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corresponding celestial amplitudes by taking Mellin transforms with respect to the light cone frame
energies. In this way, we obtain two-dimensional CFT correlators of primary fields on the celestial
sphere. We show that the celestial Yang-Mills amplitudes evaluated in the presence of a spherical
dilaton shockwave are given by the correlation functions of primary field operators factorized into
the holomorphic current operators times the “light” Liouville operators. They are evaluated in the
semiclassical limit of Liouville theory (the limit of infinite central charge) and are determined by the
classical Liouville field describing metrics on the celestial sphere.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Understanding the symmetries is very important for studying physical systems. Typically, the bigger symmetry the better because many
problems can be solved by pure symmetry considerations. Celestial holography [1-3] is a notable exception because conformal correla-
tors associated with the scattering amplitudes are overconstrained by translational invariance, namely the positions of two-dimensional
celestial conformal field theory (CCFT) operators associated with massless particles are constrained by the momentum conservation law.
Three-point amplitudes are the extreme case because the operators are driven to the same point on the celestial sphere.! Similar con-
straints persist for any number of external particles and complicate the analysis of CCFT correlators [4].

In two recent papers [5,6], we analyzed celestial Yang-Mills amplitudes evaluated in the presence of a background dilaton field, which
breaks translational invariance in a controllable way by supplying external momentum to the gluon system. In this theory, the Yang-Mills
coupling constant and theta angle are determined by the vacuum expectation values of a dynamical (complex, zero mass) dilaton field
[7]. A similar approach was pursued in [8,9], in the framework of self-dual gauge theories coupled to axions. In [6], we observed that the
four-point correlators factorize into the “current” part and the “scalar” part. The current factor is given by the group-dependent part of
the Wess-Zumino-Witten correlator of four holomorphic currents. The scalar factor can be expressed in terms of complex integrals of the
Dotsenko-Fateev form [10,11], similar to the integrals describing four-point correlators in Coulomb gas models [12,13] and, more generally,
in the infinite central charge limit of Liouville theory [14,15].2 In this Letter, we elaborate on the connection between celestial Yang-Mills
amplitudes and Liouville theory.

We begin with a brief summary of Liouville field theory (LFT), along the lines of Ref. [15]. The Lagrangian density is given by

L=—"222 4 pe? (1)

where b is the dimensionless Liouville coupling constant and w is the “cosmological constant” scale parameter. The “background charge
at infinity,”
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1 This problem can be avoided by changing the signature of four-dimensional metrics. This leads, however, outside the scope of a “garden variety” Euclidean CCFT in which
SL(2, C) conformal symmetry follows directly from Lorentzian SO (1, 3).
2 Infinite central charge of CCFT was anticipated earlier in [16], but on different grounds.
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is related to the central charge by

c=1+6¢° 3)
The primary fields of LFT are the exponential operators

Vo(z,2) = e2%0@2), (4)
which are scalar fields with chiral dimensions

h(@) =h(a) =a(g — ). (5)

The studies of LFT focus on the correlation functions of exponential operators. Their general properties were first analyzed in [14,
15], where exact analytic expressions for the three-point functions were also derived. In general, LFT correlation functions are given by
complicated expressions. There is, however, one notable exception, for a special configuration of the exponents, when

m
Y ai=q— —nb, (6)
- b
1
where m and n are non-negative integers. The correlators contain simple poles (3_; i —q + % +nb)~1, with the residues given by
res/l_[Vai(z,-,ii)e_fdzz“q’] D¢ (7)
i
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where [1(u, b) is the “dual cosmological constant” written explicitly in Ref. [15], and the integrands are determined by

(TTVas@2n)= [T 1z 217 (8)
j j<i

We are interested in the case of single integrals that appear when n =0, m = 1. With the exponents parametrized as
aj=ob, Y oi=1, (9)
i

the correlation functions are

/ [TVow 2 €250 Dy ~ [ 1z — 25~ f d’z[ Jlzi -z~ (10)
i i

i<j
Note that the dimensions of primary fields are
d; = h(o;b) + h(oib) = 20; + 2b%0i(1 — o) . (11)

