u""T Fyla+1—7B+1—72—v75u,0],

fa=u" 0 By [a+2—7—+"84+2—7—9,2—79,2—75u,v] . (3.4)

The relation between the four-gluon celestial amplitude and the Fj system can be
obtained by starting from (2.12) and applying various hypergeometric function relations.
The variables u and v are related to the cross ratios  and z according to eq. (2.6). The
details of the derivation are given in appendix B. At the end, the amplitude can be expressed
in the basis (3.4) as

G(r.7) = —0(A+ e+ Ag M) x(ll_x) of {F(l—’y F)({y()a)F(ﬁ) /
I'(y-Dl(a+1-9)0(B+1—) .  TA-y)I(a+1-7)I(B+1—7)
! () fot T2—) fs
(Y =Dl (a+2—y—7)T(B+2—7—7)
with
Q= i>\47 /B = _/L)\l y
y=—14+id3+ids, A =1+idg+ilg, (3.6)
satisfying
atf=vy+9". (3.7)

The integral representation (2.18), written as in eq. (3.5) and expanded by using the
series (3.3), agrees with the series expansion solution of BG equations written explicitly in
section 2.1 of ref. [7].

4 Relation to D = 4 conformal blocks

In this section, we establish a connection between celestial Yang-Mills amplitudes and
conformal blocks in D = 4 CFT. The relevant blocks appear in the four-point correlation



functions of scalar (spin zero) D = 4 fields with dimensions d,, = i\,. They depend on the
spacetime coordinates x# of scalar fields. Due to O(4,2) invariance, apart from a standard
conformal prefactor, they depend on only two cross ratios,

2 .2 2 .2
L12%34 L14723
U=—-"—"%, V=—=-3. (4.1)
T13T24 L1324
It is often convenient to use another set of variables, X and X, defined by
U=XX, V=01-X)(1-X). (4.2)

The four-scalar correlator can be decomposed into conformal blocks associated to
various representations of the conformal group. A single conformal block associated to a
scalar field of dimension A contributes [20-22]

d3q d12

1 95%4 N 575%4 -
Wa (zn) = a1 Tdy d31d, (2) <2> ga(U, V), (4.3)
(edy) 7 (a3s) 7 \"B 1

where d;; = d; — dj and, with the cross ratios parameterized as in (4.2),

1

92X X) = 5 X2 (1)
X {X2F1 (é(A_dlz)’%(A—i_dM);X) o F <§(A—d12)—17;(A+d34)—1;)_(>
A—2
—XoF (é(A_Am)_Al’%Q(AerM)_l;X) 2 F1 (%(A—dm)j(Aer?,zx) ;X> }

We are interested in the “celestial limit” of the conformal block (4.3), leading from
D = 4 Minkowski space to D = 2 celestial sphere. To that end, we use Milne coordinates [23,
24], with

oz
ot =e” < + pq“) , (4.5)
P
where k* and ¢ are null vectors
1 1
k= 5(1 +2z,z+2,—iz+iz,—1+2z) and ¢'= 5(1, 0,0,1). (4.6)

These coordinates describe a foliation of D = 4 Minkowski space, divided into the Milne and
Rindler regions. Milne coordinates are used in the Milne region, while Rindler coordinates
are used in the Rindler region [23, 24]. In the limit of p — 0,
Tt Ti+T;
zt — € s .’L’sz — 672 Zijiij . (47)
p p

Furthermore, we choose common 7 for all four z#, and take 7 — 4o00. This limit sends the

spacetime coordinates of scalar fields to null infinity.! Then

lim U =uax, lim V=(1-2)(1-2), (4.8)

p—0, 7—+o00 p—0, 7—+o00

1A similar limit can be taken in Rindler coordinates. Such a limit can be also applied to (2,2) Klein
space, with the foliation described in ref. [25].



where x and x are the usual cross ratios on the celestial sphere:

T = 212734 7 7= %12%34 ) (49)
213294 213224
In this limit,
lim gA(U7 V) = gA(xa j) s (410)

p—0, 7——+o00

with ga(z, Z) given in eq. (4.4). Moreover, with d,, = i\,, the prefactor of eq. (4.3) becomes

d12

o\ B o\
lim 1 L1q Loq
di+d dg+d 2 2
—0, T—+400 1772 374 \x T
T (#19) "2 (23,) " 2 13 14

iA1+Hida+id3+idg N L
—(° —1A1—1A2 —idg—idg | F14 IA3—IAg) zoy (A1 —1EA2
=\ |12 | 234 e 224
c <13 214
A1 —i iNg—i iA3—iAy iA1—iAz
—iA1—1iA —idg—idg | 714 |3 294
=lea| T g — : (4.11)
213 214

where we used ) i\ = 0 in the last step. As a result, the celestial limit of D = 4 conformal
block reads

iA3—ils iA1—iX2 B
ga (z,7) .
(4.12)

