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We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge.
For this challenge, participating groups had to identify gravitational-wave signals from binary black hole
mergers of increasing complexity and duration embedded in progressively more realistic noise. The final of
the 4 provided datasets contained real noise from the O3a observing run and signals up to a duration of 20 s
with the inclusion of precession effects and higher order modes. We present the average sensitivity distance
and run-time for the 6 entered algorithms derived from 1 month of test data unknown to the participants
prior to submission. Of these, 4 are machine learning algorithms. We find that the best machine learning
based algorithms are able to achieve up to 95% of the sensitive distance of matched-filtering based
production analyses for simulated Gaussian noise at a false-alarm rate (FAR) of one per month. In contrast,
for real noise, the leading machine learning search achieved 70%. For higher FARs the differences in
sensitive distance shrink to the point where select machine learning submissions outperform traditional
search algorithms at FARs ≥ 200 per month on some datasets. Our results show that current machine
learning search algorithms may already be sensitive enough in limited parameter regions to be useful for
some production settings. To improve the state-of-the-art, machine learning algorithms need to reduce the
false-alarm rates at which they are capable of detecting signals and extend their validity to regions of
parameter space where modeled searches are computationally expensive to run. Based on our findings we
compile a list of research areas that we believe are the most important to elevate machine learning searches
to an invaluable tool in gravitational-wave signal detection.
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I. INTRODUCTION

The first gravitational-wave (GW) observation on
September 14, 2015 [1] achieved by the LIGO and
Virgo Collaboration [2,3] started the era of GWastronomy.
During the first observing run (O1) two more GWs from
coalescing binary black holes (BBHs) were detected. The
second observing run (O2) sawOð10Þ additional confident
BBH detections as well as the first detection of a binary
neutron star (BNS) merger [4–9]. The third observing run
(O3) was split into two parts, O3a and O3b. During O3a a
further Oð40Þ BBHs as well as a second BNS merger were
reported [10–12]. O3b added anotherOð40Þ BBH events as
well as finding the first two confident detections where the
component masses are consistent with the merger of a
neutron star black hole system (NSBH) [13,14]. The fourth
observing run (O4) is scheduled to begin in early 2023 and
is expected to significantly increase the volume from which
sources can be detected [15,16].
GW signals are commonly identified in the background

noise of the detectors using matched filtering [13,17–19].
Matched filtering compares precomputed models of
expected signals, known as templates, with the data from
the detectors [20]. When a model matches the data to
a predefined degree and data-quality requirements are
met, a candidate detection is reported. Loosely modeled
searches [21–23], which look for coherent excess power in
multiple detectors, are also employed by the LIGO-Virgo-
KAGRA Collaboration (LVK) to find potential signals.
The rate of detections has drastically increased from O1

to O3. This increase was enabled by continued detector
upgrades at the two advanced LIGO observatories in
Hanford and Livingston [2], as well as sensitivity improve-
ments for the advanced Virgo detector [3]. With the entry
into service of Kagra [24] a fourth observatory joined the
network of ground based GW detectors towards the end of
O3. The rate of detections is expected to further increase
during O4 as the sensitivity of the detectors improves and
the volume from which sources can be detected grows.
With an increasing rate of detections, it is likely that

systems with unexpected physical properties will be
observed more frequently in the future. Optimally search-
ing for these is a challenge for matched filtering based
searches, where the computational cost scales linearly with
the number of templates used. The inclusion of effects such
as precession, eccentricity, or higher order modes requires
millions of templates to not miss potential signals [25–27]
and thus are computationally prohibitive, especially when
real-time alerts should be issued. Loosely modeled searches
are inherently capable of detecting arbitrary sources at a
fixed computational cost but are prone to miss more signals
due to their lower sensitivity in parameter regions where
accurate models exist.
In recent years, machine learning has been applied in

many scientific fields to enable or improve research into
computationally expensive topics [28]. Some examples

include the prediction of protein structure used in pharma-
ceutical studies [29], improvements to material composi-
tion and synthesis [30], or event reconstruction at the Large
Hadron Collider [31]. There is also ongoing research into
using neural networks to discover closed form expressions
from raw data [32] or optimizing machine learning algo-
rithms to take advantage of physical symmetries of the
underlying problem [33–35].
More relevant to this work, machine learning algorithms

have also started to be explored as alternative algorithms for
many GW data-analysis tasks. These include detector glitch
classification [36–38], parameter estimation [39–43], con-
tinuous GW detection [44–50], enhancements for existing
pipelines [51–58], surrogate waveform models [59–61], as
well as various signal detection algorithms [62–82]. For a
summary of many methods we refer the reader to [83,84].
In this work we focus solely on detection algorithms for
BBH GW signals, which have been the most commonly
observed type of sources to date [10–12]. These signals are
the easiest to detect for machine learning algorithms due to
their short duration.
Many of the works considering the usage of machine

learning for GW signal detection are difficult to cross
compare. Most algorithms target different datasets and
derived metrics are often motivated more by machine
learning practices than by state-of-the-art GW searches.
It is, therefore, hard to pinpoint exactly how capable
machine learning search algorithms currently are and where
the main difficulties arise. To achieve the goal of an
objective characterization of machine learning GW search
capabilities, a common ground for comparison is required.
Here we present the results of the first Machine Learning

Gravitational-Wave Search Mock Data Challenge
(MLGWSC-1). In an attempt to provide a common ground
of comparison for different algorithms and in preparation of
O4, we have calculated sensitive distances from 6 different
submissions on datasets of one month duration to collect
and compare a suite of searches. We want to motivate the
utilization of machine learning based searches in a pro-
duction setting by providing a definitive resource to allow
for easy comparison between different algorithms,
be it machine learning based, matched filtering based,
or completely unmodeled. This challenge is the first of its
kind1 and hopefully more will be held in the future,
expanding to more difficult scenarios.
The mock data used in this challenge consists of 4

datasets containing noise of increasing realism and signals
with increasing complexity for the two detectors LIGO
Hanford and LIGO Livingston [2]. The final dataset
challenges participants to identify GWs from spinning
BBHs with a duration of up to 20 s added to real detector

1There has previously been a public Kaggle challenge [85].
First in the sense of this paper refers to our setup of providing
continuous data.
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noise from O3a. The signals also take precession effects
and higher order modes into account.
Submissions are evaluated on mock data of one month

duration for each of the four datasets. We calculate sensitive
distances for each algorithm and estimate the computa-
tional efficiency based on the run-time. The final dataset
should provide an accurate picture of the possible real-
world performance these algorithms can achieve. However,
we note that direct comparison of the run-time performance
of the different algorithms is complicated by differing
hardware usage and optimization.
We find that machine learning algorithms are already

competitive with state-of-the-art searches on simulated data
containing injections drawn from the limited parameter
space covered by this challenge. The most sensitive
machine learning algorithm manages to retain ≥ 93% of
the sensitive distance measured for the PyCBC pipeline
[14] on Gaussian background data down to a false-alarm
rate (FAR) of 1 per month. For higher FARs the separation
between the approaches generally shrinks.
Most machine learning searches, as tested here, are less

sensitive on real noise than on simulated data. The tradi-
tional algorithms handle this transition better. As a conse-
quence, the most sensitive machine learning algorithm
retains ≥ 70% of the sensitive distance of the PyCBC
search down to a FAR of 1 per month. However, the
sensitivity achieved of machine learning algorithms on real
data is still substantial and shows that they are capable of
rejecting non-Gaussian noise artifacts without any hand-
tuned glitch classification.
From the evaluation of the different datasets we conclude

that the main difficulties for current machine learning
algorithms are the ability to analyze the consistency of
detected signals between detectors and the maximum
duration of signals that can be detected. Solving these
issues would allow for better performance at FARs < 1 per
month and enable a fast detection of potentially electro-
magnetic bright sources such as BNS or NSBH mergers.
All code used in this challenge is open source and

available at [86]. Therein we also collect the individual
submissions by groups that have given their consent,
provide the analysis results, and make available all plots
used in this paper for all submissions.
This paper is structured as follows. In Sec. II we provide

the details on the challenge, the datasets, as well as the
evaluation process. All submissions are briefly introduced
in Sec. III. The results of the challenge and a brief
discussion can be found in Sec. V. We conclude and give
an outlook into possible future work in Sec. VI.

II. METHODS

All submissions described in Sec. III are evaluated on
the same datasets, and all machine learning submissions
are evaluated under the same conditions. Below we
describe the provided material from the challenge, the

requirements for the submitted algorithms, as well as the
evaluation process.

A. Challenge resources

In this challenge participants are asked to identify GW
signals submerged in detector noise. To provide grounds of
comparison, all submissions are evaluated on the same
datasets. To allow for optimization of the submitted
algorithms for the task at hand, participants had access
to code that allowed them to generate arbitrary amounts of
data equivalent to that used during the final evaluation of
this challenge. All code used for data generation and
algorithm evaluation is open source and can be found
at [86].
In particular, participants had access to the code that was

used to generate the final challenge sets, but not the specific
seed that was used. The specifics of the datasets are
described in Sec. II B. They were also provided with the
code that was used to generate the metrics we provide in
this paper. Details on the metrics can be found in Sec. II C.