We are interested in CCFT primary fields with dimensions A; =n; + iA;, with integer n; <1 and real A; [17,18]. The integrals encoun-
tered in the computations [5,6] of “single-valued” celestial Yang-Mills amplitudes have a form similar to Eq. (10), with 20; = m; + iA;
and integer m;. Based on this observation and on Eq. (11), we expect that if the tree-level celestial amplitudes are related to LFT, they
are related to the limit b — 0, that is to the ¢ — oo infinite central charge (3) limit of LFT. The operators with the exponents scaling as
oib (b — 0) are called the “light” operators [15]. The limit b — 0 is the classical limit of LFT, in which the correlation functions of light
operators are determined by the solutions of the Liouville equation, given by

A
(14 22)%

and describing two-dimensional metrics on a sphere with area A. The computation of the correlation functions of light operators amounts
to integrating over the SL(2, C) orbits of Eq. (12) in the product []; e29ib%,

In Refs. [5,6], we computed three- and four-gluon celestial MHV amplitudes in the presence of a specific dilaton background moti-
vated by certain solutions of Banerjee-Ghosh (BG) equations [19]. As it is clear, however, from the discussion of Ref. [20], BG equations
are satisfied by MHV amplitudes in the presence of an arbitrary dilaton source because the net effect of the source is to replace the
momentum-conserving delta functions by a (Lorentz-invariant) function of the total momentum of the gluon system. The total momen-
tum is invariant under BCFW shifts, therefore BG equations remain satisfied. As mentioned before, the celestial amplitudes obtained in
[5,6] can be expressed in terms of integrals similar to Eq. (10). In this work, we will identify the background dilaton field that yields
celestial amplitudes in exactly the same form as the Liouville integrals (10). In this way, we will connect the operators representing gluons
with the Liouville operators (4) and relate CCFT to LFT.

Celestial amplitudes are obtained from the momentum space amplitudes by performing Mellin transforms with respect to the energies
of external particles [21]; therefore our first goal is to rewrite the Liouville integrals (10) as Mellin transforms. Since we are interested in
“mostly plus” MHV amplitudes in the helicity configurations (— — + +...), it is natural to fulfill the condition (9) by

2bdo(z,Z) = In (12)
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X (£3)) (13)
with

N

> xi=0. (14)

1

Hence, we focus on the integrals

INGZ1 21, 2N, 2N) = /d2z|z1 — 2|20 |7y — g2 |73 — g 720 (15)
which describe conformal correlators of scalar primary fields with dimensions d; = 20;. They can be evaluated in many ways [12], but for
our purposes it is most convenient to follow the formalism described in [22] and express them in terms of the integrals on a “Poincaré

section” of a four-dimensional embedding space R!-3
In the embedding space, the coordinates are parametrized as X = (X*, X—, X1, X?), and the Lorentzian inner product is

1
x.y=5(x+y—+x—y+)—x1y1—xzyz. (16)

On the null-cone X - X =0,

X = (X+, E, E’ Z_.z

Xt 2 2i

The Poincaré section is constructed by quotienting the null-cone by the rescaling X ~ pX, p € R. The projective null-cone can be identi-

fied with C by gauge fixing this rescaling, for example by imposing the condition X = 1. The action of SO(1,3) on R!-3 is inherited as
SL(2, C) transformations of the complex coordinates z. Note that on the Poincaré section,

), zeC. 17)

21 — 22> =2X1 - X2 . (18)

By using the embedding space formalism [22], the integrals (15) can be rewritten as

1 1
IN= o / d*Xs8(X - X) ‘ — .
2Vol GL(1, R) I (X1 - X)Xy - X) 1R [T (X - X)iM
S - / d*X8(X - X) (9)
Vol GL(1, R)*+
xt+x—>0

. N . . N :

x / X X XD doyy ™M dary i Hda)k a);:‘"_l ,
k>3

w;>0
with the normalization constant
1

2T +ia)DA + i) [R5 DA

(20)