In order to express the celestial amplitude in terms of celestial limits of conformal

im  Wa (zn) = ‘Z12’—i>\1—i>\2|Z34|—i/\3—i/\4 14 22

p—0, 7—=400

<13 214

blocks, we start from eq. (2.12) and apply the following identity derived in appendix B:

1 1 1
D, oy (a’6;2>2F1<a’B;5>=—a6 {EzFl(a’ﬁ;Z>2F1 <a+ B+ ;5>
¥ ¥ Y 2=z v—1 v+1

—z 9l <a+1’ﬁ+1;z> o I ( @ f ;5)}.
v+1 v—1
(4.13)

In this way, we obtain

‘x’i)\l—‘ri)\g ’1 _ x’i}q—i)\g

G(z,z) = 6(A + A2 + A3+ \a) ) (4.14)
!/
A=idg+idg
A=4+4iXy+idg
where
_ 1
falz2)= = 1dl* (4.15)
x {ZQFl <%(A_d12)75(ﬁ+d43);z> JF, (%(A—du)—Al,§2(A+d43)—1;2>
1A 11 _ 1A 1
- <2(A ds)=1, 4 (A +di) 1;Z> - <2(A o), 2(A+d43);2>} |



In eq. (4.14), the prime over the sum accounts for a relative minus sign between the two
terms. Next, we use the well-known hypergeometric identity

b —b
B (M) = o (] ) (4.16)

r—1

to show that

fA(zaz) = "T - Hidm gA(xaf) : (417)
Finally, we combine all these expressions with egs. (2.7) and (2.1), to obtain
<¢CK{,__€ (21,21) OR; (22, 22) SR (23, 23) P (24754)> = (4.18)
[ 1 , 1 22 _
_ fa1agbfa3a4b + fa1a5bfa2a4b ~12 S(Zn, Zn) ,
212223234241 213232224241 ) 73y
where
O B P e P e A -
213 Z14
/
1-A)B B .
D S N e I Ll G e PN

A=iXz+irg
A=4+iX]+ilg

(4.19)

By comparing with eq. (4.12), we see that S(zy, z,) represents the celestial limit of D =4
CF'T correlator of four gauge singlet scalars with dimensions d,, = i\, consisting of two
D = 4 blocks: one with dimension A = iA3 + iA\4 and one with the (D = 4) shadow
dimension A = 4 + i)\l + i)\g =4 - i)\g — i)\4.

In the correlator (4.18), the first factor on the r.h.s. (enclosed in the bracket) represents
the group-dependent part of the correlator of four holomorphic (positive helicity) Wess-
Zumino-Witten currents [10],

9 §a1a2 §asa4 falagbfba3a4

(T (20) T2 (22)T% (2) S (2) ) = k F(243)+ (20 4),

(4.20)
where k denotes the level of Ka¢-Moody algebra. The group-independent part is absent in

2 .2
219734 212223234241

our celestial amplitude because we did not include the effects of gravitational interactions.
As in the heterotic superstring theory, the level k£ could be determined by computing the
relative weight of such contributions. The subsequent factor z%,/7%,, present in eq. (4.18),
“flips” the helicity of gluons number 1 and 2 from + to —. Both factors do not depend on
An. The A\ -dependence is contained entirely in the scalar factor S(zy, z,). This correlator
depends neither on helicities nor on gauge charges of external gluons. Besides eq. (4.19),
the scalar part of the correlator can be also represented in a Coulomb gas form as

S(Zn, zn) :’212’721}\1721’)\2 ‘Z13‘72i)\172i)\3 ‘214‘721')\4 |z23|2i)\1

X (24 A1 + iA2) B(2 + iA1, 1 4 iXa) B(ids, —1 + iAy) (4.21)

» Dz(|1 g2t /d2w [ 22 gy — 12022 [y $|—2w3) ’



where D, is given in eq. (2.21). This suggest that the CCFT operators associated to
gluons factorize into the current parts and certain operators similar to those encountered
in Coulomb gas models and in the infinite central charge limit of Liouville theory [26]. In
string theory, the integrals of the form (4.21), with the kinematic invariants (instead of
dimensions i)\,,) in the exponents, are also known as the Koba-Nielsen integrals.