B. Test data

The challenge provides a script to generate semicontin-
uous raw test data for any of the four datasets described
below. It allows the user to choose a specific seed and a
total duration of the output data. The code subsequently
generates up to three files; the first containing pure noise,
the second containing the same noise with injected GW
signals, and the third containing the parameters of the
injected signals.
The files containing the pure noise and the noise with

additive signals are of the same structure. They are HDF5
[87] files with two groups named “H1” and “L1” contain-
ing data from the two detectors LIGO Hanford and LIGO
Livingston, respectively. Each group consists of N HDF5-
datasets, each holding the detector data of a single segment,
as well as information on the GPS starting time of the
segment, and its sampling rate. Each segment has a
minimum duration of 2 h, is sampled at 2048 Hz, and
contains continuous data. The files also contain information
on the metadata used to create the file. This metadata is
removed in the final challenge sets.
We chose to split data into smaller segments of uncorre-

lated noise for two reasons. First, real detectors are not
equally sensitive for months at a time and data quality
differs to an extent where certain data cannot be used for
analyses. As such, any algorithm should be able to handle
gaps in the data. Second, the noise characteristic varies over
time. Segmenting simulated data allows us to easily
incorporate different models for the power spectrum over
the duration of the data. Subsequently, the noise model can
be increased in complexity for the four datasets.
Minimal preprocessing is done on the data that is handed

to the submitted algorithms.We only apply a low-frequency
cutoff of 15 Hz which is used to enable a reduction in file
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size for real-detector data that has to be downloaded. The
low-frequency cutoff reduces the dynamic range of the data,
which allows us to scale the data and cast it to lower
numerical precision. Any other preprocessing is left to the
algorithms and is factored into the performance evaluation.
The scaling is inverted during data loading.
A larger index of the dataset signifies a greater complex-

ity and realism of the dataset. Participants may choose to
optimize for any of the 4 datasets but are only allowed to
submit a single algorithm, which is subsequently tested
with all 4 datasets. We do this to test the ability of the search
to generalize to slightly varying conditions.
Many parameters of the injected signals are drawn from

the same distributions irrespective of the dataset. A
summary of these distributions can be found in Table I.
All signals are generated using the waveform model
IMRPhenomXPHM [88] with a lower frequency cutoff of
20 Hz. The waveform model was chosen for its ability
to simulate both precession and higher-order modes. This

setup assures that at least 33% of injected signals have an
optimal network SNR < 4 and can thus not be detected.
The merger times of two subsequent signals are separated
by a random time between 24 to 30 s to avoid any overlap.
We apply a taper to the start of each waveform.
In Fig. 1 we show an overview of the intrinsic parameters

used in this challenge and compare it to the parameter space
searched by state-of-the-art searches [13,14].

1. Dataset 1

The noise from the first dataset is purely
Gaussian and simulated from the PSD model
aLIGOZeroDetHighPower [89] for both detectors.
This means that the PSD used to generate the data
contains no sharp peaks originating from factors such
as the power grid, is the same for all segments, and is
known to the participants.
Injected signals are nonspinning and no higher-order

modes are simulated. The component masses are uniformly
drawn from 10 M⊙ to 50 M⊙. We enforce the condition
that the primary mass has to be equal or larger than the
secondary mass. With this mass range, at a lower frequency
cutoff of 20 Hz, and for nonspinning systems the signal
duration is on the order of 1 s.
The first dataset represents a solved problem, as it has

already been excessively studied in the past [62,64,76]. It is
meant as a starting point where people new to the field can
refer to existing literature to get off the ground initially. We
expected many of the algorithms to perform equally well on
this set.

TABLE I. A summary of the distributions shared between all
datasets from which parameters are drawn.

Parameter Uniform distribution

Coalescence phase Φ0 ∈ ð0; 2πÞ
Polarization Ψ ∈ ð0; 2πÞ
Inclination cos ι ∈ ð−1; 1Þ
Declination sin θ ∈ ð−1; 1Þ
Right ascension φ ∈ ð−π; πÞ
Chirp distance d2c ∈ ð1302; 3502Þ Mpc2

(a) (b)

FIG. 1. An illustration of the range for the intrinsic parameters covered by this challenge. The left panel (a) shows a typical range for
the component masses used by state-of-the-art searches [14]. The color indicates the duration of the waveform from 20 Hz. The triangles
show the parameter regions covered by this challenge. The right panel (b) shows the component-spin χi distribution of the different
datasets in this challenge.
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The final challenge set for dataset 1 was generated with
the seed 1068209514 and a start time of 0.

2. Dataset 2

The noise for the second dataset is also purely Gaussian
and simulated. However, in contrast to the first dataset the
PSDs were derived from real data from O3a and as such
contain power peaks at certain frequencies and are noisy.
We generated a total of 20 PSDs for each detector. The
PSDs used to generate the noise are randomly chosen from
these lists and as such are unknown to the search algorithm.
The lists themselves are known to the participants. The
PSDs in both detectors are independent of each other but do
not change over time.
Signals are now allowed to have a spin aligned with the

orbital angular momentum with a magnitude between
−0.99 and 0.99. Additionally, the mass range is adjusted
to draw component masses from the range 7 M⊙ to 50 M⊙.
This change increases the maximum duration of the signals
at a lower frequency cutoff of 20 Hz to ≈20 s. No higher-
order modes are simulated for this dataset and due to the
aligned spin requirement no precession effects are present
in the waveform.
The second dataset was intended to pose a considerable

increase in difficulty to the first dataset. Using an unknown
PSD which was derived from real data requires participants
to estimate it during the analysis, if the algorithm requires
it. However, we expected that increasing the signal duration
to up to 20 s would be the more prominent reason for an
increase in difficulty as many previous machine learning
algorithms have had trouble when dealing with large
inputs [40,47,69,90]. Finally, we did not expect a large
increase in the difficulty of the dataset due to the inclusion
of aligned spins.
The final challenge set for dataset 2 was generated with

the seed 2743406703 and a start time of 0.

3. Dataset 3

The noise for the third dataset is also simulated and
purely Gaussian. The increase in difficulty of the noise
comes from varying the PSDs over time. Instead of
choosing a single random PSD from the list of 20 PSDs
per detector described in Sec. II B 2 and generating all noise
with that one PSD, the PSD for dataset 3 is randomly
chosen for each segment.
The mass range from 7 M⊙ to 50 M⊙ and subsequently

the maximum signal duration of 20 s is unchanged
compared to Sec. II B 2. However, instead of requiring
the spins to be aligned with the orbital angular momentum,
their orientation is isotropically distributed with a magni-
tude between 0 and 0.99. As a consequence, precession
effects are now present in the waveforms. Additionally, we
also model all higher-order ðl; mÞ modes available in
IMRPhenomXPHM, which are (2, 2), ð2;−2Þ, (2, 1),
ð2;−1Þ, (3, 3), ð3;−3Þ, (3, 2), ð3;−2Þ, (4, 4), ð4;−4Þ [88].

The main challenge of this dataset was intended to be the
inclusion of precession effects. While these are not as
impactful for short duration, high mass systems, they can
substantially alter the signal morphology for lower mass
systems. Adding higher-order modes can also substantially
increase signal complexity. Both of these effects are
currently not modeled in any production search relying
on accurate signal models, as their inclusion requires an
increase in size of the filter bank to include millions of
templates [25,26]. As such, we expected many if not all of
the submitted algorithms to struggle with this dataset. On
the other hand, any machine learning based algorithm that
operates successfully on this dataset may motivate the
utilization of machine learning in production searches in
the future by extending the searchable parameter space.
The final challenge set for dataset 3 was generated with

the seed 470182217 and a start time of 0.

4. Dataset 4

Dataset 4 is the only dataset that contains real detector
noise obtained from the Gravitational Wave Open Science
Center (GWOSC) [91]. All noise was sampled from
parts of O3a that had the “data” quality flag and none of
the flags “CBC_CAT1,” “CBC_CAT2,” “CBC_HW_INJ,”
or “BURST_HW_INJ” were active. We consider only
segments where the data from both LIGO Hanford
and LIGO Livingston clear the above conditions and
excluded 10 s around any detection listed in GWTC-2 [10].
Afterwards we discarded any segments shorter in duration
than 2 h. To allow for different noise realizations, we shift
the data from LIGO Livingston by a random time from 0 to
240 s while keeping the data from LIGO Hanford fixed.
The time shifts are independent for each segment and to
avoid any possible overlap between neighbouring seg-
ments, we consider each segment on its own.
To reduce the amount of data that has to be downloaded

by participants we preselected the suitable parts of the
O3a data. We then applied a low frequency cutoff of 15 Hz
to reduce the dynamic range of the data and multiplied the
numerical values by a factor of ≈ 269 to allow a lossless
conversion to single precision. Finally, the data was
converted to single precision and stored in a compressed
format. This allowed us to provide a download link to a
single file of 94 GB size containing enough data to generate
up to 7024699 s ≈ 81 d of coincident real noise for both
detectors. The data was scaled by the constant factor to
avoid the loss of dynamic range due to the conversion from
double precision to single precision. When generating test
data, the data is converted back to double precision and the
scaling is inverted. The code used to down sample the data
is also open source and available at [86].
The signals are generated equivalently to the signals in

dataset 3, i.e. masses are uniformly drawn from 7 M⊙ to
50 M⊙, spins are isotropically distributed with a magnitude
from 0 to 0.99, and all higher-order modes available in
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IMRPhenomXPHM are generated. Consequently, preces-
sion effects are simulated.
This dataset is intended to be indicative of a real-world

application of the search in parameter regions which are
currently sparsely searched. Given that many machine
learning searches have proven to generalize well from
Gaussian noise to real detector noise at higher FARs in the
past [63,65,67,68] we expected that machine learning
algorithms that do well on dataset 3 will also be competitive
for dataset 4. However, it was expected that handling short
glitches may prove difficult for certain searches, especially
those focusing most on the merger and ringdown.
The final challenge set for dataset 4 was generated with

the seed 2514409456 and a start time of 0.