The volume factor [Vol GL(1,R)*]~! cancels the divergence due to the integration over the X — pX rescaling “gauge” mode. The gauge
can be fixed to X* =1, with the associated Fadeev-Popov determinant equal to 1. Then

N:cN/d4x5(x-X)5(x+—1)9(x++x—) (21)

N
. N . . . .
X / X L= @i %) doyy M dan i | |da)k W T

;>0 k>3

The above integral has a form of a multiple Mellin transform, with implicit regulators [17] omitted here for simplicity. Let us compare it
with the Mellin transforms encountered in celestial amplitudes.
The starting point for celestial amplitudes are the momentum space amplitudes with the momenta of massless particles parametrized

as
T ohe 1 p2 2 2+2 z2-12
P=(P*, P ,P,P):w(1,|z|,—,—,). (22)
2 2i
Note that w is the energy in the light cone frame. Under SL(2, C) Lorentz transformations,
az+b
> w-wlcz+d? (23)
cz+d

We are interested in N-gluon MHV amplitudes in the mostly plus helicity configuration (— — + + ...), evaluated in the presence of a
massless dilaton source J¢(X) [5,6], or equivalently, in the presence of a background dilaton field ®q(X) =0O~! J. As in Refs. [5,6], we
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are considering a “weakly coupled” source, with one insertion in the amplitude. These amplitudes are converted into two-dimensional
correlators of primary fields with dimensions A; by performing Mellin transforms with respect to the light cone frame energies. In this
way, we obtain [5,6]:

Mn(z1,21,..., 2N, ZN| AT, - - AN) = IN(Zi) SN (i, Zi) (24)
where
74
Inz) = Z fOI@X1 fX18n@X2 L FXN-307(N-1)ON Z . 12 — (25)
TESN_2 7 (2)47 (2)7 (3) N1
is the holomorphic “soft” factor, with (ay, az, ..., ay) labeling the gluon group indices. The Mellin transforms are contained in the “scalar”
part
X-Q N
SN(zi, Zi) = fd“ / ]q;(X) E don o dewy 3? [ | doy 2, (26)
w;i>0 k=3
where Q is the total momentum of the gluon system,
N
Q= Z P; (27)
i=1

and we assumed that all gluons are outgoing, i.e., they are created by the background dilaton field.> We see that, up to the normalization
constant, the scalar part (26) matches the Liouville integral (21) with the dimensions

Al=idi=d1—1, Ag=iry=dy—1, Ay=1+il=dy+1 (k=3), (28)
where d; = 20; are the dimensions of Liouville primary fields, provided that we identify the dilaton source as
Jo(X)=—0[8(X - X)8(XT = 1)O(XT + X7)] (29)

and choose a Poincaré section, see Eq. (17), with all Xl* =1, so that

Pi=wiXi, Q= Zwixi . (30)
i=1

The corresponding background field is

OoX)=0""Jo(X)=-8(X-X)s(XT —DoXT+X). (31)

It represents a retarded (outgoing) spherical dilaton shockwave. It seems that the wave is frozen at X+ = 1, which would violate Lorentz
invariance. Nevertheless, as it will be clarified below, it gives rise to a covariant conformal correlator. The wave propagation is “lost” by
projectivizing on the null-cone.

To further analyze Liouville integrals, we rewrite Eq. (21) as

c R
Iy= 2” dXTdX~d?X §(XT X~ — X2)§(XT —1)o(XT +X7)

X / e X' daw, a)g’\lda)z a)”‘2 Hda)k w1 (32)

;=0 k=3

CN 2% i +32 > o _ i ire—1
=7/dx / exp[z(Q X°—-2Q-X+Q )]da)m) ’da)zw l_[da)a) k=0

>0 k>3
As a result of Gaussian integration, we obtain
i le irg irg—1
IN :CN Fexp (ZQ—+>d(U]CL) da)za) Hda) CL) (33)

;=0 k>3

i i ZIN<1 a)iwjzijzif ix ix ire—1
=Cy N exp[ N ]da)1a) Ydw; wy ana)a) k=2
om0 2i=1 Wi 2w k>3