5 D = 2 conformal block decomposition of D = 4 blocks

As concluded in the previous section, we expect D = 4 conformal blocks (4.19) to describe an
autonomous sector of CCFT. This motivates us to perform D = 2 conformal decomposition
of this correlator. The D = 2 chiral weights of external scalars are hy = hi = i)k /2. We
consider the conformal block decomposition of?
Gs(z,Z) = lim 2MZMS(z520 = 123 = 2524 = 0) = (1 — ) G(z, T) . (5.1)
21,21—00
In ref. [7], we performed the conformal block decomposition of the four-gluon correlator
G(x, ) by using the power series solution of BG equations. The s-channel (z = 0) conformal
blocks associated to primary fields with chiral weights (h, h) were denoted by K2} {h, ﬁ} (x,T)
and their explicit form was given in ref. [7]. The conformal block decomposition of Gs(x, Z)
can be performed in a similar way, with the following result:

L A3+ i)y i\3 + i\ _
=S {an K3 n+ 22 ]
Gs(z, 1) {a 5 [n—l— 5 Nt 5 (z,7)

n=0
A\ i\ A A
—%%Kﬂ[n+2—zS;Z{n+2—z3;z4h%£ﬁ, (5.2)
with the coefficients
Ay = B(TL — A, n — Z)\Q)B(TL +iA3,m + Z)\4) (1 —2n+ i\ + Z)\Q) , (5.3)

bp=—Bn+2—iXs,n+2—iX)B(n+2+i i,n+2+1iX2) (=3 —2n+ i3 +i\s).

There are two sets of conformal blocks propagating in the s-channel: one with the chi-
ral weights
1Az + 1Ay

n:Bn:
h n+ >

(5.4)

and one with , )

B A3 + i)\
—

Note that all blocks have zero spin. We stress that they are gauge singlets because the

By =hy =n+2 (5.5)

group-dependence is contained in the separate, Wess-Zumino-Witten part of the four-
gluon correlator.?

2Here, we ignore the 6(A1 + A2 + A3 4+ \4) prefactor.

3The block decomposition presented here can be viewed as a dimensional reduction of conformal blocks
from D to D—2 dimensions, see ref. [27]. For the reverse case, see ref. [28], where (D—2)-dimensional blocks
are written as finite linear combinations of D-dimensional blocks.

~10 -



6 Conclusions

In this work, we studied the properties of four-gluon celestial amplitudes constructed in
ref. [7]. We focused on the integral representation describing four-gluon scattering in the
presence of a dilaton background. We expressed it in terms of Appell’s Fy hypergeometric
function and showed that it agrees with the series expansion obtained by solving Banejree-
Ghosh equations.

Our main result is that the four-gluon celestial amplitude factorizes into the “current”
part and the “scalar” part, as written in eq. (4.18). The current factor is given by the
group-dependent part of the Wess-Zumino-Witten correlator of four holomorphic currents
with a non-vanishing level of Ka¢-Moody algebra. The scalar factor can be expressed in
terms of a complex integral of the Koba-Nielsen form, similar to the integrals describing
four-point correlators in Coulomb gas models and, more generally, in the infinite central
charge limit of Liouville theory. The connection to Liouville theory is not precise at this
point, but we believe that once it is put on solid grounds, it will establish a close connection
between CCFT and Liouville theory. CCFT is similar to the heterotic superstring theory,
which also contains an “internal” holomorphic WZW current sector, but in CCFT, the
“spacetime” sector of heterotic strings is replaced by Liouville theory.