C. Evaluation

All submissions are evaluated on the challenge sets,
which are generated with a seed unknown to the partic-
ipants at the time of submission. The evaluation is run on
the Atlas computing cluster at the Albert-Einstein-Institut
(AEI), Hannover. Groups that submitted an algorithm had
no direct access to the evaluation stage2 and final results
presented in this work were only communicated back to the
groups after the submission deadline had passed.
We compute two metrics for every submission and

dataset. These are the wall-clock time required by the
algorithm at hand to analyze one month of data as well as
the sensitive distance of the search as a function of the
false-alarm rate. In essence, the sensitivity as a function of
the false-alarm rate is a receiver operating characteristic
(ROC) curve that factors in the varying signal strengths of
the injected GWs. It is a common measure of search
sensitivity for production GW searches [92] and thus
allows for easy comparisons. We do not compute the
ROC curve directly, for two reasons. First, it requires
the number of a negative samples in the data. Since our data
is continuous and the evaluation is left to the groups,
defining a negative sample is not possible. Second, the
ROC curve can be changed by choosing a different signal
population. For instance, the ROC curve can be driven to
zero by choosing a population of signals that are exces-
sively far from the detectors. The sensitive distance normal-
izes the data by the injected population.
For the calculation of the sensitive distances we use two

challenge sets for each of the 4 datasets. The first contains
pure noise and we will call it the background set from here
on out. The second contains the same noise as the back-
ground set but adds GW signals into it. This second set will
be called the foreground set from here on out. As described
in Sec. II D any search algorithm is expected to process

these files and return lists of events, where an event is a
combination of a GPS time, a ranking-statistic-like quan-
tity, and a value for the timing accuracy. We will call these
events background or foreground events when they have
been derived from the background or foreground set,
respectively. For the remainder of this section we will
refer to the ranking-statistic-like quantity simply as ranking
statistic, to simplify our statements.
To calculate the sensitivity as a function of the false-

alarm rate, we need to determine the false-alarm rate as a
function of the ranking statistic. Next we can also deter-
mine the sensitivity as a function of the ranking statistic.
Finally, we can combine the two, by evaluating both at the
same values of the ranking statistic.
We use the ranking statistic of all background events as

points where both the FAR as well as the sensitivity is
evaluated. Each of these is certain to be a false positive and
thus ensures that the FAR is unique at each threshold, as
long as the search does not return identical ranking
statistics for multiple background events.
To calculate the FAR at a given ranking statistic we count

the number of background events with a ranking statistic
greater than this threshold. We, subsequently, turn that into
a rate by dividing the number of false positives by the
duration of the background data, i.e. 2592000 s. WithNFP;R
the number of false positives at a given ranking statistic R
and T the time spanned by the background set, the FAR F
can be calculated by

F ¼ NFP;R

T
: ð1Þ

The sensitive volume of a search at FAR F can be
calculated by [92]

VðF Þ ¼
Z

dxdΛϵðF ; x;ΛÞϕðx;ΛÞ; ð2Þ

where x are the spatial coordinates of the injection, Λ are
the injection parameters, ϵðF ; x;ΛÞ is the efficiency of the
search at FAR F , and ϕðx;ΛÞ is the distribution of the
injection parameters x and Λ.
When injections are performed uniformly in volume up

to a maximum distance dmax, Eq. (2) can be approximated
by [92]

VðF Þ ≈ VðdmaxÞ
NI;F

NI
; ð3Þ

where VðdmaxÞ is the volume of a sphere with radius dmax,
NI;F is the number of found injections at a FAR of F , and
NI is the total number of injections performed. An injection
is found if there is at least one foreground event that is
within �Δt of the injection, where Δt is the time variance
assigned to the event by the search algorithm. The number
of found injections at a given FAR considers only those

2This excludes submissions by the organization group. How-
ever, no member of the organization group accessed the challenge
data before the submission deadline or altered their algorithm
after the submission deadline.
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foreground events where the ranking statistic assigned to
the specified event is greater than the ranking statistic
corresponding to the FAR. In machine learning terms
Eq. (3) is the recall at a given threshold on the network
output multiplied by the volume of a sphere with radius
dmax, assuming that each injection corresponds to exactly
one true positive.
However, the injections in the datasets are not performed

uniformly in volume, as we sample over the chirp distance
instead of the luminosity distance. The chirp distance is
given by [93]

dc ¼ d

�
Mc;0

Mc

�
5=6

; ð4Þ

where d is the luminosity distance, Mc ¼ ðm1m2Þ3=5=
ðm1 þm2Þ1=5 is the chirp mass, and Mc;0 ¼ 1.4=21=5 M⊙
is a fiducial chirp-mass used as a basis for calculation. Note
that in contrast to [93] we use the luminosity distance
instead of the effective distance as our basis.
When sampling the injections from the distributions

defined in Table I using the chirp distance, effectively the
maximum luminosity distance d is selected based on
the chirp mass; the smaller the chirp mass, the smaller
the maximum luminosity distance at which injections are
placed. This allows us to increase the number of detectable
low mass systems and, subsequently, make statistically
meaningful statements about the sensitivity for these
systems without requiring a large increase in the amount
of data that needs to be analyzed. However, when consid-
ering a fixed chirp mass, injections are still placed
uniformly within that sphere of the adjusted maximum
luminosity distance. In Eq. (3) we assumed that each
injection was placed uniformly within the volume spanned
by the sphere with volume VðdmaxÞ. To adjust it for
sampling over luminosity distance we have to factor in
that the probed distance depends on the selected chirp
mass. We, therefore, find

VðF Þ ≈ VðdmaxÞ
NI

XNI;F

i¼1

Vðdc;maxðMc;i

Mc;0
Þ5=6Þ

Vðdc;maxðMc;max

Mc;0
Þ5=6Þ

; ð5Þ

where Mc;i is the chirp mass of the ith found injection,
dc;max is the upper limit on the injected chirp distances, and
Mc;max is the upper limit on the injected chirp masses. This
expression can be simplified to yield

VðF Þ ≈ VðdmaxÞ
NI

XNI;F

i¼1

�
Mc;i

Mc;max

�
5=2

; ð6Þ

which is the formula we use to estimate the sensitive
volume of a search algorithm. Instead of quoting the
volume directly we convert it to the radius of a sphere
with the corresponding volume and quote that instead.

We also measure the time the algorithm requires to
evaluate an entire month of test data. Since all machine
learning search algorithms are running on the same hard-
ware these values can be used to compare the speed of the
different analyses on the given hardware. For a summary of
the available hardware resources please refer to Table II.
However, we expect the computational time to be domi-
nated by preprocessing steps, which can in theory be
heavily optimized. For this challenge, though, we did
not expect many submissions to invest resources into
optimizing their preprocessing and thus advise the reader
to not overemphasize the provided numbers.
All run-times are measured twice; once for the fore-

ground set and once for the background set. In both cases
the wall time that has passed between calling the executable
and it returning is measured.

D. Submission requirements

All submissions are provided with the path to a single file
containing the input data they have to process. In particular
they have to be able to read HDF5 files, the structure of
which is detailed in Sec. II B. Importantly, no preprocessing
other than the introduction of a low frequency cutoff of
15 Hz has been applied to the data. All other preprocessing
has to be performed by the algorithms themselves. In
addition to the path to the input data, each algorithm is
provided with a second path at which it is expected to store
a single HDF5 file. This file has to contain three one-
dimensional datasets of equal size named “time,” “stat,”
and “var.”
The “time” dataset is expected to contain the GPS times

at which the algorithm predicts a GW signal to be present.
These are compared to the injection times to determine
which injections were found, which were missed, and how
many false positives the analysis produced.
The “stat” dataset is expected to contain a ranking-

statistic-like quantity for every GPS time in the “time”
dataset. Here, ranking-statistic-like quantity means a value
where larger numbers indicate a higher degree of believe
for the search to have found a GW signal. Having a
ranking-statistic-like quantity associated to all candidate
detections enables us to assign a statistical significance to
any event.
The “var” dataset is expected to contain the estimated

timing accuracy of the search algorithm for all GPS times in

TABLE II. Main hardware specifications available to each
search algorithm during final testing.

Hardware type Specification

CPU 2× Intel Xeon Silver 4215, 8(16)
cores(threads) at 2.5 GHz

GPU 8× NVIDIA RTX 2070 Super
(8 GB VRAM)

RAM 192 GB
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the “time” dataset. This value determines the window
around the GPS time returned by the search within which
an injection has had to be made in order to consider the
detection a true positive and the injection to be found. This
value may be constant for all times at which the search
expects to have seen a signal. We allowed searches to
specify this value themselves, as we felt it to be unsuitable
for a signal detection challenge to require a fixed timing
accuracy. In principle, this freedom can be abused by
choosing an excessively high value of Δt and claiming all
events as true positives. However, all groups have chosen
values on similar scales and more importantly far shorter
than the average separation of two injections.
Throughout the paper, we will refer to events returned by

the search.By thatwemeana single tuple ðt;R;ΔtÞ contained
in the “time”, “stat”, and “var” datasets, respectively.
To be able to execute all algorithms without major

problems, we ask participants to either provide a single
executable that can be run on the Linux command-line
utilizing only the provided software stack or to provide a
singularity image that we can execute. In both cases the
algorithms have to accept two positional command line
arguments; the path to the input data file and the path at
which the output file should be stored. The main Python
packages available to submitted executables are listed in
Table III, for a full list refer to [86].
Each algorithm is executed by hand and closely moni-

tored by the organization team of the challenge.
Participants are not allowed to directly tune or influence
the final evaluation.
To ensure that participants have submitted the correct

version of their algorithm and to make sure that their
algorithm behaves as expected on the evaluation hardware
and software, all algorithms are first evaluated on a validation
set which is generated equivalently to the final test set. The
results on this validation set are then communicated back to
the submitting group. Once the group has approved that their
algorithm performs within the expected margin of error, the
algorithm is applied to the real challenge sets. These challenge
sets are the same for all participants and were kept secret until
the deadline for final submissions had passed.
Since multiple members of the organization team have

submitted algorithms to this challenge, the challenge
datasets were only generated after the submission deadline

had passed. The script to generate test data provides an
option to use a random seed. This option was used to
generate the final challenge datasets and ensures that no
submission had knowledge of the challenge set prior to the
submission deadline.
We allowed all participants to retract their submissions at

any point prior to the final publication of our results. This
means that participants were allowed to retract their
submissions even after they were informed about the
performance of their algorithm on the final challenge sets
and after they have seen the performance of other entries.
No group made use of this freedom and retracted their
submission after results were internally published.