3 Under this assumption, Q2 > 0, hence we avoid crossing the singularity at Q2 = 0 in Eq. (26). At this point, it is not clear how to extend our discussion to the
configurations involving both outgoing and incoming particles.
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It is convenient to change the integration variables to

wy
0=, yi=— K *k=1,....N—1). (34)
-Z ZxN=1“)i
Then
N-1 1 N-1 -
. 1 —
IN=17TCN< /dyk) Y [Ty a=xigtyptt (35)
k=179 j>3

S
X /dwexp[ Z.Yijzl]Zl] ( _Z .VI)ZylZlNZlN ]
0

i<j i=1

N-1 ]
iri—1 — AN —
= —awen([] /dYk )y ]_[ vy a =yt
k=17 j=3
N-1 N i
x [Z yiviziZii+ (1= X705y ZJ’iziNziN] : (36)
i<j i=1

Recall that the above integral (36) is evaluated on the support of ) ; A; = 0. In order to make Lorentz covariance explicit, we multiply it
by

o0
27‘[5(2 A = / ol P =140 , 37)
i 0
and return to the original integration variables,
N-1
o=y k=1,...N-1), oxn=(1-) y)o. (38)
k=1
In this way, we obtain
—2mCy 8> i) In = 2 doo M dw, w? l_[da) ! (39)
N i)IN = Q2 1 2 k g ,
i >0 k>3
where
2 Zwia)jzijiij . (40)

i<j
The final expression (39) is manifestly Lorentz covariant under SL(2, C) transformations (23). It matches the scalar part (26) of celestial
amplitudes with the primary field dimensions written in Eq. (28) and with the scalar current

Jo(X) =278 (X). (41)

Note that in the presence of such a Lorentz invariant source, SL(2, C) symmetry should remain valid for any number of insertions, as an
exact symmetry of celestial amplitudes. The solution of the equation T®¢(X) = 2w 8™ (X), matching the shockwave (31) on the Poincaré
section, is the background field

1
Do(X) = Po(r, t)Z—ZS(r—t)H(t)- (42)
As a consistency check, we evaluate Liouville integrals (15) for N =3 and N =4 by using our method and compare with the results

reported previously in the literature. For N = 3, we start from Eq. (39):

iry kg id3—1 5 5 > N
8O ri)lz = —C3/da)1da)2da)3 )" @5 w3? T (012212712 + 023223223 + W1 W3213213)
i

i k2 s . . Y = \ing—1
=— C3/dw1dw2 ] w;5?B(iA3, 1 — iA3)(@1213Z13 + W2223723) " (W1@2212212)"

—Cg/da) WA TIB (30 1 — iA3)B(—ida, iy + iA3)

iA3—1,, = ik =\ —ihg—ik
X (212212)"3 7 (213213) "% (223223) 7273



S. Stieberger, TR. Taylor and B. Zhu Physics Letters B 836 (2023) 137588

~ e D(=iADT(=iA)T(1 — iA3)
—”S(Z)H)(Zﬂzlz) 37 (223223)" (213213) T T IADF( 1 )T (43)

In this way, we obtain

C(—iA)T(—ir)T(1 —iA3) = a1 Y - ir
Iz3=m 2122 3712232 (z13213)"? 44
3 Ta +ik1)F(1+iA2)F(iA3)( 12212) (223223)""" (213213) (44)

in agreement with [15,23]. For N =4, a similar computation yields

idaita—1,, 5 \—ik = \idgHik N
H3H1ra (213213) T3 (214214) P23 (224229) (45)

x [CaK3I% + 50, %+ Bajee By + CRREN - B2 — 51— 2 — By B

14 = (z12Z12)

where x is the conformal invariant cross ratio,
212234
x =

= ) (46)
213224

and K%}1 [h, h](x,X) are the two-dimensional s-channel global conformal blocks [24-28] associated with primary fields with dimensions
A=h+h:

— _ T h—h1y,h+h h—h1o,h+h3g
K21[h, h](x, X) = x"—Ms—hagh=hs ”42F1< 122h 34;X>2F1< 1225 34;X>, (47)

where hij = h; —hj, hij =h; —hj. In the case under consideration, h; = h; and h = h. We find one block with dimension A = i3 +ii4 and
its shadow block with dimension A =2 — A, with the coefficients