A very interesting feature of the scalar part of the correlator is that it can be obtained
by a dimensional reduction of a single D = 4 conformal block and the shadow block from
Minkowski space to the celestial sphere. This is certainly related to D = 4 conformal
symmetry of Yang-Mills theory at the tree level, but the fact that a “minimal” number
of one block and its shadow appear in the amplitude must have a deeper explanation.
Understanding the role of conformal symmetry and its breaking by quantum loops and
by nonperturbative effects in CCFT will help in studying Yang-Mills dynamics from a
novel angle.
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A Intermediate steps from eq. (2.10) to eq. (2.12)

By using the integral representation of the hypergeometric function o F7,

b 1
zFl(a’c ;x)=B<b,c—b>—1 [dna et e (A
0
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we can express the integral (2.10) as the following double integral
1
z(l—x)

. . . i . i1
X{(l—l—i/\l)fol df 60\3—1 (1_£)z>\1+1>\4—1 fol d77 n—zAQ—l (1_77)—2—0\1 <1+ fgz‘s —577711)

G(l‘,i)=5(/\1+)\2+/\3—|—)\4) (A2)

. i . . . . . —2—1iAg
—‘r(l—i—Z)\g) u%-i—z/\l-i-zkz fol df 5171)\4 (1_5)7172)\370\2 fol dﬁ ,’71+z)\1 (1_77)1)\2 (1'1'%_&7”1) }’
with:
= ]a:|2 , ug=|1— $|2 . (A.3)

After introducing the new integration variables,
1 1+8

- =_'F A4
with dédn = 1+ﬁﬁ) >, we obtain
1
T)= _— A.
G(z,Z) =0(A+ A2+ A3+ A1) 2(1—2) (A.5)
d © ( A4 A2+
X (1+i)\1 / ﬁ/ /7 ﬁ j)\ 5N
148 7 (By+yuz—Pfur) = (y=f—1)Hn

+(1+A )(u)2+i)\1+i)\2/ dﬁ/ /82*1’)\3 fy*i)\l
A\ 148 7 (ByHrue—Bu) 2 (y—p—1)= [

with:
1 1
= =g 1P A
U= T mep I (A.6)
2
U1 T 9
Tu  |zo1| " A.
B U2 x—1 g (A.7)
Furthermore, (A.5) can be expressed as:
—iA
)= —0(AM + Ao+ A M) —— A
G(z,7) (A4 A2+ A3 + 4)x(1—$) (A.8)
dg [ dy Fida=1 o1tk
/ /+B v (v + Byv — fu)17M (y — B —1)2+iM
y2 N Fide / ag /°° dy B1-ids .,y—lfz',\1 Ry
148 v (v + Byv— pu)ttire (y — g — 1)~

Now we can borrow the following integral [22]

/ dﬁ /oo d,)/ Bbfl ,Yefl
gy (vHuBy —up) S (v =B - 1)

— B(—1+b4d—b—ec—f)B2-e,1—f) (A.9)
41— f S14b1—f
S (D) FUY (S B

to cast (A.8) into eq. (2.12).
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B Hypergeometric function relations

In this appendix we detail the steps from the integral representation eq. (2.12) to eq. (3.5).
We first notice the duplication formula [18]

o Fy (a:yﬁ;z) o Fy (a:yﬁ;5> =Gla, 8,7, v5u, 1 =], (B.1)

with the variables related as in eq. (A.7), and

()0 —a— )

g[a7ﬂ7775;u7]—_v]: F4[a,ﬁ,’y,a+ﬁ+1—5;u,v]

L0 —a)l'( - p)
P@C(a+B8-9) s_ap
+ VTP R0 — a0 —B,7,0 —a— B+ 1u,v
F(@)I(8) ! i |
_ io: Um(l - U)n (5 - a)m((S - /B)m (a)m-‘rn(ﬁ)m-i-n . (B.Q)
m,n=0 mln! (V)m (6)2m-+n
The function (B.2) enjoys the transformation property [19]:
_ U 1
Glo, Byy,0;u,1 —v] =0~ G |a,0 — B,7,0; —, 1 — —| . (B.3)
v v
Next, we consider the relation
af
Oy Gla, By, 0;u,1 —ov] = 5 Gla+1,8+1,v,+ 1L;u,1—1v], (B.4)
following from
ap
avF4 [aaﬁ7776;uav] = T F4 [1+a>1+6a771+6;uav] ) (B5)
which together with (B.1) gives rise to:
D, oF (a:YB;Z> 21 <a775;2> = 0;6 Glat+1,8+1,7,7+Lu,1-0 (B.6)
:_0475 1{ZgFl(a’B;Z>2F1(a+1’ﬁ+1;z)
Y z—Z v—1 v+1
at+1,6+1 a,p _)}
—z o ; F ; .
Z2 1< v+l 7Z>2 1<71,Z

After inserting eqs. (B.6) and (B.2) into eq. (2.12), we obtain eq. (3.5).
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