III. SUBMISSIONS

In this section we briefly introduce the different algo-
rithms. For more details on the individual submissions we
refer the reader to the original works cited within each
subsection. The subsections are titled by the group name
and are given in order of registration to the challenge.
All algorithm preparation was performed by the indi-

vidual groups using their own available hardware resour-
ces. This crucially includes training of machine learning
algorithms, for which no resources were provided by the
organizers of this challenge. There were no strict require-
ments to submit algorithms that are based on machine
learning techniques. We even encouraged the submission of
a few traditional algorithms to quote a point of reference.
However, the available resources detailed in Sec. II C for
evaluation of the test sets are tailored to suit the needs of
machine learning algorithms.

A. MFCNN3

The submission of the MFCNN group is based on the
works from He et al. [94]. The authors of [94] refer to the
model as matched-filtering convolutional neural network
(MFCNN). MFCNN is a semicoherent search model. The
basic idea of the model is to use waveform templates as
learnable weights in neural network layers. Analogously to
the standard coincident matched-filtering searches the out-
put of each matched-filtering layer is maximized and
normalized in the unit of matched-filtering SNRs for each
GWdetector. However, triggers are not generated on a single
detector. The remaining part of the neural network is a usual
convolutional neural network that is employed afterwards to
jointly analyze the output from all detectors. Finally, a
SoftMax function is applied to evaluate the confidence score
of a GW signal being present in the GW detector network.
The architecturewas designed to take the advantages of both
matched-filtering and convolutional neural networks and

TABLE III. A selective list of the core PYTHON packages
available to algorithms during evaluation. A complete list is
given at [86].

PYTHON package Version

bilby 1.1.3
pycbc efeaeb6
tensorflow-gpu 2.6.0
tensorflow-probability 0.14.0
torch 1.9.1þ cu11

3The corresponding authors for the MFCNN submission are
He Wang, Shichao Wu, Zong-Kuan Guo, Zhoujian Cao, and
Zhixiang Ren.
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combine them to search for real GWevents in GWTC-1 [5].
To adapt to this challenge, the source code [95] of the
submission was translated from the MXNet framework [96]
used in the original work to a PyTorch [97] implementation.
The training data for the model is generated by the code

that generates dataset 4. The training data are input into the
model directly with none of the usual preprocessing such as
band pass or whitening, which is consistent with the
original work [94]. In fact, the model is equipped with a
whitening layer to estimate the power spectrum for each
input data. The main modification used in this challenge is
to randomly sample 25 templates in the first matched-
filtering layer from the same parameter space used in
dataset 4 of this challenge. It performs significantly better
than the original gridded and fixed template configuration.
The subsequent convolution network of the model is
constructed using the current excellent lightweight models
MobileNetV3 [98] which give state-of-the-art results in
major computer vision problems. The submission uses
curriculum learning, during which the model is trained with
decreasing multiples of signal amplitude. The multiplica-
tive factor is lowered from 50 to 1 until convergence.
Multiple models were randomly initialized and trained on a
NVIDIATesla V100 GPU, from which the best was chosen
for this submission.
To search for triggers and evaluate the performance

of the model, a sliding window approach is implemented.
The evaluation data is divided into overlapping segments
corresponding to the input size of the model. Subsequently,
all segments are passed through the model resulting in a
sequence of predictions and a table of SNR peaks from the
25 sorted matched filters. The step size is 1 s and a
threshold of 0.5 is set on the network output as in [94]. The
“time”, “var”, and “stat” dataset of the output file described
in Sec. II D are derived from the table of SNR peaks
associated with directly filtering the templates with the
data. The GPS time and time variance of each trigger are
designated as the median value and the interquartile range
of SNR peaks from the nearby segments, respectively. We
count the coincident SNR peaks between two detectors to
quantify the ranking statistic. Other experiments are still in
progress and are supposed to be published alongside further
details in a stand alone paper.
The final version of the algorithm submitted by the

MFCNN group was provided after the submission deadline
had past. A vital flaw in their original contribution was
discovered and was allowed to be fixed.

B. PyCBC4

The PyCBC submission is based on a standard configu-
ration of the PyCBC-based archival search for compact-
binary mergers [14]. The search infrastructure was used, in

addition to cWB, for the first detection of gravitational
waves, GW159014 [1], in production analyses by multiple
groups to produce gravitational-wave catalogs [13,14] and
targeted analyses [99]. A similar low-latency PyCBC-Live
analysis is also based around the same toolkit [18,100]. The
analysis uses matched filtering to identify candidate obser-
vations in combination with a bank of predetermined
waveform templates that correspond to the expected
gravitational-wave signals [20]. Matched filtering is known
to be the optimal linear filter for stationary, Gaussian
noise. To account for the potential non-Gaussian noise
transients [101–103], each candidate and the surrounding
data are checked for consistency with the expected sig-
nal [104,105]. In addition, the properties of candidates,
such as their time of arrival, amplitude, and phases in each
detector are checked for consistency with an astrophysical
population [106].
The empirically measured noise distribution and the

consistency with the expected gravitational-wave signal are
combined to calculate a ranking statistic for each potential
candidate [106,107]; this ranking statistic is used as the
“stat” value of dataset output, along with its associate
trigger time in time. The “var” dataset is set to a constant of
0.25 s. Two template banks are used for the submitted
results. For dataset 1, a template bank of nonspinning
waveform templates, using the IMRPhenomD [108] model,
is created using stochastic placement. Datasets 2, 3, and 4
were evaluated with a common template bank that includes
templates that account for spin which is aligned with the
orbital angular momentum. Furthermore, only the domi-
nant mode of the gravitational-wave signal was used and
effects such as precession were not accounted for. In both
cases, the mass boundaries of the template bank conform to
the challenge set parameters.
The final version of the algorithm submitted by the

PyCBC group was provided after the submission deadline
had past. A vital flaw in their original contribution was
discovered and was allowed to be fixed. Furthermore, the
PyCBC submission strictly speaking uses a different
algorithm for dataset 1 than for all other datasets, as the
template banks are not the same. The change in template
banks was accepted, as this work does not focus on a run-
time analysis.

C. CNN-Coinc5

This submission is based on the works from Gabbard
et al. [64] and Schäfer et al. [76]. It utilizes the network
architecture presented in [64] with a prepended batch-
normalization layer [109]. As such the network processes
8192 input samples, which corresponds to 4 s at a sampling
rate of 2 kHz. The network is trained only once and applied
to the data from both detectors individually. Afterwards the

4The corresponding author for the PyCBC submission is
Alexander H. Nitz.

5The corresponding author for the CNN-Coinc submission is
Marlin B. Schäfer.

FIRST MACHINE LEARNING GRAVITATIONAL-WAVE SEARCH … PHYS. REV. D 107, 023021 (2023)

023021-9



outputs are correlated to find coincident events as detailed
in [76]. The source code for training the network and
applying it to test data of the format used in this challenge is
open source and can be found at [110]. The algorithm was
designed to enable an easy and efficient estimation of the
search background by applying time shifts between the
individual detectors data. While this feature cannot be
utilized in this challenge, the original paper [76] highlights
the advantages of this approach.
The network is trained on parts of the real O3a noise

from the Hanford detector as provided in this challenge.
Signals are generated using the waveform approximant
IMRPhenomXPHM [88] from the same parameter distri-
bution used in datasets 3 and 4 in this challenge. Merger
times of the signals are varied between 2.9 to 3.1 s from the
start of the input window of the network. The signals are
prewhitened by one of the provided Hanford PSDs used in
datasets 2 and 3. Noise samples are nonoverlapping parts
taken from the real noise data provided by this challenge,
where each segment is whitenened by an estimate of the
PSD on that segment. The network was trained for 100
epochs using the loss and optimizer settings provided
in [76] on a single NVIDIA RTX 2070. The epoch with
the greatest binary accuracy on a single training run was
chosen for this challenge.
During evaluation the network is applied to the challenge

data using a sliding window approach. Each data segment
is whitened by an estimate of the PSD of that segment
obtained by Welch’s method [20,111]. All data are whit-
ened before the network is applied for computational
efficiency. Subsequently, the network is applied to the data
via a sliding window with a step size of 204 samples
≈ 0.1 s. Afterwards a threshold of 3.4 is applied on the
unbounded Softmax replacement (USR) output, which was
introduced in [75]. Coincident events are calculated using
the same procedure and parameters as outlined in [76]. The
“time” and “stat” dataset of the output file described in
Sec. II D list the coincident event times and ranking statistic
values, respectively. The time variance of the “var” dataset
is set to a constant value of 0.3 s.