P(—ia)I(=ir)T (A +ikq +ik2)
' +id)TA +ir)D(—=irg —iky)’
'l —irz)T(A —irg)T(ir3 +irg — 1
Cx=n ( '3) (' 4) (.3+'4 ). (49)
Crs3)T(r)(2 —ik3 —ikg)

Eq. (45) agrees with the expression written in Ref. [22]. Furthermore, we checked that this four-point correlator satisfies the crossing
symmetry constraints. For instance, in the u-channel, in which x — 1 — X, one also finds a single block with dimension A =1+ iy +i)3
and a shadow block.

Now we turn to the “soft” part (25) of celestial MHV amplitudes. Here, the negative helicity —1 gluons can be associated with the
holomorphic operators J(z) in the adjoint representation of the gauge group, with chiral weights (h = —1,h = 0), ie., dimensions —1,
while the positive helicity +1 gluons to dimension +1 holomorphic (h = 1, h = 0) Wess-Zumino-Witten (WZW) currents J%(z).* The
correlators involving WZW currents are completely determined by Ward identities, which, in the context of celestial holography, follow
from the leading soft gluon theorem [1-3]. Assuming

Ca=m (48)

(T 2] (22)) = 89%23, , (50)
one obtains [8]:

(T @) ]2 (22) ] (z3) - - J™ (zn)) = TIn(21) - (51)

At this point, we are in a position to connect the tree-level celestial MHV amplitudes to the classical limit of Liouville theory. We
introduce the following operators:

0;%z2.2) = T(1 +ix) J(z) e 1 TMbo 22 (52)

OF%(z,2) = [(ir) J(2) e @D (53)

and consider the limit of b — 0. In this limit, the dimension of O} becomes A_ =i\ while the dimension of (’)/‘\m is Ay =14ix. We
associate (’)it“ to gluons with helicities 41, respectively, and group indices a. From our discussion, cf. Egs. (39) and (20), it follows that

N
ars( Y w) (07 21,20 01222, 22) 0 (23,23) - OF M (2. 2v)) (54)
i=1

= Mn(z1,21,...,2N, Znlik1, idp, 1 +iA3, ..., T +0AN),

where My is the celestial MHV amplitude, cf. Eqs. (24)-(26), evaluated in the shockwave background of Egs. (41), (42). Note that the
dimensions of negative helicity gluons are shifted by —1 as compared with the conventional “principal series” celestial amplitudes [21].
By using Egs. (44) and (45), we checked explicitly that the correlators (54) satisfy BG equations for N =3 and N =4. We also checked
that the operator product expansions extracted from the collinear limits of four-gluon amplitudes agree with Refs. [29,30].

4 Since the dimension of 7“ (2) is negative, it is not clear how to incorporate this operator into the framework of unitary WZW models.
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The fact that a two-dimensional spherical shell of the dilaton shockwave propagating in four-dimensional spacetime corresponds to
the classical Liouville field describing metrics on the celestial sphere is perhaps the most natural, not to say expected, outcome of our
analysis. Liouville theory has been linked before to Yang-Mills through the AGT correspondence [31], which raises the question whether our
“dilaton deformation” is related in some way to Nekrasov's © deformation [32,33].°> It would also be very interesting to connect Liouville
shockwaves to the shockwaves recently studied in [36,37]. This could enable exact treatment of the background, in order to address the
question whether the relation between Yang-Mills and Liouville theories remains valid beyond the weak source approximation. The most
interesting and possibly related problem, however, is to understand how the quantum corrections to celestial Yang-Mills amplitudes are
related to quantum Liouville theory with finite central charge. In this way, one could try to establish relations between the parameters
of Yang-Mills theory and the cosmological constant @ and the Liouville coupling constant b, in a similar way as AdS/CFT correspondence
relates the string coupling and string tension in the bulk to the rank of the gauge group and the Yang-Mills coupling on the boundary.
Answering these questions would create a novel path towards Yang-Mills dynamics.
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