D. TPI FSU Jena6

This submission closely followed the method of [75],
which is itself based on [64], with several modifications to
adapt to the specifics of the challenge. The core of the
algorithm is a convolutional neural network that accepts a
2 × 2048 input tensor corresponding to 1 s of data from 2
detectors sampled at 2048 Hz. Its architecture is derived
from that of [75] and deviates from the original network by
a larger size of the individual layers and a doubled number
of convolutional layers. These modifications are the result
of a hyperparameter variation experiment which found

these settings to be optimal. A standalone publication on
this submission giving further details on the methodology
is in preparation. The final layer of the network is a
Softmax layer over two inputs which is used for training
and removed using the USR [75] during evaluation.
The network is trained on a dataset constructed by

whitening a randomly chosen part of the real noise file
and slicing it to produce 1 − s noise samples and injecting
whitened IMRPhenomXPHM-generated BBH waveforms
into half the noise samples at SNRs uniformly drawn
between 7 and 20. The waveform parameters are drawn
from the same distributions as are used in dataset 4 of this
challenge. The training dataset consists of 106 samples and
the validation set of 2 × 105 samples.
During evaluation, each segment in the input file is

whitened separately using the estimated PSD and sliced
into 1-second segments at a step size of 0.1 s. These are fed
to the network with the USR applied. First-level triggers are
selected by applying a threshold of -8, which are then
clustered into events. For each event, the “time” and “stat”
in the output file are the values of the highest ranking
statistic first-level trigger of each cluster, and “var” is set to
0.2 s. The algorithm is implemented using the PyTorch
framework [97] and spawns child processes to whiten
individual segments. The network evaluation is performed
by the parent process.

E. Virgo-AUTh7

This submission is based on a simple per-dataset binary
classification scheme. Interestingly, it was found that
training a model only on dataset 2 or only on dataset 4
can yield impressive results on the other datasets as well.
Specifically, training samples from dataset 2 can generalize
well to dataset 3 and 1 and not so well on dataset 4, whereas
training samples from dataset 4 can generalize well on
datasets 1, 2 and 3. Thus, training samples were only
generated from dataset 4. An adaptive normalization
mechanism [112] was used instead of batch normalization
as the first layer, to handle nonstationary timeseries. For
the neural network architecture a deep, ResNet-like
model [113] with a depth of 54 layers was used.
One week of training data per dataset was generated and

the generated injection parameters were used to construct
all corresponding waveforms. This amounted to about
600000 background segments of duration 1.25 s with a
stride of 2 s between, i.e. the next sample starts 0.75 s after
the end of the previous one, and about 580000 waveforms,
of which 300000 were used for the injections. For vali-
dation, one day of data was used, resulting in about 86000
noise segments and 3200 waveforms. The noise segments
and waveform segments are combined online during

6The corresponding authors for the TPI FSU Jena submission
are Ondřej Zelenka, Bernd Brügmann, and Frank Ohme.

7The corresponding authors for the Virgo-AUTh submission
are Paraskevi Nousi, Nikolaos Stergioulas, Panagiotis Iosif,
Alexandra E. Koloniari, Anastasios Tefas, and Nikolaos Passalis.
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training, in a static manner, both for the training and for the
validation sets. The input samples are whitened before
feeding them to the classifier. The PSD is computed online
per batch of 4.25 s with a stride of 3.1 s, and each 1.25 s
segment inside this duration is whitened with the same
PSD. To increase speed, the Welch method for computing
the PSDwas implemented in PyTorch [97] and whitening is
implemented as the first layer of the final detection module.
Notably, this approach of computing the PSD for every
4.25s and whitening each 1.25 s segment in a sliding
window manner was found to be faster than using a
precomputed PSD for every 1.25 s (about 40% faster for
one month of data). After whitening, the first and last
0.125s (0.25s total) are removed from each sample.
The best results were obtained with a ResNet-52 type

network. A Deep Adaptive Input Normalization (DAIN)
layer [112] was used as the first layer after whitening, to
handle distribution shifts that may be present. The final
output is binary, i.e., noise plus waveforms or noise only,
and the objective function used was a regularized binary
cross entropy. The “var” parameter is set to 0.3 s, as the
network predictions are high even when the time of
coalescence is slightly outside the preset range. The “stat”
parameter is set to the network confidence, i.e., a value in
the [0, 1] interval corresponding to the probability that a
waveform is present. Finally, 0.125 s are added to the
expected time of coalescence to account for the time lost in
the whitening process.
A stand alone publication containing details on the

Virgo-AUTh submission can be found at [114].

F. cWB8

Coherent WaveBurst (cWB) is a waveform model-
agnostic search pipeline for GW signals based on the
constrained likelihood method [115–117]. The cWB pipe-
line has been used for the analysis of scientific data
collected by the LIGO-Virgo detectors, targeting detection
of signals from generic GW sources, including the compact
binary mergers [13].
The cWB algorithm identifies the excess-power events in

the time-frequency domain representation of strain data
from multiple detectors [22,118]. For each event, the cWB
pipeline reconstructs the GW waveforms and estimates
summary statistics which describe generic properties of the
events like the coherence across the detector network,
signal strength, and the time-frequency structure.
Recently, a boosted decision-tree algorithm, eXtreme-

Gradient Boost (XGBoost) [119], was adopted and imple-
mented within the cWB framework to automate the
signal-noise classification of the cWB events [55]. Two
types of input data are used for the supervised training:

signal events (from simulations) and noise events (from
background estimations). For each of those, a subset of
cWB summary statistics is fed to XGBoost as input features
to train a signal-noise model. As in [55], the detection
statistic for the machine learning-enhanced cWB algorithm
is defined by

ηr ¼ η0 ·WXGB; ð7Þ

where, η0 is cWB s ranking statistic, and WXGB is the
penalty factor calculated by XGBoost ranging between 0
(noise) and 1 (signal).
This methodology has been recently used in the full

reanalysis of publicly available strain data from Advanced
LIGO’sHanfordandLivingston thirdobservational run [57]:
the machine learning-enhanced cWB outperforms the stan-
dard human-tuned signal-noise classification used for detec-
tion of the compact binary coalescences in the O3 run.
For this study, we chose to use machine learning-

enhanced cWB; however, cWB typically rejects weak
candidate triggers (i.e., with FAR ≫ 1 per year) at early
production stages. Moreover, the whole workflow is
optimized for a trigger production which saturates at
FAR ≈ 30 to 50 per month. Therefore, we modified
cWB to increase the event production rate by almost 2
orders of magnitude: the result is a cWB with subthreshold
capabilities, able to speed up computation and reduce
memory allocations.
While trying to provide the most “generic” result for this

study, it was decided to reuse the XGBoost model which
was developed for [57]: it should be noted that the model
was trained on noise and signal events sets that differ
substantially from those adopted for the datasets prepared
for MLGWSC-1. The noise backgrounds for dataset 3 and
dataset 4 appear to be significantly quieter than O3. Also,
the signals were drawn from a spin-aligned stellar-mass
BBHs population model with different component mass
ranges [120] and with SEOBNRv4 waveforms [121]. The
above-mentioned detection statistic, ηr, is used as the “stat”
value of dataset output, along with its associated trigger
peak-time in “time”. The “var” dataset is set to a constant
of 0.25 s.
The results from the cWB group were provided after the

submission deadline had passed. The group assured that no
tuning to the challenge set was performed.

IV. DATA RELEASE

We provide all source code as well as the evaluation
results for all submissions at [86]. The repository contains
all code accessible to the participants of the challenge,
which most importantly includes a script to generate data
and one to produce the sensitivity statistics we provide in
Sec. V. The repository also contains code for basic
visualization as part of the “contributions” folder.
Adaptations of these scripts were used to create the

8The corresponding authors for the cWB submission
are Francesco Salemi, Gabriele Vedovato, Sergey Klimenko,
Tanmaya Mishra.
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graphics in this paper. The challenge used the code of
release 1.3 of the repository.
Alongside the code provided by the challenge organizers

we publish the source code that was used to run the
contributions for the groups PyCBC, CNN-Coinc, TPI FSU
Jena, and Virgo-AUTh in the “submissions” folder of [86].
The submission code for the MFCNN group can be found
at [95].
All analysis output files for all submissions created by

our analysis are also publicly available and are stored in the
“results” folder in [86]. For each group we make available
the raw output on the foreground and the background for all
4 datasets. Additionally, all timing information is available.
The exception is the cWB group, for which only results on
datasets 3 and 4 are available.
The repository [86] also contains plots used in this paper

for all groups, including versions we have not shown here.
They can be found in the “plots” folder.

V. RESULTS AND DISCUSSION

In this section we provide the results of our evaluation
process described in Sec. II for all 6 submissions. We
calculate and discuss sensitive distances, found-missed
plots, and run-times to provide a quantitative comparison
between the different submissions. We specifically focus on
the difference between machine learning and traditional
algorithms and reason where the core differences in
performance arise.
The four datasets we use in this study were chosen to

answer different questions and serve different purposes.
Dataset 1 was meant as an entry point to the challenge that
represents a largely solved case [62,64,76]. We expected
most submissions to perform very similarly on this dataset.
The second dataset was intended as the first major step in
difficulty. We expected its main challenge to be the longer
duration of the injected signals, as many machine learning
algorithms target shorter durations and struggle with large
analysis segments [69,90]. Dataset 3 includes precession
and higher order mode effects in the injected signals
that traditional, modeled searches are not optimized for9

[25–27]. We wanted to test if machine learning algorithms
could get closer in performance, or even outperform, the
traditional searches in these regions. The intention of
dataset 4 was to provide a challenge that is representative
of a realistic search on real detector data and a limited
parameter space. The data contains non-Gaussian noise
artifacts, that can mimic GW signals [123–126], which are
strongly suppressed by sophisticated algorithms in tradi-
tional searches [17,92,125]. Most machine learning algo-
rithms that target real noise do not make use of such noise-
mitigation strategies and instead rely solely on the ability of
the machine learning algorithm to identify noise artifacts.

This approach was reported to be effective for higher FARs
in the past [63,65,67,68] and we were, therefore, expecting
relatively minor difference between dataset 3 and dataset 4.
Furthermore, most traditional algorithms use matched
filtering, which is only proven to be optimal for signal
recovery when the noise is stationary and Gaussian. Since
neither of the two assumptions are true for real detector
data, we were also interested to test if machine learning
algorithms can perform better than these searches by
learning a better noise representation.

A. Sensitivities

In this subsection we discuss the sensitive distances of
the different submissions, which are a measure for how
many sources can be detected at any given level of
certainty, i.e. at a particular FAR. They are the core metric
to determine the quality of any search. We focus on the low
FAR region and truncate the plot at a FAR of 103 per
month. We chose this cutoff for two reasons. First, to
function as a standalone search, algorithms may only report
events with low FARs. State of the art pipelines send
out alerts only when the FAR is smaller than Oð1Þ per
month [100]. Second, for high FARs a non-negligible
number of detections originate from false associations.
This means that a large number of triggers that originate
from random noise coincidences are close enough to an
injection to be counted as true positives.
Since all machine learning submissions chose to opti-

mize for dataset 4, results on all prior sets also test the
capability of generalizing to different signal (sub)popula-
tions. Dataset 3 is a special case, as it uses the same
distribution to draw the parameters of the injected signals as
dataset 4. It, therefore, differs only in the noise contents and
is a good test of the performance difference of different
algorithms between simulated and real noise.
The results of this challenge are summarized in Fig. 2

and Table IV. The four individual panels of Fig. 2 show the
sensitive distances as a function of the FAR for all
submissions. The panels contain the results for dataset 1
to 4 from left to right and top to bottom. The errors on the
sensitive distances estimated from the variance of the
Monte Carlo integration are smaller than 80 Mpc for all
curves. In Table IV we give the numeric values for the
sensitive distances at three selected FAR values of 1, 10,
and 100 per month for all submissions and datasets. We
also provide information on the wall-clock time used to
evaluate the different sets. Due to time constraints, we only
show sensitivity curves for dataset 3 and 4 for the
submission from the cWB group. We also note that
PyCBC used a different template bank to analyze dataset
1 than for the remaining three datasets.
We find that the machine learning algorithms from the

TPI FSU Jena group presented in Sec. III D and the Virgo-
AUTh group presented in Sec. III E are very close in
sensitivity for datasets 1, 2, and 3. The submission from the

9A full search of the entire O3 data that includes higher order
modes has been performed in [122].
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TPI FSU Jena group reaches a slightly higher sensitive
distance at all FARs for all of these three datasets. However,
the Virgo-AUTh submission retains ≥ 90% of the sensitive
distance achieved by the TPI FSU Jena submissions for
FARs≥ 2 per month. At lower FARs the gap widens but the
individual sensitivities carry large uncertainties due to low
number statistics. For higher FARs this gap narrows to a
separation of roughly 4% at a FAR of 1000 per month. We
suspect that the difference between the two approaches is
on the order that could be explained by different initializa-
tions of the training procedure.
On dataset 4 the submission from the Virgo-AUTh group

manages to maintain a stable sensitivity for the full range of
tested FARs. The submission from TPI FSU Jena, on the
other hand, is dominated by background triggers and
seemingly struggles to adjust to the non-Gaussian noise
characteristics. For high FARs the sensitivity is on a similar
scale as the submission from the Virgo-AUTh group and as
was observed on previous datasets, backing up the hypo-
thesis that rejecting background triggers is the main
problem. This is surprising, as both algorithms were
optimized on dataset 4 but performed similarly only on
datasets 1 to 3. One reason for this result may be the neural
network architectures used by the different groups. The
Virgo-AUTh group uses a very deep ResNet that may be
better suited to represent non-Gaussian noise artifacts.

The architecture from the TPI FSU Jena group is a more
straightforward convolutional architecture that may be
limited in its ability to learn appropriate parameters.
The algorithms from the MFCNN group presented in

Sec. III A and the CNN-Coinc group presented in Sec. III C
also show similarities in sensitivity. Both are significantly
less sensitive than the leading machine learning submission
on all datasets. For datasets 1, 2, and 3, the MFCNN
contribution achieves 32.5%, 30.8%, and 23.5% of the
sensitive distances of the leading machine learning
contribution, respectively. The CNN-Coinc submission
reaches 42%, 25.5%, and 27% of the sensitivity of the
leading machine learning contribution at the point of
farthest separation. For dataset 4 the submission from
the MFCNN and CNN-Coinc groups do comparatively
better. They retain ≥ 68% and ≥ 50% of the sensitive
distance of the leading machine learning submission down
to a FAR of 10 per month, respectively. At a FAR of 1 per
month the CNN-Coinc submission does not detect any
signals, whereas the MFCNN still retains 60% of the
sensitivity of the leading machine learning contribution.
On the first three datasets one can observe a steep

gradient of the sensitivity curves at varying FARs for the
MFCNN and CNN-Coinc submissions. At even higher
FARs the curves level off again and return to a similar slope
observed at low FARs. The sudden increase leads to the

FIG. 2. The sensitive distances of all submissions and all four datasets as functions of the FAR. Submissions that made use of a
machine learning algorithm at their core are shown with solid lines, others with dashed lines. The FAR was calculated on a background
set that does not contain any injections.
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MFCNN submission being more sensitive than the mod-
eled PyCBC search by up to 15% on dataset 3 for FARs
> 200 per month. This behavior is not present in any
of the other submissions and we were not able to find a
clear explanation. However, we observe that both algo-
rithms have different trigger rates on the foreground and
background set. If the background is estimated from the
foreground data only, the sensitivity of both algorithms
drops sharply. All other algorithms are robust to this
change. We show these sensitivity curves in Fig. 3.
However, it was communicated to the groups before
submission that sensitivities would be calculated using
both the foreground and background data. For this reason,
we do not discuss Fig. 3 any further but would like to
encourage possible future mock data challenges to drop the
background set.
For all datasets we compare the leading machine

learning submission to the submission from PyCBC

presented in Sec. III B. We also compare it to the
submission from cWB presented in Sec. III F for datasets
3 and 4. These two are traditional, state-of-the-art search
algorithms that have already been used successfully in
past observation runs [1,13,127].
For dataset 1 we find that the machine learning search is

able to achieve between 94% and 99% of the sensitivity
obtained with PyCBC. These results are remarkably close
and improve significantly on the findings from [76],
which targeted a very similar dataset. However, the gap
between the machine learning detection algorithm and the
PyCBC search widens for lower FARs. Therefore, we
expect that the PyCBC contribution will be able to
attribute a substantially higher significance to many
events. This is amplified by the ability of PyCBC to
trivially increase the amount of data that can be used for
background estimation by introducing time slides between
detectors [76,92].

TABLE IV. A summary of the analysis results for all submissions and all datasets. The columns labeled “Sensitivity” give the values
for the sensitive distance at the three FARs 102 per month, 101 per month, and 100 per month rounded to the second decimal place. The
values lie on the lines in Fig. 2. The columns labeled “Run-time” list the time for evaluation of the foreground and background set in
seconds, respectively. The run-time column labeled “average” lists the mean time obtained from evaluating the foreground and
background data. Entries labeled “Not available” were not measured. The PyCBC times labeled with � are only approximations.
The analysis did not run on the challenge hardware but made use of a compute cluster. Shown times are the result of scaling the
computational costs to 16 CPU cores. The PyCBC times labeled with �� are approximations obtained in the same manner as the
approximations labeled with �, but make use of a larger filter bank. The times of the cWB group marked with ��� are approximations
derived from dividing the CPU core-seconds reported by the search by 16 to normalize it to the challenge hardware.

Sensitivity [Mpc] at FAR ¼ x per month Run-time [s]

Dataset Group x ¼ 100 x ¼ 10 x ¼ 1 Foreground Background Average

A: MFCNN 1586.90 852.18 779.21 42842 43820 43331
B: PyCBC 2686.55 2550.57 2491.53 5406� 5092� 5249�
C: CNN-Coinc 1372.30 1045.34 1001.55 14003 12996 13500
D: TPI FSU Jena 2634.80 2472.31 2362.51 3758 3530 3644
E: Virgo-AUTh 2511.95 2317.53 2116.38 5490 5520 5505

1 F: cWB ... ... ... ... ... ...

A: MFCNN 1531.55 581.93 448.59 43431 40634 42033
B: PyCBC 1719.98 1599.79 1543.79 157865�� 161662�� 159763��
C: CNN-Coinc 554.32 443.58 373.64 14731 14976 14853
D: TPI FSU Jena 1712.13 1544.28 1455.09 3920 3805 3862
E: Virgo-AUTh 1608.97 1409.95 1242.37 5596 5748 5672

2 F: cWB ... ... ... ... ... ...

A: MFCNN 885.46 472.96 355.83 37822 41251 39536
B: PyCBC 1734.43 1630.35 1577.18 149025�� 146683�� 147854��
C: CNN-Coinc 619.94 467.81 401.58 13628 14345 13986
D: TPI FSU Jena 1727.73 1577.77 1487.67 3862 3621 3742
E: Virgo-AUTh 1646.53 1494.98 1240.68 5450 5453 5451

3 F: cWB 1461.56 1359.78 1252.09 5247��� Not available Not available

A: MFCNN 1269.03 999.29 649.81 41942 46702 44322
B: PyCBC 1722.43 1609.62 1544.33 162699�� 163504�� 163102��
C: CNN-Coinc 960.70 620.85 0.00 12489 12431 12460
D: TPI FSU Jena 257.87 0.00 0.00 3540 3487 3514
E: Virgo-AUTh 1608.71 1400.30 1091.77 5462 5571 5516

4 F: cWB 1406.88 1331.90 1229.14 4996��� Not available Not available
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For dataset 2 the leading machine learning contribution
gets even closer to the traditional algorithm from the PyCBC
group. At low FARs ≤ 20 per month it retains ≥ 93.5% of
the sensitivity achieved by the PyCBC submission. For high
FARs ≥ 200 per month it even manages to outperform the
PyCBC submission and is up to 1.5% more sensitive.
From dataset 2 to dataset 3 all submissions experience a

slight increase of the measured sensitive distance. This may
be surprising at first but can be explained by the distribution
of the effective spin. For dataset 3 the spin orientations are
distributed isotropically, which causes the average effective
spin to be smaller than in dataset 2. This leads to few
systems with large effective spin. The PyCBC search gains
up to 3% in sensitivity at low FARs, although it loses about
1% in sensitivity at high FARs. A similar change can be
observed in the submission from TPI FSU Jena. Since both
the leading machine learning contribution and the PyCBC
search gain similar amounts of sensitivity from dataset 2 to
dataset 3 the comparison between the two does not change
substantially. The submission from the TPI FSU Jena group
is now up to 2.5% more sensitive at high FARs and still
about 6% less sensitive at low FARs. The Virgo-AUTh, the
MFCNN, and the CNN-Coinc submissions increase their
sensitive distance by a larger fraction, suggesting that they
benefit more from the signal population being closer to the

distribution of signals in their training set. Dataset 3 is also
the first dataset for which results from the cWB search are
available. We find that cWB retains ≥ 80% of the sensitive
distance obtained by PyCBC over all tested FARs.
Subsequently the leading machine learning submission
achieves a sensitive distance greater by 15% to 23% over
the range of tested FARs.
For dataset 4 the leading machine learning contribution

now comes from the Virgo-AUTh group. Compared to
PyCBC their algorithm retains ≥ 87% of the sensitivity
down to a FAR of 10 per month. For smaller FARs the
sensitivity gap widens quickly. At a FAR of 1 per month the
machine learning search achieves 70% of the sensitivity of
PyCBC. The cWB submission evolves similarly to PyCBC
and retains ≥ 79% of the sensitive distance. At high FARs
the leading machine learning search manages a sensitive
distance up to 27% larger than that of cWB. For low FARs
the sensitive distance falls off quicker than that of cWB. At
a FAR of 1 per month the cWB search is 12.5% more
sensitive than the Virgo-AUTh submission. For lower FARs
we expect this difference to become larger, as the produc-
tion level search algorithms are tuned for lower FARs than
tested in this work. In comparison to the sensitivity
difference on dataset 3 the machine learning submission
from Virgo-AUTh does not retain as much sensitivity on
real noise as the PyCBC or cWB submissions.

FIG. 3. The sensitive distances of all submissions and all four datasets as functions of the FAR. The sensitive distances are calculated
using only the data from the foreground file. The FAR is determined from the false positives on that data. Submissions that made use of a
machine learning algorithm at their core are shown with solid lines, others with dashed lines. This figure differs from Fig. 2 as the
algorithms from MFCNN and CNN-Coinc behave differently on the foreground and the background.
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The results on dataset 1 demonstrate that machine
learning detection algorithms are already capable of rival-
ing traditional search algorithms for simulated data at FARs
≥ 1 per month. A previous study [76] had identified the
capability of machine learning searches to build an internal
representation of the signal morphology as the main
problem to achieve comparable sensitivities to traditional
algorithms. Such a signal representation would allow the
algorithms to compare detections in multiple detectors and
require them to be consistent. The two leading machine
learning algorithms in this challenge seem to have over-
come this limitation, at least for high FAR detections.
For dataset 2 we expected machine learning searches

to decline in sensitivity more strongly than traditional
searches. This expectation was provoked by the short
duration of data that is processed by most machine learning
searches at each step. As the signals injected into dataset 2
are of longer duration than those used in dataset 1, the
machine learning algorithms inherently lose some amount
of sensitivity due to considering only small parts of the
signal. We estimate this loss to account for at most a 1%
difference in sensitivity. However, we observe the opposite
effect for the two leading machine learning algorithms,
which get even closer in sensitivity to the PyCBC sub-
mission compared to dataset 1. This may be caused by the
distribution of signals in the training data used for the
machine learning algorithms. Since both algorithms opti-
mized for dataset 4, most signals in the training data will
have nonzero spin. Therefore, the challenge set for dataset 2
is closer in nature to the training data, which may have
introduced a bias that leads to higher sensitivities for
spinning systems or in other words a slightly reduced
sensitivity to nonspinning systems.
Dataset 3 was intended to test if machine learning

searches are capable of outperforming traditional algo-
rithms for precessing systems and signals carrying higher
order mode information. We do not find substantial
evidence in support of this hypothesis from the sensitivity
curves. However, the challenge set 3 contains only very few
signals with strong evidence for precession and higher
order modes, as most signals are still relatively short. The
impact on the overall sensitivity from these signals is,
therefore, minor. Surprisingly, the leading machine learning
search is still on par with PyCBC and manages to be
significantly more sensitive even at the lowest tested FARs
than the unmodeled cWB search. It must be noted that the
cWB submission was not optimized for the parameter space
used in this challenge. We, thus, expect this gap to narrow if
more effort were to be used to tune the cWB pipeline.
The change in the relative difference in sensitivity

between the PyCBC submission and the leading machine
learning contribution, as well as the change in difference to
the cWB submission, from dataset 3 to dataset 4 suggests
that many machine learning algorithms currently used by
the community are not yet capable of treating real noise as

well as sophisticated traditional algorithms. We suspect that
one major factor may be non-Gaussian noise artifacts that
are misclassified as signals by machine learning algorithms,
while the traditional searches excise them from the data or
reject them on other bases. Another reason may be the
nonstationary character of the noise that may lead to
different sensitivities at different times. However, this
would have also been a factor in dataset 3, where the
PSDs used to simulate the noise change over the duration of
the challenge set. However, since the leading machine
learning search does retain sensitivity at all FARs it must
have learned to reject most non-Gaussian noise artifacts,
which is in line with expectations from studies carried out
at higher FARs [63,65,67,70].

B. Found and missed injections

We generate found-missed plots for all submissions and
show a few selected ones. The ones not included in this
paper can be found in the associated data release [86].
These plots highlight specific areas in parameter space
where the machine learning searches are already competi-
tive and those where more work is required. Specifically,
we provide plots for chirp-mass Mc versus decisive
effective chirp-distance Dc;eff , τ0 versus mass-ratio q,
and the effective precession spin χp [128] versus inclination
with respect to the line of sight θjn. To first order τ0 is the
time to merger from the lower frequency cutoff of the
waveform [129,130]. The decisive effective chirp distance
is a measure for how strong the signal can be observed in
the detector that has the worse sensitivity due to source
location and orientation. The effective chirp distance is the
chirp distance at which a source with the same intrinsic
parameters and sky location but an optimal orientation
would have been observed from at the same amplitude as
the injected signal. The decisive effective chirp distance is
then the larger of the two effective chirp distances from the
two detectors. Therefore, the Mc=Dc;eff plot informs about
the ability to detect signals as a function of the SNR in the
detector that is less sensitive to the signal. We also include
information on the ranking statistic like quantity returned
for each detected event, to highlight how strongly it is
correlated to the SNR. The τ0 versus q plot highlights how
well long and short duration signals are recovered. It also
gives information on the mass ratio, which is an important
parameter for the strength of precession effects. The main
plot used to determine the impact precession effects and
higher order modes have on the detectability of signals is
the χp versus θjn plot.
In Fig. 4 we show the found injections from dataset 1 in

the Mc-Dc;eff -plane for the PyCBC and TPI FSU Jena
submissions, respectively. Both plots clearly show that
closer injections are generally attributed a higher confi-
dence to be a real signal. This indicates that the ranking-
statistic-like quantities for both algorithms are actually
correlated with the signal strength. Similar correlations can
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be observed for all submissions. Furthermore, all signals
with large Dc;eff are missed by both searches, showing that
sensitivity estimates are not limited by the injected pop-
ulation. From Fig. 4 we find that the chirp-mass distribution
from the TPI FSU Jena submission favors chirp masses in
the region Mc ∈ ½20; 35�, which is not true for the PyCBC
submission. We attribute this bias to the training set, which
contained signals drawn from the distributions used for
dataset 3 and 4. The probability distribution of the chirp-
mass for these sets is shaped such that about 51% of signals

are being drawn from the mass range 20 M⊙ to 35 M⊙. A
similar bias is not so evident for the other machine learning
submissions but may be masked by other effects. The
PyCBC submission uses a uniform prior on the chirp mass
and thus avoids this bias.
In Fig. 5 we compare the found injections from dataset 2

in the τ0-q plane for the PyCBC and TPI FSU Jena
submissions. The plots show that the two searches are
competitive in the comparable mass region and identify
similar signals. The main difference between the two

FIG. 4. The injections from dataset 1 identified by the PyCBC and TPI FSU Jena submissions with a FAR ≤ 103 per month in the
chirp-massMc versus decisive effective chirp-distanceDc;eff plane. The blue bars in the histograms show the one-dimensional marginal
distributions of the found injections. The gray bars show the distribution of injected signals, including those missed by the search. The
color shows the “stat” value attributed to the injection by the algorithm. The red lines in the color bar highlight the thresholds on the
“stat” to achieve different FARs.
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searches can be observed in the τ0 distribution of found
signals. Most of the signals with large values for τ0, i.e.
long duration signals, are missed by the TPI FSU Jena
submission. These crucially include many signals that the
PyCBC submission identifies with relatively high confi-
dence. Therefore, the short duration of the input windows

used by the TPI FSU Jena submission still seem to be a
limiting factor for the sensitivity. This limitation will likely
be more severe if longer duration signals from sources like
BNS or NSBH systems were considered.
In Fig. 6 we compare the θjn and χp values of the

injections from dataset 3 that are found by one algorithm

FIG. 5. The injections from dataset 2 identified by the PyCBC and TPI FSU Jena submissions with a FAR ≤ 103 per month in the
signal duration τ0 versus mass ratio q plane. The scatter plot shows injections that are found only by one of the two algorithms. Injections
that are missed or found by both are only shown in the 1D marginal distributions.

FIG. 6. The injections from dataset 3 identified by the PyCBC and TPI FSU Jena submissions with a FAR ≤ 103 per month in the
inclination to spin axis θjn to χp plane. The scatter plot shows injections that are found only by one of the two algorithms. Injections that
are missed or found by both are only shown in the 1D marginal distributions.
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but missed by the other. The two algorithms come from the
PyCBC group and the TPI FSU Jena group. If either
algorithm adapted better to signals with strong precession
or higher order modes content, we would expect to see a
clustering from that search in the scatter plot. However, we
do not observe this clustering, which backs up our
observation from the sensitivity curves that the machine
learning algorithm from the TPI FSU Jena group has not
learned a better representation of precessing systems or
signals with higher order mode content than the modeled
PyCBC search, which only includes nonprecessing signals
in its template bank. However, the amount of impact
precession or higher order modes have on the detectability
of short duration signals used in this study are small. A real
test of this hypothesis would require the analysis of long
duration signals.

C. Run-times

All run-times in this section are given in terms of wall-
clock times obtained on equivalent hardware, which is
listed in Table II. The run-times are largely independent of
the dataset for all submissions. We, therefore, discuss them
only in summary. An overview of the times can be found in
Table IV. They were measured by applying each algorithm
to the foreground and background of each challenge set.
We report the time between the algorithm call and it
returning. To avoid bottlenecks, all files were transferred
to the local storage of the individual compute nodes before
calling the algorithm. The output was also written to said
local storage and transferred back only after the algorithm
returned. It should be noted that the run-times are heavily
dependent on the amount of optimization of the algorithms.
The main objective for this challenge was the sensitivity
and not the run-time.
The PyCBC and cWB submissions are exceptions as

their run-times were not measured on the same hardware.
Instead they were run on compute clusters making heavy
use of parallelized work over multiple CPUs. The times
reported here are approximations by normalizing the
compute time to 16 CPU cores available in the compute
nodes used for this challenge. Furthermore, for the evalu-
ation of dataset 1 PyCBC used a different template bank
than those for dataset 2 to 4 was used. This bank was
substantially smaller, resulting in faster evaluation. cWB
times were reported to us only on the foreground data in
CPU core seconds.
We find that of the machine learning algorithms the

submission from the TPI FSU Jena group is the fastest,
evaluating an entire month of archival data in about 1 h. It
utilizes a single GPU when evaluating the network. The
second fastest algorithm is the submission from the Virgo-
AUTh group. It evaluates a month of data in 1.5 h on a
single GPU and is thus about 50% slower than the fastest
algorithm. Notably, the two fastest algorithms are also
the two most sensitive machine learning searches. The

algorithm from the CNN-Coinc group requires almost
4 h on a single GPU to evaluate the same amount of data
but is significantly less sensitive. However, none of these
algorithms are limited by the GPU performance. The
differences in execution time can be mainly attributed to
the difference in optimization of the pre-processing steps.
The submission from the MFCNN group on the other hand
does not apply any preprocessing directly. They instead use
a neural network to carry out this computation. They
operate on all 8 available GPUs and manage to evaluate
the month of data in ≈11.5 h.
For dataset 1 the PyCBC submission has a run-time

comparable to that of the submission from the Virgo-AUTh
group. On all other datasets it requires roughly 43 h to
evaluate the month of data. The large difference in run-time
between the datasets is caused by the smaller template bank
that is used only for dataset 1. Contrary to the machine
learning algorithms, the PyCBC submission did not utilize
GPUs and ran on CPUs only. However, PyCBC is a
production level search pipeline and as such has been
optimized to run on CPUs. It is not limited by the
preprocessing but rather by the matched filter operation.
It should be noted that PyCBC is still the most sensitive
search presented here and gains in computational efficiency
could be obtained by reducing the number of templates.
This would effectively trade off search sensitivity for lower
computational cost.
The PyCBC submission is implemented on the CPU as

a GPU implementation is inherently more difficult to
optimize. GPUs, on the other hand, are usually far more
efficient from a cost to performance and energy to
performance standpoint [131]. One advantage of machine
learning algorithms is that they make use of well opti-
mized libraries such as PyTorch [97] or TensorFlow [132]
that utilize GPUs for their computations. This makes the
implementation of search algorithms on GPUs relatively
straightforward and allows researchers to focus on
optimizing the sensitivity of their algorithm rather than
having to spend time on optimizing the algorithmic
implementation.
The run-times in this challenge are measured under the

assumption that the lowest required FAR is 1 per month. In
a real search lower FARs are beneficial especially for rare
signals. Therefore, most traditional searches are tuned to be
most sensitive at FARs well below the level tested in this
challenge. PyCBC for instance can extend its background
by introducing time slides [92], thereby potentially low-
ering the FARs of detected events. This process is a trivial
operation that requires a fraction of the computational cost
of the actual filtering stage. If machine learning algorithms
are not specifically designed to allow for a similar
approach, lowering the FARs of detections requires multi-
ple complete reevaluations of the time-shifted data. This
would in turn lead to a linear increase in the computational
cost, i.e. lowering the potential FAR of an event by an order
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of magnitude would lead to an order of magnitude increase
in the computational cost.

VI. CONCLUSIONS

In this paper we have presented the results of the first
Machine Learning Gravitational Wave Search Mock Data
Challenge. The study compiled curves showing the sensi-
tive distances from 4 different machine learning submis-
sions and compared them to 2 state-of-the-art traditional
search algorithms; the modeled PyCBC [92] pipeline and
the unmodeled coherent wave burst search [22,118]. We
established a common dataset and means for evaluation.
We hope that other researchers will continue to make use of
the resources presented in this work to allow for quanti-
tative comparisons between different machine learning
approaches and to traditional filtering techniques. As
research continues and machine learning search algorithms
become more sensitive, we want to motivate other groups to
host new challenges, focusing on other parts of parameter
space or targeting different observing strategies.
The key observations of this challenge are
(1) Machine learning search algorithms are competitive

in sensitivity compared to state-of-the-art searches
on simulated data and the limited parameter space
explored in this challenge.

(2) Most of the tested machine learning algorithms
struggle to effectively handle real noise, which is
contaminated with non-Gaussian noise artifacts.

(3) Traditional search algorithms are capable of detecting
signals at lower FARs, thus making detections more
confident.

(4) The tested machine learning searches struggle to
identify long duration signals.

Therefore, the main challenges for current machine learn-
ing searches are the operation on real noise, the confidence
in detections due to comparatively high FARs, and the
detection of long duration signals. The last of those three is
a major hurdle to confidently detect signals from BNS and
NSBH systems. Improvements in any of these fields would
be beneficial. Specifically, we identify the following key
research areas:
(1) Improve the ability to compare signal parameters, or

representations thereof, between detectors to check
for consistency and reject noise artifacts.

(2) Improve the ability to calculate large amounts of
background, for instance by designing algorithms
that can trivially evaluate time slides of the in-
put data.

(3) Increase the duration of data that are processed by
machine learning algorithms to enable the detection
of long duration signals.

This challenge shows the potential of machine learning
algorithms to act as GW detection pipelines. We have
shown that these algorithms are competitive in a realistic
scenario to state-of-the-art searches today. They operate at

low computational cost and allow for a trivial implemen-
tation of the algorithms on highly efficient GPUs, rather
than relying on CPUs. We believe that this work justifies
more research on this topic, especially in areas where
machine learning may have a tangible impact on the rapid
identification of GWs.
However, we do acknowledge that the research carried

out here operates on a limited parameter space. Moreover,
the targeted parameter space is not the computationally
expensive part of the search space of traditional searches.
About 1% of the total size of the template bank used in [14]
is dedicated to the area this study searches. To have the
greatest impact on real searches machine learning algo-
rithms need to be extended to target either the low mass
region, where signals are long and the computational cost
of matched filtering rises rapidly, or the high mass region
where signals and noise artifacts are difficult to distinguish.
We also want to mention that we did not receive a

submission utilizing one of the most promising neural
network architectures for GW detection of the recent past.
A WaveNet based architecture, that uses dilated convolu-
tions, has been reported to do well for this kind of task
[65,68,133]. We also did not receive submission based on
many other neural network architectures that have been
used in the past, such as autoencoders [74,81,82,134],
inception networks [47,69], or two-dimensional convolu-
tions that analyze time-frequency decompositions [70]. We
hope that some of these approaches will be adapted to the
requirements of this challenge and evaluated on the datasets
presented here, to allow for a quantitative comparison.
Future mock data challenges could target longer duration

signals, concentrating on BNS and NSBH systems. These
are potentially EM bright and would, therefore, be of
particular interest. Furthermore, these signals stem from
regions of parameter space where traditional searches are
computationally expensive to run. For even longer signals,
subsolar mass black holes could be targeted. Existing
modeled searches in those regions make use of several
million templates and are computationally limited [135].
Another avenue may be very massive systems, which can
be difficult to distinguish from noise artifacts. Finally, we
recommend that future mock data challenges drop the
notion of a foreground and background set and only
provide data files containing injections. This would elimi-
nate further sources of error and be more true to a realistic
application, where no true GW-free background exists.
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